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Combining Z-buffer Engines for 
Higher-Speed Rendering 

Steven Molnar 

Described IS a hardware architecture for combining the outputs of a number of z-buffer rendering engines to achieve 
higher performance than is possible with a single renderer. It allows a combination of renderers to achieve the same 
pllce! performance ratio as the individual renderers that compose it. and can be extended to create systems with 
arbitrarily high periormance. 

The desCribed architecture is based on a fusion of scan-line rendering and the conventional z-buffer algorithm. The 
frame buffers of several z-buffer engines are modified to scan out z-values as well as color values. Multiplexing 
devices combine the z/color streams from each pair of frame-buffers. These z/color streams are then combined by 
further multiplexers, creating a binary tree that funnels the z/color information from the many conventional frame 
buffers Into a single z/color stream. The color stream is then used to dnve a standard display device. 

The proposed architecture allows rendering rates of millions and even tens of millions of polygons per second. The 
basic architecture can be extended with additional hardware to perform antialiasing and texture-mapping. 

1. Introduction 
The performance of raster graphics hardware has increased dramatically over the past 
several years. Machines now exist that render and shade hundreds of thousands of 
polygons per second. Graphics engines are relying more and more heavily on parallelism 
to speed the rendering process. As levels of parallelism increase in future years, one can 
expect architectures to come closer to physical limitations such as the speed of light and 
maximum memory bandwidths. When this point grows near, performance gains will 
become more and more difficult. 

This paper explores a way to sidestep the above problem by combining the outputs of 
multiple z-buffer rendering engines to achieve higher performance than is possible in a 
single renderer. The resulting composite system will have approximately the same 
performance/price ratio as its component renderers, and can be used to build systems with 
arbitrarily high performance. 

http://www.eg.org
http://diglib.eg.org
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Figure 1 shows an overview of the proposed system. In this example eight rendering 
engines, each capable of rendering 400,000 Gouraud-shaded triangles per second, are 
harnessed together, providing a net rendering speed of 3.2 million triangles per second. 
Because of the way that images are combined, no performance degradation occurs no 
matter how many frame buffers are used to achieve the performance. 

This paper describes the method used to combine outputs from multiple frame buffers, 
analyzes the cost effectiveness and limitations of these composite systems, and proposes 
extensions to allow more sophisticated rendering techniques such as antialiasing and 
texture-mapping . 
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Figure 1: CompOSite system for displaying 3.2 million triangles per second. 

The work in this paper follows related work by a number of researchers: 


[Demetresc80j and [Oeering88] describe pipelined architectures for rendering shaded 

polygons where one polygon is assigned per processor. Each processor contains input and 

output RGB and z ports. The image is traversed pixel-by-pixel in raster scan order. Each 

processor compares the z value at its input with the z value computed for its polygon. If 

the polygon CDvers the pixel and the computed z value is smaller than the input, the 

processor transmits the RGB and z values it just calculated. Otherwise it simply transmits 

the RGB/z at its input. Demetrescu designed chips based on his ideas, but never 

integrated them into a complete system. Deering et. a1. describe an overall system 

architecture, including another custom processor to implement sophisticated lighting 

models, but did not build a prototype system, 


[FusseI82] also proposes an architecture in which one polygon is assigned per processor. 

Rather than configuring the processors in a pipeline, as in the above architecture, Fussel 

introduces the idea of combining images using a binary tree of comparators. 
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[Kedem84] proposes a related architecture for ray-casting Constructive Solid Geometry 
(CSG) objects. In this system, primitives of a CSG tree are assigned to custom processors. 
Other custom processors at the interior nodes of the CSG tree perform z-comparisons and 
inlout classifications required for CSG. Kedem and Ellis recently built a prototype of 
their system. 

[Leray87] proposes a method for combining two z-buffered images to form a composite 
image in a manner analogous to chroma-keying. He proposes an unpipelined version of 
the the same color/z comparison hardware we describe in the following section. His paper 
does not extend the idea to a system composed of numerous frame bufrers. 

2. Scan-line Composition of Z-buffer Images 

Scan-line composition of z-buffer images is an extension of the basic z-buffer algorithm, in 
which z-values are used to determine which components of an image are visible [Foley82, 
pp. 560-561]. If a database is distributed across multiple rendering engines, with each 
engine using the same modeling and viewing transformations, a composite scene can be 
generated by comparing corresponding pixels in each frame buffer and choosing the pixel 
with the smallest z-value for display in the composite image. 
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Figure 2: Conventional high-resolution video system. 

The video scan-out mechanism of a conventional frame buffer provides a ready-made 
method to do this. Normally RGB values for each pixel are scanned out in raster order 
and sent to the display device (Figure 2). If we modify the frame buffer to scan out z­
values as well as RGB values, we can combine the RGB values from two frame buffers 
with a simple piece of hardware. This hardware part is shown schematically in Figure 3. It 
compares incoming z-values from two z-streams and passes the z and RGB values of the 
visible pixel. It can easily be built from off-the-shelf components for around US $100 (plus 
board and connector costs). The composite machine generates images as follows: first, 
each rendering engine transforms its portion of the database into screen space and renders 
it into its zlcolor buffer. Next, the frame-buffers synchronously scan out z and color 
values into the tree of multiplexing devices, where they are successively combined until a 
single RGB/z stream emerges at the root. Finally, this RGB/z stream is used to produce 
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Figure 3: Z-comparator I multiplexing device. 

the composite image by feeding its RGB portion into color look-up-tables and video 

DACs. Figure I, on the previous page, shows the entire display process. 


The following sections discuss aspects of the architecture and display process in more 

detail. 


2.1. Database Distribution 

In a composite system each renderer is responsible for rendering a fraction of the 
database. For good renderer utilization, the database should be distributed evenly across 
the renderers. If a database is hierarchical one must decidc whether to distribute primitives 
horizontally or vertically. 

Horizontal distribution means replicating the entire hierarchical structure at each renderer 
and scattering the primitives at each node across all of the renderers. This scheme has the 
advantage of making load balancing among renderers automatic (assuming that primitives 
can be rendered at a uniform rate and that each node contains a large number of 
primitives), but has the disadvantage of requiring extra space and time to store and 
traverse multiple copies of the database hierarchy. For databases with deep hierarchies, 
these penalties can be especially costly. 

Vertical distribution assigns entire subtrees to renderers. A renderer, therefore, stores only 
the portions of the hierarchy for which it is responsible. This scheme saves space and 
reduces the time spent traversing the hierarchy, but makes load balancing among renderers 
more difficult, since subtrees in the hierarchy are likely to contain different numbers of 
primitives, and changes in viewing parameters can cause whole subtrees to lie entirely 
outside of the viewing frustum. To overcome these limitations, a dynamic load calculation 
must be performed on the database, and heuristics used to allocate subtrees to renderers. 
The overhead of allocating the database in this manner could easily overwhelm any 
savings in database traversal time. 
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2.2. Scanning Out RGB and Z-values 

The frame buffers in most commercial rendering systems are built out of dynamic memory 
parts. Single-ported DRAMs are generally used to store z-values and other pixel data not 
for display, while dual-ported VRAMs are used to store the RGB values. An easy way to 
scan out z-values is to store them in VRAMs in the same manner as RGB values. VRAM 
memory densities approach DRAM densities, and the same sequencing logic that drives 
the RGB scanout circuitry can drive the z scanout circuitry. A method for synchronizing 
the scanout circuitry on each of the boards is needed. A straightforward way to do this 
would be to provide a global, synchronous scanout clock to each frame buffer board. Note 
that if rendering is to occur concurrently with video display, the z-buffer must be double­
buffered in addition to the color buffer. This requires extra memory. These changes will 
require modifications to the frame-buffer board, but the changes will largely be confined to 
the video output portion. 

2.3. The Comparator/Multiplexing Device 

The comparator/multiplexing device merges two RGB/z data streams into one. Even 
though simple, the multiplexing device must run at very high speeds 150 MHz for a 
1024 X 1280 frame monitor refreshing at 60 Hz). The multiplexer can be pipelined by 
sending z-values one clock cycle ahead of RGB values. It can be implemented using off­
the-shelf ECL components or a custom gate array. Using Fairchild FlOOK ECL parts a 
comparator/multiplexer such as the one diagrammed in Figure 4 can be built for around 
US $llOt (plus board and connector costs). 

z 

Clk 
(150Mhz) 

Figure 4: Figure 4, Pipelined Z-comparator I multiplexing device, 

t Price of 6 Fairchild FlOOl66 and 12 Fairchild FlOOJ55 ECL parts (Hamilton-Avnet Electronics, Raleigh, 
NC, prices quoted 30/8/88), 
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3. The Quest for Higher Performance 

Computer graphics rendering hardware has enjoyed the same exponential-increase in 
performance as general-purpose computers. Commercial raster graphics systems began 
appearing in the late 1970's. The earliest of these were general purpose processors coupled 
with frame buffer memories, and had very low performance compared with today's 
standards. Hewlett-Packard and Silicon Graphics in 1986 each delivered machines capable 
of rendering 15-25 thousand triangles per second. This year Ardent Computer Corp .. 
Silicon Graphics Computer Systems, and Stellar Computer Inc. each are delivering 
graphics supercomputers boasting performances of 100-200 thousand polygons per second 
[ManueI88]. Shaded graphics rendering speeds have been increasing by nearly a factor of 
two every year. 

But can the trend continue? Clock speeds of the latest generation graphics engines lie in 
the 10-50 Mhz range. Certainly some increase is possible as technologies mature, but 
wiring delays become more and more significant as clock speeds increase. The speed of 
light places a fundamental limit on how fast signals can propagate in any computer or 
graphics system, and technology is rapidly approaching that limit. We can expect only a 
modest increase in performance due to increased clock speeds. 

3.1. Parallelism 

What about parallelism? The latest generation graphics engines already contain many 
levels of parallelism. Consider, for example, the Silicon Graphics Iris 4D170GT and the 
Stellar GSlOOO graphics workstations, both released this year. The Iris is capable of 
rendering 100,000 Gouraud-shaded, z-buffered triangles per second. It uses a pipeline of 5 
geometry engines for its "front-end", and a total of 32 processors for scan-conversion and 
video scanout. The Stellar GSIOOO renders 150,000 Gouraud-shaded triangles per second. 
It has four veetor floating point engines for front-end calculations and 16 processors 
arranged in a "footprint" pattern for scan-conversion and pixel operations. 

The fact that these graphics engines employ many layers of parallelism is no coincidence. 
Rendering 100 thousand triangles per second requires 20 MegaFlops of compute power 
and a memory bandwidth of over 30 Megawords per second -very demanding for a 
uniproeessor. Higher-speed rendering requires proportionately more performance. Clearly 
parallelism is necessary, but how can it best be applied to get ncar-linear performance 
increases from added processors? 

Existing machines apply parallelism in two locations: the front-end, where the display list 
is traversed and primitives are transformed from object space to screen space, and the 
back-end, where primitives are scan-converted and rendered into frame-buffer memory. 

Front-end parallelism appears to be a fundamental requirement for high-performance 
rendering architectures. lTorborg87] discusses some of the problems and issues involved in 
front-end architectures; further discussion is beyond the scope of this paper. 
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Back-end parallelism has proven effective in many systems, such as the Stellar GSlOOO 
[Apgar88], the Iris 4D!70GT [Akeley88], the Ardent Titan, and Pixel-planes [Eyles87], but 
suffers from decreasing returns as it is extended further and further. In all of these 
schemes clock speeds and bandwidth into frame buffer memory place strangleholds on 
maximum possible performance, regardless of the number of processors. 

The architecture proposed in this paper applies parallelism at a later stage in the display 
pipeline -after the image is generated in the individual renderers. Since a constant 
amount of information is accumulated for each pixel of each frame buffer (one z and color 
value), no matter how many primitives contributed to the pixel, pixel information from 
several renderers can be combined without regard to scene complexity or uniformity. This 
only requires a single z-compare and setting of a multiplexer at each level in the 
multiplexing tree, so it can be done at video scanout speeds. 

Because the tree depth is small (log2 # of renderers) as is the pipeline delay for each stage 
in the tree (2 X the video clock period), this scheme adds no appreciable latency to the 
frame display time, a major problem for systems that use pipelining to achieve high 
update-rates. These properties enable one to build systems with arbitrarily high 
performance. 

3.2. Economics 

The cost of the composite system described above is equal to the sum of the costs of the 
individual renderers (with enhancements made for scanning out z-values) plus the costs of 
the multiplexing devices. A composite rendering system with 2n frame buffers requires 
2" - 1 multiplexing devices. Multiplexing devices are very cheap: EeL parts cost $110 per 
device; board area and wiring might add an additional $100 per device. The smallest 
rendering/z-buffer systems cost several thousand dollars. Therefore, the price of 
multiplexing devices is a negligible component of the price of a composite system, and the 
overall cost-effectiveness of a composite system will be determined by the cost-effectiveness 
of the individual renderers. 

Figure 5 shows performance/price ratios for a number of currently-available rendering 
systems. One can see from the graph that the highest-performance renderers today have a 
higher performance/price ratio than smaller systems. This means that current architectures 
are not yet pushing physical limitations and that one cannot hope to build a composite 
system competitive with existing rendering systems. However, if one demands more 
performance than is possible in a single system, or one waits several years until rendering 
architectures approach closer to theoretical limits and the performance/price curve begins 
to turn downward, composite architectures become economically feasible. 

:j: Machines are not associated with letters because the purpose of this graph is to show trends in 
performance vs. price. not to compare machines. For a fair comparison, standard benchmarks and 
configurations are needed. 
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Figure 5: Performance/price ratios for representative systems*' 

4. Advanced Rendering Algorithms 
The limitations imposed by the composite architecture are two-fold: 

• 	 Only a (small) constant amount of information from each pixel can be scanned out 
and used for final image generation. 

• Hidden-surface elimination must be done by z-buffer alone. 

These requirements preclude rendering scenes with shadows, true transparency, or scenes 
defined by set operations (as in the display of Constructive Solid Geometry objects). 
Nevertheless, several important rendering algorithms can be implemented by placing a 
frame buffer with pixel-processing capabilities between the root of the composition tree 
and the video look-up-tables. These algorithms include antialiasing, texture-mapping, and 
a stochastic form of transparency. This scheme generalizes into a method of factoring 
pixel-oriented computations out of the individual renderers and onto this frame buffer 
processor to increase rendering throughput. 

4.1. Antialiasing 

Aliasing results from two steps in the rendering process: scan conversion and depth­
resolution. Because scan conversion is performed at the individual renderers, the renderers 
can remove scan-conversion aliasing artifacts. Depth-resolution, however, is divided 
between the renderers and the z-composition tree, so individual renderers will not be able 
to remove all of the z-buffer artifacts. Consequently, a more general antialiasing technique 
is needed. 

Two basic approaches toward anti aliasing exist: explicit calculation of pixel-coverage (A­
buffer techniques), and supersampling techniques. 
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The A-buffer algorithm [Carpenter84] produces high-quality antialiased images, but 
requires an arbitrarily long list of partially obscuring surfaces to be maintained for each 
pixel. This is obviously not suitable for a composite architecture in which only a fixed, 
small amount of data can be stored at each pixel. 

Simplifications and variants of the A-buffer scheme are possible (see [Duff85]). One 
appealing simplification, which would incur little speed penalty, is to truncate the list of 
partially-visible surfaces at two. This would obviate the need for the partial coverage mask 
and its associated computations. Two data fields would be added to the RGB/Z fields for 
a pixel: alpha (a one-byte value included with the pixel's RGB value), and a second RGB 
value. Alpha specifies the fraction of the pixel covered by the closest surface, and the 
second RGB value specifies the next-closest surface's color. After a frame is rendered, 
pixels have their color values blended with the color values of the next-closest surface 
according to the following equation: 

RGB = a X RGBclosest surface (1 a) X RGBnext closest surface 

This technique will produce acceptable results for most pixels, but will fail when the 
second surface does not completely cover the pixel. Another difficulty arises in relation to 
the composite architecture: when pixel streams merge, there is no way to determine which 
surface should be the next-closest surface: the next-closest surface from the same pixel 
stream, or the closest surface from the other pixel stream. Of course, extra hardware 
could be added to sort next-closest surfaces, but a proliferation of parts and wires would 
result and "bad" pixels would still be producedt . 
Supersampling produces images of uniformly high quality, but at great computational 
expense; an image with N samples per pixel takes N times as long to render as a simple 
image. [Fuchs85] and [Eyles87] present a way to supersample an image in incremental 
fashion, presenting the raw image first at full speed, then refining it by performing a 
weighted average with further samples. This is done for as long as the image remains 
stationary. This technique can be implemented on a composite system by adding an 
accumulator frame buffer after the pixel streams are combined. This frame buffer must 
have the ability to calculate linear combinations of color values at frame rates. This 
approach seems well-suited for interactive applications, allowing renderers to achieve 
maximum update rates while the scene is changing and to anti alias while the scene is 
stationary. 

t [Shaw88] (published concurrently with this paper) describes a VLSI implementation of the 
comparator/multiplexor that addresses the problem of z-buffer aliasing. These compositors perform 
antialiasing using a simplified version of Dull's image composition algorithm [Dulf85]. Shaw's architecture 
allows anti aliasing to be performed without the prohibitive speed penalty of supersampling, but requires 
more extensive modifications to the z-buffer renderers and occasionally produces miscolored pixels. 
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4.2. Texture Mapping 

Texture mapping can be performed in either of two locations: at individual renderers, or 
after the pixel streams have been combined. Each location has advantages and 
disadvantages. 

Texture mapping at the renderers requires no additional hardware, but requires texture 
maps to be stored multiple times. This is expensive for large or numerous texture maps. It 
also wastes processing resources, since texture calculations are performed on pixels that do 
not contribute to the final image. 

When texturing within the pixel stream, the texture space coordinates (u and v) and a 

texture tag replace the RGB value at a pixeL A special hardware processor performs 

texture look-ups for pixels needing texturing. Note that a simple table lookup will not 

suffice here, since aliasing artifacts are very pronounced with textures. To combat these, a 

technique such as summed area tables [Crow84] or mip maps [Williams83] must be used. 

A disadvantage of this technique is that it would be very difficult to build a texturing 


. engine that could operate at video speeds. Pixel scanout would likely have to proceed at 

some slower speed determined by the texturing hardware. 

4.3. Transparency 

Transparency is difficult to handle in a z-buffer system since rendering transparent objects 
requires primitives to be sorted and rendered in order. One method to approximate 
transparency is to use a random screen to disable pixels on a transparent object. This 
technique has been implemented on Pixel-planes 4 [Eyles87]. It can be annoying because it 
adds noise to the image, but the noise becomes less objectionable after a number of 
uncorrelated images have been averaged together, which occurs in the above antialiasing 
scheme. 

5. End of Frame Calculations 
The above algorithms require an extra piece of hardware at the root of the z-composition 
tree. One can conceive of a system in which this hardware unit is made more general 
purpose, allowing other end-of-frame calculations to be performed there, such as lighting, 
shading, and environment mapping calculations. Such a system would factor out a 
significant portion of the rendering task from the individual renderers, increasing the 
effective speed of the renderers. 

A prototype for such a general purpose frame buffer! ALU exists: the UNC Pixel-planes 
system [Eyles87]. Pixel-planes contains a 512 X 512 frame buffer built of custom VLSI 
chips. Each pixel in the frame buffer contains 72 bits of local memory and a one-bit 
processor. To serve as an end-of-frame processor, the Pixel-planes chips would have to be 
modified to allow pixel values to be scanned in, as well as out, but some features of the 
current chips could be eliminated. Such a system could achieve very efficient utilization of 
processing resources, in addition to rendering at arbitrarily high speeds. 
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6. Conclusion 

We have shown how a number of z-buffer engines may be combined to form a composite 
rendering system with arbitrarily high performance and no added frame latency. The 
composite architecture requires only minor modifications to the z-buffer systems and the 
addition of a tree of comparator/multiplexing devices to combine the RGB/Z outputs of 
the multiple renderers. 

Since the comparator/multiplexing devices are very inexpensive, a composite system will 
have approximately the same performance/price ratio as the renderers that compose it. 
This makes it easy to determine when a composite system is cost-effective. At the present 
time, performance/price ratios increase with hardware performance, so composite systems 
only make sense if they render faster than any current system. In the future, as renderer 
technology pushes closer to fundamental limits, the performance/price curve of rendering 
systems will certainly turn downward, making the composite architecture competitive with 
systems of the same performance. 

Advanced rendering techniques such as antialiasing, texturing, and transparency can be 
performed by adding an extra frame buffer/pixel processor at the root of the z­
composition tree. This provides the potential for factoring end-of-frame computations out 
of the individual renderers. 
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