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Abstract 

Polygon Streams is a distributed system with multiple processors a.nd strictly 
local communication. A unique custom VLSI chip that constitutes an independent 
processing module forms a stage of the PS pipeline. The number of these modules 
in PS is a variable that is determined by the application. PS features a modular ar­
chitecture, multi-ported on-chip memory, bit-serial arithmetic, and a pipeline whose 
computation can be dynamically configured. The PS design closely subscribes to 
the system characteristics favored by VLSI. 

The task of scan conversion for rendering computer graphics images on raster 
scan displays is very intensive in computation and pixel information access. It is 
very coherent and suitable, however, for forward difference algorithms. The discrete 
and regular layout of the raster display, in conjunction with the largely local effect 
of a pixel on an image, make rendering amenable to parallel architectures with 
localized memory and communication. These are precisely the attributes favored 
by VLSI and typical of PS. 

A modification of the Digital Differential Analyzer (DDA) is implemented to 
Gouraud Shade and depth buffer convex polygons at high speeds. The scan conver­
sion task is distributed over the processors to efficiently subdivide the image space 
and maximize concurrency of processor operation. 

A study of the tradeoffs and architectural choices of the PS reveal the merits and 
deficits ofthe PS approach in comparison with Pixel-Planes, SLAMs, Super-Buffers, 
and SAGE. 

Introduction 

Computer Graphics has traditionally subscribed to two primary goals: realism and 
speed. The first goal attempts to conceive, create, and display scenes that are true to 
life. The latter goal is devoted to practicality. We wish to retain as much of the realism 
as possible as we make the modeling and rendering of images faster. Interactive, realistic 
computer graphics is our ultimate goal. 

In the near future, as the scenes that we want to create get more complex and 
the phenomena that we want to simulate get more involved, we will continue to lack 
the ability to manipulate realistic images in real-time. To justify spending the time 
and computational resources in obtaining an exact image, we should first convince our­
selves that the interactions in the scene - of objects, viewing parameters, light sources, 
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to name a few - are as we had envisaged them. In order to make this decision with 
reasonable accuracy we need a way to quickly preview approximations of these scenes 
interactively. Real-time simulations and animation aiso require images containing thou­
sands of polygons to be rendered within a frame time. The work described in this thesis 
renders shaded and depth-cued polygons on raster scan displays at speeds that match 
the requirements of these applications. 

1.1 Organization of theThesis 

In Section 2 we present the context of the PS System application in a graphics pipeline. 
In Section 3 we discuss the system architecture of PS. This includes the YLSI implemen­
tation of the incremental algorithm discussed above and a detailed design of the scan 
line interpolation subsystem (SL1) of PS. In Section 4 we discuss some of the salient 
features of the PS design. Section 5 compares the PS architecture with that of the 
Pixel-Planes, SLAM, Super-Buffers, and SAGE systems. In Section 6 we discuss en­
hancements to PS and explore the realm of application possibilities of the architecture. 
Section 7 concludes the document. Appendix A is a report on the fabrication details 
and expected performance of the PS system. 

2 	 The Graphics Application: 
The Depth-Buffer Rendering Pipeline 

In the graphics pipeline for converting an image from the world or modeling coordinates 
to the screen or pixel coordinates, a polygonal object is typically described in terms 
of the position, x,y, and, z, and color, r,g, and b, attributes of its vertices. The 
viewing, clipping, perspective, and lighting computations give us a new set of vertex 
and color attributes in screen space. The PS system accepts the screen coordinate and 
color information of the vertices of a convex polygon and interpolates them to produce 
(z, r, g, b)-tuples for all pixels that lie within the polygon. This information is suitable 
for raster-scanned displays. The shading and visible surface determination task is the 
most computation and communication intensive component of the graphics pipeline. We 
render convex polygons at very high speeds by implementing two of Computer Graphics' 
well-known algorithms: depth-buffering [Foley 84] and Gouraud shading [Gouraud 71]. 

3 	 The Architecture and Organization 
of the PS Systelll 

3.1 System Architecture 

The system performs two distinct but dependent interpolations: along polygon edges 
and along scan lines. Along polygon edges we interpolate x, r, g, b, and z against y to 
obtain pixel valueS at the edge pixels that constrain the polygon on consecutive scan 
lines. Along a scan line we interpolate r, g, b, and z against x to obtain pixel values at 
consecutive pixels that lie within the edge pixels of that scan line. 

For a given scan line, only after the values at the edge pixels have been calculated 
may the values for pixels intermediate to those edge pixels be calculated. Note that 
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scan line interpolation is dependent on the polygon edge interpolation only for the 
values of the edge pixels. Also, interpolations along different scan lines are mutually 
independent for the same reason. This lends the system to a functional hierarchy ­
polygon edge interpolation and scan line interpolation. The PS system architecture is 
shown in Figure 1. 
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Figure 1: The PS System Architecture 

Since we are not constrained by any polygon processing order we can arbitrarily 
extend the architecture at this level. If the polygon edge interpolation (PEl) is the 
bottleneck we can balance the system with multiple PEls. Conversely, if the scan line 
interpolation (SLI) is the bottleneck we can balance the system with multiple SLIs. A 
hybrid approach, allows us to optimally balance the number of SLI's with respect to the 
PEl's, and the numbers of PEl's and SLI's with respect to cost-speed-accuracy indices. 
It is now trivial to fine tune the architecture to the scene composition. For example, 
scenes with consistently small polygons, as in the case wherein the accuracy in rendering 
complex curved surfaces is enhanced by fracturing the surface into larger numbers of 
smaller polygonal artifacts, require more PEls. 

The potential for parallel hardware is readily apparent. This paper deals with the 
detailed design and implementation of the scan line interpolator subsystem. 

3.2 The Scan Line Interpolation Subsystem 

3.2.1 Parallelism 

Since the interpolations along different scan lines are independent operations, the scan 
line interpolator subsystem consists of several scan line interpolators which work in 
parallel. The best that we can do is to have an independent interpolator for each scan 
line. The time to interpolate the entire convex polygon is then the time to interpolate 
its longest scan line extent. 

3.2.2 Pipelining 

Interpolations along the same scan line for different polygons are mutually independent. 
Also, the interpolation for a scan Hne can be broken into discrete and repetitive steps 
that successively interpolate for the pixels that lie on the scan line. Thus each scan line 
interpolator can be pipe lined so that interpolation for polygon 'a' can be started before 
that for polygon 'b' is completed. 

For a given scan line y, we may interpolate at (xl, y) for polygon 'a' concurrently 
with the interpolation at (x2,y), xl of x2, for polygon 'b'. Note that (xI,y) and (x2,y) 
cannot belong to the same convex polygon because the interpolation at max(xl, x2) 
is dependent on the cumulative error calculated at the interpolation of min(xl, x2) if 
xl, x2 belong to the same polygon. Thus the scan line processor can be split into many 
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sub-scan line processors each responsible for a set of m unique pixels and potentially 
interpolating for a different convex polygon. In Figure 2 both convex polygons are 
interpolated in parallel by a non-intersecting set of sub-scan line processors. 

m Pixllls 

Figure 2: The Parallelism and Pipelining in the system: both polygons are interpolated 
in parallel by the pipelined scan line processors. 

The sub-scan line processor stores its pixel-set information, (z, T, g, b); for 1 :s; i :s; m, 
in its private memory. This memory is organized as a pixel and depth buffer for the 
sub-image. Thus over the array of processors we have a distributed frame and depth 
buffer for the entire image. 

The DDA implementation for this processor array and the data format we chose 
gave us an elegant, efficient, and versatile interconnection structure. 

3.3 Data Structure and Algorithm Implementation 

Each iteration through the inner loop of the DDA gives us the interpolated value for 
one pixel. It requires the divisor (dy) , the quotient, the remainder, the last interpolated 
value, and the cumulative error (Po"...). Besides the cumulative error and the interpo­
lated value, all the other values need to be calculated once for each scan line. These are 
calculated by interpolating along the polygon edges and are input from the polygon edge 
interpolator subsystem for each scan line. Thus the inner loop of the DDA constitutes 
scan line interpolation. 

By pipelining the scan line interpolator int6 multiple sub-scan line interpolators we 
are effectively opening the inner loop of the DDA into multiple loops each with a default 
number of iterations equal to the extent of the sub-scan line processor, m in our case. 
Thus for a given scan line, y, sub-Ioopl interpolates for 0 :s; x :s; m - 1, Yj sub-Ioop2 for 
m :s; x :s; 2m - 1, y and so on. When sub-Ioopl finishes, it puts all the required data 
into the registers for sub-Ioop2. When sub-Ioop2 starts working on these values sub­
loopl is now available to interpolate for the sub-scan line 0 :s; x :s; m 1, Y of another 
convex polygon. Note that although the sub-loops are working concurrently, they are 
interpolating for different polygons. For a given polygon and scan-line there is a definite 
order of sub-loop operations and a unique data packet in the pipeline. Parts of this data 
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packet, such as the last interpolated value and the cumulative error get modified as the 
data packet moves through the sub-loop pipeline. This imposes a simple communication 
structure: sub-loopn communicates with sub-loop(n + 1) to whom it sends the modified 
data packet, and with sub-loop(n - 1) from whom it receives data packets. 

If we break the loop as mentioned above, in addition to the values above the data 
packet needs to carry Xstart and Xend, the start and end values for the loop. (Xend - Xstart 
= the divisor). Note that all the sub-loops perform the same function. For sub-loopq 
(which interpolates for ((q - l)m ~ x ~ qm - 1, y) this would be: 

if new data in input registers and Xstart ~ qm - 1 then interpolate for the scan line 
section that lies in its domain i.e. from max((q-1)m, Xstart), Y until min(qm-1, Xend), y; 
if we have not reached the last pixel of the polygon on that scan line, fill the registers 
of sub-loop(q + 1) when it is ready to accept the modified data packet. 

In spite of their common functionality, the sub-loops need to know their index, q, 
to make the comparison, (q - l)m ~ x ~ qm - 1, and are not identical. This implies 
that we need ceil(X/m) different sub-loops (processors) for a screen size X pixels wide. 
This translates to extra logic and initialization overheads to simulate different sub-loops 
from identical implementations of the processor. 

With a slight modification in the data format and functionality this limitation can 
be overcome. In the format above, the values of Xstart and Xend were fixed with respect 
to the image axis and unchanged for all of the sub-loops. But the subloops do not need 
the absolute values of Xstart and Xend; they need these values only with respect to their 
domain. For example subloopq only needs to know that it should start interpolating 
from the third pixel in its domain. The connectivity information tells us that this 
"third" pixel of the subloop corresponds to x = (q - l)m + 3. Thus if Xstart and Xend 
could somehow be "normalized" with respect to the sub-loop indices, then the index 
information would be redundant and the sub-loops could be identical. 

Conceptually, we normalize by associating a y-axis with each data packet. As it 
moves through the pipeline, the data packet shifts its y-axis. Thus the y-axis for a 
data packet shifts to the right by the sub-loop count, m, as the packet moves between 
successive sub-loops. As Figure 3 shows, by this data manipulation we are effectively 
moving the sub-loops to the left and keeping the modified data packet stationary. Now 
all the sub-loops believe that they are the starting sub-loop and hence are identical. 

We implement the normalization by : 

Xstart(to be sent) := xstart(received) - m(the loop count) 

Xend(to be sent) := xend(received) - m(the loop count) 


dx = Xend - Xstart, remains unchanged. 

Irrespective of index, all sub-loops now perform the function: 
if new data in input registers and Xstart ~ m -1 then interpolate for the scan line section 
that lies in its domain i.e. from max(O,Xstart)'y until min(m-1,xend),y; if the last pixel 
of the polygon on that scan line has been interpolated then do not send any data packet 
down the scan line. Otherwise, renormalize Xstart and Xend for the next sub-loop; wait 
until the next sub-loop is ready to accept data; fill the registers of the next sub-loop. 

With this normalization, the sub-loops are all identical and the index information 
is hardwired in the communication structure. Thus we can replicate this one generic 
sub-loop for displays of arbitrary size. 
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Figure 3: The effect of "Normalizing" a data packet 
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Figure 4: A numerical example to illustrate "Normalization" 
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3.4 Translation into VLSI 

3.4.1 The Two-Dimensional Chip Array 

In translating into VLSI, we mapped n of these sub-scan line processors each with its 
private memory onto one chip. Thus each chip is responsible for a unique m by n pixel 
subspace. The mapping is illustrated in Figure 5. 
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Figure 5: Processor-Pixel Mapping 

All processors i,O :5 i :5 n - 1, correspond to the same sub-loop index but for 
different loops (scan lines). Processor i, I :5 i :5 n, in chip(j, k) interpolates for pixels 
that lie in its domain, ((j -1)m:5 x:5 im-l, (k l)n+i). Processor i in chip(j+l,k) 
interpolates for Um :5 x :5 (j + l)m - 1, (k l)n + i) and is the adjacent subloop 
to processor i in chip(j,k). Thus data packets (unique to a scan line of a polygon) 
move from left to right in the row of chips and only the data packets for scan lines 
(k l)n:5 y:5 kn 1 need to be input to row k starting at chip(l,k). 

Subpixelling is a way of reducing the aliasing effects inherent in the depth buffer 
algorithm. Each physical pixel is now fractured into multiple (usually a square grid) 
virtual sub-pixels. We interpolate in this virtual image space that is larger than the 
physical image space (screen space) and use an averaging filter to merge the sub-pixels 
when we paint a physical pixel. 

For a display size of Q by R and a subpixelling size of q by r, the array of chips 
would have indices I :5 x :5 ceil(Qqfm) = X,1 :5 Y :5 ceil(Rrfn) Y. Each chip 
communicates with the two chips on either side of it in the row, i. e. chip ( a, b), 1 < a < 
Xi I :5 b::::: Y, communicates with chips chip(a l,b) and chip(a + l,b). Chip(l,b),1 :5 
b :5 Y, communicates with chip (2, b) on the right and with the polygon edge interpolator 
on the left and chip(X, b), 1 :5 b:5 Y, communicates only with chip(X -1, b) on the left. 

If the incoming data packet is for a busy processor (with all its input buffers full) 
then the chip passes on a busy signal to the chip on its left so that it may refrain from 
overwriting this data. This communication ensures that no information is lost when 
we have a choked pipeline. If the data is for a sub-scan line that intersects the chip 
subspace, then the data packet is written into the scratch registers of the corresponding 
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processor and the chip is free to accept more data. If the first pixel, Xstart, lies beyond the 
chip domain, the Xstart and Xend values are normalized and the data packet is passed onto 
the next chip (on the right) when it becomes free to accept this data. A normalized 
data packet is also passed onto the next chip when an on-chip processor completes 
interpolating and the last pixel on the scan line, Xend, does not lie in its domain. If the 
last pixel has been interpolated then we have finished interpolating that scan line and 
the data packet is not passed on. Since the polygons are clipped to the image space, it 
follows that chip(X,y),l ::::: y::::: Y, need only communicate with chip(X - l,y) on the 
left. 

Communications to the left are to indicate the busy status of the pipeline and 
those to the right are for transmitting scan data; this data is always normalized. The 
interprocessor communication is by asynchronous, source-initiated handshaking as data 
transfer is not lock-step with every clock tick. The communication paths for a chip 
array are depicted in Figure 6. 
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Figure 6: The communication structure of the chip array 

We have a wave of data packets moving from left to right through this chip array 
for each polygon. The wavefront for a polygon initiates interpolation for that polygon 
in all the incident processors. Polygon waves may be rhythmically pumped into the 
system in a systolic manner. 

3.4.2 Chip Architecture 

Each chip has to handle handshaking and data communication for its n processors. The 
information for communicating with the chip to the left is distinct and independent of 
that with the right. In the former case we accept data packets and specify our status. 
In the latter, we send data packets and query the status of the next chip. Still another 
distinct source of data communication is with the external video circuitry for displaying 
the pixel values for the m by n pixels of this chip. This requires that we recognize a 
video-scanning signal and in response output the values of the current pixel as we cycle 
through all the m by n pixels. 

The four distinct functional components are: 

• n processors each with its private memory for m unique pixels. 
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Each processor interpolates for the m pixels in its domain and the memory is part 
of the distributed pixel and depth buffers. 

• 	 Preprocessor 
The preprocessor inputs data packets and outputs its status to the chip at the left 
or to the polygon edge interpolator in the case of the first chip of the row. If the 
data packet is not for any of the chip's processors (the starting pixel lies beyond 
the chip domain) it passes the packet to the postprocessor. 

• 	 Postprocessor 
The postprocessor takes data packets from the n processors and the preprocessor, 
normalizes them, and outputs them to the next chip. It is responsible for all 
the handshaking signals for this communication with the preprocessor of the next 
chip. 

• 	 Video-processor 
The video-processor cycles through the on-chip buffer and outputs the current 
pixel information in response to a video-out signal. Its access of the memory 
banks is transparent to, and independent of, the processors. 

Additionally, each chip has a clock and timing signal generator that converts the 
single phase clock input to an internal two-phase non-overlapping clock. The clock 
generator is also responsible for producing the control signals for the preprocessor and 
the postprocessor and the control signals that are common to all the processor and 
memory banks. 

This functional modularity drives the chip architecture shown in Figure 7. In the 
interests of brevity, only the details of the memory design are included in this document. 
The interested reader is referred to [Gupta 87]. 

The Memory Design 

The total chip memory, corresponding to the pixel and depth buffers for m by n pixels, 
is divided into n banks, one for each processor. The memory for each processor is 
independent of the other processor memories. 

The processor access of the pixel memory is pseudo-random; between the first and 
last pixels to be interpolated the pixel memory is accessed sequentially. Thus only the 
first pixel access is random. For the subsequent pixels, the address for the pixel just 
computed can be incremented to access the next pixel to be computed. We implemented 
this by a token that successively passes through the m pixels of the processor in the 
spatial order of the pixels in image-space. When the preprocessor routes the incoming 
data packet to the relevant processor, the "x.tart control" unit of the preprocessor initi­
ates the start of this token for the processor so that by the time the processor is ready 
to access pixel memory, the first pixel to be interpolated has the token and can send its 
data to the processor on a pre-charged bus. The n tokens on the chip, one for each of 
the n processors and its memory bank, is independent of the video token that crosses 
memory bank boundaries. 

In the other dimension the r +g +b+ z bits of each pixel memory are cyclic because 
the processor is bit-serial and needs only a bit of information on each system clock cycle. 
The implementation approximates a circular shift register for the r + g + b + z bits of 
each pixel. Memory read-out is thus destructive. 
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Figure 7: Chip Architecture 

Figure 8 illustrates the memory organization. 

4 Salient Features of the PS Architecture 

4.1 Bit-Serial Arithmetic 

Our architecture is communication limited. Bit-serial arithmetic helps reduce the clock 
period and thus boosts the communication bandwidth by a. factor close to the number 
of bits of alternate parallel hardware. Serializing memory and logic in the design of a 
module while increasing the number of parallel modules improves hardware utilization 
and throughput at the cost of an increase in latency. 

Bit-serial processors improve the flexibility of data formats. In our case, altering 
the data format or resolution implies minor changes in the clock and timing signal 
generator. It also helps in lowering the pin count and silicon area of the chip. Enhancing 
the connectivity of the structure, say to a hexagonal connectivity for dithering, now will 
not increase the pin count inordinately. 

4.2 Systolic Adaptation 

We have the strictly local and regular communication structure of systolic architectures. 
The DDA we implement, closely maps the pipelining inherent in the systolic approach. 
Our adaptation diverges from a purely systolic computation in that every processor does 
not compute on every clock tick. We use the systolic paradigm to capture the concepts 
of parallelism, pipelining, and interconnection structure but we do not subscribe to the 
strict lock-step computation of systoles. Just as in systolic systems two communicat­
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ing processors have a data path between them but in our case the communication is 
asynchronous. 

Another divergence is that the sequencing of operations is neither built into the 
nodes nor are control signals broadcast into the array in an SIMD fashion; in our 
adaptation the control for the computational array is distributed into the array. In the 
current implementation, the data encodes the operation - normalize, interpolate for a 
variable number of pixels, kill the data packet mimicking a data-flow architecture. In 
manipulating the data packet each processor is effectively encoding the command for the 
next processor. Additionally, the data packet also contains an explicit command field. 
Currently the only encoded command controls z-compare. PS allows each processor 
to affect the operation of subsequent processors in the scan line by manipulating the 
data and also by explicitly manipulating the command field. We hope to exploit this 
flexibility to address complex applications. 

4.3 On-chip Memory 

Scan line conversion requires a high memory bandwidth. Keeping in mind the penalties 
that off-chip accesses entail in terms of power, speed, pin count, and silicon area, we have 
a compelling reason for on-chip memory. There are other not so obvious advantages 
of on-chip memory. Distributed memories that are in close proximity to the processor 
offer less memory contention and global address decoding. The on-chip memory and 
processor share a common clock reducing concerns of clock skew. 

We can exploit the VLSI advantage by specializing the on-chip memory to the pro­
cessing task. In our case this corresponded to a multiple-ported, dynamic memory that 
mimics a circular shift register for each pixel. It is optimized for bit-serial arithmetic. 
The data dependencies and locality that are typical to our processing task give us a 
simplified, fast, and small memory decoder, and reduced wiring. 
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4.4 Algorithm Implementation 

The algorithm implementation for the distributed system tracks the simple and local 
connectivity of the systolic structure. The data structure carries all relevant information 
thus avoiding the need for common busses or global communication. It automatically 
tesselates polygons onto the underlying chip array structure adding extensibility to the 
implementation. Tesselation does not incur any space or time overhead as would be the 
case in a higher level partitioning scheme. 

4.5 Hierarchical and Distributed Control 

The primary considerations in the design of the control circuit are the silicon area, the 
speed of the chip, and the design time. For VLSI these are direct manifestations of the 
cost of the circuit. We employed a hierarchical design that separates the sequencing 
and the generation of commands [Obrebska]. 

In our design the clock and timing signal generator forms the top level of the hier­
archy of the control. By extracting the timing signals that are common to the different 
functional units of the chip we avoid repetition and redundancy in the signal genera­
tion. These signals form the skeleton of the control structure providing validation and 
supervision for the flesh of the structure within and between the units. This flesh is 
distributed at various levels. The distribution gives us flexible and localized control, 
and minimizes long-distance communication. 

The clock and timing signal generator is implemented as a PLA. The PLA construct 
is easy to generate, test, and debug. Its use at this level makes the implementation 
flexible. We can change the parameters of the implementation viz. the system VB. 

processor clock ratio, the data format, the buffer sizes, the screen resolution, the number 
of pixels per processor (m), with minor modifications. The versatility of the PLA 
structure, the irregular nature of the control logic, the large size of the corresponding 
FSM, and the fact that there is only one of these per chip justify the area of the PLA. 

Token-passing is used to control communications between units. Pre, post and pro­
cessor communications use one polling token, video communication employs a token 
that circulates through all the m by n pixels of the chip, and each processor-memory 
bank communication is controlled by an independent token; thus each chip has n + 2 
independent tokens. All information transfers from the processors to the postprocessor, 
from the preprocessor to the processors, and between each processor and its pixel mem­
ory bank are initiated by the processor clock. A processor clock period being r+g+b+z 
times the system clock period, we have r + 9 + b + z system clock cycles for decoding 
communication requests. At the same time, we want to avoid personalized control lines 
for every type of communication. Token-passing gives us the best tradeoff between de­
coding time, size of decoding circuitry, and multiplicity of control lines. The use of a 
shifting token for processor-memory bank control exploits pixel coherence (interpolation 
for pixel i + 1 follows that for pixel i). The video-memory token requires no decoding. 

Within each unit, control is implemented by gates and dynamic shift registers mim­
icking the "delay-element method" [Hayes]. This design style conserves area and re­
duces delays beca.use of the small incremental cost of latches in MOS technologies. The 
internal functions of the processors are directly controlled at this level. It is therefore 
repeated as many times as the number of processors per chip (n); this makes the area 
considerations significant. The regularity of the algorithm and the "tight" properties of 
this design style justify its non-uniformity and thus lack of automation. 
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4.6 Logic Implementation 

The use of steering logic allowed us to exploit the features typical of the implementation 
technology, namely CMOS. We have pass transistor logic networks with the logic level 
appropriately restored. These networks control data or signal flow between data latches 

another elegant and low cost feature of MOS logic. 
Static CMOS logic, however, requires us to implement both the complimented and 

uncomplimented forms of the function in n-type and p-type transistors respectively. 
Not only is silicon area wasted in the duplication, but the problem of routing signals 
is aggravated. We used precharge logic whenever possible. Besides the savings in 
circuitry and routing, precharge logic gives us lower capacitances and hence higher 
speeds. With only one p-type transistor in the pull-up path, load capacitances charge 
faster. We easily derived mutually exclusive compute-precharge phases from the two­
phase non-overlapping clock on the chip thus fulfilling the precharge requisite that inputs 
to precharged busses be glitch-free and that the bus not be used for the time it needs 
to precharge. We opted not to concern ourself with the lower speed bound in using 
dynamic logic. 

5 	 Comparison with Existing Polygon Rendering 
Systems 

Our design exploits parallelism by partitioning the image space so that each processor 
is responsible for only a sub-image and consequently fewer objects. Another possible 
approach is to partition the object space so that each processor is responsible for only a 
subset of the objects in the image. We compare the PS architecture with four prominent 
and recent architectures for scan conversion that apply image space partitioning. These 
are: 

• Pixel-planes by Henry Fuchs et al. at the University of North Carolina 
[Fuchs 81,Fuchs S3,Poulton et al. 85] 
Pixel-planes is a processor-per-pixel architecture for Gouraud shading and depth­
buffering polygons. The designers have since discovered other interesting applica­
tions that map onto the functional paradigm of the architecture. The most unique 
aspect of the architecture is the use of multiplier trees to calculate the linear equa­
tion, F(x) Ax + By + C, at each pixel. Differently said, the multiplier trees 
decode linear equations onto the pixel space . 

• Scan Line Access Memories by Stefan Demetrescu at Stanford University 
[Demetrescu 85] 
Scan Line Access Memories, or SLAMs, use conventional high density RAMs 
enhanced with limited processing for high speed rasterizing of large sections of scan 
lines. The current implementation runlength encodes a specified 16-bit halftone 
pattern to affect an entire, or a subset of, a scan line. The architecture draws 
strength from its simplicity and the use of conventional RAM design concepts. 
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• 	 Super-Buffers by Nader Gharachorloo et al. at Cornell University 
[Gharachorloo 85] 
The Super-Buffer architecture is a systolic approach to the task of rasterizing 
polygons. Super-Buffers, developed independently, share many features with PS. 
Notably, we both divide the task of rendering polygons into polygon edge inter­
polation and scan line interpolation. In polygon edge interpolation both systems 
employ an incremental algorithm. In addressing the communication problem, our 
approach is a variation of the systole to which the Super-Buffers adhere strictly. 

• 	 Systolic Array Graphics Engine by Nader Gharachorloo et aJ. at IBM, Thomas 
J. Watson Research Center [Gharachorloo et al. 88] 
Systolic Array Graphics Engine, or SAGE, is an update to the Super-Buffer sys­
tem. Also developed independently of PS, the SAGE architecture is very similar 
to Super-Buffers with the added functionality of Gouraud shading. The primary 
differences between SAGE and PS remain the processor-per-pixel of SAGE ver­
sus the processor-per-subscanline of PS, the external frame-buffer requirement 
of SAGE versus the distributed frame-buffer of PS, and the common video and 
processing clocks of SAGE versus the independent video and processing clocks of 
PS. 

In our comparison, we characterize the efficiency of an architecture by: 

• 	 the extensibility of the architecture to increasing functionality. 

• 	 the extent of host involvement. 

• 	 the speed potential. 

• 	 the processor utilization. 

• 	 the communication bandwidth. 

Only PS, Pixel-Planes, and SAGE currently implement Gouraud shading and depth­
buffering. SLAMs and Super-Buffers have a one-bit plane at each pixel and do not 
support hidden surface removal. 

Pixel-Planes inherently support all functions that can be represented as a linear 
equation. Functions that do not have the linear equation as their natural represen­
tation require extensive preprocessing. For example, polygons are most conveniently 
described in terms of their vertices. Edge equations are easily obtained from this infor­
mation; however planar equations for color require more preprocessing. Super-Buffers 
and SAGE are limited in that no memory is retained past scan line boundaries, requir­
ing all pixel information to be retransmitted through the row of Graphics Engines at 
the onset of scan lines. This requires pixel information for the entire image space to be 
stored externally along with data for all the active polygons. The SLAM architecture is 
optimally designed for a I6-bit function repeatedly applied to all pixels on a scan line. 
The architecture loses most of its elegance and performance metrics for more involved 
processing. The PS architecture is optimized for incremental arithmetic and local com­
munication. With the understanding that all global communication can be implemented 
as local communication using systolic conversions [Leiserson a,Leiserson b], we foresee 
few limitations to applications with our architecture. 
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Global communication in Pixel-Planes and SLAMs limit the performance potential of 
the systems. In Super-Buffers and SAGE, the image clock is also the video clock, limiting 
the polygon throughput. In all of these systems the memory is essentially single-ported; 
thus, video access and image processing are not completely transparent. Our simple 
decoding structure gives us multi-ported on-chip memory with completely independent 
and transparent video and image accesses. Also, in all the other architectures that we 
have considered all the chips are functionally different. This translates to additional 
logic, delay, or host involvement in an initializing phase. With a simple "normalizing" 
function, we avoided that requirement. 

Processor utilization in Pixel-Planes is low by virtue of the processor-per-pixel ap­
proach to a lock-step-with-polygon character enforced by the global communication. In 
SLAMs, processor utilization is high only for applications with a repeatedly applied 
pattern covering large sections of a scan line. Super-Buffers, SAGE, and PS enjoy a 
high processor utilization profile. In Super-Buffers and SAGE, however, the processor­
per-pixel architecture witnesses many processors simply performing the Xleft and Xright 

comparison. This dilutes the effective processor utilization. In the same token, the 
processor-per-subscanline of PS might witness bottlenecks when consecutive data pack­
ets are destined for the same processor. In the worst bottleneck case, the enhanced 
processor-pixel mapping of Subsection 6.1 loses a factor of m, where each processor is 
responsible for an m-pixel sub-scanline, in comparison to Super-Buffers or SAGE. This 
underlines the tradeoff between processor utilization and speed potential, or the average 
case versus the worst case. 

Of all the architectures reviewed in this comparison, the SAGE architecture bears 
the closest resemblance to PS and merits a closer inspection. In SAGE just as in PS, 
the boundary between the polygon edge interpolator and the scan line interpolator lim­
its the communication bandwidth of data packets along a scan line. This observation 
in conjunction with the processor-per-pixel approach jnstifies the purely systolic com­
munication of SAGE. In the processor-per-subscanIine or processor-per-multiple pixels 
architecture of PS, however, the number of pixels interpolated by a processor may vary 
from 0, in cases of sub-scanlines that do not intersect the domain of the processor, to m, 
in cases of sub-scanlines that overlap the entire m-pixel domain of the processor. Thus 
the processing time per data packet is not constant, necessitating the asynchronous 
hand-shaking communication in PS. 

The absence in SAGE of a distributed frame-buffer is closely tied to the reuse of 
the processing clock as the video clock; this is by far the most significant difference 
between SAGE and PS. When rendering more complex scenes than those permitted 
by the video rate, SAGE requires an external frame-buffer for storing the output of 
the SAGE chips. This implies either that the buffer values for a scan line have to be 
shifted into the vector of processors in time before the new interpolation for the same 
scan line, or external circuitry is needed for correlating the new and previous values at 
each pixel. The distributed frame-buffer and independent video and processing clocks 
of PS permit graceful video degradation with fewer frames per second. Even in the case 
of simpler scenes, the processing rate matches the video rate only for four interleaved 
SAGE chips. SAGE appears to have no way of recovering and retransmitting the error 
term of the interpolation thus potentially introducing aliasing artifacts at the boundary 
between the chips. 



106 

The extent of host involvement is significantly different between the SAGE/Super­
Buffer and PS architectures. Consider the following abstraction: the task of depth­
buffering is effectively the sorting of all polygons along x, along y, and then for a given 
(x,y), ie. for each pixel on the display, the sorting of all relevant polygons along z. 
For each pixel, the z-buffer retains the intensity data only for the closest polygon. The 
sorting along x and y is simply an optimization to avoid processing all polygons at 
every pixel. Polygon sorting along x is circumvented by providing a processor at each 
pixel along the scan line; the z-sorting of all polygons for all values of x is then off­
loaded from the host to PS/SAGE/Super-Buffers/etc. Similarly, scan line processors 
for each scan line in PS circumvent the need for polygon sorting along Yi the z-sorting 
of all polygons for all values of (x, y) is off-loaded from the host to PS. SAGE/Super­
Buffers on the other hand, only z-sort polygons along x, the sorting of polygons along 
y continues to remain the responsibility of the host. In this sense PS is an evolution of 
the SAGE/Super-Buffer architectures. 

6 	 Application Possibilities and Enhancements 
of the PS Architecture 

This chapter is organized in an extensibility precedence: the extensions to the system 
are described in a decreasing order of detail and/or an increasing magnitude of mod­
ifications. All the enhancements share the same design philosophy - on-chip memory, 
decoding that exploits data dependencies, local communication, bit-serial processing ­
as the current system, and most cases propose a simple increase in the functionality of 
the processor. 

6.1 A Better Processor-Pixel Distribution 

The connectivity of the chip array in the current implementation introduces an asym­
metry in communication. The communication requirements decrease as we move from 
the first column of chips to the last as the first chip in the row has to transfer/process 
data packets for all the chips in the row. As we move down the row, in increasing x, 
data packets terminate and the rate of data flow between chips falls. 

Currently, the n processors of a chip are stacked vertically so that each chip is 
responsible for a square array of pixels. However, if we connect the processors back-to­
back so that they span contiguous sections of the same scan line, we continue to have 
XY j N 2 chips in the system but we change the aspect ratio of the array. The chip array 
changes to X/N 2 by Y from X/N by YIN, and the processor array is the same at X/N 
by Y. However with X/N processors per scan line and only one scan line per row, we 
now have XjN processors per row of chips and not X processors per row as earlier. 
Also, data packets span potentially larger sections of a chip's domain. These reduce 
the data packet requirements per row of chips. Conversely, with a chip now processing 
larger scan sub-sections the data traffic between chips falls. Thus we help remedy the 
asymmetry of communication discussed above. 

The lower communication requirements at the same communication bandwidth im­
proves throughput and processor utilization. In the context of locality of reference 
which has data for scan line i + 1 following that for scan line i, we increase parallelism 
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by assigning one scan line per row of chips. Note that we have the same number of 
processors per scan line leaving the performance contribution of pipelining intact. 

In this approach consecutive processors span contiguous sections of the pipeline. 
In the context of pixel coherence, the data. dependency that applies to a.djacent pixels 
within a scan line, we can now simplify and enhance the power of the token decoders 
for higher performances. 

6.2 Processor Enhancements 

We only consider applications that can take advantage of the system architecture. We 
expect that many algorithms could be reformulated to exploit the distributed control, 
communication and processing structure of the system. The list of possible applications 
is not purported to be complete. The last two in the list below embody the structure 
which promises interesting solutions to difficult problems. 

6.2.1 Anti-aliasing 

Aliasing effects arise from the finite size of pixels. Differently said, it is the quantization 
error of converting real pixel values to the integer precision of the display. In the DDA 
computation although the data packet carries only integer information, all the precision 
of the real number interpolation at each pixel can be reconstructed from the values in 
the data packet. As an example, Psum/dy, the difference in the integer x pixel value we 
adopt and the true x value at the scan line, is available as the integer values Psum and 
dy. We can use this information to color edge pixels so that edges appear anti-aliased. 
Note that this is only an approximation to true anti-aliasing and hence is not free from 
defects. 

6.2.2 BitBlt 

By BitBlt [Foley 84] here we mean copying or moving arbitrary sections of the screen 
to another location on the screen with one command. 

The pixel data now originates from the source sub-screen and is routed to the desti­
nation sub-screen through the switch network between the polygon edge and scan line 
interpolator systems. A data packet with the source pixel location, length on the scan 
line, and destination scan line and pixel location moves through the scan line and af­
fected pixel data is appended to the data stream at the source and stripped from the 
top of the stream at the destination. 

6.2.3 Other Incremental Algorithms 

The architecture supports algorithms that can be described incrementally. Bresenham's 
Circle algorithm [Foley 84] is a typical example. It ideally maps the architecture and 
can be implemented with only minor enhancements of the processor, making the circle 
throughputs of the system comparable to the polygon throughputs. Other interesting 
classes of algorithms and graphical effects can be obtained from the current data struc­
ture. A case in point involves successively changing the constants in the data packet. 
By left-shifting the quotient at each computation, we can trivially compute the function 
2Z where x is the pixel attribute. Algorithms that can optimally utilize the parallelism 
of PS can be found in many disciplines. These algorithms run inhibitively slowly on 
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current mainframes and the performance improvement by running them on PS would 
make them practical and useful. 

6.3 Fault-Tolerance 

We can incorporate a measure of fault-tolerance by having an extra processor and 
memory bank per chip and storing the bank attribute (good/bad) in the token decoder. 
If the processor or memory of anyone of the n banks of a chip, say p, is found to be 
defective the token decoder delays by one clock cycle the valid signal for banks that 
follow the defective bank in the token path. In this simple way banks p ••• n - 1 are 
effectively replaced by banks p + 1 ... n, where banks 0 ... n - 1 are the chip's n banks 
and bankn is the extra bank added to tolerate a faulty bank. 

The detection of a problem is simplified by the existence of the postprocessor; since 
all banks are identical the same scan line can be sent to successive processors and the 
result compared in the postprocessor. We do require some additional logic on the chip 
to do this and to reflect the result in the token decoder. The loss in area incurred by 
this fault40lerant measure is less than l/m times the chip area. Also, the chip forms 
a generic PS stage and we can replace a faulty chip with a new chip which will reset 
itself with the background polygon at the start of the next frame. We are not required 
to interrupt and reinitialize the entire system. 

7 Conclusions 

PS exhibits the characteristics of distributed systems: increased performance, extensi­
bility, and modular architecture. An eclectic bag of architectural methodologies directly 
addresses the limitations on communication bandwidth and processor utilization. The 
power of PS lies in the extensive pipelining and parallelism it incorporates. Bit-serial 
arithmetic, systolic connectivity, on-chip memory, and hierarchical control effect the 
performance metrics and extensibility of PS. In its implementation, PS exploits the 
fabrication technology, CMOS. 

A number of tradeoffs and marriages make the PS architecture unique: the dis­
tributed communication of systoles leading to high bandwidth and the independence of 
asynchronous communication; decoding time vs the minimal control wires as in token­
passing; the low processor utilization of a processor per pixel vs the communication and 
processing bottlenecks of an m by n approach. 

In the context of the current application, the reformulation of the DDA maps the 
architecture efficiently. A judicious processor-pixel distribution is shown to enhance the 
symbiotic relationship of the application and the architecture. The proposed architec­
ture exploits the data dependencies peculiar to the task of scan conversion. The exercise 
underlines the advantages of concurrently developing the algorithm, data structure, and 
architecture. 

In designing the PS system, we witnessed an anachronism in design psychology: 
"memory" = "RAM". Even for the on-chip memory of specialized hardware, the or­
ganization is or closely resembles a RAM. However in most cases, certainly in ours, 
random access is overkill; And there is a price to pay for it! For most applications, 
data coherencies can lead to faster, smaller, and more efficient memories. Semi-random 
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access memories are finer tuned to the application and therefore more effective. A case 
in point are the multiple ports of the PS on-chip memory. 

A Implementation Details 

A.I Architecture Details 

m, the number of pixels per processor 16 
n, the number of processors per chip = 16 

Pixel Data Format: 
r, g, b = 8 bits each 
z = 16 bits 

Therefore the depth buffer stores 40 bits per pixel. This corresponds to: 
40 x 16 = 640 bits per memory bank, and 
16 x 40 x 16 10,240 bits of memory per chip. 

1 processor cycle 48 system clock cycles. 

The chip was designed to run at clock rates of 40 Mhz and over. 


A.2 System Performance Numbers 

P 48 clock cycles per pixel 
c 40 MHz 

210X 
210Y = 

N= 16 
v = 6 clock cycles per pixel 

the best pixel rate cXY/(pN) ~ 5.4613 x 1010 pixels/sec. 

the worst pixel rate = c/p ~ 833,333 pixels/sec. 

the best polygon rate (current architecture) = cY/(pN) ~ 5.3 X 101 polygons/sec. 

the best polygon rate (modified architecture) = cY/p ~ 8.533 x 108 polygons/sec. 

the worst polygon rate c/(pN) ~ 52,083 polygons/sec. 

the best frame rate = c/(vNZ) ~ 26,041 frames/sec. 

the row pixel-bus frame rate c/(vXN) ~ 407 frames/sec. 

the column pixel-bus frame rate = c/(vYN) ~ 407 frames/sec. 


the worst case row pixel-bus latency (current) = (Xp/N + P+ XNv)/c seconds. 

~ 2.5356 x 10-3 seconds. 


the worst case row pixel-bus latency (modified) (Xp/N2 + p + Xv)/c seconds. 

~ 1.596 x 10-4 seconds. 


A.3 Chip Details 

Technology: 3 micron cmos/bulk 
Silicon Vendor: MOSIS 
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Thus the 3-transistor per bit dynamic memory requires 16 X 40 X 16 X 3 30,720 
transistors. 

Chip size: 9mm X 4mm 
Pin count: 18 
Transistor count: 50,000 

Vdd 

data input data output 

busy out/data in 
busy in/data out 

clock 

video outoutput enable 

Gnd 

Figure 9: The PS Chip 
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