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Abstract 

Image generation for raster displays proceeds in two main steps: geometry pro­
cessing and pixel processing. The snbsystem performing the pixel processing is 
called display processor. 

In the paper a model for the displa.y processor is developed that takes into 
account both function and timing properties. The model identifies scan conversion, 
hidden surface removal, shading and anti-aliasing as tile key functions of the display 
processor. The timing model is expressed in an in equation being fundamental for 
all display processor architectures. 

On the basis of that model a taxonomy is presented which classifies display 
processors according to four main criteria: function, partitioning, a.rchitecture and 
performance. 

The taxonomy is applied to five real display processors: Pixel-planes, SLAM, 
PROOF, the Ray-Casting Machine and the Structured Frame Store System. 

Investigation of existing display processor architectures on the basis of the devel­
oped taxonomy revealed a potential new architecture. This architecture partitions 
the image generation process ill image space and employs a. tree topology. 
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1 Introduction 

During the last decade many computer graphics systems have emerged. A lot of them 
achieved their often impressing performance by using specially designed hardware. Es­
pecially with the move to raster graphics the quest for powerful hardware accelerators 
became more and more urgent. This is because the rendering of a million pixels and more 
requires a lot of computing power. 

The different requirements for cost, performance and functionality gave rise to a great 
variety of computer graphics systems. All these systems try to optimise the compromise 
between the often contradicting design constraints. That optimisation is a rather difficult 
task because the design space, i.e. the number of possible alternatives, is huge. With 
the advent of VLSI technology the design space grew even larger. On the other hand 
VLSI technology introduced new constraints that required new tradeoffs. For instance, in 
contrast to conventional technology, in VLSI it is favourable to design systems with many 
identical and simple elements instead of a few, very complex parts. The paper takes these 
aspects into account. 

We will concentrate on a special piece of hardware for ccmputer graphics systems: 
the display processor. The display processor is performing the low-level tasks in the 
image generation process, namely pixel generation. We will present a classification scheme 
for these processors. We hope that such a taxonomy will help in the design of display 
processors. By providing means to classify different architectures and their properties it 
will be easier to compare and judge different designs. Furthermore, the taxonomy can 
serve as a starting point for the specification of a new display processor. It should be 
noted here that a taxonomy cannot (and is' not intended to) provide figures of merit that 
identify one architecture to be better than another one. It can only supply criteria along 
which an evaluation could take place. In other words: the taxonomy is only a means to 
describe the available design space. 

The paper starts with a short review of earlier attempts to classify display processors. 
Afterwards we present our own approach. First, we develop a model for the display 
processor that takes into account both, functionality and timing properties of the display 
processor. This model serves as an implicit definition of the term display processor and 
as a guideline for the taxonomy which is introduced in the next section. The employed 
criteria for the classification are presented and discussed. The classification scheme is then 
applied to some published architectures. The last part of the paper proposes a new display 
processor architecture that is the result of a search for "white spots" in the taxonomy. 

2 Related Work 

In [Abram et aI. 1986] [Fuchs 1988] [Kilgour 1985] [Dew et aI. 1985] overviews of 
existing graphics architectures are given. They only make the distinction whether a system 
partitions the image generation in image space or in object space. In [Kilgour 1985] this 
is called object serial or pixel serial respectively. 

In [Reghbati et al. 1988] this classification is refined further. It is determined in 
how many sets the objects (pixels) are divided and what is the maximum cardinality of 
these sets. 
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3 Modelling the Display Processor 

3.1 General Description 

Producing computer generated images involves two main steps. The first one, geometric 
processing, prepares an image described on a high level of abstraction for the display 
on a physical output device. This involves the transformation and projection of a scene 
into a normalised coordinate system which can be easily mapped onto the output device. 
These coordinates are called normalised device coordinates (NDC). Preparing an image 
description for display also requires to break down the objects in the scene into simple 
geometric shapes, that can be easily handled by the low-level hardware. These shapes 
are referred to as atomic objects or primitives. The geometric processing also comprises 
calculations for the illumination of the scene, e.g. vertex colours or shadow polygons. 
Furthermore, in some implementations also a part of the hidden surface removal takes 
place in this step, e.g. assignment of priorities to objects in the scene and backface culling. 

In the second step the scene description in NDC is processed further to be displayed 
on the output device. Since we restrict ourselves to raster devices this step is called pixel 
generation, because the final pixel colour is determined during this step. To this end, 
some or all of the following tasks have to be fulfilled: 

Scan Conversion actually maps the primitives from NDC to PDC (Physical Device 
Coordinates), i.e. those pixels are identified which are covered by the considered 
primitives. This step is always part of the pixel generation process. 

Hidden Surface Removal identifies those portions of a primitive that are visible to the 
viewer, i.e. that are not obscured by other objects. Usually, this problem is also 
solved during the pixel generation. 

Shading. The colour of the different objects at the single pixels is a function of the optical 
properties of the objects and the spatial arrangement of objects and light sources in 
the scene. Shading computations approximate this complex relationship. The com­
plexity of the shading calculations depends strongly on the actual implementation. 
Some systems perform only fiat shading, whereas others implement computation­
ally more complex shading models. There are several ways to partition the steps 
involved in the shading calculations between the geometric and the pixel processing. 

Anti-aliasing. If no special care is taken raster images show a.rtifads that stem from the 
limited spatial sampling frequency. Anti-aliasing tries to alleviate these effects. Al­
though it is commonly agreed that proper anti-aliasing is necessary, not all graphics 
systems are able to compensate aliasing effects. 

We call that part of an image generation system performing the pixel generation the 
display processor. Different names for the display processor are pixel generator, display 
controller, or rasteriser. We prefer the term display processor because it reflects the 
fact that nowadays these pieces of hardware are fairly complex and also show a limited 
programmability. 

It should be noted here that it is of course possible to implement most of the tasks for 
pixel generation in software. However, this would result in a system with low performance. 
We will not further investigate that alternative here. 
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Logical input forwarded by processor 

AM LDF PDFE 
Physical input devices 

Processor DRepresentation 

Figure 1: Functional model of an image generation system. AM application 
model, SDF- structured display file, LDF - linear display file, PDF physical display 
file, DFC display file controller, GP - geometry processor, DP display processor. The 
solid arrows symbolise input used to modify output. The dashed arrows denote input 
forwarded to other processors. 

3.2 A Functional Model of the Display Processor 

In order to get a clearer understanding of the tasks and functions of the display processor, 
we want to look closer at the underlying display processor model. We will try to give a 
somewhat formal description of its functions. 

3.2.1 Output 

Figure 1 shows a simplified functional model of an image generation system 
[CarIbom 1980). A similar model has been proposed in [Kilgour 1981]. Both mod­
els partition the image generation process according to the properties and the levels of 
abstraction of the intermediate image descriptions. 

Starting from the application model (AM) the scene is translated into a structured and 
often hierarchical description (SDF). This description is then transformed into a linear, 
non-hierarchical display file (LDF). The LDF is a representation of the scene that is based 
on the atomic graphical objects. They are described in the NDC system. Finally, the 
LDF is translated to the physical display file format (PDF). 

As already pointed out in [Carlbom 1980] this model does not imply that there 
exist actual files that contain the LDF and PDF. The data contained in the LDF (PDF) 
description can either be transient. This means that they are generated and processed 
on the fly without intermediate storage. However, lIlany graphics system have an explicit 
memory for the PDF: the frame buffer. Another possibility to implement the LDF or 
the PDF is to distribute them across several processing elements. This solution will be 
addressed later in the context of partitioning the display processor. 

According to figure 1 the function of the display processor can be described by the 
following mapping: 

LDF~PDF 
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The LDF is a low level description of the scene and consists of a sequence of object 
descriptions in the NDC system with associated shading information: 

LDF ::= {(Pi, S,)} where 

type(p.) E P 

model(s;} E S 

Pi is the geometry description of the object i. The type of that object must be one out 
of the set P, that contains all primitives that can be handled by the display processor. 
Correspondingly, s, is the shading information for object i. The shading model must be 
in the set S of all shading models that can be computed by the display processor. 

The PDF is a pixel oriented description of the image. It can be modelled in the 
following way: 

PDF ::= {(x, y, C)} 

x and y denote the coordinates of pixels in the final image (PDC system). Without loss of 
generality we can restrict x and y to lie inside certain intervals: x E [0, X max], y E [0, Ymax], 

where X max X Ymax is the number of pixels on the screen. C represents the colour at the 
given pixel. The colour is usually represented in the RGB colour system. However, it 
may be possible to use other colour system, e.g. HLS or CMY [Robertson 1988]. 

Using these representations of the LDF and the PDF the function of the display 
processor is the following mapping: 

This mapping together with the operations identified earlier lead to a conceptual 
algorithmic model for the display processor: 

for (all objects and all pixels) 
{ /* scan conversion */ 

determine covered pixels ; 
/* hidden surface removal */ 
determine visible pixels ; 
/* shading */ 
determine colour of covered pixels 
/* anti-aliasing */ 
perform filtering ; 

} 

The actual sequence of loops and operations is dependent on the implementation of 
the display processor. 

3.2.2 Input 

It is more difficult to model the behavior of a graphics system in reaction to external inputs 
than to model its output behavior. Although this is also true for display processors, the 
problem is less severe in this case. The only necessary input action to a display processor 
is to trigger a pick operation of an object at a certain pixel location. This means that the 
display processor must identify which primitive from the LDF is displayed at the specified 
pixel. We can therefore assume that the display processor accepts as an external input 
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the inquiry for an object identifier at a certain pixel location. The reaction to this inquiry 
will be that after a certain delay the object identifier will appear at the display processor's 
output. 

3.3 A Timing Model for the Display Processor 

The functional model states that the display processor has to transform all primitives 
from the LDF to the PDF. This means that the display processor must 

• execute every operation 

• for every primitive in the LDF 

• in order to give a colour to every pixel. 

In order to meet the requirements set for the entire graphics system the display processor 
has to complete its traversal of the LDF in a certain time. Basically, the display processor 
has to produce pixels. Therefore, we define the time the display processor can spend for 
the generation of one pixel as a measure of its speed. We call this time the pixel write 
time tpw • 

As follows from the functional model this time depends on several parameters. First 
the length of the LDF is important, i.e. the number of primitives in the scene. We 
refer to this quantity as scene complexity C"e' tpw also depends 011 the properties of the 
primitives. We summarise these properties in the coefficient a sc which comprises e.g. the 
average size of the primitives (relative to the total number of pixels on the output device) 
and their position relative to each other 1. a,c is strongly dependent on the employed 
scan conversion algorithm. If the actual algorithm is insensitive to the size of objects, a,c 
is set to 1. 

The display processor must handle all pixels. The more pixels there are the less time 
is available for each pixel. We call the number of pixels the image complexity C/. 

Obviously, the permitted pixel write time tpw can be defined only if there is a limit for 
the image rendering time. This time, the frame time t1> is an upper limit for the traversal 
ofthe LDF. 

The pixel write time tpw is then bounded by the following inequation: 

if (1)
tpw ~ n, . e,c .C/

~'C 

Apart from the characteristics of the scene (C,c and a«) and the image (C/) the 
necessary speed of the display processor also depends on the kind and number ofoperations 
to be applied to the primitives. We call this parameter the functional complexity CF. It 
represents the number of steps necessary to perform the operations. The maximum time 
available for each of these steps, t.tep, is an indicator for the necessary clock frequency. It 
is given by the following inequation: 

tpw < (2)t~tep <-C-~.- F ~,'lC 

We consider this to be the fundamental inequation for raster display processors. The 
actual values of its parameters give a good estimate of the performance of a particular 
display processor. 

IThe relative position inftuences how many objects are located on one pixel. This number is sometimes 
called depth complexity. The performance of some HSR algorithms or anti-aliasing algorithms depends 
on the depth complexity. 
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4 A Classification for Display Processors 

Based on the model developed above we will now present a way to classify different displa,y 
processors. We will extract as much information as possible from the model. However, 
some elements of the taxonomy cannot be deduced from the model. These topics, e.g. 
the topology of the architecture or its regularity, are empirical and stem directly from the 
investigation of existing display processors. 

Moreover, we will point out some implications of the choices for one or another alter­
native. 

4.1 A Functional Classification 

The functional classification takes into account only the output behavior. The input 
behavior is not considered because it is of minor impact on the display processor archi­
tecture. 

4.1.1 Primitive Types and Scan Conversion Algorithms 

These two attributes of the display processor are closely coupled because the possible scan 
conversion algorithm has to comply with the available types of primitives. Therefore, one 
of the basic decisions in the design of a display processor is to define the set P of available 
primitive types. Subsequent to this decision suitable scan conversion algorithms can be 
chosen. 

The choice of primitives also influences strongly the design of the geometry processor 
because it must break down the high-level description of the scene into primitives. 

We will now look at some possible primitives. 

Pixels are the simplest drawing primitives. Providing pixels as primitives offers the 
rest of the graphics system a well defined access to the output device. However, 
breaking down a scene into pixels is a computationally intensive task. (It is actually 
the scan conversion process.) Therefore this primitive is never the only primitive 
type provided. 

Vectors are frequently used drawing primitives. This is for two reasons. First, histor­
ically the first graphics systems were pure vector drawers. This gave rise to a lot 
of graphics algorithms that worked best with vectors. Second, vectors are the most 
natural geometric shape for a lot of applications, e.g. technical drawings. Further­
more, vectors can often be generated faster than other drawing primitives. 

Triangles are the simplest geometric shapes that cover an area on the screen. They 
exhibit some very pleasant properties. Triangles are always planar and convex. 
Linear interpolation of colours across triangles (Gouraud shading) is invariant with 
respect to rotations of the triangle. 

Spans are trapezoids that are hounded by the upper and lower border of a scanline. The 
vertical edges can have an arbitrary angle. Usually, spans are supposed to be planar. 
Spans are often used to render general polygons by assembling these polygons from 
several spans. (Spans are also called scanline segments.) 

General polygons form a generalisation of the triangle primitive. In contrast to trian­
gles, general polygons can be concave, non-planar and self-intersecting. The result 
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of Gouraud shading general polygons depends on the orientation of the polygon. 
Therefore it is advisable to use other shading algorithms with general polygons, e.g. 
biquadradic interpolation. 

Sometimes polygons are restricted to be convex, planar and not self-intersecting. 
This simplifies considerably the scan conversion but it does not. cure the shading 
problems. 

Freeform surfaces are a very powerful means for object description. They offer a high 
degree of flexibility for controlling the shape of the surface. There are several kinds 
of surface representations around, interpolating and approximating ones. The more 
popular ones are Bezier surfaces, B-spline surfaces and NURBS surfaces. 

The advantage of providing freeform surfaces as a display processor primitive is that 
the transformation of the high-level description of the scene into the LDF is rather 
simple. Furthermore, the LDF can be kept small compared to a triangle-based LDF. 

On the other hand, scan conversion of freeform surfaces is difficult. Although 
there exist some proposals how to implement such a scan converter in hardware 
[Pulleyblank et al. 1987] [Schneider 1988b] this is not yet state of the art. 

Halfspaces are the basic building blocks of constructive solid geometry (CSG). The 
boolean combination of linear andjor quadratic halfspaces can be used to generate 
many objects in a convenient way. The feasibility of display processors for halfspaces 
has been already demonstrated. 

Usually, display processors can handle more than one primitive t.ype. It is up to the 
designer to select those primitives that are most appropriate for the intended applications. 
It should be stressed again that the choice of the set of primit.ives is crucial because it 
has a strong impact on other parts of the display processor and the rest of the graphics 
system. 

The choice of the scan conversion algorithm is a consequence of the selection of prim­
itives. Scan conversion algorithms can be coarsely divided into two classes: 

Contour tracking algorithms first identify the pixels on the borders of the primitive. 
Afterwards they fill all pixels in between the border pixels with the appropriate pixel 
values. Typical representatives for this class of algorithms are scan line algorithms 
that use DDA or Bresenham for computing the edges of triangles or polygons. 

This method of scan conversion is applicable only to vectors, triangles, trapezoids 
(spans) and general polygons. 

Inside testing algorithms examine (a subset of) all pixels whether they are inside the 
primitive under consideration. These algorithms are often very elegant from an 
algorithmic point of view. Unfortunately, they tend to test many pixels in vain 
because these pixels are outside of the primitive. For some primitives there exist 
algorithms that reduce the tests of empty pixels on the expenses of more complicated 
control structures in the algorithm [Pineda 1988]. 

Algorithms that employ inside tests are available for all primitives. They are manda­
tory for scan conversion and hidden surface removal using ray tracing. 

One important difference between these two classes of scan conversion methods is in 
which order they generate pixels. The sequence of pixels produced by contour tracking 



II 

algorithms is defined by the geometry of the object to be displayed. It is therefore an 
unpredictable sequence of coordinates which requires the display processor to be granted 
random access to the output device. In particular, this means that there has to be a 
frame buffer. 

In contrast, for inside testing algorithms the sequence of pixels to be generated can be 
defined. It is therefore possible to produce the pixels in the scan order of the output device. 
Hence, pixels may be written directly to the output device without any intermediate 
buffering. That becomes important when the display processor is integrated into a real­
time graphics system. 

4.1.2 Hidden Surface Removal (HSR) 

The decision about which parts of an object are visible to the viewer is an essential step 
for the creation of realistic images. Plenty of algorithms have been presented to solve 
the visibility problem, for both vector and raster displays [Sutherland et aI. 1974] 
[Latham 1985] [Lakshminarasimhan et aI. 1989]. 

The choice of the HSR algorithm determines which capabilities the display processor 
will have. Not all HSR algorithms are equally well suited to handle e.g. penetrating 
objects or transparency. Moreover, the memory requirements vary significantly for the 
different algorithms. 

As pointed out in [Sutherland et al. 1974] HSR is essentially a sorting process. 
Therefore, many HSR algorithms require an extensive sorting step prior to the actual 
HSR. The order of sorting in the directions of x, y and z is unimportant. However, the 
various algorithms may be of different efficiency with regard to the amount of coherence 
exploited during the sorting. 

A major distinction between different HSR algorithms is whether they use priorities 
or real depth for the visibility decision. The priority is assigned to an object once. In 
contrast, the depth is changing across the object and has to be computed for every pixel. 

Since priorities define a partial order over the objects it is impossible to handle cases 
of penetrating objects. Such constellations must be eliminated by subdividing I,he objects 
along the intersections. 

According to [Lakshminarasimhan et al. 1989] HSR algorithms fall into three ma­
jor categories. 

Object space algorithms. 2 HSR in object space is usually done in the geometry pro­
cessor. The result is a number of primitives that are non-overlapping in object 
space. They are forwarded to the display processor. Hence, the display processor is 
not concerned with the HSR. 

List-priority based algorithms in fact solve the visibility problem outside the display 
processor. The primitives are presorted according to their priority (either in priority 
order or in reverse priority order). The display processor then writes the primitives 
in that order to the output device. Hence, the HSR in the display processor is quite 
easy. 

The painter'5 algorithm is based on a reverse priority ordering of the objects. This 
guarantees that the object. with highest priority is written last and therefore lies in 

2In the context of HSR object space means that the accuracy of the visibility calculations depends on 
the precision of th.e object representation in the SDF. This meaning of object space must not be confused 
with the notion of object .'pace partitioning defined in this paper, 
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front. Translucency can be incorporated into the painter's algorithm easily by mix­
ing the object's colour with the previous pixel colour. Anti-aliasing is not straight­
forward; problems exist to handle the inner edges of polygon meshes. 

When using a sorting in priority order the frontmost object is displayed first. The 
pixels covered by that object are tagged. Objects with a lower priority can only 
write to untagged pixels. Thus, each pixel is written only once. This reduces the 
number of accesses to the display significantly compared to the painter's algorithm. 
Both, anti-aliasing and translucency are non-trivial tasks for this method. 

Image space algorithms. 3 solve the visibility problem with a precision that depends 
on the screen resolution. According to [Lakshminarasimhan et al. 1989] there 
are four basic types of such HSR algorithms: 

• 	 Scanline algorithms have been developed mainly to handle polygons together 
with contour tracking scan conversion algorithms. They first identify for every 
scanline which objects are contributing to this scanline. The edges of these 
objects are kept in an active-edge-table. For every scanline, these edges are 
sorted in x (scan order). Every time an edge is crossed while scanning a scanline 
it is decided which of the active polygons is nearest to the viewer. 

If the algorithm is implemented as sketched out, it is unable to process pen­
etrating objects; it is then mainly priority based. However, it is possible to 
extend the algorithm to handle such cases. Translucency can be incorporated 
in scanline algorithms. 

• 	 Depth-buffer is the most popular HSR technique in today's high-performance 
graphics systems. For every pixel, depth and colour are stored. Every object 
writes its colour only to those pixel whose depth is greater than the object's 
depth. Thus, the visibility problem is solved pixel by pixel. Hence, the depth 
buffer algorithm is able to handle intersecting objects without extra effort. 

Transparent objects can be treated correctly only if they are written to the 
buffer last. This requires an extra sorting step. It is very difficult to incorporate 
good anti-aliasing into the depth buffer-algorithm. However, there exist exten­
sions to the depth-buffer that address this problem, e.g. [Carpenter 1984] 
[Porter et al. 1984]. 

• 	Area sorting subdivides the screen until a specified level of subdivision has 
been reached or the whole subscreen is covered by only one primitive. The 
quadtree representation of images uses this algorithm. 

Incorporation of translucency into this concept is a non-trivial task. There are 
difficulties to produce anti-aliased pictures with the area sorting approach. 

• 	 (Primary) ray tracing is a technique which shoots through every pixel a 
ray of light into the scene. The object hit first by the ray is visible to the 
viewer. This technique requires a scan conversion algorithm of the inside test 
class. Note that ray tradng has been developed to model effects like multiple 
reflections and refractions of light at objects. The computational complexity 
only pays off if this is desired. Ray tracing can easily handle transparency 
and penetrating objects. Also anti-aliasing can be integrated readily into this 
method. 

3The term image space used in the context of HSR differs from that introduced later on in this paper. 
Here image space only means that the precision of the HSR is a. consequence of the output device. 
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4.1.3 Shading 

In order to give computer generated images a realistic appearance the illumination of the 
scene must be Inodelled. Since the circumstances of illumination in the real world are 
very complex shading of scenes in computer graphics always simplifies the physical world 
to some extent. 

In general, shading in computer graphics means to compute the colour of an object at 
certain points. The method, that computes this colour is called shading model. The shad­
ing algorithm specifies at which points of the object the shading model is applied. (The 
distinction between models and algorithms is somewhat arbitrary. Models and algorithm 
are often related to one another.) Since the very beginning of computer graphics shading 
models and algorithms have been proposed. A good survey of models and algorithms is 
given in [Claussen 1988]. Here, we will not discuss the various shading models. Only 
the most important shading algorithms will be enumerated. 

Wash shading is the simplest algorithm. It assigns a fixed colour to every primitive. 
This colour does not depend on any light sources in the scene. This algorithm is 
very simple but does not give realistic images. 

Flat 	shading assigns one colour to the whole primitive. In contrast to the wash shading 
algorithm this colour has been calculated in dependence of I,he illumination of the 
scene. 

Gouraud shading interpolates colours from one point of the primitive to another point. 
The colours at the two points are computed in the geometry processing step. 

Usually Gouraud shading employs linear or bilinear interpolation of colours from 
one vertex of a polygonal primitive to another vertex. The shading model used to 
compute the vertex colours can be chosen freely. 

Phong shading specifies that the normal vector of a primitive has to be interpolated 
from one point on the primitive to another point. For every step the interpolated 
normal vector together with other attributes of the object (reflectance, glossiness, 
etc.) is used to compute the object's colour. 

As with Gouraud shading, Phong shading was originally intended for polygonal 
primitives. Then, the normal vector is (bi)lineady interpolated from vertex to ver­
tex. Although, there is a Phong shading model this model is not necessarily tied to 
the Phong algorithm. 

Ray tracing is (apart from determining visible objects) used to find out where shading 
has to take place. Since ray tracing can provide much information about the scene's 
illumination very demanding shading models can be employed. 

4.1.4 Anti-aliasing 

Aliasing is a consequence ofdetermining the colour of the entire pixel by sampling the pixel 
only at its center or too few sampling points in the pixel. In static pictures these anomalies 
are the well known jagged edges and thin lines broken into parts. More deficiencies appear 
in animated pictures: small blinking objects, objects jumping from scanline to scanline 
and "running ants" on jagged edges. 
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Although, in practice, a perfect anti-aliasing is impossible [Blinn 1989aJ 
[Blinn 1989b] there are ways to cure the worst aliasing effects. This can be done ei­
ther by increasing the sampling frequency or by taking into account that a pixel covers a 
non-zero area. The latter methods try to compute how much of a pixel is covered by the 
contributing objects. 

The various methods differ in the number of passes they take to produce the anti­
aliased image. There are one-pass and two-pass techniques. Two-pass techniques first 
render the entire image and generate additional information about the image, e.g. contri­
bution of an object to a pixel. In the second pass this information is used to enhance the 
picture. In contrast, one-pass techniques try to approximate this additional information. 
They generate the final pixel colour immediately. One-pass techniques exhibit serious 
drawbacks if the LDF is not preprocessed properly, e.g. sorting the objects from front to 
back. 

A further distinction between different anti-aliasing techniques is whether the anti­
aliasing is adaptive or not. Anti-aliasing is necessary only at the contours (edges) of 
objects. However, many implementations do not explicitly search for edges but process 
the whole picture in a uniform manner, e.g. supersampling. 

Processing only the contours of objects is correct only if there are no intersections of 
objects. Some anti-aliasing techniques are not able to handle penetrating objects. 

We will now describe some common anti-aliasing techniques in display processors. 

The gz-buffer is a one-pass technique [Ghazanfarpour et al. 1987J. It is basically 
a depth buffer with another parallel geometry-buffer, the g-buffer. The g-buffer 
contains information about the current coverage of a. pixel. This information is used 
if the edge of another object is running through that pixel. Then, the colour of one 
of the four neighbor pixels is mixed with the colour of the object in order to obtain 
the new pixel colour. Also the new contents of the g-buffer is computed. 

The gz-buffer is able to handle penetrating objects. It is restricted to at most one 
edge, i.e. two objects, per pixel. 

Compositing is a one-pass technique, too [Porter et aI. 1984]. For every pixel in 
addition to the colour an alpha channel is sustained. The value of alpha represents 
the fraction of the pixel that is covered by a pa.rticular object. Also the depth of 
the object at the four corners of the (square shaped) pixel is evaluated. 

Correspondingly, for every pixel the depth values at its four corners are stored. 
Using the depth values at the pixel corners it is determined how the new and the 
old pixel overlap each other. The value of alpha and the pattern of overlap are 
combined to the new pixel colour and the new alpha value. 

Supersampling means that one pixel is sampled at several points. For each of these 
subpixels depth and colour are computed. That high resolution picture is then com­
pressed to the resolution of the output device by averaging all subpixels contributing 
to a pixel. Although supersampling is still a point sampling technique it produces 
very good results since the aliasing effects are diminished by the averaging step. 
Supersampling can be easily combined with all scan conversion, shading and HSR 
algorithms because the averaging step is completely independent from the image 
generation step. Unfortunately, supersampling is very expensive with respect to 
both time and memory. 

!:!!!!!! 
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The A-buffer is an extension of the depth buffer [Carpenter 1984]. Instead of storing 
only depth and colour of the front most object the A-buffer stores depth and colour 
of all objects that are potentially contributing to a particular pixel. (The depth of 
the objects has been determined at the pixel center.) These objects are stored in 
a depth sorted list. For every object in the list a subpixel mask is computed. The 
subpixel mask specifies which subpixels are covered by an object. 

In a second step, for every subpixel the visible object and its colour are computed. 
These subpixel colours are then averaged in order to obtain the final pixel colour. 

The A-buffer technique has the drawback that its requirements for time and memory 
are not constant. They depend on the statistical properties of the scene to be 
rendered. 

Filtering is not a real anti-aliasing technique. It combines certain pixels in the neigh­
borhood of the pixel under consideration to determine the pixel colour. The effect 
of a low-pass filter is only a blurring of the picture. 

4.2 Classification by Partitioning 

The fundamental inequation for raster display processors (2) indicates that display pro­
cessors have to parallelise the image generation process in order to achieve reasonable 
performance. 

A short example will explain this: For a screen with 1000 x 1000 pixels, a scene with 
10,000 primitives covering 1000 pixels each (a:" = 0.001) and a frame time of 0.1 s we 
obtain (CF 1): 

t.1ep ::; IOns 

This time is just within the limits of today's technology. More complex scenes, screens 
with a higher resolution or shorter frame times will demand shorter step times. There­
fore it is natural to search for ways to introduce parallelism into the display processor 
operation. 

The number of steps necessary to generate an image is fixed. A partitioning describes 
how these steps can be distributed among a number of processor elements that are working 
in parallel on different steps. The result of a partitioning will be a rule how to construct 
such processor elements. The display processor is then constructed from display sub­
processors. t'tep for each of these sub-processors is greater than the step time for the 
display processor itself. 

We will now discuss the different possibilities to partition the display processor. The 
inequation (2) indicates how the necessary partitioning can be accomplished. Every pa­
rameter stands for another domain of partitioning. 

4.2.1 Partitioning in the Time Domain 

In the inequation (2) the time domain is represented by the frame time t f. Enlarging 
tf for the display sub-processors means that each of these sub-processors has more time 
available to perform its operations. In order to sustain the performance of the display 
processor several sub-processors have to work in parallel on different, subsequent tasks. 
While one sub-processor is working on the task T; the next sub-processor is processing 
task 7;+). 
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4.2.2 Partitioning in Image Space 

The image complexity Cj stands for the number of pixels. The time t.t<p can be enlarged 
for the sub-processors by distributing subsets of all pixels to the sub-processors, i.e. Cj is 
reduced. 

There are several ways to achieve this. A single display sub-processor can either work 
on single pixels, on complete scanlines or on contiguous parts of the screen like stripes or 
windows. Another possibility to partition the screen is to interlace the pixel sets that the 
different sub-processor are treating [Parke 1980] [Hu et al. 1985]. The association of 
sub-processors and certain pixels can either be static or dynamic. 

This partitioning concept implies that either all objects are broadcast to all sub­
processors or that the objects are sorted according to that part of the screen they are 
contributing to. 

The image space partitioning approach has potential drawbacks for images where the 
objects are not distributed evenly across the image. Then the workload may be unbalanced 
among the sub-processors. 

Image space partitioning is often reflected in the organisation of the image memory, 
i.e. the frame buffer. 

4.2.3 Partitioning in Object Space 

Reducing the scene complexity C,c means to off-load the sub-processors from a part of 
the objects. Every sub-processor, a so-called object processor, is handling a subset of 
the LDF. That subset can contain either a single primitive or several primitives. These 
primitives may be independent of each other. Alternatively, the primitives may all belong 
to a higher-order object that has been defined by the application (AM). 

A potential problem with object space partitioning is that the processing time for 
different primitives may vary. (For instance, processing bigger primitives could take more 
time than small objects.) Since, in practice, these differences can be only estimated, some 
object processors may run idle while others are overloaded. 

A special kind of object space partitioning is the partitioning in the parameter space. 
This strategy is frequently used when parametric surfaces must be displayed by a display 
processor that can only handle e.g. triangles. 

4.2.4 Partitioning in the Functional Domain 

The individual display sub-processors are less burdened by their task if they have to 
perform less operations in a certain time period. This means that the parameter CF is 
made smaller. (CF is the functional complexity and represents the number of steps to be 
performed for each pixel). This can be achieved by distributing the various operations 
amongst the display sub-processors. 

The different sub-processors are not performing the same function and are therefore 
probably not of the same type 4. This can be a drawback because the effort to design such 
a display processor is bigger than for the other partitioning strategies. The fact that there 
are different types of sub-processors leads to a lower regularity of the display processor 
(see below). 

41t is possible to implement different functions on identical processor elements. This can be achieved 
e.g. by means of (micro)program:ming. A good example for such a solution is the system described in 
[Clark 1982] . 

• 



17 

4.2.5 Multi-level Partitioning 

The partitioning schemes presented so far are pure solutions in the sense that they par­
tition the display processor's task only in a single domain. In contrast, real systems 
often employ a combination of different problem partitioning approaches. We can distin­
guish here such solutions which divide the problem several times in the same domain and 
solutions that partition in different domains. 

Looking at systems that employ a multi-level partitioning leads to the following ob­
servation: Each system partitions the image generation either in image space or in object 
space. We call these partitioning schemes primary partitioning. Partitioning the time 
domain or the functional domain are auxiliary or secondary partitionings. The secondary 
partitionings are used to efficiently implement one of the primary problem subdivision 
strategies. 

4.2.6 Notation 

We will now introduce a notation that expresses how a certain display processor partitions 
its task. This notation is an extension of the scheme proposed in [Reghbati et ai. 1988]. 

We represent the domain in which the partitioning takes place by the first letter of 
its name (F, I, 0, T). In parenthesis we put two arguments: The first tells in how many 
parts the domain is divided, i.e. how many sub-processors are working in parallel in 
that domain. The second parameter states the maximum number of elements in each 
partition, i.e. how many elements each sub-processor handles. Elements can be e.g. 
pixels, scanlines, or primitives. 

For instance, the expression 
I(4096,256) 

means that the display processor partitions the image space in 4096 subima.ges each 
containing 256 e.g. pixels. 

Multi-level partitioning schemes are represented by catenating the different partition­
ing levels with a '0', e.g. 

1(16,64) 0 I(4,64 x 256) 

can be the description of a system that divides the screen into 16 groups of 64 scanlines 
each. Each group is further partitioned into 4 parts that are handling 256 pixels of each 
of the group's 64 scanlines. 

If there are different kinds of domain partitioning on the same level they are separated 
by a 'II'. 

4.3 Classification by Architecture 

A major issue for classifying display processor (and computers in general) is how the 
algorithms have been mapped onto a hardware structure. To categorise general computer 
architectures is a difficult task on its own. Several proposal have been made in the past 
[Giloi 1983]. However, they do not concentrate on what we consider to be important 
and descriptive for display processor architectures. We will therefore highlight only some 
useful features that are also generally accepted as descriptive for computer architectures. 
(All features assume that display processor is a multiprocessor.) 

Topology of the network. The topology gives an idea about the physical construction 
of the processor. Possible topologies are pipelines, two-dimensional arrays, arrays 
in more than two dimensions (hypercubes), tree structures, etc. 
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Different architectures can be further distinguished by their capability to be config­
ured dynamically, i.e. the topology can be adapted to different applications. 

Control of the network. A multiprocessor network can be controlled by a central mas­
ter. Alternatively, a decentralised control is distributed across a network of proces­
sors having equal rights. Furthermore, the control can be classified according to the 
manner how commands are distributed inside the network. The commands can be 
either broadcast simultaneously to all processor or propagated from one processor 
to the next. 

The communication scheme is a property that is strongly related to the conhoi struc­
ture. In the context of a VLSI design it is preferable to employ local communication 
structures instead of global ones. 

Data types. Architectures can be distinguished with respect to the type of data prop­
agated through the network. The classification of the data types falls into two 
categories. The first category is the kind of data, e.g. pixels, objects, colours, etc. 
The second category states how the data is represented. Possible representations 
are integers, floats, lists etc. 

Type of parallelism. In a multiprocessor there can be parallelism in the execution of 
different commands and/or the processing of different data. Such processors are 
called single/multiple instruction machines with single/multiple data processing 
(SISD, MISD, SIMD, MIMD). 

Parallelism can be further classified as coarse grain parallelism or fine grain paral­
lelism. 

Regularity. By regularity we understand the number of identical elements in relation to 
all elements. The more regular an architecture is the better it is suited for a VLSI 
implementation. We will now give a somewhat intuitive definition of regularity: 

Let be N the number of all processing elements in the architecture and T the number 
of types of processing elements, e.g. the number of different chips. By n, we denote 
the number of processing elements of type i. 

We define the regularity R as the product of two factors 1'1 and 1'2: 

T-1 
1'1 = 1--­

N 
2:1 

;=1 eT - Itnp f" T > 1ur. 
1'2 = {~- mrT 1 

R 1'1' 1'2 

1'1 takes into account only the size of the architecture and the number of different 
chips. It exhibits the following properties. 

• T 	 1 =:} 1'1 1 
The architecture is most regular if there is only one type of element. 

• N = T =:} limT....oo 1'1 0 
If all elements are different the regularity is the smaller the more elements there 
are. 

• 	 0 < 1'1 S; 1 

! I .".L u!!l!l 
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• The more types there are in the architecture the lower the regularity. 

• The regularity is higher if there are more elements in the architecture. 

1'2 reflects how many instances of each chip type there are in the architecture. We 
chose 1'2 as the inverted standard deviation ofthe norulalised population (ni/N) of 
the type classes i. Hence it has the following properties: 

• 	ni = nJ = 1fo VI:::; i, j :::; T, i 'I j 
max(1'2) , 1'2 = 1 

If the number of elements in the different classes is the same, the regularity 
has a maximum. 

• 	 HI = N -T+l, H; = 1 V 1 < i :::; T 
::::} minh) 
If the elements of the different types are distributed totally unequally, 1'2 has 
a local minimum. 

• 	 0 < 1'2 :::; 1 

The first two properties of 1'2 reflect the idea that structures look more regular if all 
elements appear with the same quantity. 

4.4 Classification by Performance 

Performance can be classified along different guidelines. 

Characteristic parameters. The fundamental inequation (2) for raster display proces­
sors the maximum time for each operation of the display processor (istep)' This 
time can serve as a common basis for comparing and classifying the performance of 
different display processors. The bigger the time t.;tep may be (for equal functions) 
the easier such a display processor can be implemented with ava.ilable technology. 

Primitives per time period. It is very frequent to specify how many primitives can be 
processed by a particular display processor in certain period of time. U suaIly, this 
time period is either 1 second or one video frame. The video frame time is often set 
to 1/30 second or 1/60 second. 

Delay time. The time between issuing a command to the displa.y processor and obtain­
ing visible results is called delay time. This time, although often not specified, is 
important to judge the ability of a graphics system to conveniently intera.ct with 
the user. 

5 Classification of some Existing Display Processors 

This section applies the developed taxonomy to some display processors that have been 
published in the last years. The intention of this section is not to give a survey of existing 
display processors. 

http:intera.ct
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Figure 2: Conceptual block diagram of the Pixel-planes display processor. 

5.1 Pixel-planes 

The Pixel-planes system is one of the best documented display processors in the literature 
[Fuchs et al. 1982] [Poulton et al. 1985a]. 

Figure 2 shows the principal construction of the Pixel-planes architecture 
([Fuchs et al. 1985]). It is essentially a frame buffer whose pixel cells have been en­
hanced by some extra logic. This logic enables Pixel-planes to compute the expression 
Ax + By + C in parallel for all pixels (x, y). Evaluation of this linear expression with dif­
ferent sets of parameters A, Band C enables the Pixel-planes system to render z-buffered 
Gouraud-shaded polygons. 

5.1.1 Functional Classification 

Primitive Type(s). Convex, planar polygons 5. 

Scan Conversion. Inside test based on a polygon representation by the bounding lines 
of the polygon. 

'In {Fuchs et al. 1985} it is shown how the Pixel-planes system can be used to render circles and 
spheres. 

III,ll\ln~! 
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Hidden Surface Removal Depth-buffer. 

Shading. Gouraud shading (interpolation of precomputed vertex colours). 

Anti-aliasing. None 6. 

5.1.2 Partitioning 

Pixel-planes parallelises the image generation process by one-level image space partition­
ing: 1(512 x 512,1). 

5.1.3 Architecture 

Topology. The two main building blocks of the Pixel-planes system are two binary trees 
of bit-serial adders and an array of pixel processors. The outputs (leaves) of the 
binary trees provide partial sums of the expression Ax + By + e to the pixel cells. 

Control. The whole Pixel-planes system is controlled by a central control unit on each 
Pixel-planes chip [Poulton et al. 1985bJ. The controllers receive the commands 
from the outside world - either from the geometry processor that issues drawing 
commands or from the scan-out circuitry that reads out the image from Pixel-planes. 

Data types. The data fed into Pixel-planes are always the parameters A, Band e of a 
linear expression, describing either edges, or depth or colours. A, B, e are integers 
and are supplied in bit-serial format to the Pixel-planes system. 

Parallelism. The commands and parameters to Pixel-planes are the same for all pixel 
processors. The values of the linear expressions vary from pixel to pixel. Thus, 
all pixel processors are operating with different data.. Therefore, Pixel-planes is a 
SIMD display processor. 

Regularity. The Pixel-planes employs only one type of chip. It is therefore highly regular 
(ll = 1). The Pixel-planes IV system is built from 2048 identical chips each of them 
storing 128 pixels [Fuchs et al. 1988]. 

5.1.4 Performance 

Characteristic parameters. The following numbers are based on the assumption that 
Pixel-planes is rendering triangles. Then seven steps are required to render one 
triangle (3 edges + 1 depth + 3 colours). Some of the numbers are taken from the 
literature. It should be noted that the speed of Pixel-planes is independent of the 
actual size and location of the triangles (a.c = 1). 

if 1 s 

a.c 1 

esc ::= 35,000 

CF 7 

e] = 1 

Using the inequation (2) we obtain t.tep :::; 4 fJS 

6[Fuchs at a!. 1985J explains how Pixel-planes can perform anti-aliasing by either supersampling or 
employing subpixel masks. 



22 

1Primitives 

Each Scanline Processor 
Controls 64 Scan Lines 

Horizontal Line 

Fill Commands 
 Video Control 

(Y, XLeft, YRight) 
Each SLAM Contains 
64 lines of 256 pixels1 

Scanline 

Row 2 

.",/ 

Proc. 1 

64 Lines 


Row 1 

Scanline 

Proc. 2 

64 Lines 


Scanline 1-1 

Proc. 16 
64 Lines 

-...---,-----.,-----,-------, 

Row 1 

Scanline 

Processor 

Bus 


Figure 3: Block diagram of the SLAM display processor. 

Primitives per second. Pixel-planes IV can process about 35,000 Gouraud-shaded, z­
buffered triangles per second. Assuming that there are 30 frames per second, these 
are nearly 1,200 triangles per frame. 

Delay time. The delay time of Pixel-planes is not specified in the literature. However, 
the working principle of Pixel-planes suggests that the delay is exactly the time 
necessary to process one polygon (~ 30 flS). 

5.2 SLAM 

In [Demetrescu 1985] a display processor has been presented that uses two different 
kinds of subsystems (figure 3): Scanline processors break down the incoming polygon 
descriptions into spans. 

The spans are described by the scanline they are covering and the coordinates of the 
first and the last pixel in that scanline. Each scanline processor is responsible for 64 
scanlines. 

These spans are dispatched to the scanline access memories (SLAMs). Each SLAM 
fills the specified span with a downloaded pixel pattern. By specifying pixel patterns 
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characters can be displayed. Each SLAM chip contains the memory of 64 scanlines with 
256 pixels each. All 256 pixels in one scanline can be accessed, processed and stored in 
one step. SLAMs can be cascaded to construct longer scanlines. 

5.2.1 Functional Classification 

Primitive Type(s). Y-monotone polygons 7 and characters. (Lines are drawn as thin 
polygons.) 

Scan Conversion. Contour tracking. The scanline processor computes the start and 
end coordinates of the polygon for every scanline. The span is filled by the SLAMs. 

Hidden Surface Removal. HSR is not addressed in the published materiaL It is sup­
posed that the system is implementing some kind of priority based scan conversion 
algorithm, e.g. painter's algorithm, i.e. the HSR took place already in the geometry 
processor. 

Shading. Halftone patterns. Since this display processor uses only one hit per pixel no 
colour shading is provided. 

Anti-aliasing. None. 

5.2.2 Partitioning 

This display processor employs a three-level image space partitioning. The main parti­
tioning is in image spacei it occurs two times: First, the image is subdivided into groups 
of 64 scanlines each. In a second step these groups are then split into sets each of which 
contains 64 x 256 pixels. 

Image generation is also partitioned in the functional domain. Vertex sort, producing 
scanline commands and actual pixel generation are allocated to distinct processors. 

The partitioning is therefore characterised as: 

F(3, 1) 01(16,64) 0 1(4,64 x 256) 

5.2.3 Architecture 

Topology. The topology of this display processor is a tree. The root of the tree is formed 
by the vertex sorter that is connected to the input of the display processor. The 
scanline processors constitute the first level of the tree. The leaves of the tree are 
formed by the SLAMs. 

Control. This display processor employs a distributed control scheme. Both, scanline 
processors and SLAMs have their own control unit. The communication between 
them is not detailed in the literature. 

Data types. The scanline processors receive the description of polygons, lines or charac­
ters. The primitives are transformed into spans tha,t represented by the x-coordinates 
of the right and left edge of the span and its y-coordinate. A halftone pattern is 
provided that is used for filling the span. 

The literature does not give details about the representation of the various data. 

7Y-monotone polygons are characterised by the fact that horizontal lines intersect the boundary of 
the polyon at most twice. Convex polygons are special cases of monotone polygons. They are monotone 
in x a.nd y. 
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Parallelism. All scanline processors receive different primitives from the geometry pro­
cessor. The commands and data that are generated for each SLAM are different. 
This characterises a MIMD machine. 

Regularity. The display processor is built from two main building blocks (T = 2): the 
scanline processors and the SLAMs. In the following it is assumed that one scanline 
processor can be integrated on a single chip [Demetresen 1985]. The standard 
configuration of scanline processors and SLAMs uses 16 scanline processors each 
of which controls 4 SLAMs. This results in a total chip count of N = 80. The 
regularity is therefore R = 0.99· 0.58 = 0.57. 

5.2.4 Performance 

The display processor is composed of two different types of chips, scanline processors and 
SLAMs. These two should be evaluated separately. However, since the scanline processors 
have been described not very detailed we concentrate on the SLAMs. 

The following numbers have been derived from figures given in the literature. (The 
original paper specified the performance in terms of memory accesses.) 

Characteristic parameters. We assume that triangles are processed by the display 
processor. Since the number of pixels covered by a primitive influence the number 
of steps to scan convert that polygon the performance of that display processor 
depends on the properties of the image. Therefore no exact value for G,K can be 
given. It is estimated for an average size of a primitive of 5,000 pixels and a screen 
size of 1024 x 1024 pixels. 

1 st f 

G,c ~ 0.005 

Csc ~ 50,000 

CF 2 

C1 64 

This values give a maximum step time of 

t.tep ::::; 32 p,s 

Primitives per second. [Demetresen 1985] claims that a SLAM can perform approx­
imate 5 million scanline accesses per second. If we make the (conservative) assump­
tion that in average 20 percent of a scanline are covered by a primitive. If we further 
assume that an object covers 5,000 pixels in average we can estimate the number of 
primitives processable in one second: 50,000 primitives per second. 

Delay time. There is no delay time specified in the literature. 

5.3 PROOF 

The PROOF system, proposed in [Schneider 1988a], is built from three main blocks 
(figure 4 [Schneider et aI. 1988]). 

The first one, the object processor pipeline (OPP), is made up of a number of object 
processors (OP) storing one object each. Each OP scan converts its object and performs 
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Figure 4: Block diagram of the PROOF display processor. 

the HSR on a pixel basis. The OPs also interpolate, depending on the configuration of 
PROOF, colours in RGB or normal vectors. 

The next stage in PROOF is a shading sto,ge that performs Phong shading. The 
shading stage is a pipeline of shading processors (SP). Each two SPs are handling one 
lightsource. 

The last stage in PROOF is the filter stage that performs the anti-aliasing executing 
an A-buffer algorithm. There is one processor for each sub pixel. 

5.3.1 Functional Classification 

Primitive Type(s). Triangles and vectors. 

Scan Conversion. Inside test. The triangles are described by their bounding lines. 

Hidden Surface Removal Depth-buffer (A-buffer). 

Shading. Flat and Gouraud shading (OPP only). Phong shading (with shading stage). 

Anti-aliasing. A-buffer on a 8 x 8 subpixel grid. 

5.3.2 Partitioning 

The PROOF architecture partitions the image generation process in several domains. The 
first is the functional domain. Each stage carries out another set of functions. The OPP 
performs scan conversion, HSR and (limited) shading. The shading stage and the filter 
stage perform illumination and anti-aliasing respectively. 
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Each stage partitions its task again. The OPP and the shading stage allocate objects 
(primitives or light sources) to the different processors (object space partitioning). The 
filter stage provides one processor for each of the 64 subpixels (image space partitioning). 
This partitioning scheme is represented by 

F(3, 3) 0 [0(50000, 1)110(16,0.5)11[(64,1)] 

5.3.3 Architecture 

Topology. The organisation of PROOF is 11 pipeline. The OPP and the shading stage are 
pipelines themselves. The filter stage is constructed from two trees of adders that 
compute coverage information for every subpixel [Romanova 1988]. The output 
of these trees is fed into an array of subpixel processors that compute the colour of 
the subpixels. 

Control. There is no central control in PROOF. All processing elements, OPs, SPs and 
FPs, have their own controllers. The different processors are communicating via an 
asynchronous protocol. 

Data types. Information for pixels is propagated through the various pipelines. In the 
OPP and the sha,ding stage a list of objects is associated with every pixels. The 
objects in the list are described by an object identifier, depth and normal vector 
(or colour value) at the current pixel and geometry of the coverage for the current 
pixel. The filter stage produces a RGB triple. All data items arc describe in fixed 
point format. 

Parallelism. In total PROOF is a MIMD machine. The single stages are SIMD proces­
sors. All processors in one stage are execu ting the sa.me instruction (may be delayed 
due to the pipeline structure) on different data. 

Regularity. OPP and shading stage consist only of one type of processing elements, 
namely the OPs and SPs. Five OPs a.nd two SPs are expected to reside on the same 
chip. For a system that handles 50,000 objects and 16 light sources 10,000 OP chips 
and 16 SP chips are needed. 

The filter stage uses two types of processing elements; processor slices for the adder 
trees and subpixel processors. Each of the x-, y- and z-trees will be distributed on 
three chips. Four subpixel processors will be integrated on one chip. For a resolution 
of 8 x 8 subpixels 16 subpixel processor chips are needed. 

PROOF is built from four types of chips (T = 4) and approximately N = 10,000 
chips. The population of the chip classes is nl 10,000, n2 = 16, n3 9 and 
n4 = 16. From this we obtain R 1.0·0.50 = 0.50. 

5.3.4 Performance 

We assume a screen resolution of 1024 x 1024 pixels. The average depth complexity may 
be 2. (The depth complexity directly influences the length of the lists constructed for the 
A-buffer.) 

Characteristic parameters. 1. Object Processors 

tf 33 rns 

oc.c = 2 

http:1.0�0.50
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Csc 1 

CF 3 

C[ 1024 X 1024 

This gives a step time of t step 15.73 ns which is equivalent to a clocking 
frequency of 63.5 MHz. 

2. Shading Processors 

Csc 1 
CF 5 

C[ 1024 x 1024 

This results in a step time of t,tep ::; 3.15 rlS. To enlarge the step time for 
the individual shading processors, time domain partitioning with up to 16 
shading processors in parallel will be employed. This will give a step time of 
t,tep ::; 50 ns. 

3. Subpixel Processors 

If 33 ms/(1024 x 1024) 

(t,e 2 

Cse 1 

CF 7 

C1 1024 x 1024 

Since the step time is about 2 I1S up to 10 parallel processors will be working 
in paralleL Thus the step time is enlarged to about 20 ns. 

Primitives per second. In [Schneider 1988aJ a throughput of 50,000 triangles every 
33 ms has been announced. 

Delay time. The literature gives a worst case delay time of 10.5 ms for a complete image 
update. 

5.4 The Ray-Casting Machine of Kedem & Ellis 

The Ray-Casting Machine [Kedem et al. 1984a] [Kedem et al. 1984b] aims at the 
scan conversion of objects defined by constructive solid geometry (CSG). In CSG objects 
are described by set operations, e.g. union, intersection or difference, applied to halfspaces. 

The Ray-Casting Machine is built from two types of processors (figure 5). The 
dive classifiers (PC) calculate the intersection of a ray (a line) with a primitive, i.e. 
classifies the primitive with respect to the line. Each PC holds one primitive and accepts 
rays for classification to the stored primitive. The classification returns segments of the 
ray that are inside or outside of the primitive. The classification combiners (CC) combine 
two classified rays using a certain set operation. 
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Figure 5: Block diagram of the Ray-Casting Machine. PC - Primitive Classifier, 
CC Classification Combiners. 

5.4.1 Functional Classification 

Primitive Type(s). Linear and quadratic halfspa.ces. 

Scan Conversion CSG with ray tracing. The rays into the scene are restricted to be all 
parallel. 

Hidden Surface Removal. Ray tracing. 

Shading. None. 

Anti-aliasing. None. 

Shading and anti-aliasing could be added as a postprocessing step that uses the results 
of the Ray-Casting Machine. 

5.4.2 Partitioning 

The Ray-Casting Machine employs an object space and a functional domain partitioning. 
The object information is distributed to the PCs and CCs. These two types of processors 
also constitute the functional subdivision: One performs primitive classification the others 
combine classifications. 

The partitioning is characteried as 

F(2, 1) 0 (O(n, 1)IIO(niog2 n, 1)) 

if a maximum of n primitives have to be handled. 
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5.4.3 Architecture 

Topology. The topology is a binary tree. The leaves of the tree are the PCs and the 
nodes are the CCs. The Ray-Casting Machine can be configured dynamically to the 
CSG descriptions of different objects. The configuration takes place by loading the 
CCs such that they implement the required CSG tree. 

Control. The control of the Ray-Casting Machine is distributed among all processing 
elements, PCs and CCs. The processing elements are communicating synchronously 
using a complete handshake protocol. 

Data types. Data moving through the processor tree represent line segments classified 
as being IN our OUT of the CSG object. These segments are described by integer 
numbers. 

Parallelism. All PCs together form a SIMD computer. The CCs are also working in 
SIMD mode. 

Regularity. The Ray-Casting Ma~hine is built from only one type of chip. Such a chip 
contains from 4 to 8 slices each of which consists of one PC and 9 CCs. The chip 
level regularity of the Ray-Casting Machine is therefore R = 1. 

5.4.4 Performance 

The literature does not contain any performance numbers for the Ray-Casting Machine. 
We can therefore summarise here only those numbers that are a consequence of the ar­
chitectural features. 

Characteristic parameters. 1. Primitive Classifiers 

a;sc 

Csc 

C1 

CF 

tf 

1 

1 

1024 x 1024 

? 
? 

2. Classification Combiners 

a;sc ? 

Csc 2(1) 

C1 1024 x 1024 


CF ? 

?t f 

5.5 Structured Frame Store System 

In [Jayasinghe et aI. 1988J a system has been presented that can display the contents 
of the LDF without a frame buffer directly on the output device. The system is based on 
methods and algorithms developed in [Akman et al. 1988] and [Kuijk et aI. 1988]. 
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LDF 

... 8}­

Display (PDF) 

Figure 6: Display processor of the Structured Frame Store System. LDF - Linear 
Display File, APS - Active Pattern Store, SCB - Scanline Command Buffer, XJ:P - X 
Incremental Processor, Y J:P Y Incremental Processor. 

The display controller of that system is constructed from three main building blocks 
(cr. figure 6 [Jayasinghe et al. 1988]). The Pattern Loader (PL) receives patterns from 
the LDF and, if necessary, decomposes them into simpler patterns that can be processed 
by the rest of the display processor. 

These patterns are handed over to Y Incremental Processors (Y_IP). They generate 
for each pattern a number of scanline commands that are dispatched to pixel processors, 
called X Incremental Processors (X_IP). 

There is one X_IP for every pixel in a scanline. The X_IPs are connected in a pipeline, 
forming a one-dimensional systolic array. The first X_IP receives a scanline command, 
executes this command and propagates it to the next X_IP. The task of each XJ:P is the 
incremental computation of pixel intensities. 
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5.5.1 Functional Classification 

Primitive Type(s}. The display processor itself accepts patterns 8 as primitives. These 
general patterns are decomposed into spans because spans are the primitives on 
which the X_IPs are operating. 

Scan Conversion. Contour tracking. The starting and ending pixels of span are incre­
mentally computed by the Y _IPs. The filling is done by the X_IPs. 

Hidden Surface Removal. None. The LDF is already preprocessed such that there 
are only non-overlapping patterns. 

Shading. Due to the (restricted) programmability of V_IPs and X_IPs Wash, flat (con­
stant), Gouraud and Phong shading can be performed. furthermore, the display 
processor offers the possibility to generate periodic textures. 

Anti-aliasing is also a programmable feature of of the X.lPs. Although not explained 
in detail, the anti-aliasing technique used seems to be a one-pass technique. 

5.5.2 Partitioning 

Neglecting the PLs, the display processor performs a two-level partitioning. The first 
level is a partitioning in the functional domain. The Y _IPs break down the pattern into 
scanline segments and generate the necessary scanline commands for the X..IPs. Then 
the X_IPs fill the span. 

The second level of partitioning takes place in the time domain for the Y..IPs and 
in image space for the X..IPs. There are several Y _IPs in order to achieve satisfying 
performance. Each X_IP handles one pixel in a scanline. This system can therefore be 
characterised as 

F(2, 1) 0 (T(24 . .. 245,1)111(1024,1)) 

Furthermore, in [Jayasinghe et a1. 1988] another partitioning in the time domain 
is proposed for the X.lPs. If the X_IPs are to slow to perform their task in synchronism 
with the pixel dock of the output device, each X_IP is replicated in order to enlarge the 
available time for the individual X_IP. 

5.5.3 Architecture 

Topology. The topology of the Structured Frame Store's display processor consists of 
different elements. LDF, PLs, and Y..IPs form a tree structure. The leaves of that 
tree (the Y _IPs) are working on a common bus. That bus is connected to a systolic 
array of X_IPs. 

Control. The control is distributed across the display processor. The different blocks 
are communicating via intermediate file structures. 

Data types. Input to the PL are patterns on a fairly high level. The exact representation 
of these patterns is not known to the author. These patterns are transformed 
into polygons described by their geometry and associated colour information. The 
polygons are decomposed into single spans by the Y _IPs. The X_IPs translate the 
spans into pixel information, e.g. RGB values. 

SIn [Kuijk et aI. 19881 patterns are defined as fiat regions in continuous 3D. They may be discon­
nected, concave, with holes or with islands. 
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Parallelism. There are different kinds of parallelism in this display processor. The PLs 
are working in parallel on different primitives that may have different types. They 
are therefore forming a MIMD processor. The Y -IPs are all executing the same 
command on different primitives which characterises them as a SIMD architecture. 
This is also the case for the X_IPs that are all executing the same scanline commands. 

Regularity. It had not been fixed in the literature how the PLs, Y-IPs and X-IPs will be 
implemented. It is therefore not possible to determine the regularity of the system. 

5.5.4 Performance 

We will look only at the X-IP and the Y_IP because the PL is performing functions that 
we originally associated with the geometry processor. Since these two blocks are differing 
they are considered separately. 

We will assume a screen of 1024 x 1024 pixels. The primitives should have an av­
erage height of 70 pixels. (Some of the values of the following parameters stem from 
[Jayasinghe 1989].) 

Characteristic parameters. 1. Y_IP 

if 20 inS 

a,c 0.07 

C,c 244,000.,-1 ·20 11lS 4880 

CF 60 

CJ 1024 

This results in t'tep == 0.95 n., for one (1) Y_IP. It is proposed that for a screen 
with 1024 x 1024 pixels and Gouraud shading::::: 122 Y -IPs are used which 
reduces the functional complexity to CF = 60/122 ::::: 0.5. For the new step 
time we obtain t,tep = 0.116 jJ>S 8.6 MHz). 

2. X_IP 

tf := 20 ms/l024 = 20 jJ>S 

a.c 1 

C,c 4880/70 = 70 

CF 4 

Cf 1 

The step time for the X-IP is t'tep == 71.4 ns. This is equivalent to a clocking 
frequency of 14 MHz. 

Primitives per second. In [Jayasinghe et aI. 1988] it is claimed that 244,000 
Gouraud shaded quadrilaterals of height 70 can be rendered per second. 

Delay time. The delay time of this display processor is one frame time (20 ms). 
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6 Possible Novel Display Processor Architectures 

The investigation and classification of several display processors revealed that there are 
some "white spots" on the map of possible architectures. Two of them that deserve a 
closer look are the following: Tree structured display processors that partition in image 
space and display processors on the basis of 2D-arrays of processing elements. 

We want to suggest an architecture that closes the first of these gaps: Qua.dtrees 
and octrees subdivide the scene or the screen recursively until certain criteria are met. 
Subdivision of an image into subimages (cells) stops if 

• A cell is empty, i.e. contains no object. 

• A cell contains exactly one object. 

• A predefined level of subdivision has been reached. 

This approach offers the possibility of a rendering process that quickly produces an image 
with a coarse resolution. Afterwards the image is refined further and further until the 
final accuracy has been reached. Such a behavior is desirable in an environment where 
response time dominates the desire for image quality. 

An architecture for such a display processor could be a tree structure of processors 
that reflects the structure of the quadtree or octree. A problem in that approach is that it 
is impossible to provide a tree structure that contains a processor for every possible cell. 
Therefore, the tree has to be dynamically configurable. It must also be able to detect and 
reasonably react to overload conditions. 

7 Conclusion 

The presented taxonomy is mainly founded on a model for the display processor. The 
model considers two aspects of the display architecture, function and timing. The clas­
sifications for junction, partitioning and performance have been derived from them. The 
last distinguishing feature, the display processor's architecture, could not be based on 
that model, it has been defined mostly intuitively. However, there is a close rela.tion 
between the topology of an architecture and the employed partitioning scheme. Improve­
ments of the taxonomy can be achieved by refining the model. Especially, an inclusion of 
architectural aspects into the model seems promising. 

The second part of the paper applied the taxonomy to existing display processors. 
Several times we were unable to completely classify a display processor. That was due to 
a lack of information in the published material. The taxonomy can serve as a guideline to 
identify and select the minimum information that is needed to describe a display processor. 
This would mean to make best use of a taxonomy. 
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