
12

A VLSI Architecture for
Image Composition

Christopher D. Shaw, Mark Green, and Jonathan Schaeffer

This paper descnbes a new parallel architecture for performing high-speed raster graphics. A central host broadcasts
graphical objects to a number of identical graphics processors Eaoh graphics prooessor produces a raster depicting
Its graphical object on a transparent black background. and passes the raster to a leaf of a tree of VLSI processors
called Compositors. Each Compositor combines a pair of rasters, performing anti·aliased hidden surface removal,
and passes the composed raster to the next level of the tree, Appearing at the root of the tree is the final raster
containing all objects at the correct depth with hidden surfaces removed.

This paper gives an outline of the algorithm by Duff that the Compositor Will implement The algorithm proves to be
too complex for our implementation technology, so a modification of Duff's algorithm is introduced. The high·level
design of the dataflow part of the VLSI chip which implements this modified algorithm is then presented, followed by
performance simulations and conclusions,

1. Introduction
To date. research in the area of specialized 3-D computer graphics architeetures has
concentrated mainly in two areas:

I) 	 Geometry Pipelines, wherein the geometric operations of rotation. transformation.
scaling, projection and clipping are performed by a pipeline of multipliers. The
operands of a geometry pipeline are the objects to be rendered. for example, vertices
of polygons [3,4]. Speedup over traditional general-purpose processors is limited by
the number of multipliers in the pipeline. Of course, better VLSI technology will yield
greater speedup but, in architectural terms, only simple duplication of the geometry
pipeline will improve matters significantly.

2) 	 Rendering processors, which take geometric descriptions of the picture to be rendered
to draw raster images [9, 12]. Here, better VLSI will yield higher speeds. but simple
duplication will not work without sacrifice. If two renderers draw pixels on the same
raster, some means of collision avoidance must be developed.

http://www.eg.org
http://diglib.eg.org

184

The method of graphics parallelization that we propose breaks up the graphics production
task by object. The modeling subtask in a host processor distributes graphical objects to a
number of independent general-purpose Graphics Processors (GP). Each GP performs the
geometry and rendering tasks on its own graphical object without communication with
other GPs. Each GP creates a full coverage-enhanced raster which displays its graphical
object on a transparent black background. Each GP could be as simple as a
microprocessor or as complex as a geometry pipeline feeding a rendering processor.

One clear disadvantage of the object-level approach is the combination task that must be
performed upon the N rasters that are produced by the N GPs. We have developed a
unique VLSI architecture which solves this problem by implementing an anti-aliasing
variation of Z-buffer called Composition [6,10]. This architecture utilizes parallelism in a
way that has not been explored satisfactorily to date. In particular, while the Host-GP
setup shown in section 3 is not new, other methods that have been proposed for
combining the resultant rasters have been unsatisfactory.

Our Compositor innovation makes this form of graphics parallelism feasible, since it solves
the major problem of post-hoc raster combination in a non-restrictive manner. Moreover,
the hardware solution simulated for this paper combines rasters in real time.

Such a possibility opens new avenues of research in parallel graphics since, while
proposals are nice, only real experience with parallelism fosters true understanding of the
problems at hand. Hopefully, this paper will be a tool to help researchers gain a true
understanding of the best parallel graphics methods.

2. Prior Work
The object-level approach has been proposed before, namely in papers by Weinberg (13),
and by Fussel & Rathi [8]. The system by Weinberg, shown in Figure 1, has four types of
processing elements labeled "0", "B", "C" and "F". The 0 elements are the object
processors which receive object descriptions from the host and output pixel spans where
the objects cover the screen. Areas not covered by an object do not produce pixels.

Figure 1: Object-Based Architecture by Weinberg.

185

The C elements are comparators which collect a list of contributions to the pixeL The
image contributions are neighbourhoods of the current pixel. A background
neighbourhood is fed by the B element of the pipe, and as the pixel passes from
comparator to comparator, the adjacent object processor is checked for contributions. If
an object is either fully or partially visible, it is added to the growing depth-sorted list
passing through the comparator pipeline. Finally, the F processors perform a filtering
process which resolves the final scan line colour from the contribution list computed by
the comparators.

The advantages of this system are that it performs anti-aliasing, and it allows for real-time
graphics. The disadvantage is complexity in the comparators and filter processors, since
each must manage a variable-length list of pixel contributions, If each comparator and
filteT processor were a VLSI chip, each would need a substantial amount of bufrer memory
to hold the extra pixel information as it passed through the pipeline.

Also, given N object processors, it is possible that each one will have a pixel contribution
at every point on the screen. This means that to maintain the raster throughput provided
by each object processor, each comparator and each filter processor must maintain a
throughput of N times that of an object processor. Clearly this is the worst case, but given
the rapidly growing image complexity of modern computer graphics, N will have a fairly
small upper bound unless the VLSI technology for the comparators and filters is
significantly advanced. In his paper, Weinberg estimated that picture production speed is
depended upon the sum of all polygon perimeters in the scene measured in pixels, as well
as the number of processors and the screen size.

Figure 2: Fussel and Rathi's Object-Based System.

In Fussel and Rathi's system hardware, the host simplifies the model into triangles and
distributes it to a number of processors denoted by "P" in figure 2. Each "P" contains a

186

geometric transformation engine and 1000 simple triangle processors, each of which
contains only registers, I/O and a couple of adders, Each triangle processor receives one
transformed triangle, renders it, and feeds it to a tree of comparators denoted by "c" in
Figure 2. The comparators simply perform Z-buffer: the nearest contribution is the one
passed on, and all other pixels are thrown away.

In sum, each object-level system has one of two correlated disadvantages: Weinberg's
system performs anti-aliasing, but does so at the expense of low data throughput due to
the buildup of pixel contributions. Fussel and Rathi's system allows for rapid lock-step
pixel production, but does not perform anti-aliasing due to its use of Z-buffer. OUf system
uses a hybrid Z-buffer approach which suffers from neither of these problems.

3. The Composition Architecture

We have designed a unique pipelined VLSI chip which performs the combination task
upon the N rasters that are produced by the N GPs. The combination is performed by a
binary tree of composition processors called Compositors. Each Compositor takes two
rasters in the coverage-enhanced Z-buffer format required for the composition operation,
and composes this pair of rasters into one raster of the same format. Since the
composition operation is associative and commutative, we can take a pair of composed
frames and compose them also. Thus, we can form a tree of N 1 Compositors. If M is
the height of the tree, we can combine N 2M rasters into one final raster, as shown in
Figure 3.

The N leaves of the Compositor tree are the N GPs. Each GP feeds one input of a
Compositor. Given that M > i > 0, at each level i of the tree, 2' Compositors combine 2'+1

raster inputs to form 2' raster outputs. These 2' outputs feed 2,-1 Compositors at the level
below, and so on until the root of the tree composes the last 21 raster inputs to form the
final raster output. The output of the root Compositor feeds data to a frame buffer which
displays the raster on a CRT.

In total, there are N 1 Compositors, with the root of the tree producing the final raster
picture of the entire model created by the modeling subtask. Each Compositor takes a
fixed amount of time to compose each pair of pixels, so the root Compositor can feed
results to the frame buffer at a fixed rate.

The advantages to consider with this system are as follows: The system can be expanded
to any practical degree, simply by duplicating the whole system and adding a new
Compositor to compose the two streams at the root. This system offers O(N) parallelism.
To double nominal performance one need only double the amount of GP and Compositor
hardware and add one Compositor to compose the final two rasters. The increase in
composition time is equal to the time to pass one pair of pixels through a Compositor. Of
course, one can take advantage of the performance increase either by increasing the
production speed of a scene of fixed complexity, or by increasing the complexity while
holding scene production speed constant.

187

Figure 3: High-Level View of the Composition Architecture.

Another advantage is that one could install different GPs at the top level, which means
that different types of picture modeling could be performed for different parts of the same
picture, as appropriate.

With a change in the control structure, it is equally possible that this system could be built
as a linear pipeline, in a manner similar to Weinberg's proposaL In this configuration,
each Compositor takes data from the previous pipe element and from its local GP. Each
Compositor passes its results to the next in the pipe, and the last passes its results to the
frame buffer.

The advantage would be easy scalability to any number of processors without much effort.
The problem lies in error accretion. The number of Compositors that a pixel must pass

through is an average of 2 in the linear setup versus exactly \og2 N with the tree

arrangement. Since each Compositor approximates Duff's algorithm, errors will build up
after a number of composition steps. From an error point of view, the least steps, the
better, which is what the tree offers. Also, the latency from input to the output in the tree

system is \og2 N vs. ~ for the linear setup, but this is not likely to matter given the speed

of each Compositor.

188

With either organization, a problem to be confronted is the communications of polygon
data from the host system to the GPs. A simple broadcast bus may be sufficient, but this
may not be the case with larger systems. This issue is beyond the scope of this paper.
Similarly, issues such as windowing and so on are not addressed here.

In a related issue, the intended use for this system is animation, which means that it may
be used to draw complex rasters one at a time. Speed gained due to parallelism may be
lost to the overhead of broadcasting a lot of objects to the GPs. The question of how to
manage graphics data in a parallel environment is unexplored, and we hope that this
paper will foster interest in this area.

4. Which Algorithm?
The algorithm to perform composition relies upon coverage information stored in each
pixel much in the same way that the Z-buffer algorithm stores depth information. Two
algorithms have been developed and reported in the literature which use coverage data in
two forms. Carpenter's A-Buffer system [I] is an anti-aliasing version of Z-buffer. The
coverage measure used is a bitmap of the pixel at subpixel resolution. Each bit of the
bitmap indicates whether its fraction of the pixel is covered by a polygon from the source
raster. The bitmap approach to coverage estimation has antecedents in work by Catmull
and by Crow [2,51, which suggest the llse of subpixel information to perform anti-aliasing.
Similarly, work by Fiume et al [7]. advocates enhancing Z-buffer with subpixel resolution
information for the purposes of parallel implementation on a shared-memory machine.

In Carpenter's implementation, the Z-buffer contains either positive Z and colour or
negative Z and a pointer to a list of unrendered depth-sorted pixel fragments. When all
the pixel fragments have been collected, the top (closest) fragment has its area-weighted
colour added to the pixel. Its area, approximated by the bitmap, is removed from legal
consideration, and all those pixels underneath are clipped to the top pixel's uncovered
area. The process then continues on the next closest fragment. Its weighted colour is
added, and its area clips all those pixels under it.

The key restriction with A-Buffer is that pixel contributions must be sorted in order of
depth. This introduces two unpleasant problems, the first being that the algorithm does
not work correctly when the pixels are out of order. This means that arbitrary pairs of
pixels cannot be combined, since the clipping operation must take place in order of depth.
If a Compositor were to implement A-Buffer, it would combine arbitrary pairs of pixels.
The second problem with A-Buffer is that the sort must be performed on each pixel. With
a large number of source rasters, this sort process will take a much longer time than the
simple bit manipulation required by the core of the algorithm, since the sort does not have
a linear time bound.

From an architectural perspective, A-Buffer requires a two-stage setup like Weinberg's
pipeline architecture. The first stage sorts a list of pixel data, and the filter processors
perform the contribution calculation of A-Buffer.

189

Duff's composition method [6] offers a slightly different approach to the coverage problem.
Duff stores an area component a with each pixel. a is a real number in the closed range
[0.0 ... 1.0], where a value of zero indicates no coverage and one indicates full coverage.
This component can also represent opacity for pixels of appropriate coverage. That is, if
the actual coverage is 1.0 but a is given the value 0.5, the pixel will be "half transparent".
Usually, though, a = coverage. When pixels for a source raster are produced, R, G, and B
colour values are each multiplied by the coverage value for anti-aliasing. Thus, transparent
black is where R, G, B and IX all equal zero.

Aside from the addition of a, composition imposes a second change to Z-buffer
organization, namely that Z values are moved from the center of each pixel to the pixel's
comer. This means that the Z depth will be available to the four pixels that share each
pixel comer (except at the raster's edges, of course). The composition takes pairs of rasters
and composes them into one raster of the same format, so to compose a number of
images, each image is composed with the destination raster. This movement of Z to the
comer of the pixel requires that an extra row and column of Z's be supplied at the bottom
and right edges of the raster in order to correctly process the last row and column.

A depth sort of the pixel contributions will produce the best results, but Duff's
experiments show that ignoring the order of composition causes no error in most
situations, and only a small detriment to the picture quality in certain special cases. Thus
composition does not suffer the unboundedness of A-Buffer. There is a trade-off however,
since Duff's coverage measure does not include any positional information.

Composition also does not have the problem that A-Buffer does with unsorted data, since
the four corner values of Z are used instead of one simple minimum Z for each pixel
contribution. When a pair of pixels are combined, the new corner Z values are the
minimum of the respective corner contributions. Thus if one combines the nearest and
farthest pixels, and if the new coverage is full, then a pixel of intermediate Z can still
make a contribution if one of its Z values is less than the minimum of the nearest and
farthest pixels. Of course, sometimes the result will not be quite right due to the Iinear­
intersection algorithm used to determine p. This is much better than the possible shut-out
that an unsorted A-Buffer may produce.

5. Duff's Composition Algorithm

With two rasters named Front and Back, compose two pixels pixelFront and pixelBack by first
comparing the four corner Z values of each pixel. If the comparisons all yield the same
sign, then the pixel which is in front is the result pixel. However, as shown in three
examples in Figure 4, some pixels will intersect: that is, Z comparison in some corners will
be the opposite sign of Z comparison in other corners. In this case, we must determine the
fraction p, which is the coverage ratio between the two pixels.

190

Z>O!--- f12--J Z<o Z>o Z>o Z<o

T Front IBT
f12 Tf11
~ f11Back~

~
Z<O Z<O Z<O Z<O Z>of- f12-l Z<O

Figure 4: Three Examples of Intersecting Pixel Contributions.

fi is determined by finding the points of Z intersection along pixel edges which have
corners of opposite sign. These intersection points yield a dividing line between the
contribution of pixelFront and the contribution of pixelBack' The number fi is the fraction of
the pixel taken up by pixelFront. In the left example in Figure 4, /1 would be the proportion
of the pixel labeled "Front", which equals about 30% of the pixel area.

With fi in hand, the following equations are evaluated to find the final values of pixelcomp .

Here just the equation for Red is shown, since the equations for Green and Blue are
identical.

Rcomp {3 X (RFront + (1-aFront) X RBack) + (1-fi) X (RBeck + (1-aBack) X RFront) (l)

lXcomp aBaCK aFron! - aBack X aFron! (2)

Zcomp Min((3)

6. Compositor Simplification

After equations (1-3) are algebraically simplified, they amount to one minimum operation
to calculate Z, one add, one subtract and one multiply for a, and eight multiplies, three
adds and three subtracts to calculate R, G, and B. However, /1 takes more effort since
there are four classes of pixel intersection patterns:

Unconfused
In the two patterns of this class, all of the Z comparisons are of the same sign, and fi
simply equals either 1.0 or 0.0. Equivalent to Z-buffer.

Triangular
In the triangular class, one of the rasters is closest in only one corner, which results in
a triangular pixel area being defined. The left sample in Figure 4 shows an example of

191

a pattern of this class. The area of {:J for each of the eight possible patterns is
calculated using equation (4).

p1 X /52 (4)
2

Trapezoidal
Four intersection patterns are of this class, in which one raster is closest in two
adjacent corners, and the other raster is closest in the two other adjacent corners,
forming a trapezoidal area. The centre example in Figure 4 shows one pattern of this
class. The area for /5 is evaluated using equation (5).

n:::o p1 + {:J2 (5)
f' 2'

Checker
With the two patterns of this type, one raster is closest in opposite corners, and the
other raster is closest in the other two opposite corners, forming a pattern like a
checkerboard. The right example in Figure 4 shows one pattern of this class.
Equations (6.]-6.3) must be evaluated to get the correct (:J value for this class:

x = ~-~ /51(P3+{:J2-1) (6.1)
1 ({:J3 + /52 1)(/54 + /51 1)

{:J4 - P2(/54+/51~1),--_y (6.2)
- ({:J3+ /52-1)({:J4+ (:J1 -1)

{:J = (f32-P3)Y + {J3 - ({:J4-{:J1)x + /54 (6.3)
2

As shown in Figure 4, /51 and {:J2 are the proportions of a pixd edge which are taken up
by Front on pixel edges where the Z comparisons differ in sign. This fraction is edge{:J, and
it is calculated by linearly interpolating the Z values to find where Front and Back meet:

edge/5 (7)

Here diffFront is the difference between Front and Back Z's in the corner where Front is
nearest to the viewer. Conversely for diffSack •

As one can see, the calculation involved is substantial, since for the triangular and
trapezoidal classes, two divisions must be performed, and a total of six divisions must be
performed for the checker class. Gate limitations in the gate array technology used to
implement the Compositor preclude a full floating point calculation. Division is a complex
operation to evaluate, and should be avoided if at all possible.

192

We have performed experiments over a number of raster composition situations using
various approximation algorithms for {3. Each raster produced by an approximation was
statistically compared to a reference raster produced by Duff's algorithm.

The approximation that we will implement samples the Z differences at 9 points on the
pixel, and assigns a nonzero weight to each sample if the sample yields Front as closest at

that point. The weights which gave the best experimental results were ~ for the corner

samples, 8 for the edge samples, and +for the center sample. The sum of all 9 weights

equals 1. This weighting scheme implements a 3 X 3 Bartlett filter.

This approximation had one of the best mean standard deviations, and was chosen
because it had a simple hardware implementation. Experiments showed that this
approximation for {3 had a mean error of 9.7%, and worst-case error of 12.2%. The best
approximation tested had a mean error of 9.2%, and a worst-case error of 15.1%. By
comparison, ordinary Z-buffer on the same pairs of rasters had a mean error of 54.3%, and
a worst-case error of 63.5%. In practice, the approximation is almost indistinguishable
from Duff's algorithm [11].

7. Compositor Implementation
Each Compositor takes a pair of rasters pixel-by-pixel, and composes one pixel at a time
in a pipelined fashion. Each pixel is six bytes of data, with 16 bits for Z, and eight bits for
each of R, G, Band lX. Data flows from chip to chip along eight-bit buses.

For the two input streams there are two eight-bit input buses FRONT_DATA and
BACK_DATA. These have the associated l6-bit address bus IN_ADDR. The previous
row 110 stream has bidirectional eight-bit data buses PREY _FRONT and PREY _BACK
with 14-bit address PREV_ADDR and control lines PREV_RD_STRB and
PREY _ WR_STRB. This 110 stream is needed to store the previous scan line of Z's so
that it is available for Z comparisons at the top left and top right corners of the pixel on
the current scan line. The fact that only Z's are addressed allows for a narrower address
bus.

The output stream has eight-bit output bus OUT_DATA, with 16-bit address
OUT_ADDR. Aside from the clock input CLK, there are three miscellaneous control
lines: RESET, an input which resets the whole Compositor; START_ROW, an input
which indicates that the next pixel fetched is to start at the beginning of the scan line; and
OUT_START_ROW, an output which is the input START_ROW delayed by the number
of clock cycles it takes to propagate one pixel through the Compositor.

Inside each Compositor, the Z values pass through a series of comparators which
determine Z priority at each of the four corners of the pixel, as well as average priorities
at the pixel edges and the pixel centre. The sample value arises from the sign bit of the
two's complement difference. First, the corner comparisons.

193

Bottom Right zex, Y)Back - Z(x, Y)Front (S.l)

Bottom Left Z(x - 1,Y)Back - Zex 1,Y)Front (S.2)

Top Left = Zex-1,y-1)Back - Z(x-1,y-1)Front (S.3)

Top Right = Z(x,y-1 - zex, Y -1)Front (S.4)

The edge comparisons are as follows:

Bottom Edge = zex, Y)Back + Zex -1, Y)Back - zex, Y)Front Zex -1,ykront (9.1)

= (Z(x, Y)Back - Z(x, Y)Front) (Zex -1. Y)Back Zex -1, Y)Front)

= Bottom Right + Bottom Left

Left Edge Zex -1, Y)Back + Zex -1, Y-1)Back Zex -1, Y)Front Zex -1,y-1)Front (9.2)

Top Edge = Zex -1, Y-1)Back + zex, y-1)BaCk Z(x -1, y-1)Front zex, Y -1)Front (9.3)

Right Edge = Z(x,y~-1)BacK + Z(X,Y)Back Zex,y-1)Front Z(x,ykront (9.4)

The centre comparison is as follows:

Centre = Z(X,Y)Back + Z(x-1,Y)Sack + Z(x,y-1)Sack + Z(x-1,y-1)Back (10)

- Z(X,Y)Front - Z(X-1,Y)Front - Z(X,y-1)Front Z(x-1,y-1)rront

Bottom Right + Bottom Left + Top Right + Top Left

Bottom Edge + Top Edge

These nine comparisons combine to form P by assigning a weight to each of the
comparisons. If a comparison results in the Front pixel being closer at that point, then the
appropriate weight is added to the Pbeing collected. If the comparison results in the Front

pixel being farther, then nothing is added. The weights were 116 for the comer

comparisons, i for the edge comparisons, and +for the center comparison. Using the

nine weights developed above, the final equation for P is therefore:

P (Bottom Right + Bottom Left Top Left + Top Right) x 116 + (11)

(Bottom Edge + Left Edge + Top Edge Right Edge) X 8 + Centre X 4

As the reader can readily see, the weights are all a fractional power of two, which means
that the comparator sign bits can be directly added up ",ith a simple adder circuit.
Moreover, the calculation of the edge comparisons can be reduced to one addition since

194

the edge comparison can be expressed as the sum of two adjacent comer comparisons, as
shown in equation 9.1. Equation 10 shows a similar reduction to two edge differences for
the centre comparison.

8. P Hardware
Z must enter the Compositor eight bits at a time. This means that the low eight bits must
enter and be compared first, since propagating carries from the low-order addition will
affect the high-order addition. This defines the input order: Zlow, Zhigh, a, Red, Green,
Blue. For maximum throughput, it is important that these six data stream continuously
from one Compositor to the next. Therefore, all data from one pixel should spend no
more than six clock cycles in anyone pipe stage inside the Compositor.

Each of the four comer comparisons can be done independently. If done in two's
complement, the weight would be the inverse of the sign bit, shifted right the appropriate
amount.

All the edge comparisons can take place at once. Each edge comparator gets input from
two comer comparators. Conversely, the comer comparators send their results to two edge
comparators. In this case the edge comparison uses a two's complement adder, which
generates a weight from the sign bit in the same way that the comer subtractors do.

For the centre comparison, the same scheme is followed; the results from the previous
comparison are added to form the final result. Note that the outputs of only two of the
previous edge comparisons are needed, either ("top" + "bottom") or ("left" + "right").
This allows for optimization of the edge comparators whose outputs are unused. Again,
the sign bit is used to denote the weight.

Each adderlsubtractor has a D flip-flop to hold the carry-out of each compare. When the
low byte is compared, the flip-flop holds the carry-in for the high-order compare. At the
end of the high byte compare, the flip-flop holds the sign bit. Note that the sign bits from
corner comparisons must go through two flip-flop delays. and the edge sign bits through
one delay, since all the sign bits must arrive at the p adder at the same time.

Figure 5 shows the dataflow circuit for p. The thick lines indicate eight, nine or ten-bit
buses, while the thin lines are one bit wide.

9. The Compositor Hardware
Now that p is ready, calculate the new Z, a, R, G, and B. Equation (1) has been
algebraically simplified.

Rcomp (1 aFront X P) X RBack + (1 - aBack X (1 P» X RFront (I)

a comp aBack + aFront - aBack X aFront (2)

Zcomp Min (ZFront , ZBack) (3)

195

TopLeft
F B

BottomRight
F B

Beta Adder

Figure 5: fJ Circuit.

To compute the new ZMin, we must simply pick the minimum of the two new Z's. This
information is available from the p calculation circuitry.

To compute the new acomp, we must do an add and a multiply followed by a subtract. In
this case, multiplication is of two nine-bit numbers with range [0.0 ... 1.0]. a is eight bits
wide outside the Compositor, using 11 11 11 11 as 1.0. When IX is read into the chip, all
values of a above 0.5 are augmented by 00 00 00 01. Similarly, all values above 0.5 are
decreased by 00 00 00 01 when the new a is written. Thus 1.0 equals 1 00 00 00 00, with
the binary point after the most significant digit.

196

To produce the new (R, G, B)comp, the calculation occurs in two parts: For part one,
FactorSack = (1 ~aFrontP) and FactorFront (1 ~aBack(1 ~P) is performed. This requires two
multiplications and three subtracts. In this case, P is five bits wide in the range
[0.0 ... 1.0]. Nominally, the multiplications are nine bits by five bits. The factors
produced by this part are nine bits ·wide.

For part two of the (R, G, calculation, FactorBack x RBack and FactorFront X RFront
must be performed (three pairs of multiplications). This is followed by three additions of
the pairs of products. Obviously, the input to this second set of multiplications is supplied
by the output of the first set of multiplications. The multiplications in this case are eight­
bit by nine-bit, producing eight-bit products, which are then added to form three eight-bit
sums, being the new R, G, and B.

Totaling the above operations, we have nine multiplications and eight adds/subtracts.
Some of the subtractions are always from 1.0, so these can be optimized. However, we
need two multipliers, since nine multiplications will take nine clock pulses, exceeding the
upper limit of six pulses required for maximum throughput. A straightforward way of
splitting up the work is to have one multiplier do FactorFront X RFronb and the other do
FactorBack X RBack ' Either one can do aBack X aFront.

Figure 6 shows a box diagram of the dataflow part of the Compositor. The following
paragraphs explain the function of each box in the figure.

There are four 110 subcircuits in Figure 6: Input is connected to FRONT_DATA and
BACK_DATA. Previous is connected to PREY _FRONT and PREY _BACK. DB at the
bottom of the figure is connected to OUT_DATA. Save indicates the store-back operation
of the current Z into the previous row buffer, and is also connected to PREY _FRONT
and PREY _BACK.

There are six major calculation subcircuits in Figure 6: BETA calculates P and selects
ZMin' A + takes an incoming a and augments it by one if a> 0.5. A - does the opposite of
A+. Neg does two's complement negation of its five-bit input. Multiplier takes either a
pair of nine-bit factors or a five-bit and a nine-bit factor and multiplies them together.
This circuit also contains an internal feedback path to calculate FactorBaCk and FactorFront
as described above. 9-bit Add adds two nine-bit numbers.

Lastly, the utility circuits are as follows: Mux is a multiplexor; it selects one of its data
inputs and outputs it. D8 is an eight-bit D-type flip-flop register, and D9 is a nine-bit
register. Both of these types load data at their inputs every clock cycle. The D8S and D9S
circuits load when enabled. The Z circuit is a pair of D8S's with the output of the first
feeding the input of the second in a pipelined fashion.

With judicious pipeline scheduling, we ean maintain a composition rate of one pixel every
six clock cycles.

197

BlBRBlBRTLTRTLTR

BETA

Output

Figure 6: Data Flow Overview.

198

10. Compositor Performance

The design of the Compositor has been laid out and simulated using LSI Logic Inc.'s
schematic entry system and hardware simulator. Simulations were performed using worst
case temperature and voltage conditions. More importantly, simulations assumed that all
non-primitive circuits were connected to each other using statistical wire lengths that are
the average for a 6000-gate chip. The wire length restriction means that, for example, 9­
bit adders have very long propagation delay caused by the "average length" wire between
the eighth and ninth bits. This delay would not occur in a real layout due to the locality of
all the gates in the adder.

Results show that the worst-case register-to-register propagation delay is 45.3nS, occurring
at a 9-bit adder and carry feedback circuit in the f3 circuit. This implies a per-pixel
throughput of one pixel every 271.8nS, or 3.679 megapixels per second. At a screen
resolution of 512 x 512, this translates to a composition rate of about 14 frames per
second. For a first attempt using old gate-array technology, this level of performance is
clearly a lower limit on performance. With up-to-date fabrication technology, sensible
layout, and better temperature and voltage conditions, we feel confident in predicting the
existence of Compositors running at 30 frames per second and beyond.

We are currently in the process of building a Compositor chip.

11. Conclusion

We have described a computer graphics hardware architecture that utilizes a new
paradigm of hardware parallelism. While it is clear that the paradigm of object-level
parallelism is not yet well understood, we feel that the drawback of this approach has been
eliminated. Namely, the combination of many rasters into one raster can be performed by
our Compositor architecture at the rate of normal video refresh.

Future directions for research lie in two areas. The first area is the exploration of object­
level parallelism for graphics modeling and production. One can forsee many problems
that should be solved. The other area is for possible generalizations of the Compositor
architecture.

References

1. 	 Loren Carpenter, "The A-Buffer, an Antialiased Hidden Surface Method," Computer
GraphiCS (Proceedings of SIGGRAPH '84), vol. 18, no. 3, pp. 103-108, ACM
SIGGRAPH, Minneapolis, Minn., July 1984.

2. 	 Edwin C Catmull, "A Hidden-Surface Algorithm with Anti-Aliasing," Computer
Graphics (Proceedings of SlGGRAPH '78), vol. 12, no. 3, pp. 6-11, ACM SIGGRAPH,
August 1978.

199

3. 	 James Clark, "A VLSI Geometry Processor for Graphics," Computer, pp. 59-69, IEEE
Computer Society, New York, July 1980.

4. 	 James Clark, "The Geometry A VLSI Geometry System for Graphics,"
Computer Graphics (Proceedings of SIGGRAPH '82), vol. 16, no. 3, pp. 127-133, ACM
SIGGRAPH, Boston, Mass., July 1982.

5. 	 Franklin C Crow, "A Comparison of Antialiasing Techniques," IEEE Computer
Graphics & Applications, vol. 1, no. 1, pp. 40-48, IEEE Computer Society, New York,
January 1981.

6. 	 Tom Duff, "Compositing 3-D Rendered Images," Computer GraphiCS (Proceedings of
SIGGRAPH '85), vol. 19, no. 3, pp. 41-44, ACM SIGGRAPH, San Francisco, Calif.,
July 1985.

7. 	 Eugene Fiume, Alain Fournier, and Larry Rudolph, "A Parallel Scan Conversion
Algorithm with Anti-Aliasing for a General-Purpose Ultracomputer," Computer
Graphics (Proceedings of SIGGRAPH '83), vol. 17, no. 3, pp. 141-150, ACM
SIGGRAPH, Detroit, Mich, July 1983.

8. 	 Donald Fussel and Bharat Deep Rathi, "A VLSI-Oriented Architecture for Real-Time
Raster Display of Shaded Polygons," Graphics Interface '82, pp. 373-380, 1982.

9. 	 Adam Levinthal and Thomas Porter, "Chap - A SIMD Graphics Processor,"
Computer Graphics (Proceedings of SIGGRAPH '84), vol. 18, no. 3, pp. 77-82, ACM
SIGGRAPH, Minneapolis, Minn., July 1984.

10. 	 Thomas Porter and Tom Duff, "Compositing Digital Images," Computer Graphics
(Proceedings of SlGGRAPH '84), voL 18, no. 3, pp. 253-259, ACM SIGGRAPH,
Minneapolis, Minn, July 1984.

11. 	 Christopher D Shaw, "The Image Composition Architecture: A Highly Parallel
Graphics System," University of Alberta Master's Thesis, University of Alberta,
Edmonton, Alberta, August 1988.

12. 	 Roger W Swanson and Larry J Thayer, "A Fast Shaded-Polygon Renderer,"
Computer GraphiCS (Proceedings of SIGGRAPH '86), vol. 20, no. 4, pp. 95-101, ACM
SIGGRAPH, Dallas, Texas, August 1986.

13. 	 Richard Weinberg, "Parallel Processing Image Synthesis and Anti-Aliasing,"
Computer GraphiCS (Proceedings of SIGGRAPH '81), vol. 15, no. 3. pp. 55-61, ACM
SIGGRAPH, Dallas, Texas, August 1981.

