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A VLSI Architecture for 
Image Composition 

Christopher D. Shaw, Mark Green, and Jonathan Schaeffer 

This paper descnbes a new parallel architecture for performing high-speed raster graphics. A central host broadcasts 
graphical objects to a number of identical graphics processors Eaoh graphics prooessor produces a raster depicting 
Its graphical object on a transparent black background. and passes the raster to a leaf of a tree of VLSI processors 
called Compositors. Each Compositor combines a pair of rasters, performing anti·aliased hidden surface removal, 
and passes the composed raster to the next level of the tree, Appearing at the root of the tree is the final raster 
containing all objects at the correct depth with hidden surfaces removed. 

This paper gives an outline of the algorithm by Duff that the Compositor Will implement The algorithm proves to be 
too complex for our implementation technology, so a modification of Duff's algorithm is introduced. The high·level 
design of the dataflow part of the VLSI chip which implements this modified algorithm is then presented, followed by 
performance simulations and conclusions, 

1. Introduction 
To date. research in the area of specialized 3-D computer graphics architeetures has 
concentrated mainly in two areas: 

I) 	 Geometry Pipelines, wherein the geometric operations of rotation. transformation. 
scaling, projection and clipping are performed by a pipeline of multipliers. The 
operands of a geometry pipeline are the objects to be rendered. for example, vertices 
of polygons [3,4]. Speedup over traditional general-purpose processors is limited by 
the number of multipliers in the pipeline. Of course, better VLSI technology will yield 
greater speedup but, in architectural terms, only simple duplication of the geometry 
pipeline will improve matters significantly. 

2) 	 Rendering processors, which take geometric descriptions of the picture to be rendered 
to draw raster images [9, 12]. Here, better VLSI will yield higher speeds. but simple 
duplication will not work without sacrifice. If two renderers draw pixels on the same 
raster, some means of collision avoidance must be developed. 

http://www.eg.org
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The method of graphics parallelization that we propose breaks up the graphics production 
task by object. The modeling subtask in a host processor distributes graphical objects to a 
number of independent general-purpose Graphics Processors (GP). Each GP performs the 
geometry and rendering tasks on its own graphical object without communication with 
other GPs. Each GP creates a full coverage-enhanced raster which displays its graphical 
object on a transparent black background. Each GP could be as simple as a 
microprocessor or as complex as a geometry pipeline feeding a rendering processor. 

One clear disadvantage of the object-level approach is the combination task that must be 
performed upon the N rasters that are produced by the N GPs. We have developed a 
unique VLSI architecture which solves this problem by implementing an anti-aliasing 
variation of Z-buffer called Composition [6,10]. This architecture utilizes parallelism in a 
way that has not been explored satisfactorily to date. In particular, while the Host-GP 
setup shown in section 3 is not new, other methods that have been proposed for 
combining the resultant rasters have been unsatisfactory. 

Our Compositor innovation makes this form of graphics parallelism feasible, since it solves 
the major problem of post-hoc raster combination in a non-restrictive manner. Moreover, 
the hardware solution simulated for this paper combines rasters in real time. 

Such a possibility opens new avenues of research in parallel graphics since, while 
proposals are nice, only real experience with parallelism fosters true understanding of the 
problems at hand. Hopefully, this paper will be a tool to help researchers gain a true 
understanding of the best parallel graphics methods. 

2. Prior Work 
The object-level approach has been proposed before, namely in papers by Weinberg (13), 
and by Fussel & Rathi [8]. The system by Weinberg, shown in Figure 1, has four types of 
processing elements labeled "0", "B", "C" and "F". The 0 elements are the object 
processors which receive object descriptions from the host and output pixel spans where 
the objects cover the screen. Areas not covered by an object do not produce pixels. 

Figure 1: Object-Based Architecture by Weinberg. 
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The C elements are comparators which collect a list of contributions to the pixeL The 
image contributions are neighbourhoods of the current pixel. A background 
neighbourhood is fed by the B element of the pipe, and as the pixel passes from 
comparator to comparator, the adjacent object processor is checked for contributions. If 
an object is either fully or partially visible, it is added to the growing depth-sorted list 
passing through the comparator pipeline. Finally, the F processors perform a filtering 
process which resolves the final scan line colour from the contribution list computed by 
the comparators. 

The advantages of this system are that it performs anti-aliasing, and it allows for real-time 
graphics. The disadvantage is complexity in the comparators and filter processors, since 
each must manage a variable-length list of pixel contributions, If each comparator and 
filteT processor were a VLSI chip, each would need a substantial amount of bufrer memory 
to hold the extra pixel information as it passed through the pipeline. 

Also, given N object processors, it is possible that each one will have a pixel contribution 
at every point on the screen. This means that to maintain the raster throughput provided 
by each object processor, each comparator and each filter processor must maintain a 
throughput of N times that of an object processor. Clearly this is the worst case, but given 
the rapidly growing image complexity of modern computer graphics, N will have a fairly 
small upper bound unless the VLSI technology for the comparators and filters is 
significantly advanced. In his paper, Weinberg estimated that picture production speed is 
depended upon the sum of all polygon perimeters in the scene measured in pixels, as well 
as the number of processors and the screen size. 

Figure 2: Fussel and Rathi's Object-Based System. 

In Fussel and Rathi's system hardware, the host simplifies the model into triangles and 
distributes it to a number of processors denoted by "P" in figure 2. Each "P" contains a 



186 

geometric transformation engine and 1000 simple triangle processors, each of which 
contains only registers, I/O and a couple of adders, Each triangle processor receives one 
transformed triangle, renders it, and feeds it to a tree of comparators denoted by "c" in 
Figure 2. The comparators simply perform Z-buffer: the nearest contribution is the one 
passed on, and all other pixels are thrown away. 

In sum, each object-level system has one of two correlated disadvantages: Weinberg's 
system performs anti-aliasing, but does so at the expense of low data throughput due to 
the buildup of pixel contributions. Fussel and Rathi's system allows for rapid lock-step 
pixel production, but does not perform anti-aliasing due to its use of Z-buffer. OUf system 
uses a hybrid Z-buffer approach which suffers from neither of these problems. 

3. The Composition Architecture 

We have designed a unique pipelined VLSI chip which performs the combination task 
upon the N rasters that are produced by the N GPs. The combination is performed by a 
binary tree of composition processors called Compositors. Each Compositor takes two 
rasters in the coverage-enhanced Z-buffer format required for the composition operation, 
and composes this pair of rasters into one raster of the same format. Since the 
composition operation is associative and commutative, we can take a pair of composed 
frames and compose them also. Thus, we can form a tree of N 1 Compositors. If M is 
the height of the tree, we can combine N 2M rasters into one final raster, as shown in 
Figure 3. 

The N leaves of the Compositor tree are the N GPs. Each GP feeds one input of a 
Compositor. Given that M > i > 0, at each level i of the tree, 2' Compositors combine 2'+1 

raster inputs to form 2' raster outputs. These 2' outputs feed 2,-1 Compositors at the level 
below, and so on until the root of the tree composes the last 21 raster inputs to form the 
final raster output. The output of the root Compositor feeds data to a frame buffer which 
displays the raster on a CRT. 

In total, there are N 1 Compositors, with the root of the tree producing the final raster 
picture of the entire model created by the modeling subtask. Each Compositor takes a 
fixed amount of time to compose each pair of pixels, so the root Compositor can feed 
results to the frame buffer at a fixed rate. 

The advantages to consider with this system are as follows: The system can be expanded 
to any practical degree, simply by duplicating the whole system and adding a new 
Compositor to compose the two streams at the root. This system offers O(N) parallelism. 
To double nominal performance one need only double the amount of GP and Compositor 
hardware and add one Compositor to compose the final two rasters. The increase in 
composition time is equal to the time to pass one pair of pixels through a Compositor. Of 
course, one can take advantage of the performance increase either by increasing the 
production speed of a scene of fixed complexity, or by increasing the complexity while 
holding scene production speed constant. 
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Figure 3: High-Level View of the Composition Architecture. 

Another advantage is that one could install different GPs at the top level, which means 
that different types of picture modeling could be performed for different parts of the same 
picture, as appropriate. 

With a change in the control structure, it is equally possible that this system could be built 
as a linear pipeline, in a manner similar to Weinberg's proposaL In this configuration, 
each Compositor takes data from the previous pipe element and from its local GP. Each 
Compositor passes its results to the next in the pipe, and the last passes its results to the 
frame buffer. 

The advantage would be easy scalability to any number of processors without much effort. 
The problem lies in error accretion. The number of Compositors that a pixel must pass 

through is an average of 2 in the linear setup versus exactly \og2 N with the tree 

arrangement. Since each Compositor approximates Duff's algorithm, errors will build up 
after a number of composition steps. From an error point of view, the least steps, the 
better, which is what the tree offers. Also, the latency from input to the output in the tree 

system is \og2 N vs. ~ for the linear setup, but this is not likely to matter given the speed 

of each Compositor. 
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With either organization, a problem to be confronted is the communications of polygon 
data from the host system to the GPs. A simple broadcast bus may be sufficient, but this 
may not be the case with larger systems. This issue is beyond the scope of this paper. 
Similarly, issues such as windowing and so on are not addressed here. 

In a related issue, the intended use for this system is animation, which means that it may 
be used to draw complex rasters one at a time. Speed gained due to parallelism may be 
lost to the overhead of broadcasting a lot of objects to the GPs. The question of how to 
manage graphics data in a parallel environment is unexplored, and we hope that this 
paper will foster interest in this area. 

4. Which Algorithm? 
The algorithm to perform composition relies upon coverage information stored in each 
pixel much in the same way that the Z-buffer algorithm stores depth information. Two 
algorithms have been developed and reported in the literature which use coverage data in 
two forms. Carpenter's A-Buffer system [I] is an anti-aliasing version of Z-buffer. The 
coverage measure used is a bitmap of the pixel at subpixel resolution. Each bit of the 
bitmap indicates whether its fraction of the pixel is covered by a polygon from the source 
raster. The bitmap approach to coverage estimation has antecedents in work by Catmull 
and by Crow [2,51, which suggest the llse of subpixel information to perform anti-aliasing. 
Similarly, work by Fiume et al [7]. advocates enhancing Z-buffer with subpixel resolution 
information for the purposes of parallel implementation on a shared-memory machine. 

In Carpenter's implementation, the Z-buffer contains either positive Z and colour or 
negative Z and a pointer to a list of unrendered depth-sorted pixel fragments. When all 
the pixel fragments have been collected, the top (closest) fragment has its area-weighted 
colour added to the pixel. Its area, approximated by the bitmap, is removed from legal 
consideration, and all those pixels underneath are clipped to the top pixel's uncovered 
area. The process then continues on the next closest fragment. Its weighted colour is 
added, and its area clips all those pixels under it. 

The key restriction with A-Buffer is that pixel contributions must be sorted in order of 
depth. This introduces two unpleasant problems, the first being that the algorithm does 
not work correctly when the pixels are out of order. This means that arbitrary pairs of 
pixels cannot be combined, since the clipping operation must take place in order of depth. 
If a Compositor were to implement A-Buffer, it would combine arbitrary pairs of pixels. 
The second problem with A-Buffer is that the sort must be performed on each pixel. With 
a large number of source rasters, this sort process will take a much longer time than the 
simple bit manipulation required by the core of the algorithm, since the sort does not have 
a linear time bound. 

From an architectural perspective, A-Buffer requires a two-stage setup like Weinberg's 
pipeline architecture. The first stage sorts a list of pixel data, and the filter processors 
perform the contribution calculation of A-Buffer. 
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Duff's composition method [6] offers a slightly different approach to the coverage problem. 
Duff stores an area component a with each pixel. a is a real number in the closed range 
[0.0 ... 1.0], where a value of zero indicates no coverage and one indicates full coverage. 
This component can also represent opacity for pixels of appropriate coverage. That is, if 
the actual coverage is 1.0 but a is given the value 0.5, the pixel will be "half transparent". 
Usually, though, a = coverage. When pixels for a source raster are produced, R, G, and B 
colour values are each multiplied by the coverage value for anti-aliasing. Thus, transparent 
black is where R, G, B and IX all equal zero. 

Aside from the addition of a, composition imposes a second change to Z-buffer 
organization, namely that Z values are moved from the center of each pixel to the pixel's 
comer. This means that the Z depth will be available to the four pixels that share each 
pixel comer (except at the raster's edges, of course). The composition takes pairs of rasters 
and composes them into one raster of the same format, so to compose a number of 
images, each image is composed with the destination raster. This movement of Z to the 
comer of the pixel requires that an extra row and column of Z's be supplied at the bottom 
and right edges of the raster in order to correctly process the last row and column. 

A depth sort of the pixel contributions will produce the best results, but Duff's 
experiments show that ignoring the order of composition causes no error in most 
situations, and only a small detriment to the picture quality in certain special cases. Thus 
composition does not suffer the unboundedness of A-Buffer. There is a trade-off however, 
since Duff's coverage measure does not include any positional information. 

Composition also does not have the problem that A-Buffer does with unsorted data, since 
the four corner values of Z are used instead of one simple minimum Z for each pixel 
contribution. When a pair of pixels are combined, the new corner Z values are the 
minimum of the respective corner contributions. Thus if one combines the nearest and 
farthest pixels, and if the new coverage is full, then a pixel of intermediate Z can still 
make a contribution if one of its Z values is less than the minimum of the nearest and 
farthest pixels. Of course, sometimes the result will not be quite right due to the Iinear­
intersection algorithm used to determine p. This is much better than the possible shut-out 
that an unsorted A-Buffer may produce. 

5. Duff's Composition Algorithm 

With two rasters named Front and Back, compose two pixels pixelFront and pixelBack by first 
comparing the four corner Z values of each pixel. If the comparisons all yield the same 
sign, then the pixel which is in front is the result pixel. However, as shown in three 
examples in Figure 4, some pixels will intersect: that is, Z comparison in some corners will 
be the opposite sign of Z comparison in other corners. In this case, we must determine the 
fraction p, which is the coverage ratio between the two pixels. 
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Figure 4: Three Examples of Intersecting Pixel Contributions. 

fi is determined by finding the points of Z intersection along pixel edges which have 
corners of opposite sign. These intersection points yield a dividing line between the 
contribution of pixelFront and the contribution of pixelBack' The number fi is the fraction of 
the pixel taken up by pixelFront. In the left example in Figure 4, /1 would be the proportion 
of the pixel labeled "Front", which equals about 30% of the pixel area. 

With fi in hand, the following equations are evaluated to find the final values of pixelcomp . 

Here just the equation for Red is shown, since the equations for Green and Blue are 
identical. 

Rcomp {3 X (RFront + (1-aFront) X RBack ) + (1-fi) X (RBeck + (1-aBack) X RFront) (l) 

lXcomp aBaCK aFron! - aBack X aFron! (2) 

Zcomp Min( (3) 

6. Compositor Simplification 

After equations (1-3) are algebraically simplified, they amount to one minimum operation 
to calculate Z, one add, one subtract and one multiply for a, and eight multiplies, three 
adds and three subtracts to calculate R, G, and B. However, /1 takes more effort since 
there are four classes of pixel intersection patterns: 

Unconfused 
In the two patterns of this class, all of the Z comparisons are of the same sign, and fi 
simply equals either 1.0 or 0.0. Equivalent to Z-buffer. 

Triangular 
In the triangular class, one of the rasters is closest in only one corner, which results in 
a triangular pixel area being defined. The left sample in Figure 4 shows an example of 
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a pattern of this class. The area of {:J for each of the eight possible patterns is 
calculated using equation (4). 

p1 X /52 (4)
2 

Trapezoidal 
Four intersection patterns are of this class, in which one raster is closest in two 
adjacent corners, and the other raster is closest in the two other adjacent corners, 
forming a trapezoidal area. The centre example in Figure 4 shows one pattern of this 
class. The area for /5 is evaluated using equation (5). 

n:::o p1 + {:J2 (5)
f' 2' 

Checker 
With the two patterns of this type, one raster is closest in opposite corners, and the 
other raster is closest in the other two opposite corners, forming a pattern like a 
checkerboard. The right example in Figure 4 shows one pattern of this class. 
Equations (6.]-6.3) must be evaluated to get the correct (:J value for this class: 

x = ~-~ /51(P3+{:J2-1) (6.1) 
1 ({:J3 + /52 1)(/54 + /51 1) 

{:J4 - P2(/54+/51~1),--_y (6.2)
- ({:J3+ /52-1 )({:J4+ (:J1 -1) 

{:J = (f32-P3)Y + {J3 - ({:J4-{:J1)x + /54 (6.3)
2 

As shown in Figure 4, /51 and {:J2 are the proportions of a pixd edge which are taken up 
by Front on pixel edges where the Z comparisons differ in sign. This fraction is edge{:J, and 
it is calculated by linearly interpolating the Z values to find where Front and Back meet: 

edge/5 (7) 

Here diffFront is the difference between Front and Back Z's in the corner where Front is 
nearest to the viewer. Conversely for diffSack • 

As one can see, the calculation involved is substantial, since for the triangular and 
trapezoidal classes, two divisions must be performed, and a total of six divisions must be 
performed for the checker class. Gate limitations in the gate array technology used to 
implement the Compositor preclude a full floating point calculation. Division is a complex 
operation to evaluate, and should be avoided if at all possible. 
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We have performed experiments over a number of raster composition situations using 
various approximation algorithms for {3. Each raster produced by an approximation was 
statistically compared to a reference raster produced by Duff's algorithm. 

The approximation that we will implement samples the Z differences at 9 points on the 
pixel, and assigns a nonzero weight to each sample if the sample yields Front as closest at 

that point. The weights which gave the best experimental results were ~ for the corner 

samples, 8 for the edge samples, and +for the center sample. The sum of all 9 weights 

equals 1. This weighting scheme implements a 3 X 3 Bartlett filter. 

This approximation had one of the best mean standard deviations, and was chosen 
because it had a simple hardware implementation. Experiments showed that this 
approximation for {3 had a mean error of 9.7%, and worst-case error of 12.2%. The best 
approximation tested had a mean error of 9.2%, and a worst-case error of 15.1%. By 
comparison, ordinary Z-buffer on the same pairs of rasters had a mean error of 54.3%, and 
a worst-case error of 63.5%. In practice, the approximation is almost indistinguishable 
from Duff's algorithm [11]. 

7. Compositor Implementation 
Each Compositor takes a pair of rasters pixel-by-pixel, and composes one pixel at a time 
in a pipelined fashion. Each pixel is six bytes of data, with 16 bits for Z, and eight bits for 
each of R, G, Band lX. Data flows from chip to chip along eight-bit buses. 

For the two input streams there are two eight-bit input buses FRONT_DATA and 
BACK_DATA. These have the associated l6-bit address bus IN_ADDR. The previous 
row 110 stream has bidirectional eight-bit data buses PREY _FRONT and PREY _BACK 
with 14-bit address PREV_ADDR and control lines PREV_RD_STRB and 
PREY _ WR_STRB. This 110 stream is needed to store the previous scan line of Z's so 
that it is available for Z comparisons at the top left and top right corners of the pixel on 
the current scan line. The fact that only Z's are addressed allows for a narrower address 
bus. 

The output stream has eight-bit output bus OUT_DATA, with 16-bit address 
OUT_ADDR. Aside from the clock input CLK, there are three miscellaneous control 
lines: RESET, an input which resets the whole Compositor; START_ROW, an input 
which indicates that the next pixel fetched is to start at the beginning of the scan line; and 
OUT_START_ROW, an output which is the input START_ROW delayed by the number 
of clock cycles it takes to propagate one pixel through the Compositor. 

Inside each Compositor, the Z values pass through a series of comparators which 
determine Z priority at each of the four corners of the pixel, as well as average priorities 
at the pixel edges and the pixel centre. The sample value arises from the sign bit of the 
two's complement difference. First, the corner comparisons. 
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Bottom Right zex, Y)Back - Z(x, Y)Front (S.l) 

Bottom Left Z(x - 1,Y)Back - Zex 1,Y)Front (S.2) 

Top Left = Zex-1,y-1)Back - Z(x-1,y-1)Front (S.3) 

Top Right = Z(x,y-1 - zex, Y -1 )Front (S.4) 

The edge comparisons are as follows: 


Bottom Edge = zex, Y)Back + Zex -1, Y)Back - zex, Y)Front Zex -1,ykront (9.1) 


= (Z(x, Y)Back - Z(x, Y)Front) (Zex -1. Y)Back Zex -1, Y)Front) 

= Bottom Right + Bottom Left 

Left Edge Zex -1, Y)Back + Zex -1, Y-1 )Back Zex -1, Y)Front Zex -1,y-1 )Front (9.2) 


Top Edge = Zex -1, Y-1 )Back + zex, y-1 )BaCk Z(x -1, y-1 )Front zex, Y -1 )Front (9.3) 


Right Edge = Z(x,y~-1)BacK + Z(X,Y)Back Zex,y-1)Front Z(x,ykront (9.4) 


The centre comparison is as follows: 


Centre = Z(X,Y)Back + Z(x-1,Y)Sack + Z(x,y-1)Sack + Z(x-1,y-1)Back (10) 


- Z(X,Y)Front - Z(X-1,Y)Front - Z(X,y-1)Front Z(x-1,y-1)rront 

Bottom Right + Bottom Left + Top Right + Top Left 

Bottom Edge + Top Edge 

These nine comparisons combine to form P by assigning a weight to each of the 
comparisons. If a comparison results in the Front pixel being closer at that point, then the 
appropriate weight is added to the Pbeing collected. If the comparison results in the Front 

pixel being farther, then nothing is added. The weights were 116 for the comer 

comparisons, i for the edge comparisons, and +for the center comparison. Using the 

nine weights developed above, the final equation for P is therefore: 

P (Bottom Right + Bottom Left Top Left + Top Right) x 116 + (11) 

(Bottom Edge + Left Edge + Top Edge Right Edge) X 8 + Centre X 4 

As the reader can readily see, the weights are all a fractional power of two, which means 
that the comparator sign bits can be directly added up ",ith a simple adder circuit. 
Moreover, the calculation of the edge comparisons can be reduced to one addition since 
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the edge comparison can be expressed as the sum of two adjacent comer comparisons, as 
shown in equation 9.1. Equation 10 shows a similar reduction to two edge differences for 
the centre comparison. 

8. P Hardware 
Z must enter the Compositor eight bits at a time. This means that the low eight bits must 
enter and be compared first, since propagating carries from the low-order addition will 
affect the high-order addition. This defines the input order: Zlow, Zhigh, a, Red, Green, 
Blue. For maximum throughput, it is important that these six data stream continuously 
from one Compositor to the next. Therefore, all data from one pixel should spend no 
more than six clock cycles in anyone pipe stage inside the Compositor. 

Each of the four comer comparisons can be done independently. If done in two's 
complement, the weight would be the inverse of the sign bit, shifted right the appropriate 
amount. 

All the edge comparisons can take place at once. Each edge comparator gets input from 
two comer comparators. Conversely, the comer comparators send their results to two edge 
comparators. In this case the edge comparison uses a two's complement adder, which 
generates a weight from the sign bit in the same way that the comer subtractors do. 

For the centre comparison, the same scheme is followed; the results from the previous 
comparison are added to form the final result. Note that the outputs of only two of the 
previous edge comparisons are needed, either ("top" + "bottom") or ("left" + "right"). 
This allows for optimization of the edge comparators whose outputs are unused. Again, 
the sign bit is used to denote the weight. 

Each adderlsubtractor has a D flip-flop to hold the carry-out of each compare. When the 
low byte is compared, the flip-flop holds the carry-in for the high-order compare. At the 
end of the high byte compare, the flip-flop holds the sign bit. Note that the sign bits from 
corner comparisons must go through two flip-flop delays. and the edge sign bits through 
one delay, since all the sign bits must arrive at the p adder at the same time. 

Figure 5 shows the dataflow circuit for p. The thick lines indicate eight, nine or ten-bit 
buses, while the thin lines are one bit wide. 

9. The Compositor Hardware 
Now that p is ready, calculate the new Z, a, R, G, and B. Equation (1) has been 
algebraically simplified. 

Rcomp (1 aFront X P) X RBack + (1 - aBack X (1 ..... P» X RFront (I) 

a comp aBack + aFront - aBack X aFront (2) 

Zcomp Min (ZFront , ZBack) (3) 
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Figure 5: fJ Circuit. 

To compute the new ZMin, we must simply pick the minimum of the two new Z's. This 
information is available from the p calculation circuitry. 

To compute the new acomp, we must do an add and a multiply followed by a subtract. In 
this case, multiplication is of two nine-bit numbers with range [0.0 ... 1.0]. a is eight bits 
wide outside the Compositor, using 11 11 11 11 as 1.0. When IX is read into the chip, all 
values of a above 0.5 are augmented by 00 00 00 01. Similarly, all values above 0.5 are 
decreased by 00 00 00 01 when the new a is written. Thus 1.0 equals 1 00 00 00 00, with 
the binary point after the most significant digit. 
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To produce the new (R, G, B)comp, the calculation occurs in two parts: For part one, 
FactorSack = (1 ~aFrontP) and FactorFront (1 ~aBack(1 ~P) is performed. This requires two 
multiplications and three subtracts. In this case, P is five bits wide in the range 
[0.0 ... 1.0]. Nominally, the multiplications are nine bits by five bits. The factors 
produced by this part are nine bits ·wide. 

For part two of the (R, G, calculation, FactorBack x RBack and FactorFront X RFront 
must be performed (three pairs of multiplications). This is followed by three additions of 
the pairs of products. Obviously, the input to this second set of multiplications is supplied 
by the output of the first set of multiplications. The multiplications in this case are eight­
bit by nine-bit, producing eight-bit products, which are then added to form three eight-bit 
sums, being the new R, G, and B. 

Totaling the above operations, we have nine multiplications and eight adds/subtracts. 
Some of the subtractions are always from 1.0, so these can be optimized. However, we 
need two multipliers, since nine multiplications will take nine clock pulses, exceeding the 
upper limit of six pulses required for maximum throughput. A straightforward way of 
splitting up the work is to have one multiplier do FactorFront X RFronb and the other do 
FactorBack X RBack ' Either one can do aBack X aFront. 

Figure 6 shows a box diagram of the dataflow part of the Compositor. The following 
paragraphs explain the function of each box in the figure. 

There are four 110 subcircuits in Figure 6: Input is connected to FRONT_DATA and 
BACK_DATA. Previous is connected to PREY _FRONT and PREY _BACK. DB at the 
bottom of the figure is connected to OUT_DATA. Save indicates the store-back operation 
of the current Z into the previous row buffer, and is also connected to PREY _FRONT 
and PREY _BACK. 

There are six major calculation subcircuits in Figure 6: BETA calculates P and selects 
ZMin' A + takes an incoming a and augments it by one if a> 0.5. A - does the opposite of 
A+. Neg does two's complement negation of its five-bit input. Multiplier takes either a 
pair of nine-bit factors or a five-bit and a nine-bit factor and multiplies them together. 
This circuit also contains an internal feedback path to calculate FactorBaCk and FactorFront 
as described above. 9-bit Add adds two nine-bit numbers. 

Lastly, the utility circuits are as follows: Mux is a multiplexor; it selects one of its data 
inputs and outputs it. D8 is an eight-bit D-type flip-flop register, and D9 is a nine-bit 
register. Both of these types load data at their inputs every clock cycle. The D8S and D9S 
circuits load when enabled. The Z circuit is a pair of D8S's with the output of the first 
feeding the input of the second in a pipelined fashion. 

With judicious pipeline scheduling, we ean maintain a composition rate of one pixel every 
six clock cycles. 
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Figure 6: Data Flow Overview. 
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10. Compositor Performance 

The design of the Compositor has been laid out and simulated using LSI Logic Inc.'s 
schematic entry system and hardware simulator. Simulations were performed using worst 
case temperature and voltage conditions. More importantly, simulations assumed that all 
non-primitive circuits were connected to each other using statistical wire lengths that are 
the average for a 6000-gate chip. The wire length restriction means that, for example, 9­
bit adders have very long propagation delay caused by the "average length" wire between 
the eighth and ninth bits. This delay would not occur in a real layout due to the locality of 
all the gates in the adder. 

Results show that the worst-case register-to-register propagation delay is 45.3nS, occurring 
at a 9-bit adder and carry feedback circuit in the f3 circuit. This implies a per-pixel 
throughput of one pixel every 271.8nS, or 3.679 megapixels per second. At a screen 
resolution of 512 x 512, this translates to a composition rate of about 14 frames per 
second. For a first attempt using old gate-array technology, this level of performance is 
clearly a lower limit on performance. With up-to-date fabrication technology, sensible 
layout, and better temperature and voltage conditions, we feel confident in predicting the 
existence of Compositors running at 30 frames per second and beyond. 

We are currently in the process of building a Compositor chip. 

11. Conclusion 

We have described a computer graphics hardware architecture that utilizes a new 
paradigm of hardware parallelism. While it is clear that the paradigm of object-level 
parallelism is not yet well understood, we feel that the drawback of this approach has been 
eliminated. Namely, the combination of many rasters into one raster can be performed by 
our Compositor architecture at the rate of normal video refresh. 

Future directions for research lie in two areas. The first area is the exploration of object­
level parallelism for graphics modeling and production. One can forsee many problems 
that should be solved. The other area is for possible generalizations of the Compositor 
architecture. 
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