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Abstract 

An algorithm is presented for rapid traversal of octree data structures, in order to 
enhance the speed of ray tracing for scenes of high complexity. At each level of the 
octree, the algorithm generates the addresses of child voxels in the order they are 
penetrated by the ray. This requires only a few arithmetic operations and simple logical 
operations. A depth-first search of the tree is used to yield the first terminal voxel hit by 
the ray, thus hidden objects are not processed. The algorithm is designed specifically for 
implementation as HERO: A Hardware Enhancer for Ray-tracing Octrees. 

1. Introduction 

Computation of ray/object intersections is widely recognised as being the major 
bottleneck in ray tracing. Even when object descriptions are made as simple as possible, 
ray tracing a scene of even moderate complexity can be an extremely slow operation, due 
to the nesting of two large loops (one for all rays, the other for all objects). Plunkett and 
Bailey m have applied array processing techniques to enhance the performance of a ray 
tracing system, but even with the power of a supercomputer, the performance falls short 
of real-time. Attempts to speed up ray tracing significantly must therefore be based on 
algorithmic developments, exploiting either image coherence to reduce the complexity of 
the outer loop, or object space coherence to reduce the number of intersections required 
in the inner loop. 

To exploit image coherence, it is necessary to use a beam tracing approach so that a 
whole area of the image can be processed at a time. This is done by Heckbert and 
Hanrahan [2], who cast a single rectangular pyramid for the entire screen, recursively 
subdividing this into smaller pyramidal beams wherever the image is complex. Whilst 
this can be expected to yield a considerable speedup over conventional ray tracing if 
large areas of the image are homogeneous, a characteristic of ray traced images is the 
lack of image coherence which results from rendering of surface characteristics and 
illumination effects. Pyramidal beam intersections, though advantageous for antialiasing, 
are considerably more complex to compute than point sampling with mys, and the extra 
complexity of recursive beam subdivision makes this approach undesirable for direct 
implementation in hardware. 

http://www.eg.org
http://diglib.eg.org
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Object coherence is partly exploited by Whitted [3], who uses bounding volumes to 

reduce the complexity of ray/object intersection calculations, though the size of the inner 
loop is still heavily dependent on the number of objects, since every spherical bounding 
volume must still be processed for every ray. Kay and Kajiya [4J use hierarchical object 
bounding, whereby objects made up of several smaller objects are bounded by 
parallelopipeds which are stored in a tree structure. A ray which fails to penetrate the 
outermost bounding volume of an object need not be intersected with any volumes or 
objects inside it, and the complexity of the inner loop is thereby reduced. A similar 
approach is used by Dippe and Swensen [5], though the shapes of the bounding volumes 
themselves are varied, resulting in more complex ray/volume intersection calculations. 

In a similar way to that in which Bresenham's algorithm generates the locations of 
2-D pixels which are intersected by a line, Amanatides and Woo [6] have developed an 
incremental algorithm which returns the 3-D voxels hit by a ray. As well as eliminating 
ray intersection calculations with objects which are far from the line of the ray, an 
incremental voxel tracer can terminate as soon as the first intersection with an object is 
found, without having to intersect the ray with other objects and subsequently find the 
nearest. Occluded objects therefore remain unprocessed. 
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Figure 1 Octree Definition 

Further economy in ray/object intersection calculations can be afforded if it is the 
object space, rather than the object descriptions, which is subdivided hierarchically. The 
most common technique for space subdivision is the generation of an octree, as 
illustrated in fig. 1. Voxels are stored in a tree structure, each node having between zero 
and eight children. A voxel containing only a simple object or surface has no children, 
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but if its contents are more complex than this, it is subdivided into eight child voxels as 
shown. Any child voxels which are empty can be eliminated, those which are simple 
form leaf nodes, and others are subdivided funher. Note that the voxels in an octree may 
be of many different sizes. When such a structure is ray traced, voxel contents can be 
searched in the order that the voxels are hit by the ray, thus leading straight to the first 
object hit. An additional bonus with octrees is that large areas of empty space are rapidly 
traversed by the ray. 

Glassner [7] uses a scheme in which the child voxels of a node are numbered from 1 
to 8. The ray is traced through the octree by moving along the line of the ray a cenain 
distance, then determining which voxel the resulting point is inside. Although a 
considerable speedup is obtained over conventional ray tracing, this scheme is not ideal 
for hardware implementation, due to the voxel numbering system adopted. It is shown in 
the next section that simple logic operations may be employed for voxel address 
generation if an octal system is used instead, with nodes labelled from 0 to 7. 

Fujimoto et al [8] trace rays through voxels using two incremental line-drawing type 
processors in a similar way to Amanatides and Woo, but within an octree data structure. 
It is observed that the image rendering time is "Virtually independent of the number of 
objects in the scene", and that for very large numbers of objects, this technique of ray 
tracing actually becomes faster than projective methods. Peng et al [9] use an approach 
to voxel traversal which appears to be essentially heuristic, in that the ray is assumed to 
pass to the neighbouring voxel in the direction of the maximum ray direction co-ordinate; 
if this is not found to be the case, the second most likely neighbour is tested, and if this 
fails, the least likely neighbour is hit. All these techniques undoubtedly provide 
considerable speed enhancements. However, the algorithm presented here removes the 
need to test a ray against a voxel, since the addresses of the child nodes are generated in 
the order they are hit. This entails only a few arithmetic operations for each parent voxel, 
and simple logic operations for address generation. These operations are ideally suited to 
hardware implementation, thus HERO (a Hardware Enhancer for Ray-tracing Octrees) 
has been conceived. 

2. Development of the HERO Algorithm 

An efficient way to represent a convex object with planar faces is to define it as the 
intersection of half-spaces. (A half-space is the volume of space to one side of an 
infinite plane). The cube in fig. 2 is defined by six bounding planes, each with a unit 
normal vector Sf, pointing away from the interior of the object, and position constant d; , 
so that all points .e on a particular bounding plane satisfy the equation: 

c .P + d = 0..., - , 
Thus each face of a solid modelled in this way is geometrically defined by just four 
numeric values. 
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Figure 2 Cube Defined by Half-Spaces 

All points· ~ along the line of a ray can be defined by the equation: 
~=&+s*y 

where & is the ray origin position, y is the direction vector and s is a positive scalar 
variable representing the distance along the ray. The ray hits an object defined in the 
above way only if there exists a range of points on the line of the ray which are 
simultaneously to the inside of all the bounding planes for that object. For anyone 
bounding plane, the distance parameter ~ to the point at which the ray hits the plane 

C£; .~ + d, = 0) can be found from: 

Si = -(~ .& + d, )/C£; .0 
If the angle between the ray and the surface normal is obtuse, points on the ray at 
distances greater than si from the ray origin will be inside the half-space defined by the 

bounding plane. Conversely, if this angle is acute, only points with s < ~ will be inside 

the half-space. Thus for each bounding plane, a positive value of the dot product ~ .y 

indicates that si is an upper limit on the required range of distances, while a negative 

value indicates that ~ is a lower limit. To determine if the ray hits the object, all ~ 

values are computed and categorised as upper or lower limits. The maximum lower limit 
(~maX> and the minimum upper limit (sumi n) are then found; if sl max < sumi n' there 
exists a range of distances for which points on the ray are internal to all the half-spaces. 
If both limits are positive, then a forward-travelling ray hits the object at the point: 

~=&+~max *y 
In the example shown in fig. 2, ~ max is equivalent to sl' and sumi n is s3· From sl < s3' 
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it may be deduced that the ray penetrates the cube, and does so at a distance s1 from the 

ray origin. 

It is important to consider the effects of numeric overflow in the calculation of 
distance values; this can occur if the ray is parallel or nearly parallel to the bounding 
plane under consideration, causing the value of £j .'y: to become very small. In such cases, 

even if the value of s; should have a magnitude of infinity, it is sufficient to represent 

this by the maximum numeric magnitude allowed, as long as the sign of the result is 
correctly evaluated. Fig. 3 demonstrates two such situations. In both cases, £; .'y: is zero, 

since the rays lie parallel to the bounding plane. Assuming that this zero value is 
represented as positive, both values of s; will be interpreted as upper limits on s. In the 

first case, the value of £; .g1 + ~ is positive (since £; points towards g1)' hence the 
computed value for s; will be minus infinity. Since this is an upper limit on s, it is clear 

that the ray does not penetrate the half-space defined by the bounding plane along its 
entire length. In the second case, £j .~ + ~ is negative (as £; points away from ~), 
thus a value of plus infinity is returned for Sj , indicating that the ray is inside the defined 

half-space along its entire length. Conversely, if £; .'y: were in fact a small negative 

value, the sign of s; would be inverted in each of the above cases, but these would be 

interpreted as lower limits on s, hence the system is well-behaved. 

Outside Inside 

Figure 3 Rays Parallel to Bounding Planes 

The root node of an octree may be defined in the same way as the cube of fig. 2. If 
the octree and ray are both in a co-ordinate system which has axes parallel to the edges 
of the octree root node, as in fig. 1, then all unit normal vectors £j will have two 

co-ordinates equal to 0 and one equal to plus or minus unity. The dot product operation in 
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computation of s distances can therefore be reduced to a simple co-ordinate selection 
and possible sign inversion. 

The bounding planes for each node of the octree can be labelled xmi n' xmax ' Y , n'm
Y zm. nand zmax' as in fig. 1. The planes x = xm• d' Y= Ymi d and Z = zm. d define the max ' 
new bounding planes for the child voxels of the parent node. Each child voxel has a 
numeric identifier between 0 and 7 as shown, which can be represented by a 3-bit binary 
word. If the three bits are considered to correspond to the co-ordinates z, y, x in order, 
then a '0' digit in the child's identifier indicates that it shares the parent's min boundary 
for that co-ordinate, while a '1' indicates that it shares its parent's max. For example, 
child node 3 (mask = 011) shares its parent's zm. n' Ymax and xmax boundaries. The child 

node's zmax value will be its parent's zm. d' its Ymi n will be its parent's Y • d' and its xm• nm
is its parent's xmi d' 

[f a ray is found to penetrate the root node of the octree, it is subsequently necessary 
to determine which child voxels are hit by the ray. A simplistic approach would be to 
test each of the non-empty child voxels for penetration by the ray using the half-space 
method, then sort them by their ~ max values to determine the order in which they are hit. 

It should be noted that the ray need only be intersected with the parent's xm• d' Ymi d and 

zmi d planes once; the 3-bit child node identifiers can then be used to determine which 

distance values apply to each child. 

A further simplification may be afforded by noting that the order in which child nodes 
are hit can be found by testing the children in the correct order. The order in which they 
should be tested depends solely on the octant of space into which the ray points. For 
example, if the xv' yy and Zy components of the ray direction vector ,Y are all positive, 

then the child nodes can be tested in the order 01234567. If (say) nodes 5, 7 and 1 are 
found to be hit, these must be penetrated in the order 1, 5, 7. As another example, 
suppose Xy and yy are positive, but Zv is negative; the order in which child nodes should 

be tested is then 45670123. A technique for generation of these orderings from the ray 
direction vector is as follows. 

For toe ray direction vector ,Y, generate a 3-bit 'VMASK', with individual bits 
corresponding to sign(zy), sign(y,) and sign(xy); '0' for positive values and '1' for 

negative. The order in which child nodes should be tested can be found by running a 
counter from 0 to 7, and returning the value of COUNTER XOR VMASK. For example, a 
ray with negative Xy but positive y, and z, would have VMASK = om, giving rise to the 

child node ordering 10325476. 

The next stage in simplifying the algorithm is to notice that, for any parent node 
intersected by the ray, between 1 and 4 of its child nodes will be intersected. 
Additionally, only certain combinations of child voxels can be hit. For the example 
shown in fig. 4, with VMASK = 000, once it is found that child node 1 is intersected, it 
is known that nodes 0, 2, 4 and 6 cannot be hit. Logical derivation of the order of nodes 
hit can in fact be achieved in the following way. 
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,Figure 4 HERO Example 1 

For the simple case VMASK =: 000, let the identifier of the first child hit be 
CHILDMASK. The individual bits of CHILD MASK are set according to the following 
conditions ('0' for false, '1' for true); 

CHILDMASK szmi d < ~ max' 8ym ; d < ~ max ' Sxmi d < ~ max 

where all s values are computed for the parent node. It can be seen that the identifiers of 
subsequent children hit (if any) can be found by setting the as yet unset bits of 
CHILDMASK. For example, if node 1 is the first child hit (CHILDMASK =: 001), as in 
fig. 4, then the only other children which can be intersected have CHILDMASK equal to 
011, 101 or 111 (i.e. nodes 3, 5 or 7). Similarly if node 5 were the first child hit, only 
node 7 could subsequently be hit. The order in which these bits should be set is found as 
follows: 

1. 	 For the parent node, compute the distances along the ray to the mid-plane 
intersections, i.e. sxmi d' Sym; d and szml d' 

2. 	 Sort these s values into ascending order. Enter the corresponding masks - 001 for 
sxmi d' 010 for Symi d and 100 for szml d - into a list which indicates the ascending 

order of s values. In the example shown in fig. 4, where Sx m, d < Sz m' d < sJ mid' 

this list will be as follows: 
MASKLIST [1] =: 001 
MASKLIST [2] =: 100 
MASKLIST [3] =: 010 
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3. 	 Take each element of MASKLIST in turn, and if the corresponding bit of 
CHILDMASK is not already set, that element should be ORed into CHILDMASK 
to produce the identifier of the next child hit. Thus for fig. 4, the initial value of 
CHILDMASK is 001, and subsequent identifiers 101 and 111 are produced, by 
ORing in elements 2 and 3 of MASKLIST, respectively. 

Two further considerations are necessary for generalisation of the algorithm. The first 
is that the generation of new child identifiers should stop when the last child voxel is hit. 
In a similar way to that in which CHILDMASK is generated, the mask for the last child 
hit can be generated by: 

LASTMASK Szmi d < Sumi n ' Symi d < Sumi n ' Sui d < Sumi n 

The termination condition can therefore be easily set. Secondly, the analysis so far has 
concentrated on child voxels hit by a ray in the octant with VMASK = 000. For rays in 
other octants, each new CHILDMASK generated should be XORed with VMASK to 
produce the actual identifier of the next child hit. In effect, CHILD MASK replaces the 
counter which was used to determine the order in which child voxels should be tested. 
The XOR operation implements a transformation of CHILDMASK into the correct octant 
of space, according to the direction of the ray. 

v 

(" ~ 
E 

i nl:X"XM

Figure 5 HERO Example 2 

A second example, shown in fig. 5, has VMASK equal to 111. The distance ~ rna x is 

equivalent to sxmax' and sumi n is equivalent to Symi n' The value of CHILDMASK is 

initially OlD, and LASTMASK is OIl. Since Symi d < Sui d < Szmi d' MASKLIST is as 

follows: 
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MASKLIST[1] = 010 
MASKLIST[2) =001 
MASKLIST[3] =100 

The first child hit therefore has an identifier equal to the initial value of 
CHILDMASK XOR YMASK, i.e. 010 XOR 111, which is 5. A logical OR of 
MASKLIST[I] into CHILDMASK does not create a new value, but when MASKLIST[2] 
is ORed in, CHILDMASK becomes 011, which is equal to LASTMASK. Hence the 
second and final child hit has identifier 011 XOR 111, giving the correct value of 4. 

3. Summary of the Algorithm 

For the ray £. + S *~ the following 3-bit mask is generated: 
VMASK := Sign(zv)' Sign(yv)' Sign(xv) 

For the root node of the octree, the distance parameter s for each of the six bounding 
planes is found: 

sxm; n := (xm; n ) /xv ; etc. 
Each s value is categorised as either an upper limit or lower limit on the range of s for 
points inside the root node. A '0' in the x-bit position of YMASK implies that sui n is a 

lower limit and Sx rna x an upper limit, while a '1' implies the opposite. The s values for 

the y and z planes are similarly categorised. The maximum of the lower limits (sl rna x) 

and the minimum of the upper limits (sumi n) are found. If ~ max < Su mi n' the root node is 
penetrated by the ray. otherwise it is not. 

For any parent node intersected by the ray, the distance values for intersection of the 
ray with each of the node's mid-planes are calculated, i.e. sxm; d' Sym; d and szm; d' These 

are sorted into ascending order, and the masks 001 for sxmi d' 010 for Sym; d and 100 for 

szmi d are entered into MASKLIST[1..3] in ascending order of their corresponding s 
values. Two further masks are also generated:­

CHILDMASK (Szmid < ~max)' (Symid < Sima.)' (Suid < ~max) 
LASTMASK (szm; d < Sumi n) I (Sym; d < Sumi n) I (Sui d < Sum; n) 

The following operations then generate the identifiers of the child nodes in the order they 
are hit: 
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i := 1 (* index into MASKLIST *) 
LOOP 

SearchChild(CHILDMASK XOR VMASK); 
(* check next intersected child *) 

IF CHILDMASK = LASTMASK THEN EXIT; 
(* all intersected children searched *) 

ELSE 
WHILE (MASKLIST[i] AND CHILDMASK) <> 0 DO 

(* find next valid masklist element *) 
i := i + 1; 

END; (* WHILE *) 


(* now generate new CHILDMASK *) 

CHILDMASK := CHILDMASK OR MASKLIST[i]; 


END; (*ELSE *) 


END; (*LOOP *) 


While the above demonstrates how the correct child node identifiers can be generated, it 
is also necessary to associate the proper values for ~ max and sum; n with each intersected 

child. For any parent node, the first child hit shares its parent's ~ max' and the last child 

hit shares its parent's Su m; n' If more than one child is hit, the sum; n value for all but the 

last is equal to either sxm; d' Sym; d or szm; d' The correct value is selected according to 

the entry in MASKLIST used to generate the subsequent child hit. For example, if the 
CHILDMASK of the next child hit is generated by ORing in the mask 010 fotm 
MASKLIST, then the current child's sum; n is equal to its parent's Sym; d' Each child 

except the first one hit has ~ max equal to the previous child's sumi n' 

4. Software Implementation 

The main data structure used by the HERO algorithm is the octree, which defines 
bounding volumes for objects contained or partially contained within its terminal nodes. 
Ray intersections with these objects are calculated separately from the HERO algorithm, 
so HERO can be applied to any object model for which a bounding octree is constructed 
(e.g. polygons, half-spaces, quadrics etc.). Each octree node contains a flag to indicate 
whether or not it is terminal, and if this is true, the node simply contains a pointer to a 
list of the objects it bounds. Parent voxels contain a list of 8 pointers to child nodes, 
arranged so that the address of the pointer to child voxel n is equal to the base address of 
the parent node plus n words. A NIL pointer to a child indicates an empty child node. In 
addition, each parent node has the positions of its mid-planes (xmi d' Ym; d and zm; d) 

stored to facilitate computation of the distance values Sx mi d' sYl1li d and 8zm; d' 

A depth-first search of the octree is required, so that the first intersected terminal 
voxel returned is known to be the first one hit by the forward-travelling ray. Whenever a 
parent node's intersected children are exhausted, the algorithm must backtrack one level 
up the tree and then continue in a depth-first manor. A stack is therefore used for 
implementation of this search. 
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One approach to using a stack for the search would be to push infonnation regarding 
all intersected child nodes (between 1 and 4) for anyone parent, entering these in 
descending order of distance. The top node could then be popped and used for the next 
level of search, and so on. However, a more efficient approach is to store status 
infonnation for each parent node on the stack, so whenever a parent is popped, either the 
next child hit is derived and the parent's status is updated, or if all its children are 
exhausted, the parent is removed from the stack. In order to implement this operation, the 
index to MASKLIST should also be stored on the stack, together with a pointer to the 
previous child's sumi n (to be used as the next child's s, max)' Each stack node therefore 
contains the following: 

Pointer to octree node, 

~ max' Sumi fi' Sxmi d' Symi d' 82mi d' 

CHILDMASK, LASTMASK, MASKLIST [1..3], 
MASKLIST _index, Previous_su mi n _pointer. 

For development purposes, the authors' implementation uses the tenninal voxels 
themselves as simple cubic objects. In order to generate secondary rays (for illumination 
and reflection) it is necessary to know which face of the cube is struck by the ray. This 
infonnation takes the fonn of one further 3·bit mask (SLMASK) carried on the stack, to 
indicate whether the ray strikes an x, y or z-plane. In conjunction with YMASK, this 
reveals whether the face struck is x = n' X = x etc. xmi xma 

The only arithmetic operations required for each parent node (except the root) are 
computations of Sui d' Symi d and s2mi d' plus simple comparisons to generate the various 
masks. Although it would appear that the new s values could be generated by mid-point 
interpolation (e.g. Sui d = (S.mi n + sxmax/2 ), this is not a reliable technique due to the 
accumulation of errors. A better solution is to compute the reciprocals of the ray 
direction components (l/xv' l/yv and liz,) once for each ray. These are used in the 

computation of Sx mi d' 8ymi d and szmi d for each parent voxel by the nonnal ray/plane 

intersection expression, Le. 
sxmi d (xmi d - ~) * (l/Xy) etc. 

Each s value can therefore be calculated by a subtraction and multiplication. 

5. Hardware Implementation 

Application of parallel processing to ray tracing is highly desirable to m1ll1mlSe 
image generation time. With almost all ray tracing algorithms. it is easy to conceive a 
machine which allocates a processor for each new ray, as long as the entire world model 
is duplicated for each ray processor to avoid memory contention. However, with large 
world models and bounding octrees, this approach becomes extravagent in its use of 
memory. Fortunately, the structure of the octree can be exploited to allow other 
strategies. 

At a high level, the HERO algorithm can be considered as a stack-based tree 
searcher. Distribution of processing without memory contention can be achieved in such a 
scheme by storing each level of the octree in a different block of memory, each with its 
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own HERO processor. The processor for anyone level performs the HERO algorithm, 
passing its results either up or down to the next tree level processor as appropriate. There 
is a large amount of message passing in this scheme, but only between adjacent 
processors. The maximum number of rays which can be processed simultaneously is 
limited by the depth of the octree. but other strategies for allocation of voxels to 
processors are also possible. 

At a lower level, the close relationship between arithmetic and logical processing in 
HERO can be exploited in a hardware implementation of the algorithm. A major goal is 
the minimisation of the amount of floating point processing required, particularly 
comparisons for generating the various 3-bit masks. If the floating point representation is 
chosen such that the exponent occupies the most significant bits of the floating point 
word, and the sign bits of the exponent and mantissa are suitably manipulated. then a 
floating point number which is larger than another will be represented by a word which 
has a larger integer magnitude. Simple greater thanlless than comparisons of floating 
point numbers can then be achieved using fixed point comparators. 

Sorting of the MASKLIST values into ascending order of referenced s value would 
appear to be a rather more complex operation, but it can in fact be achieved using only 
three comparisons of the above type with a few simple logic operations. The boolean 
results of these comparisons are labelled as follows:­

A (su; d < Sym; d ), B = (sxm; d < szm; d ), C (Sym; d < szm; d ) • 

Using 'X' to represent states which cannot happen, the truth table for the various 
MASKLIST orderings against A, Band C is as follows: 

ABC MASKLIST[l] MASKLIST[2] MASKLIST[3] 

000 100 010 001 
001 010 100 001 
010 X X X X X X X X X 
011 010 001 100 
100 100 001 010 
101 X X X X X X X X X 
110 001 100 010 
111 001 010 100 

By inspection, MASKLIST can be generated by the following logic functions: 

Element Bit 2 (ms) Bit 1 Bit 0 (Is) 

MASKLIST[l] B NOR C (NOT A) AND C A AND B 
MASKLIST[2] B XOR C NOT (A XOR C} A XOR B 
MASKLIST[3] BAND C A AND (NOT C) A NOR B 

Parallel processing can be implemented at a low level within HERO by executing all 
arithmetic operations concurrently, and all mask generation operations concurrently. 
Computation of each of the values Sx m; d' Sym; d and Sz mi d consists of a subtraction and 
multiplication. thus three parallel arithmetic units are used to generate these values 
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simultaneously. Generation of CHILDMASK, LASTMASK and MASKLIST involves 
nine arithmetic comparisons, which are achieved by nine integer comparators in parallel. 
Although current work: is aimed at implementation of HERO using floating point 
processors and logic circuits, there is considerable scope for implementation of these 
functions on a VLSI integrated circuit (HEROIC). 

6. Conclusion 

Octree-based ray-tracing is an efficient technique for realistic rendering of complex 
scenes. The HERO algorithm provides a fast method for determining the nodes of an 
octree penetrated by a ray in the order they are hit, and is well-suited to VLSI hardware 
implementation. HERO could be applied to any world model for which a bounding octree 
can be generated, and hence could form an accelerator for a variety of graphics systems. 
Applications on which our hardware-enhanced octree ray tracing is targeted include 
workstations and high quality visual systems for simulation. 

7. References 

[1] Plunkett, David J. & Michael J. Bailey, "The Vectorisation of a Ray Tracing 
Algorithm", IEEE Computer Graphics & Applications VoL 5, no. 8, August 1985, 
pp 52-60. 

[2] Heckbert, Paul S. & Pat Hanrahan, "Beam Tracing Polygonal Objects", Computer 
Graphics Vol. 18, no. 3 (SIGGRAPH '84 Conference Proceedings), July 1984, pp 119-127. 

[3] Whitted, Turner, "An Improved Illumination Model for Shaded Display", Comm. 
ACM VoL 23, no. 6, June 1980, pp 343-349. 

[4] Kay, Timothy L. & James T. Kajiya, "Ray Tracing Complex Scenes", Computer 
Graphics Vol. 20, no. 4 (SIGGRAPH '86 Conference Proceedings), August 1986, 
pp 269-277. 

[5] Dippe, Mark & John Swensen, "An Adaptive Subdivision Algorithm and Parallel 
Architecture for Realistic Image Synthesis", Computer Graphics Vol. 18, no. 4 
(SIGGRAPH '84 Conference Proceedings), July 1984, pp 149-158. 

[6] Amanatides, John & Andrew Woo, "A Fast Voxel Traversal Algorithm for Ray 
Tracing", Eurographics '87, August 1987, pp 3-10. 

[7] Glassner, Andrew S., "Space Subdivision for Fast Ray Tracing", IEEE Computer 
Graphics & Applications VoL 4, no. 10, October 1984, pp 15-22. 

[8J Fujimoto, Akira, Takayuki Tanaka & Kansei Iwata, "ARTS: Accelerated Ray 
Tracing System", IEEE Computer Graphics & Applications, Vol. 6, no. 4, April 1986, 
pp 16-26. 

[9] Peng, Qunsheng, Yining Zhu & Youdong Liang, "A Fast Ray Tracing Algorithm 
Using Space Indexing Techniques", Eurographics '87, August 1987, pp 11-23. 




