
Towards a Taxonomy for Display Processors

Bengt-Olaf Schneider

UniversiHit Tftbingen

Wilhelm-Schickard-Institut fUr Informatik

Graphisch-Interaktive Systeme

Auf der Morgenstelle 10 / C9

D-7400 Ttibingen, FRG

e-mail: igbengt@dtupev5a.bitnet

Abstract

Image generation for raster displays proceeds in two main steps: geometry pro­
cessing and pixel processing. The snbsystem performing the pixel processing is
called display processor.

In the paper a model for the displa.y processor is developed that takes into
account both function and timing properties. The model identifies scan conversion,
hidden surface removal, shading and anti-aliasing as tile key functions of the display
processor. The timing model is expressed in an in equation being fundamental for
all display processor architectures.

On the basis of that model a taxonomy is presented which classifies display
processors according to four main criteria: function, partitioning, a.rchitecture and
performance.

The taxonomy is applied to five real display processors: Pixel-planes, SLAM,
PROOF, the Ray-Casting Machine and the Structured Frame Store System.

Investigation of existing display processor architectures on the basis of the devel­
oped taxonomy revealed a potential new architecture. This architecture partitions
the image generation process ill image space and employs a. tree topology.

eR Categories and Subject Descriptors:

BA.2[Input/Output and Data Communications]: Input/Output Devices - Image Dis­

play

C.l[Processor Architectures]

L3.1[Computer Graphics]: Hardware Architecture - Raster display devices

General Terms: Algorithms, Design, Performance

Additional Keywords and Phrases:

Raster Graphics, Display Processors, Taxonomy, Classification, Model, Partitioning, Ar­

chitecture

"The author is now with the IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights,
NY 10598, e-mail: boschillibm.com.

http:boschillibm.com
mailto:igbengt@dtupev5a.bitnet
http://www.eg.org
http://diglib.eg.org

4

1 Introduction

During the last decade many computer graphics systems have emerged. A lot of them
achieved their often impressing performance by using specially designed hardware. Es­
pecially with the move to raster graphics the quest for powerful hardware accelerators
became more and more urgent. This is because the rendering of a million pixels and more
requires a lot of computing power.

The different requirements for cost, performance and functionality gave rise to a great
variety of computer graphics systems. All these systems try to optimise the compromise
between the often contradicting design constraints. That optimisation is a rather difficult
task because the design space, i.e. the number of possible alternatives, is huge. With
the advent of VLSI technology the design space grew even larger. On the other hand
VLSI technology introduced new constraints that required new tradeoffs. For instance, in
contrast to conventional technology, in VLSI it is favourable to design systems with many
identical and simple elements instead of a few, very complex parts. The paper takes these
aspects into account.

We will concentrate on a special piece of hardware for ccmputer graphics systems:
the display processor. The display processor is performing the low-level tasks in the
image generation process, namely pixel generation. We will present a classification scheme
for these processors. We hope that such a taxonomy will help in the design of display
processors. By providing means to classify different architectures and their properties it
will be easier to compare and judge different designs. Furthermore, the taxonomy can
serve as a starting point for the specification of a new display processor. It should be
noted here that a taxonomy cannot (and is' not intended to) provide figures of merit that
identify one architecture to be better than another one. It can only supply criteria along
which an evaluation could take place. In other words: the taxonomy is only a means to
describe the available design space.

The paper starts with a short review of earlier attempts to classify display processors.
Afterwards we present our own approach. First, we develop a model for the display
processor that takes into account both, functionality and timing properties of the display
processor. This model serves as an implicit definition of the term display processor and
as a guideline for the taxonomy which is introduced in the next section. The employed
criteria for the classification are presented and discussed. The classification scheme is then
applied to some published architectures. The last part of the paper proposes a new display
processor architecture that is the result of a search for "white spots" in the taxonomy.

2 Related Work

In [Abram et aI. 1986] [Fuchs 1988] [Kilgour 1985] [Dew et aI. 1985] overviews of
existing graphics architectures are given. They only make the distinction whether a system
partitions the image generation in image space or in object space. In [Kilgour 1985] this
is called object serial or pixel serial respectively.

In [Reghbati et al. 1988] this classification is refined further. It is determined in
how many sets the objects (pixels) are divided and what is the maximum cardinality of
these sets.

5

3 Modelling the Display Processor

3.1 General Description

Producing computer generated images involves two main steps. The first one, geometric
processing, prepares an image described on a high level of abstraction for the display
on a physical output device. This involves the transformation and projection of a scene
into a normalised coordinate system which can be easily mapped onto the output device.
These coordinates are called normalised device coordinates (NDC). Preparing an image
description for display also requires to break down the objects in the scene into simple
geometric shapes, that can be easily handled by the low-level hardware. These shapes
are referred to as atomic objects or primitives. The geometric processing also comprises
calculations for the illumination of the scene, e.g. vertex colours or shadow polygons.
Furthermore, in some implementations also a part of the hidden surface removal takes
place in this step, e.g. assignment of priorities to objects in the scene and backface culling.

In the second step the scene description in NDC is processed further to be displayed
on the output device. Since we restrict ourselves to raster devices this step is called pixel
generation, because the final pixel colour is determined during this step. To this end,
some or all of the following tasks have to be fulfilled:

Scan Conversion actually maps the primitives from NDC to PDC (Physical Device
Coordinates), i.e. those pixels are identified which are covered by the considered
primitives. This step is always part of the pixel generation process.

Hidden Surface Removal identifies those portions of a primitive that are visible to the
viewer, i.e. that are not obscured by other objects. Usually, this problem is also
solved during the pixel generation.

Shading. The colour of the different objects at the single pixels is a function of the optical
properties of the objects and the spatial arrangement of objects and light sources in
the scene. Shading computations approximate this complex relationship. The com­
plexity of the shading calculations depends strongly on the actual implementation.
Some systems perform only fiat shading, whereas others implement computation­
ally more complex shading models. There are several ways to partition the steps
involved in the shading calculations between the geometric and the pixel processing.

Anti-aliasing. If no special care is taken raster images show a.rtifads that stem from the
limited spatial sampling frequency. Anti-aliasing tries to alleviate these effects. Al­
though it is commonly agreed that proper anti-aliasing is necessary, not all graphics
systems are able to compensate aliasing effects.

We call that part of an image generation system performing the pixel generation the
display processor. Different names for the display processor are pixel generator, display
controller, or rasteriser. We prefer the term display processor because it reflects the
fact that nowadays these pieces of hardware are fairly complex and also show a limited
programmability.

It should be noted here that it is of course possible to implement most of the tasks for
pixel generation in software. However, this would result in a system with low performance.
We will not further investigate that alternative here.

6

Logical input forwarded by processor

AM LDF PDFE
Physical input devices

Processor DRepresentation

Figure 1: Functional model of an image generation system. AM application
model, SDF- structured display file, LDF - linear display file, PDF physical display
file, DFC display file controller, GP - geometry processor, DP display processor. The
solid arrows symbolise input used to modify output. The dashed arrows denote input
forwarded to other processors.

3.2 A Functional Model of the Display Processor

In order to get a clearer understanding of the tasks and functions of the display processor,
we want to look closer at the underlying display processor model. We will try to give a
somewhat formal description of its functions.

3.2.1 Output

Figure 1 shows a simplified functional model of an image generation system
[CarIbom 1980). A similar model has been proposed in [Kilgour 1981]. Both mod­
els partition the image generation process according to the properties and the levels of
abstraction of the intermediate image descriptions.

Starting from the application model (AM) the scene is translated into a structured and
often hierarchical description (SDF). This description is then transformed into a linear,
non-hierarchical display file (LDF). The LDF is a representation of the scene that is based
on the atomic graphical objects. They are described in the NDC system. Finally, the
LDF is translated to the physical display file format (PDF).

As already pointed out in [Carlbom 1980] this model does not imply that there
exist actual files that contain the LDF and PDF. The data contained in the LDF (PDF)
description can either be transient. This means that they are generated and processed
on the fly without intermediate storage. However, lIlany graphics system have an explicit
memory for the PDF: the frame buffer. Another possibility to implement the LDF or
the PDF is to distribute them across several processing elements. This solution will be
addressed later in the context of partitioning the display processor.

According to figure 1 the function of the display processor can be described by the
following mapping:

LDF~PDF

7

The LDF is a low level description of the scene and consists of a sequence of object
descriptions in the NDC system with associated shading information:

LDF ::= {(Pi, S,)} where

type(p.) E P

model(s;} E S

Pi is the geometry description of the object i. The type of that object must be one out
of the set P, that contains all primitives that can be handled by the display processor.
Correspondingly, s, is the shading information for object i. The shading model must be
in the set S of all shading models that can be computed by the display processor.

The PDF is a pixel oriented description of the image. It can be modelled in the
following way:

PDF ::= {(x, y, C)}

x and y denote the coordinates of pixels in the final image (PDC system). Without loss of
generality we can restrict x and y to lie inside certain intervals: x E [0, X max], y E [0, Ymax],

where X max X Ymax is the number of pixels on the screen. C represents the colour at the
given pixel. The colour is usually represented in the RGB colour system. However, it
may be possible to use other colour system, e.g. HLS or CMY [Robertson 1988].

Using these representations of the LDF and the PDF the function of the display
processor is the following mapping:

This mapping together with the operations identified earlier lead to a conceptual
algorithmic model for the display processor:

for (all objects and all pixels)
{ /* scan conversion */

determine covered pixels ;
/* hidden surface removal */
determine visible pixels ;
/* shading */
determine colour of covered pixels
/* anti-aliasing */
perform filtering ;

}

The actual sequence of loops and operations is dependent on the implementation of
the display processor.

3.2.2 Input

It is more difficult to model the behavior of a graphics system in reaction to external inputs
than to model its output behavior. Although this is also true for display processors, the
problem is less severe in this case. The only necessary input action to a display processor
is to trigger a pick operation of an object at a certain pixel location. This means that the
display processor must identify which primitive from the LDF is displayed at the specified
pixel. We can therefore assume that the display processor accepts as an external input

8

the inquiry for an object identifier at a certain pixel location. The reaction to this inquiry
will be that after a certain delay the object identifier will appear at the display processor's
output.

3.3 A Timing Model for the Display Processor

The functional model states that the display processor has to transform all primitives
from the LDF to the PDF. This means that the display processor must

• execute every operation

• for every primitive in the LDF

• in order to give a colour to every pixel.

In order to meet the requirements set for the entire graphics system the display processor
has to complete its traversal of the LDF in a certain time. Basically, the display processor
has to produce pixels. Therefore, we define the time the display processor can spend for
the generation of one pixel as a measure of its speed. We call this time the pixel write
time tpw •

As follows from the functional model this time depends on several parameters. First
the length of the LDF is important, i.e. the number of primitives in the scene. We
refer to this quantity as scene complexity C"e' tpw also depends 011 the properties of the
primitives. We summarise these properties in the coefficient a sc which comprises e.g. the
average size of the primitives (relative to the total number of pixels on the output device)
and their position relative to each other 1. a,c is strongly dependent on the employed
scan conversion algorithm. If the actual algorithm is insensitive to the size of objects, a,c
is set to 1.

The display processor must handle all pixels. The more pixels there are the less time
is available for each pixel. We call the number of pixels the image complexity C/.

Obviously, the permitted pixel write time tpw can be defined only if there is a limit for
the image rendering time. This time, the frame time t1> is an upper limit for the traversal
ofthe LDF.

The pixel write time tpw is then bounded by the following inequation:

if (1)
tpw ~ n, . e,c .C/

~'C

Apart from the characteristics of the scene (C,c and a«) and the image (C/) the
necessary speed of the display processor also depends on the kind and number ofoperations
to be applied to the primitives. We call this parameter the functional complexity CF. It
represents the number of steps necessary to perform the operations. The maximum time
available for each of these steps, t.tep, is an indicator for the necessary clock frequency. It
is given by the following inequation:

tpw < (2)t~tep <-C-~.- F ~,'lC

We consider this to be the fundamental inequation for raster display processors. The
actual values of its parameters give a good estimate of the performance of a particular
display processor.

IThe relative position inftuences how many objects are located on one pixel. This number is sometimes
called depth complexity. The performance of some HSR algorithms or anti-aliasing algorithms depends
on the depth complexity.

9

4 A Classification for Display Processors

Based on the model developed above we will now present a way to classify different displa,y
processors. We will extract as much information as possible from the model. However,
some elements of the taxonomy cannot be deduced from the model. These topics, e.g.
the topology of the architecture or its regularity, are empirical and stem directly from the
investigation of existing display processors.

Moreover, we will point out some implications of the choices for one or another alter­
native.

4.1 A Functional Classification

The functional classification takes into account only the output behavior. The input
behavior is not considered because it is of minor impact on the display processor archi­
tecture.

4.1.1 Primitive Types and Scan Conversion Algorithms

These two attributes of the display processor are closely coupled because the possible scan
conversion algorithm has to comply with the available types of primitives. Therefore, one
of the basic decisions in the design of a display processor is to define the set P of available
primitive types. Subsequent to this decision suitable scan conversion algorithms can be
chosen.

The choice of primitives also influences strongly the design of the geometry processor
because it must break down the high-level description of the scene into primitives.

We will now look at some possible primitives.

Pixels are the simplest drawing primitives. Providing pixels as primitives offers the
rest of the graphics system a well defined access to the output device. However,
breaking down a scene into pixels is a computationally intensive task. (It is actually
the scan conversion process.) Therefore this primitive is never the only primitive
type provided.

Vectors are frequently used drawing primitives. This is for two reasons. First, histor­
ically the first graphics systems were pure vector drawers. This gave rise to a lot
of graphics algorithms that worked best with vectors. Second, vectors are the most
natural geometric shape for a lot of applications, e.g. technical drawings. Further­
more, vectors can often be generated faster than other drawing primitives.

Triangles are the simplest geometric shapes that cover an area on the screen. They
exhibit some very pleasant properties. Triangles are always planar and convex.
Linear interpolation of colours across triangles (Gouraud shading) is invariant with
respect to rotations of the triangle.

Spans are trapezoids that are hounded by the upper and lower border of a scanline. The
vertical edges can have an arbitrary angle. Usually, spans are supposed to be planar.
Spans are often used to render general polygons by assembling these polygons from
several spans. (Spans are also called scanline segments.)

General polygons form a generalisation of the triangle primitive. In contrast to trian­
gles, general polygons can be concave, non-planar and self-intersecting. The result

10

of Gouraud shading general polygons depends on the orientation of the polygon.
Therefore it is advisable to use other shading algorithms with general polygons, e.g.
biquadradic interpolation.

Sometimes polygons are restricted to be convex, planar and not self-intersecting.
This simplifies considerably the scan conversion but it does not. cure the shading
problems.

Freeform surfaces are a very powerful means for object description. They offer a high
degree of flexibility for controlling the shape of the surface. There are several kinds
of surface representations around, interpolating and approximating ones. The more
popular ones are Bezier surfaces, B-spline surfaces and NURBS surfaces.

The advantage of providing freeform surfaces as a display processor primitive is that
the transformation of the high-level description of the scene into the LDF is rather
simple. Furthermore, the LDF can be kept small compared to a triangle-based LDF.

On the other hand, scan conversion of freeform surfaces is difficult. Although
there exist some proposals how to implement such a scan converter in hardware
[Pulleyblank et al. 1987] [Schneider 1988b] this is not yet state of the art.

Halfspaces are the basic building blocks of constructive solid geometry (CSG). The
boolean combination of linear andjor quadratic halfspaces can be used to generate
many objects in a convenient way. The feasibility of display processors for halfspaces
has been already demonstrated.

Usually, display processors can handle more than one primitive t.ype. It is up to the
designer to select those primitives that are most appropriate for the intended applications.
It should be stressed again that the choice of the set of primit.ives is crucial because it
has a strong impact on other parts of the display processor and the rest of the graphics
system.

The choice of the scan conversion algorithm is a consequence of the selection of prim­
itives. Scan conversion algorithms can be coarsely divided into two classes:

Contour tracking algorithms first identify the pixels on the borders of the primitive.
Afterwards they fill all pixels in between the border pixels with the appropriate pixel
values. Typical representatives for this class of algorithms are scan line algorithms
that use DDA or Bresenham for computing the edges of triangles or polygons.

This method of scan conversion is applicable only to vectors, triangles, trapezoids
(spans) and general polygons.

Inside testing algorithms examine (a subset of) all pixels whether they are inside the
primitive under consideration. These algorithms are often very elegant from an
algorithmic point of view. Unfortunately, they tend to test many pixels in vain
because these pixels are outside of the primitive. For some primitives there exist
algorithms that reduce the tests of empty pixels on the expenses of more complicated
control structures in the algorithm [Pineda 1988].

Algorithms that employ inside tests are available for all primitives. They are manda­
tory for scan conversion and hidden surface removal using ray tracing.

One important difference between these two classes of scan conversion methods is in
which order they generate pixels. The sequence of pixels produced by contour tracking

II

algorithms is defined by the geometry of the object to be displayed. It is therefore an
unpredictable sequence of coordinates which requires the display processor to be granted
random access to the output device. In particular, this means that there has to be a
frame buffer.

In contrast, for inside testing algorithms the sequence of pixels to be generated can be
defined. It is therefore possible to produce the pixels in the scan order of the output device.
Hence, pixels may be written directly to the output device without any intermediate
buffering. That becomes important when the display processor is integrated into a real­
time graphics system.

4.1.2 Hidden Surface Removal (HSR)

The decision about which parts of an object are visible to the viewer is an essential step
for the creation of realistic images. Plenty of algorithms have been presented to solve
the visibility problem, for both vector and raster displays [Sutherland et aI. 1974]
[Latham 1985] [Lakshminarasimhan et aI. 1989].

The choice of the HSR algorithm determines which capabilities the display processor
will have. Not all HSR algorithms are equally well suited to handle e.g. penetrating
objects or transparency. Moreover, the memory requirements vary significantly for the
different algorithms.

As pointed out in [Sutherland et al. 1974] HSR is essentially a sorting process.
Therefore, many HSR algorithms require an extensive sorting step prior to the actual
HSR. The order of sorting in the directions of x, y and z is unimportant. However, the
various algorithms may be of different efficiency with regard to the amount of coherence
exploited during the sorting.

A major distinction between different HSR algorithms is whether they use priorities
or real depth for the visibility decision. The priority is assigned to an object once. In
contrast, the depth is changing across the object and has to be computed for every pixel.

Since priorities define a partial order over the objects it is impossible to handle cases
of penetrating objects. Such constellations must be eliminated by subdividing I,he objects
along the intersections.

According to [Lakshminarasimhan et al. 1989] HSR algorithms fall into three ma­
jor categories.

Object space algorithms. 2 HSR in object space is usually done in the geometry pro­
cessor. The result is a number of primitives that are non-overlapping in object
space. They are forwarded to the display processor. Hence, the display processor is
not concerned with the HSR.

List-priority based algorithms in fact solve the visibility problem outside the display
processor. The primitives are presorted according to their priority (either in priority
order or in reverse priority order). The display processor then writes the primitives
in that order to the output device. Hence, the HSR in the display processor is quite
easy.

The painter'5 algorithm is based on a reverse priority ordering of the objects. This
guarantees that the object. with highest priority is written last and therefore lies in

2In the context of HSR object space means that the accuracy of the visibility calculations depends on
the precision of th.e object representation in the SDF. This meaning of object space must not be confused
with the notion of object .'pace partitioning defined in this paper,

12

front. Translucency can be incorporated into the painter's algorithm easily by mix­
ing the object's colour with the previous pixel colour. Anti-aliasing is not straight­
forward; problems exist to handle the inner edges of polygon meshes.

When using a sorting in priority order the frontmost object is displayed first. The
pixels covered by that object are tagged. Objects with a lower priority can only
write to untagged pixels. Thus, each pixel is written only once. This reduces the
number of accesses to the display significantly compared to the painter's algorithm.
Both, anti-aliasing and translucency are non-trivial tasks for this method.

Image space algorithms. 3 solve the visibility problem with a precision that depends
on the screen resolution. According to [Lakshminarasimhan et al. 1989] there
are four basic types of such HSR algorithms:

• 	 Scanline algorithms have been developed mainly to handle polygons together
with contour tracking scan conversion algorithms. They first identify for every
scanline which objects are contributing to this scanline. The edges of these
objects are kept in an active-edge-table. For every scanline, these edges are
sorted in x (scan order). Every time an edge is crossed while scanning a scanline
it is decided which of the active polygons is nearest to the viewer.

If the algorithm is implemented as sketched out, it is unable to process pen­
etrating objects; it is then mainly priority based. However, it is possible to
extend the algorithm to handle such cases. Translucency can be incorporated
in scanline algorithms.

• 	 Depth-buffer is the most popular HSR technique in today's high-performance
graphics systems. For every pixel, depth and colour are stored. Every object
writes its colour only to those pixel whose depth is greater than the object's
depth. Thus, the visibility problem is solved pixel by pixel. Hence, the depth
buffer algorithm is able to handle intersecting objects without extra effort.

Transparent objects can be treated correctly only if they are written to the
buffer last. This requires an extra sorting step. It is very difficult to incorporate
good anti-aliasing into the depth buffer-algorithm. However, there exist exten­
sions to the depth-buffer that address this problem, e.g. [Carpenter 1984]
[Porter et al. 1984].

• 	Area sorting subdivides the screen until a specified level of subdivision has
been reached or the whole subscreen is covered by only one primitive. The
quadtree representation of images uses this algorithm.

Incorporation of translucency into this concept is a non-trivial task. There are
difficulties to produce anti-aliased pictures with the area sorting approach.

• 	 (Primary) ray tracing is a technique which shoots through every pixel a
ray of light into the scene. The object hit first by the ray is visible to the
viewer. This technique requires a scan conversion algorithm of the inside test
class. Note that ray tradng has been developed to model effects like multiple
reflections and refractions of light at objects. The computational complexity
only pays off if this is desired. Ray tracing can easily handle transparency
and penetrating objects. Also anti-aliasing can be integrated readily into this
method.

3The term image space used in the context of HSR differs from that introduced later on in this paper.
Here image space only means that the precision of the HSR is a. consequence of the output device.

13

4.1.3 Shading

In order to give computer generated images a realistic appearance the illumination of the
scene must be Inodelled. Since the circumstances of illumination in the real world are
very complex shading of scenes in computer graphics always simplifies the physical world
to some extent.

In general, shading in computer graphics means to compute the colour of an object at
certain points. The method, that computes this colour is called shading model. The shad­
ing algorithm specifies at which points of the object the shading model is applied. (The
distinction between models and algorithms is somewhat arbitrary. Models and algorithm
are often related to one another.) Since the very beginning of computer graphics shading
models and algorithms have been proposed. A good survey of models and algorithms is
given in [Claussen 1988]. Here, we will not discuss the various shading models. Only
the most important shading algorithms will be enumerated.

Wash shading is the simplest algorithm. It assigns a fixed colour to every primitive.
This colour does not depend on any light sources in the scene. This algorithm is
very simple but does not give realistic images.

Flat 	shading assigns one colour to the whole primitive. In contrast to the wash shading
algorithm this colour has been calculated in dependence of I,he illumination of the
scene.

Gouraud shading interpolates colours from one point of the primitive to another point.
The colours at the two points are computed in the geometry processing step.

Usually Gouraud shading employs linear or bilinear interpolation of colours from
one vertex of a polygonal primitive to another vertex. The shading model used to
compute the vertex colours can be chosen freely.

Phong shading specifies that the normal vector of a primitive has to be interpolated
from one point on the primitive to another point. For every step the interpolated
normal vector together with other attributes of the object (reflectance, glossiness,
etc.) is used to compute the object's colour.

As with Gouraud shading, Phong shading was originally intended for polygonal
primitives. Then, the normal vector is (bi)lineady interpolated from vertex to ver­
tex. Although, there is a Phong shading model this model is not necessarily tied to
the Phong algorithm.

Ray tracing is (apart from determining visible objects) used to find out where shading
has to take place. Since ray tracing can provide much information about the scene's
illumination very demanding shading models can be employed.

4.1.4 Anti-aliasing

Aliasing is a consequence ofdetermining the colour of the entire pixel by sampling the pixel
only at its center or too few sampling points in the pixel. In static pictures these anomalies
are the well known jagged edges and thin lines broken into parts. More deficiencies appear
in animated pictures: small blinking objects, objects jumping from scanline to scanline
and "running ants" on jagged edges.

14

Although, in practice, a perfect anti-aliasing is impossible [Blinn 1989aJ
[Blinn 1989b] there are ways to cure the worst aliasing effects. This can be done ei­
ther by increasing the sampling frequency or by taking into account that a pixel covers a
non-zero area. The latter methods try to compute how much of a pixel is covered by the
contributing objects.

The various methods differ in the number of passes they take to produce the anti­
aliased image. There are one-pass and two-pass techniques. Two-pass techniques first
render the entire image and generate additional information about the image, e.g. contri­
bution of an object to a pixel. In the second pass this information is used to enhance the
picture. In contrast, one-pass techniques try to approximate this additional information.
They generate the final pixel colour immediately. One-pass techniques exhibit serious
drawbacks if the LDF is not preprocessed properly, e.g. sorting the objects from front to
back.

A further distinction between different anti-aliasing techniques is whether the anti­
aliasing is adaptive or not. Anti-aliasing is necessary only at the contours (edges) of
objects. However, many implementations do not explicitly search for edges but process
the whole picture in a uniform manner, e.g. supersampling.

Processing only the contours of objects is correct only if there are no intersections of
objects. Some anti-aliasing techniques are not able to handle penetrating objects.

We will now describe some common anti-aliasing techniques in display processors.

The gz-buffer is a one-pass technique [Ghazanfarpour et al. 1987J. It is basically
a depth buffer with another parallel geometry-buffer, the g-buffer. The g-buffer
contains information about the current coverage of a. pixel. This information is used
if the edge of another object is running through that pixel. Then, the colour of one
of the four neighbor pixels is mixed with the colour of the object in order to obtain
the new pixel colour. Also the new contents of the g-buffer is computed.

The gz-buffer is able to handle penetrating objects. It is restricted to at most one
edge, i.e. two objects, per pixel.

Compositing is a one-pass technique, too [Porter et aI. 1984]. For every pixel in
addition to the colour an alpha channel is sustained. The value of alpha represents
the fraction of the pixel that is covered by a pa.rticular object. Also the depth of
the object at the four corners of the (square shaped) pixel is evaluated.

Correspondingly, for every pixel the depth values at its four corners are stored.
Using the depth values at the pixel corners it is determined how the new and the
old pixel overlap each other. The value of alpha and the pattern of overlap are
combined to the new pixel colour and the new alpha value.

Supersampling means that one pixel is sampled at several points. For each of these
subpixels depth and colour are computed. That high resolution picture is then com­
pressed to the resolution of the output device by averaging all subpixels contributing
to a pixel. Although supersampling is still a point sampling technique it produces
very good results since the aliasing effects are diminished by the averaging step.
Supersampling can be easily combined with all scan conversion, shading and HSR
algorithms because the averaging step is completely independent from the image
generation step. Unfortunately, supersampling is very expensive with respect to
both time and memory.

!:!!!!!!

15

The A-buffer is an extension of the depth buffer [Carpenter 1984]. Instead of storing
only depth and colour of the front most object the A-buffer stores depth and colour
of all objects that are potentially contributing to a particular pixel. (The depth of
the objects has been determined at the pixel center.) These objects are stored in
a depth sorted list. For every object in the list a subpixel mask is computed. The
subpixel mask specifies which subpixels are covered by an object.

In a second step, for every subpixel the visible object and its colour are computed.
These subpixel colours are then averaged in order to obtain the final pixel colour.

The A-buffer technique has the drawback that its requirements for time and memory
are not constant. They depend on the statistical properties of the scene to be
rendered.

Filtering is not a real anti-aliasing technique. It combines certain pixels in the neigh­
borhood of the pixel under consideration to determine the pixel colour. The effect
of a low-pass filter is only a blurring of the picture.

4.2 Classification by Partitioning

The fundamental inequation for raster display processors (2) indicates that display pro­
cessors have to parallelise the image generation process in order to achieve reasonable
performance.

A short example will explain this: For a screen with 1000 x 1000 pixels, a scene with
10,000 primitives covering 1000 pixels each (a:" = 0.001) and a frame time of 0.1 s we
obtain (CF 1):

t.1ep ::; IOns

This time is just within the limits of today's technology. More complex scenes, screens
with a higher resolution or shorter frame times will demand shorter step times. There­
fore it is natural to search for ways to introduce parallelism into the display processor
operation.

The number of steps necessary to generate an image is fixed. A partitioning describes
how these steps can be distributed among a number of processor elements that are working
in parallel on different steps. The result of a partitioning will be a rule how to construct
such processor elements. The display processor is then constructed from display sub­
processors. t'tep for each of these sub-processors is greater than the step time for the
display processor itself.

We will now discuss the different possibilities to partition the display processor. The
inequation (2) indicates how the necessary partitioning can be accomplished. Every pa­
rameter stands for another domain of partitioning.

4.2.1 Partitioning in the Time Domain

In the inequation (2) the time domain is represented by the frame time t f. Enlarging
tf for the display sub-processors means that each of these sub-processors has more time
available to perform its operations. In order to sustain the performance of the display
processor several sub-processors have to work in parallel on different, subsequent tasks.
While one sub-processor is working on the task T; the next sub-processor is processing
task 7;+).

16

4.2.2 Partitioning in Image Space

The image complexity Cj stands for the number of pixels. The time t.t<p can be enlarged
for the sub-processors by distributing subsets of all pixels to the sub-processors, i.e. Cj is
reduced.

There are several ways to achieve this. A single display sub-processor can either work
on single pixels, on complete scanlines or on contiguous parts of the screen like stripes or
windows. Another possibility to partition the screen is to interlace the pixel sets that the
different sub-processor are treating [Parke 1980] [Hu et al. 1985]. The association of
sub-processors and certain pixels can either be static or dynamic.

This partitioning concept implies that either all objects are broadcast to all sub­
processors or that the objects are sorted according to that part of the screen they are
contributing to.

The image space partitioning approach has potential drawbacks for images where the
objects are not distributed evenly across the image. Then the workload may be unbalanced
among the sub-processors.

Image space partitioning is often reflected in the organisation of the image memory,
i.e. the frame buffer.

4.2.3 Partitioning in Object Space

Reducing the scene complexity C,c means to off-load the sub-processors from a part of
the objects. Every sub-processor, a so-called object processor, is handling a subset of
the LDF. That subset can contain either a single primitive or several primitives. These
primitives may be independent of each other. Alternatively, the primitives may all belong
to a higher-order object that has been defined by the application (AM).

A potential problem with object space partitioning is that the processing time for
different primitives may vary. (For instance, processing bigger primitives could take more
time than small objects.) Since, in practice, these differences can be only estimated, some
object processors may run idle while others are overloaded.

A special kind of object space partitioning is the partitioning in the parameter space.
This strategy is frequently used when parametric surfaces must be displayed by a display
processor that can only handle e.g. triangles.

4.2.4 Partitioning in the Functional Domain

The individual display sub-processors are less burdened by their task if they have to
perform less operations in a certain time period. This means that the parameter CF is
made smaller. (CF is the functional complexity and represents the number of steps to be
performed for each pixel). This can be achieved by distributing the various operations
amongst the display sub-processors.

The different sub-processors are not performing the same function and are therefore
probably not of the same type 4. This can be a drawback because the effort to design such
a display processor is bigger than for the other partitioning strategies. The fact that there
are different types of sub-processors leads to a lower regularity of the display processor
(see below).

41t is possible to implement different functions on identical processor elements. This can be achieved
e.g. by means of (micro)program:ming. A good example for such a solution is the system described in
[Clark 1982] .

•

17

4.2.5 Multi-level Partitioning

The partitioning schemes presented so far are pure solutions in the sense that they par­
tition the display processor's task only in a single domain. In contrast, real systems
often employ a combination of different problem partitioning approaches. We can distin­
guish here such solutions which divide the problem several times in the same domain and
solutions that partition in different domains.

Looking at systems that employ a multi-level partitioning leads to the following ob­
servation: Each system partitions the image generation either in image space or in object
space. We call these partitioning schemes primary partitioning. Partitioning the time
domain or the functional domain are auxiliary or secondary partitionings. The secondary
partitionings are used to efficiently implement one of the primary problem subdivision
strategies.

4.2.6 Notation

We will now introduce a notation that expresses how a certain display processor partitions
its task. This notation is an extension of the scheme proposed in [Reghbati et ai. 1988].

We represent the domain in which the partitioning takes place by the first letter of
its name (F, I, 0, T). In parenthesis we put two arguments: The first tells in how many
parts the domain is divided, i.e. how many sub-processors are working in parallel in
that domain. The second parameter states the maximum number of elements in each
partition, i.e. how many elements each sub-processor handles. Elements can be e.g.
pixels, scanlines, or primitives.

For instance, the expression
I(4096,256)

means that the display processor partitions the image space in 4096 subima.ges each
containing 256 e.g. pixels.

Multi-level partitioning schemes are represented by catenating the different partition­
ing levels with a '0', e.g.

1(16,64) 0 I(4,64 x 256)

can be the description of a system that divides the screen into 16 groups of 64 scanlines
each. Each group is further partitioned into 4 parts that are handling 256 pixels of each
of the group's 64 scanlines.

If there are different kinds of domain partitioning on the same level they are separated
by a 'II'.

4.3 Classification by Architecture

A major issue for classifying display processor (and computers in general) is how the
algorithms have been mapped onto a hardware structure. To categorise general computer
architectures is a difficult task on its own. Several proposal have been made in the past
[Giloi 1983]. However, they do not concentrate on what we consider to be important
and descriptive for display processor architectures. We will therefore highlight only some
useful features that are also generally accepted as descriptive for computer architectures.
(All features assume that display processor is a multiprocessor.)

Topology of the network. The topology gives an idea about the physical construction
of the processor. Possible topologies are pipelines, two-dimensional arrays, arrays
in more than two dimensions (hypercubes), tree structures, etc.

18

Different architectures can be further distinguished by their capability to be config­
ured dynamically, i.e. the topology can be adapted to different applications.

Control of the network. A multiprocessor network can be controlled by a central mas­
ter. Alternatively, a decentralised control is distributed across a network of proces­
sors having equal rights. Furthermore, the control can be classified according to the
manner how commands are distributed inside the network. The commands can be
either broadcast simultaneously to all processor or propagated from one processor
to the next.

The communication scheme is a property that is strongly related to the conhoi struc­
ture. In the context of a VLSI design it is preferable to employ local communication
structures instead of global ones.

Data types. Architectures can be distinguished with respect to the type of data prop­
agated through the network. The classification of the data types falls into two
categories. The first category is the kind of data, e.g. pixels, objects, colours, etc.
The second category states how the data is represented. Possible representations
are integers, floats, lists etc.

Type of parallelism. In a multiprocessor there can be parallelism in the execution of
different commands and/or the processing of different data. Such processors are
called single/multiple instruction machines with single/multiple data processing
(SISD, MISD, SIMD, MIMD).

Parallelism can be further classified as coarse grain parallelism or fine grain paral­
lelism.

Regularity. By regularity we understand the number of identical elements in relation to
all elements. The more regular an architecture is the better it is suited for a VLSI
implementation. We will now give a somewhat intuitive definition of regularity:

Let be N the number of all processing elements in the architecture and T the number
of types of processing elements, e.g. the number of different chips. By n, we denote
the number of processing elements of type i.

We define the regularity R as the product of two factors 1'1 and 1'2:

T-1
1'1 = 1--­

N
2:1

;=1 eT - Itnp f" T > 1ur.
1'2 = {~- mrT 1

R 1'1' 1'2

1'1 takes into account only the size of the architecture and the number of different
chips. It exhibits the following properties.

• T 	 1 =:} 1'1 1
The architecture is most regular if there is only one type of element.

• N = T =:} limT....oo 1'1 0
If all elements are different the regularity is the smaller the more elements there
are.

• 	 0 < 1'1 S; 1

! I .".L u!!l!l

19

• The more types there are in the architecture the lower the regularity.

• The regularity is higher if there are more elements in the architecture.

1'2 reflects how many instances of each chip type there are in the architecture. We
chose 1'2 as the inverted standard deviation ofthe norulalised population (ni/N) of
the type classes i. Hence it has the following properties:

• 	ni = nJ = 1fo VI:::; i, j :::; T, i 'I j
max(1'2) , 1'2 = 1

If the number of elements in the different classes is the same, the regularity
has a maximum.

• 	 HI = N -T+l, H; = 1 V 1 < i :::; T
::::} minh)
If the elements of the different types are distributed totally unequally, 1'2 has
a local minimum.

• 	 0 < 1'2 :::; 1

The first two properties of 1'2 reflect the idea that structures look more regular if all
elements appear with the same quantity.

4.4 Classification by Performance

Performance can be classified along different guidelines.

Characteristic parameters. The fundamental inequation (2) for raster display proces­
sors the maximum time for each operation of the display processor (istep)' This
time can serve as a common basis for comparing and classifying the performance of
different display processors. The bigger the time t.;tep may be (for equal functions)
the easier such a display processor can be implemented with ava.ilable technology.

Primitives per time period. It is very frequent to specify how many primitives can be
processed by a particular display processor in certain period of time. U suaIly, this
time period is either 1 second or one video frame. The video frame time is often set
to 1/30 second or 1/60 second.

Delay time. The time between issuing a command to the displa.y processor and obtain­
ing visible results is called delay time. This time, although often not specified, is
important to judge the ability of a graphics system to conveniently intera.ct with
the user.

5 Classification of some Existing Display Processors

This section applies the developed taxonomy to some display processors that have been
published in the last years. The intention of this section is not to give a survey of existing
display processors.

http:intera.ct

20

..........

A 2A

C +C +C
6A 7A
+C +C

A

B
~

7B------f3ff=ffi=~~~=H~~
6B------[3~Hf~~~=H~~
5B----~fj~~~~~~~~
4B----~f3ff=ffi=~~~=H~~
3B----~fT[3~~~~~~~
2B------iF~~~~4=ut~

B

o

Figure 2: Conceptual block diagram of the Pixel-planes display processor.

5.1 Pixel-planes

The Pixel-planes system is one of the best documented display processors in the literature
[Fuchs et al. 1982] [Poulton et al. 1985a].

Figure 2 shows the principal construction of the Pixel-planes architecture
([Fuchs et al. 1985]). It is essentially a frame buffer whose pixel cells have been en­
hanced by some extra logic. This logic enables Pixel-planes to compute the expression
Ax + By + C in parallel for all pixels (x, y). Evaluation of this linear expression with dif­
ferent sets of parameters A, Band C enables the Pixel-planes system to render z-buffered
Gouraud-shaded polygons.

5.1.1 Functional Classification

Primitive Type(s). Convex, planar polygons 5.

Scan Conversion. Inside test based on a polygon representation by the bounding lines
of the polygon.

'In {Fuchs et al. 1985} it is shown how the Pixel-planes system can be used to render circles and
spheres.

III,ll\ln~!

21

Hidden Surface Removal Depth-buffer.

Shading. Gouraud shading (interpolation of precomputed vertex colours).

Anti-aliasing. None 6.

5.1.2 Partitioning

Pixel-planes parallelises the image generation process by one-level image space partition­
ing: 1(512 x 512,1).

5.1.3 Architecture

Topology. The two main building blocks of the Pixel-planes system are two binary trees
of bit-serial adders and an array of pixel processors. The outputs (leaves) of the
binary trees provide partial sums of the expression Ax + By + e to the pixel cells.

Control. The whole Pixel-planes system is controlled by a central control unit on each
Pixel-planes chip [Poulton et al. 1985bJ. The controllers receive the commands
from the outside world - either from the geometry processor that issues drawing
commands or from the scan-out circuitry that reads out the image from Pixel-planes.

Data types. The data fed into Pixel-planes are always the parameters A, Band e of a
linear expression, describing either edges, or depth or colours. A, B, e are integers
and are supplied in bit-serial format to the Pixel-planes system.

Parallelism. The commands and parameters to Pixel-planes are the same for all pixel
processors. The values of the linear expressions vary from pixel to pixel. Thus,
all pixel processors are operating with different data.. Therefore, Pixel-planes is a
SIMD display processor.

Regularity. The Pixel-planes employs only one type of chip. It is therefore highly regular
(ll = 1). The Pixel-planes IV system is built from 2048 identical chips each of them
storing 128 pixels [Fuchs et al. 1988].

5.1.4 Performance

Characteristic parameters. The following numbers are based on the assumption that
Pixel-planes is rendering triangles. Then seven steps are required to render one
triangle (3 edges + 1 depth + 3 colours). Some of the numbers are taken from the
literature. It should be noted that the speed of Pixel-planes is independent of the
actual size and location of the triangles (a.c = 1).

if 1 s

a.c 1

esc ::= 35,000

CF 7

e] = 1

Using the inequation (2) we obtain t.tep :::; 4 fJS

6[Fuchs at a!. 1985J explains how Pixel-planes can perform anti-aliasing by either supersampling or
employing subpixel masks.

22

1Primitives

Each Scanline Processor
Controls 64 Scan Lines

Horizontal Line

Fill Commands
 Video Control

(Y, XLeft, YRight)
Each SLAM Contains
64 lines of 256 pixels1

Scanline

Row 2

.",/

Proc. 1

64 Lines

Row 1

Scanline

Proc. 2

64 Lines

Scanline 1-1

Proc. 16
64 Lines

-...---,-----.,-----,-------,

Row 1

Scanline

Processor

Bus

Figure 3: Block diagram of the SLAM display processor.

Primitives per second. Pixel-planes IV can process about 35,000 Gouraud-shaded, z­
buffered triangles per second. Assuming that there are 30 frames per second, these
are nearly 1,200 triangles per frame.

Delay time. The delay time of Pixel-planes is not specified in the literature. However,
the working principle of Pixel-planes suggests that the delay is exactly the time
necessary to process one polygon (~ 30 flS).

5.2 SLAM

In [Demetrescu 1985] a display processor has been presented that uses two different
kinds of subsystems (figure 3): Scanline processors break down the incoming polygon
descriptions into spans.

The spans are described by the scanline they are covering and the coordinates of the
first and the last pixel in that scanline. Each scanline processor is responsible for 64
scanlines.

These spans are dispatched to the scanline access memories (SLAMs). Each SLAM
fills the specified span with a downloaded pixel pattern. By specifying pixel patterns

23

characters can be displayed. Each SLAM chip contains the memory of 64 scanlines with
256 pixels each. All 256 pixels in one scanline can be accessed, processed and stored in
one step. SLAMs can be cascaded to construct longer scanlines.

5.2.1 Functional Classification

Primitive Type(s). Y-monotone polygons 7 and characters. (Lines are drawn as thin
polygons.)

Scan Conversion. Contour tracking. The scanline processor computes the start and
end coordinates of the polygon for every scanline. The span is filled by the SLAMs.

Hidden Surface Removal. HSR is not addressed in the published materiaL It is sup­
posed that the system is implementing some kind of priority based scan conversion
algorithm, e.g. painter's algorithm, i.e. the HSR took place already in the geometry
processor.

Shading. Halftone patterns. Since this display processor uses only one hit per pixel no
colour shading is provided.

Anti-aliasing. None.

5.2.2 Partitioning

This display processor employs a three-level image space partitioning. The main parti­
tioning is in image spacei it occurs two times: First, the image is subdivided into groups
of 64 scanlines each. In a second step these groups are then split into sets each of which
contains 64 x 256 pixels.

Image generation is also partitioned in the functional domain. Vertex sort, producing
scanline commands and actual pixel generation are allocated to distinct processors.

The partitioning is therefore characterised as:

F(3, 1) 01(16,64) 0 1(4,64 x 256)

5.2.3 Architecture

Topology. The topology of this display processor is a tree. The root of the tree is formed
by the vertex sorter that is connected to the input of the display processor. The
scanline processors constitute the first level of the tree. The leaves of the tree are
formed by the SLAMs.

Control. This display processor employs a distributed control scheme. Both, scanline
processors and SLAMs have their own control unit. The communication between
them is not detailed in the literature.

Data types. The scanline processors receive the description of polygons, lines or charac­
ters. The primitives are transformed into spans tha,t represented by the x-coordinates
of the right and left edge of the span and its y-coordinate. A halftone pattern is
provided that is used for filling the span.

The literature does not give details about the representation of the various data.

7Y-monotone polygons are characterised by the fact that horizontal lines intersect the boundary of
the polyon at most twice. Convex polygons are special cases of monotone polygons. They are monotone
in x a.nd y.

24

Parallelism. All scanline processors receive different primitives from the geometry pro­
cessor. The commands and data that are generated for each SLAM are different.
This characterises a MIMD machine.

Regularity. The display processor is built from two main building blocks (T = 2): the
scanline processors and the SLAMs. In the following it is assumed that one scanline
processor can be integrated on a single chip [Demetresen 1985]. The standard
configuration of scanline processors and SLAMs uses 16 scanline processors each
of which controls 4 SLAMs. This results in a total chip count of N = 80. The
regularity is therefore R = 0.99· 0.58 = 0.57.

5.2.4 Performance

The display processor is composed of two different types of chips, scanline processors and
SLAMs. These two should be evaluated separately. However, since the scanline processors
have been described not very detailed we concentrate on the SLAMs.

The following numbers have been derived from figures given in the literature. (The
original paper specified the performance in terms of memory accesses.)

Characteristic parameters. We assume that triangles are processed by the display
processor. Since the number of pixels covered by a primitive influence the number
of steps to scan convert that polygon the performance of that display processor
depends on the properties of the image. Therefore no exact value for G,K can be
given. It is estimated for an average size of a primitive of 5,000 pixels and a screen
size of 1024 x 1024 pixels.

1 st f

G,c ~ 0.005

Csc ~ 50,000

CF 2

C1 64

This values give a maximum step time of

t.tep ::::; 32 p,s

Primitives per second. [Demetresen 1985] claims that a SLAM can perform approx­
imate 5 million scanline accesses per second. If we make the (conservative) assump­
tion that in average 20 percent of a scanline are covered by a primitive. If we further
assume that an object covers 5,000 pixels in average we can estimate the number of
primitives processable in one second: 50,000 primitives per second.

Delay time. There is no delay time specified in the literature.

5.3 PROOF

The PROOF system, proposed in [Schneider 1988a], is built from three main blocks
(figure 4 [Schneider et aI. 1988]).

The first one, the object processor pipeline (OPP), is made up of a number of object
processors (OP) storing one object each. Each OP scan converts its object and performs

25

.. -- --- --- -- - -- ---.
:
~--

scene :
t__~r_a_~~f,:?rrn~!l':?~__ !

shading
processors

filter
processors

object
processors

Geometry Processor

Figure 4: Block diagram of the PROOF display processor.

the HSR on a pixel basis. The OPs also interpolate, depending on the configuration of
PROOF, colours in RGB or normal vectors.

The next stage in PROOF is a shading sto,ge that performs Phong shading. The
shading stage is a pipeline of shading processors (SP). Each two SPs are handling one
lightsource.

The last stage in PROOF is the filter stage that performs the anti-aliasing executing
an A-buffer algorithm. There is one processor for each sub pixel.

5.3.1 Functional Classification

Primitive Type(s). Triangles and vectors.

Scan Conversion. Inside test. The triangles are described by their bounding lines.

Hidden Surface Removal Depth-buffer (A-buffer).

Shading. Flat and Gouraud shading (OPP only). Phong shading (with shading stage).

Anti-aliasing. A-buffer on a 8 x 8 subpixel grid.

5.3.2 Partitioning

The PROOF architecture partitions the image generation process in several domains. The
first is the functional domain. Each stage carries out another set of functions. The OPP
performs scan conversion, HSR and (limited) shading. The shading stage and the filter
stage perform illumination and anti-aliasing respectively.

26

Each stage partitions its task again. The OPP and the shading stage allocate objects
(primitives or light sources) to the different processors (object space partitioning). The
filter stage provides one processor for each of the 64 subpixels (image space partitioning).
This partitioning scheme is represented by

F(3, 3) 0 [0(50000, 1)110(16,0.5)11[(64,1)]

5.3.3 Architecture

Topology. The organisation of PROOF is 11 pipeline. The OPP and the shading stage are
pipelines themselves. The filter stage is constructed from two trees of adders that
compute coverage information for every subpixel [Romanova 1988]. The output
of these trees is fed into an array of subpixel processors that compute the colour of
the subpixels.

Control. There is no central control in PROOF. All processing elements, OPs, SPs and
FPs, have their own controllers. The different processors are communicating via an
asynchronous protocol.

Data types. Information for pixels is propagated through the various pipelines. In the
OPP and the sha,ding stage a list of objects is associated with every pixels. The
objects in the list are described by an object identifier, depth and normal vector
(or colour value) at the current pixel and geometry of the coverage for the current
pixel. The filter stage produces a RGB triple. All data items arc describe in fixed
point format.

Parallelism. In total PROOF is a MIMD machine. The single stages are SIMD proces­
sors. All processors in one stage are execu ting the sa.me instruction (may be delayed
due to the pipeline structure) on different data.

Regularity. OPP and shading stage consist only of one type of processing elements,
namely the OPs and SPs. Five OPs a.nd two SPs are expected to reside on the same
chip. For a system that handles 50,000 objects and 16 light sources 10,000 OP chips
and 16 SP chips are needed.

The filter stage uses two types of processing elements; processor slices for the adder
trees and subpixel processors. Each of the x-, y- and z-trees will be distributed on
three chips. Four subpixel processors will be integrated on one chip. For a resolution
of 8 x 8 subpixels 16 subpixel processor chips are needed.

PROOF is built from four types of chips (T = 4) and approximately N = 10,000
chips. The population of the chip classes is nl 10,000, n2 = 16, n3 9 and
n4 = 16. From this we obtain R 1.0·0.50 = 0.50.

5.3.4 Performance

We assume a screen resolution of 1024 x 1024 pixels. The average depth complexity may
be 2. (The depth complexity directly influences the length of the lists constructed for the
A-buffer.)

Characteristic parameters. 1. Object Processors

tf 33 rns

oc.c = 2

http:1.0�0.50

27

Csc 1

CF 3

C[1024 X 1024

This gives a step time of t step 15.73 ns which is equivalent to a clocking
frequency of 63.5 MHz.

2. Shading Processors

Csc 1
CF 5

C[1024 x 1024

This results in a step time of t,tep ::; 3.15 rlS. To enlarge the step time for
the individual shading processors, time domain partitioning with up to 16
shading processors in parallel will be employed. This will give a step time of
t,tep ::; 50 ns.

3. Subpixel Processors

If 33 ms/(1024 x 1024)

(t,e 2

Cse 1

CF 7

C1 1024 x 1024

Since the step time is about 2 I1S up to 10 parallel processors will be working
in paralleL Thus the step time is enlarged to about 20 ns.

Primitives per second. In [Schneider 1988aJ a throughput of 50,000 triangles every
33 ms has been announced.

Delay time. The literature gives a worst case delay time of 10.5 ms for a complete image
update.

5.4 The Ray-Casting Machine of Kedem & Ellis

The Ray-Casting Machine [Kedem et al. 1984a] [Kedem et al. 1984b] aims at the
scan conversion of objects defined by constructive solid geometry (CSG). In CSG objects
are described by set operations, e.g. union, intersection or difference, applied to halfspaces.

The Ray-Casting Machine is built from two types of processors (figure 5). The
dive classifiers (PC) calculate the intersection of a ray (a line) with a primitive, i.e.
classifies the primitive with respect to the line. Each PC holds one primitive and accepts
rays for classification to the stored primitive. The classification returns segments of the
ray that are inside or outside of the primitive. The classification combiners (CC) combine
two classified rays using a certain set operation.

• •

28

A

Figure 5: Block diagram of the Ray-Casting Machine. PC - Primitive Classifier,
CC Classification Combiners.

5.4.1 Functional Classification

Primitive Type(s). Linear and quadratic halfspa.ces.

Scan Conversion CSG with ray tracing. The rays into the scene are restricted to be all
parallel.

Hidden Surface Removal. Ray tracing.

Shading. None.

Anti-aliasing. None.

Shading and anti-aliasing could be added as a postprocessing step that uses the results
of the Ray-Casting Machine.

5.4.2 Partitioning

The Ray-Casting Machine employs an object space and a functional domain partitioning.
The object information is distributed to the PCs and CCs. These two types of processors
also constitute the functional subdivision: One performs primitive classification the others
combine classifications.

The partitioning is characteried as

F(2, 1) 0 (O(n, 1)IIO(niog2 n, 1))

if a maximum of n primitives have to be handled.

29

5.4.3 Architecture

Topology. The topology is a binary tree. The leaves of the tree are the PCs and the
nodes are the CCs. The Ray-Casting Machine can be configured dynamically to the
CSG descriptions of different objects. The configuration takes place by loading the
CCs such that they implement the required CSG tree.

Control. The control of the Ray-Casting Machine is distributed among all processing
elements, PCs and CCs. The processing elements are communicating synchronously
using a complete handshake protocol.

Data types. Data moving through the processor tree represent line segments classified
as being IN our OUT of the CSG object. These segments are described by integer
numbers.

Parallelism. All PCs together form a SIMD computer. The CCs are also working in
SIMD mode.

Regularity. The Ray-Casting Ma~hine is built from only one type of chip. Such a chip
contains from 4 to 8 slices each of which consists of one PC and 9 CCs. The chip
level regularity of the Ray-Casting Machine is therefore R = 1.

5.4.4 Performance

The literature does not contain any performance numbers for the Ray-Casting Machine.
We can therefore summarise here only those numbers that are a consequence of the ar­
chitectural features.

Characteristic parameters. 1. Primitive Classifiers

a;sc

Csc

C1

CF

tf

1

1

1024 x 1024

?
?

2. Classification Combiners

a;sc ?

Csc 2(1)

C1 1024 x 1024

CF ?

?t f

5.5 Structured Frame Store System

In [Jayasinghe et aI. 1988J a system has been presented that can display the contents
of the LDF without a frame buffer directly on the output device. The system is based on
methods and algorithms developed in [Akman et al. 1988] and [Kuijk et aI. 1988].

30

LDF

... 8}­

Display (PDF)

Figure 6: Display processor of the Structured Frame Store System. LDF - Linear
Display File, APS - Active Pattern Store, SCB - Scanline Command Buffer, XJ:P - X
Incremental Processor, Y J:P Y Incremental Processor.

The display controller of that system is constructed from three main building blocks
(cr. figure 6 [Jayasinghe et al. 1988]). The Pattern Loader (PL) receives patterns from
the LDF and, if necessary, decomposes them into simpler patterns that can be processed
by the rest of the display processor.

These patterns are handed over to Y Incremental Processors (Y_IP). They generate
for each pattern a number of scanline commands that are dispatched to pixel processors,
called X Incremental Processors (X_IP).

There is one X_IP for every pixel in a scanline. The X_IPs are connected in a pipeline,
forming a one-dimensional systolic array. The first X_IP receives a scanline command,
executes this command and propagates it to the next X_IP. The task of each XJ:P is the
incremental computation of pixel intensities.

31

5.5.1 Functional Classification

Primitive Type(s}. The display processor itself accepts patterns 8 as primitives. These
general patterns are decomposed into spans because spans are the primitives on
which the X_IPs are operating.

Scan Conversion. Contour tracking. The starting and ending pixels of span are incre­
mentally computed by the Y _IPs. The filling is done by the X_IPs.

Hidden Surface Removal. None. The LDF is already preprocessed such that there
are only non-overlapping patterns.

Shading. Due to the (restricted) programmability of V_IPs and X_IPs Wash, flat (con­
stant), Gouraud and Phong shading can be performed. furthermore, the display
processor offers the possibility to generate periodic textures.

Anti-aliasing is also a programmable feature of of the X.lPs. Although not explained
in detail, the anti-aliasing technique used seems to be a one-pass technique.

5.5.2 Partitioning

Neglecting the PLs, the display processor performs a two-level partitioning. The first
level is a partitioning in the functional domain. The Y _IPs break down the pattern into
scanline segments and generate the necessary scanline commands for the X..IPs. Then
the X_IPs fill the span.

The second level of partitioning takes place in the time domain for the Y..IPs and
in image space for the X..IPs. There are several Y _IPs in order to achieve satisfying
performance. Each X_IP handles one pixel in a scanline. This system can therefore be
characterised as

F(2, 1) 0 (T(24 . .. 245,1)111(1024,1))

Furthermore, in [Jayasinghe et a1. 1988] another partitioning in the time domain
is proposed for the X.lPs. If the X_IPs are to slow to perform their task in synchronism
with the pixel dock of the output device, each X_IP is replicated in order to enlarge the
available time for the individual X_IP.

5.5.3 Architecture

Topology. The topology of the Structured Frame Store's display processor consists of
different elements. LDF, PLs, and Y..IPs form a tree structure. The leaves of that
tree (the Y _IPs) are working on a common bus. That bus is connected to a systolic
array of X_IPs.

Control. The control is distributed across the display processor. The different blocks
are communicating via intermediate file structures.

Data types. Input to the PL are patterns on a fairly high level. The exact representation
of these patterns is not known to the author. These patterns are transformed
into polygons described by their geometry and associated colour information. The
polygons are decomposed into single spans by the Y _IPs. The X_IPs translate the
spans into pixel information, e.g. RGB values.

SIn [Kuijk et aI. 19881 patterns are defined as fiat regions in continuous 3D. They may be discon­
nected, concave, with holes or with islands.

32

Parallelism. There are different kinds of parallelism in this display processor. The PLs
are working in parallel on different primitives that may have different types. They
are therefore forming a MIMD processor. The Y -IPs are all executing the same
command on different primitives which characterises them as a SIMD architecture.
This is also the case for the X_IPs that are all executing the same scanline commands.

Regularity. It had not been fixed in the literature how the PLs, Y-IPs and X-IPs will be
implemented. It is therefore not possible to determine the regularity of the system.

5.5.4 Performance

We will look only at the X-IP and the Y_IP because the PL is performing functions that
we originally associated with the geometry processor. Since these two blocks are differing
they are considered separately.

We will assume a screen of 1024 x 1024 pixels. The primitives should have an av­
erage height of 70 pixels. (Some of the values of the following parameters stem from
[Jayasinghe 1989].)

Characteristic parameters. 1. Y_IP

if 20 inS

a,c 0.07

C,c 244,000.,-1 ·20 11lS 4880

CF 60

CJ 1024

This results in t'tep == 0.95 n., for one (1) Y_IP. It is proposed that for a screen
with 1024 x 1024 pixels and Gouraud shading::::: 122 Y -IPs are used which
reduces the functional complexity to CF = 60/122 ::::: 0.5. For the new step
time we obtain t,tep = 0.116 jJ>S 8.6 MHz).

2. X_IP

tf := 20 ms/l024 = 20 jJ>S

a.c 1

C,c 4880/70 = 70

CF 4

Cf 1

The step time for the X-IP is t'tep == 71.4 ns. This is equivalent to a clocking
frequency of 14 MHz.

Primitives per second. In [Jayasinghe et aI. 1988] it is claimed that 244,000
Gouraud shaded quadrilaterals of height 70 can be rendered per second.

Delay time. The delay time of this display processor is one frame time (20 ms).

33

6 Possible Novel Display Processor Architectures

The investigation and classification of several display processors revealed that there are
some "white spots" on the map of possible architectures. Two of them that deserve a
closer look are the following: Tree structured display processors that partition in image
space and display processors on the basis of 2D-arrays of processing elements.

We want to suggest an architecture that closes the first of these gaps: Qua.dtrees
and octrees subdivide the scene or the screen recursively until certain criteria are met.
Subdivision of an image into subimages (cells) stops if

• A cell is empty, i.e. contains no object.

• A cell contains exactly one object.

• A predefined level of subdivision has been reached.

This approach offers the possibility of a rendering process that quickly produces an image
with a coarse resolution. Afterwards the image is refined further and further until the
final accuracy has been reached. Such a behavior is desirable in an environment where
response time dominates the desire for image quality.

An architecture for such a display processor could be a tree structure of processors
that reflects the structure of the quadtree or octree. A problem in that approach is that it
is impossible to provide a tree structure that contains a processor for every possible cell.
Therefore, the tree has to be dynamically configurable. It must also be able to detect and
reasonably react to overload conditions.

7 Conclusion

The presented taxonomy is mainly founded on a model for the display processor. The
model considers two aspects of the display architecture, function and timing. The clas­
sifications for junction, partitioning and performance have been derived from them. The
last distinguishing feature, the display processor's architecture, could not be based on
that model, it has been defined mostly intuitively. However, there is a close rela.tion
between the topology of an architecture and the employed partitioning scheme. Improve­
ments of the taxonomy can be achieved by refining the model. Especially, an inclusion of
architectural aspects into the model seems promising.

The second part of the paper applied the taxonomy to existing display processors.
Several times we were unable to completely classify a display processor. That was due to
a lack of information in the published material. The taxonomy can serve as a guideline to
identify and select the minimum information that is needed to describe a display processor.
This would mean to make best use of a taxonomy.

References

[Abram et aI. 1986] Gregory D. Abram and Henry Fuchs: VLSJ Architectures jar
Computer Graphics. In G. Enderle, editor, Advances in Computer Graphics I, pages 6­
21, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.

[Akman et al. 1988] Varol Akman et a1.: A Vector-like Architecture for Raster Graph­
ics. In A.A.M. Kuijk and Wolfgang Strafier, editors, Advances in Computer Graphics
Hardware II, pages 137-154, Eurograpliics, Springer-Verlag, 1988.

34

[Blinn 1989a] James F. Blinn: Rel.urn of the Jaggy. IEEE Computer Graphics &
Applications, 82-89, March 1989.

[Blinn 1989b] James F. Blinn: What We Nee Around Here Is More Aliasing. IEEE
Computer Graphics & Applications, 75-79, January 1989.

[Carlbom 1980] Ingrid B. Carlbam: System Architecture for High-Pel1ormance Vector
Graphics. PhD thesis, Dept. of Computer Science, Brown University, Providence, R.I.,
1980.

[Carpenter 1984] Loren Carpenter: The A-buJJer, an Antialiased llidden Surface
Method. Computer Graphics, 18(3):103-108, July 1984.

[Clark 1982] James H. Clark: The Geometry Engine: A VLSl Geometry System for
Graphics. Computer Graphics, 16(3):127-133, July 1982.

(Claussen 1988) Ute Claussen: Beleuchtungsmodell und Belellchtungsalgorithmen in
del' Graphischen Datenveral'beitung. Forschungsbericht WSI-GRIS 88-3, Wilhelm­
Schickard-Institut fiir Informatik, Universitiit Tiibingen, WSI-GRIS, Auf der Morgen­
stelle 10/C9, D-7400 Tiibingen, W-Germany, 1988.

[Demetrescu 1985] Stefan Demel,rescu: High Image Rasteri::::alion Using Scan
Line Access A1emories. In Henry Fuchs, editor, Pl'Oceedings of the Hill Con­
ference on VLSI, pages 221--243, Computer Science Press Inc., 1803 Research Blvd.,
Rockville, Maryland 20850, 1985.

[Dew et al. 1985] Peter M. Dew et a1.: Systolic Array Architeciul'cs for High
mance CAD/CAM Worbtations. In Rae A. Earnshaw, editor, Fundttmental Algorithms
for Computer Graphic8, pages 659-694, NATO ASI, Springer-Verlag, Berlin, Heidel­
berg, New York, Tokyo, 1985.

(Fuchs 1988] Henry Fuchs: A n Introduction 10 Pixel-planes and other VLSI-intensive
Graphics Systems. In R.A. Earnshaw, editor, Theoretical Foundalion8 of Computer
Graphics and CAD, chapter 6, pages 675-688, Springer-Verlag, 1988.

[Fuchs et al. 1982] Henry Fuchs et al.: Developing Pixel-Plllnes. A Smart iHemol'Y­
Based Raster Graphics System. In Proceedings of the Conference on Advanced Resea.rch
in VLSl, M.l.T., pages 137-146, January 1982.

[Fuchs et al. 1985] Henry Fuchs et al.: Fast Spheres, Shadows, Textures, Transparen­
cies, and image Enhancements in Pixel-Planes. Computer Graphics, 19(3):111-120,
July 1985.

[Fuchs et al. 1988) Henry Fuchs et al.: Coarse-Grain and Fine-Gmin Parallelism in
the Next Generation Pi:rel-p/anes Graphics System. In Proceedings of the international
Conference and b'xhibition on Parallel Processing for Vision and Display,
University of Leeds, UK, January 1988.

[Ghazanfarpour et al. 1987] Djamchid Ghazanfarpour and Bernard Peroche: A Fast
Antialiasing Method with a Z-BuJJer. In G. Marechel, editor, Burographics '87,
pages 503-512, Eurographics, Elsevier Science Publishers B.V. (North Holland), 1987.

35

[Giloi 1983] W.K. Giloi: Towards a Taxonomy of Computer Architecture Based on the
Machine Data Type View. In The 10th Annual Symposium on Computer Architecture,
pages 6-15, ACM, 1983.

[Hu et al. 1985] Mei-Cheng Hu and James D. Foley: Parallel Processing Approaches to
Hidden-Surface Removal in Image Space. Computer & Graphics, 9(3):303-317, 1985.

[Jayasiughe 1989] J.A.K.S. Jayasinghe: Personal Communications. July 1989. ~.

[Jayasinghe et a1. 1988] J.A.K.S. Jayasinghe et a1.: A Display Controller for a Struc­
tured Frame Store System. In A.A.M. Kuijk, editor, Third Eurographics Workshop on
Graphics Hardware, Eurographics, 1988. The proceedings will be published in the book
"Advances in Graphics Hardware III" by Springer-Verlag in 1989.

[Kedem et aI. 1984a] Gershon Kedem and John L. Ellis: Computer Structures
for Curve-Solid Classification in Geometric Modeling. Technical Report TR84-137,
Rochester Institute of Technology, Microelectronics Center of North Carolina, Septem­
ber 1984.

[Kedem et aI. 1984b] Gershon Kedem and John L. Ellis: The Raycastig Machine. In
The Proceedings of the International Conference on Computer Design, pa.ges 533­
538, IEEE, 1984.

[Kilgour 1981] A.C. Kilgour: A Hierarchical Model of a Graphics System. Computer
Graphics, 15(1):35-47, April 1981.

[Kilgour 1985J Alistair C. Kilgour: Parallel A I'chitectllre.~ for High Graph­
ics Systems. In Rae A. Earnshaw, editor, Fundamental Algorithms /01' Graph­
ics, pages 695-703, NATO AS!, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo,
1985.

[Kuijk et aI. 1988] A.A.M. Kuijk et al.: An Exact Incremental Hidden Re­
moval Algorithm. In Fons Kuijk and Wolfgang Strafier, editors, Advances in Computer
Graphics Hardware II, pages 21-38, Eurographics, Springer-Verlag, 1988.

[Lakshminarasimhan et a1. 1989] A.L. Lakshminarasimhan and Mandayam Srivas:
A Framework f01' Functional Specification and Transformation of Hidden Surface Elim­
ination Algorithms. Computer Graphics Forum, 8(2):75-98, June 1989.

[Latham 1985] Roy W. Latham: Image Generator Architectures and Features. In Roy
Latham, editor, Course notes for high performance image generation systems, chapter 7,
-, Link Flight Simulator Division The Singer Company"" Sunnyvale, CA, July 1985.
Reprinted from the 5th Interservice/Industry Training Equipment Conference, 1983.

[Parke 1980] Frederic 1. Parke: Simulation and Expected Performance Analysis of Mul­
tiple Processor Z-BufJer Systems. Computer Graphics, 13(3):48-56, July 1980.

[Pineda 1988] Juan Pineda: A Parallel Algorithm for Polygon Rasterization. Computer
Graphics, 22(4):17-20, August 1988.

[Porter et a1. 1984] Thomas Porter and Tom Duff: Compositing Digital Images. Com­
puter Graphics, 18(3):253-259, ,July 1984.

36

[Poulton et al. 1985a] John Poulton et at.: Pixel-Planes: Building a VLSI-Based
Graphic System. In Henry Fuchs, editor, Chapel Hill Conference on Very Large Scale
integration, pages 35-60, Computer Science Press, Inc., 1803 Research Blvd., Rockville,
Maryland, 1985.

[Poulton et al. 1985b] John Poulton et aL: Pixel-planes graphic engine. In Neil H. E.
Weste and Kamran Eshraghian, editors, Principles of Ci'v[OS VLSI Design - A Systems
Perspective, pages 448-480, Addison-Wesley, Reading, Mass., 1985.

[Pulleyblank et a1. 1987] Ron Pulleyblank and John Kapenga: The Feasibility of a
VLSI Chip for Ray Tracing Bicubic Patches. IEEE Computer Graphics & Applications,
7(3):33-44, March 1987.

[Reghbati et al. 1988] Hassan K. Reghbati and Anson Y.C. Lee: Computer Gr·ophic.s
Hardware: Image Genemtion and Display. IEEE Computer Society, 1988.

[Robertson 1988] Philip K. Robertson: Visualizing Color Gamuts: A User Interface
for the Effective Use of Perceptual Color Spaces in Data Displays. IEEE Computer
Graphics & Applications, 50-64, September 1988.

[Romanova 1988] Claudia Romanova: Effizientes Anti-Aliasing fur die Bilderzeugung
auf Rastersichtgeriiten. In W. Barth, editor, Visualisierungstechniken und Algorith­
men, pages 109-118, GesellschaIt fiir Informatik, Osterreichische Computer Gesell­
schan, Springer Verlag, September 1988.

[Schneider 1988a] Bengt-Olaf Schneider: A Processor JOT an Object-Oriented Render­
ing System. Computer Graphics Forum, 7:301-310, 1988.

[Schneider 1988b] Bengt-Olaf Schneider: Ray Tracing Rational B-Spline Patches in
VLSI. In A.A.M. Kuijk and Wolfgang StraBer, editors, Advances in Graphics Hardware
II, Eurographics, Springer-Verlag, 1988.

[Schneider et al. 1988] Bengt-Olaf Schneider and Ute Claussen: PROOF: An Arch1:­
tecture for Rendering in Object Space. In Third Eurographics Workshop on Graphics
Hardware, Eurographics, 1988. The proceedings will be published in the book "Ad­
vances in Graphics Hardware III" by Springer-Verlag in 1989.

[Sutherland et al. 1974] Ivan E. Sutherland et a1.: A Chal'actel'ization nf Tel) llidden­
Surface Algorithms. ACM Computing Surveys, 6(1):155, March 1974.

