
9 

PROOF: An Architecture for Rendering In 
Object Space 

Bengt-Olaf Schneider, and Ute Claussen 

This paper gives a short introduction into the field of computer image generation in hardware. It discusses the two 
main approaches, namely partit:oning in Image space and In object space. Based on the object space partitioning 
approach we have defined the PROOF architecture. PROOF is a system that aims at high performance and high 
quality rendering of raster images. high performance means that up to 30 pictures are generated in one second. The 
pictures are shaded and anti-allased, giVing the images a high degree of realism. The architecture comprises tnree 
stages w'1ich are responsale for hidden surface removal, shading, and filtering respectively. 

Tne first of teese stages a pipeline of object processo's. Each of these processors stores and scan converts one 
obiect FU'lhermore, It interpolates the depth and the normal vector across the Object. Each object processor IS able 
to handle objects of a certain primitive type. T1e speclaiization of an object processor to a certain primitive type is 
encapsulated in a Single block called pr:'11illve processor. 
'The OJ!out of the object processor pipeline is the ,nput to a stage for shading. The illul1ination model employed takes 
In~o account both diffuse and specula, reflections. The paper reviews Gouraud and Pllong shading with regard to 
their suitabli.ty for a hardware implementation. 
The final stage of the PROOF system is formed by a stage for filtering the colours of those objects that contribute to a 
pixel. This done by constructing a subpixel '113sk and filtering across an area of 2 2 pixels. 
At the end. the paper bnefly reports on the current state of the project. 

Computing Reviews Classification: 
G.l.2 [Processor Architectures] : MulVpie Data Stream Architectures Pipeline processors 
C.3 [SpeCial-purpose and Application-based Systems): Real-time systems 


[Computer Graphlcsl : Hardware Arc'litectures Raster display deVices 

1.3.2 {Computer GraphiCS] : Graphics Systems Distributed/network graphics 

Keywordsl rendenng, scan converSion. h;dden surface removal. Interpolation, shading, .!Iuminat,on mOdels, filtering, 
anti-aliaSing, object processor, object-onented 

http:suitabli.ty
http://www.eg.org
http://diglib.eg.org


122 

1. Introduction 

There are various applications that demand very fast graphics. They include flight 
simulators. animation, and process controL The constraint that the pictures must be 
updated in only a few frame times -in the worst case in only one frame time 
(;:0:::; 20 ms ... 30 is a great challenge to the graphics hardware. In this time slot the 
following functions have to be carried out by the graphics system: 

• 	 Geometric and perspective transformations, which define how the objects of the scene 
will appear on the screen. In order to reduce the number of objects to be processed, 
clipping of the objects takes place. 

• 	 Visibility of the objects has to be determined by hidden surface removal calculation. 

• 	 The mapping of the continuous scene definition to the raster screen by scan 
conversion. 

• 	 Apply shading and anti-aliasing in order to give a natural appearance to the generated 
image. 

These tasks can be divided into two groups: the geometrical processing (transformations 
and clipping) and the pixel oriented processing. There are different opinions whether 
visibility computations and shading should take place in the geometric part or in the pixel 
oriented part. In most systems that are aiming at fast image generation these parts are 
allocated to the pixel processing. In this case hidden surface removal is done employing a 
(distributed) z-buffer, and shading is accomplished with incremental methods like Gouraud 
or Phong shading. 

The paper starts with a short review of approaches to high speed image generation using 
VLSL Section 3 describes the overall structure of our approach, the PROOF system. The 
next sections give details about the single stages in PROOF that are responsible for 
visibility computations, shading, and anti-aliasing. Each of these sections briefly discusses 
the algorithms to be employed. The paper concludes with a short report of the current 
state of our project. 

2. Approaches to Partitioning the Pixel Processing Step 

As a consequence of the large amount of data to be handled the pixel processing is 
computationally most intensive in the process of image generation. Many work has been 
done to speed up this part of the image generation. There are at least two approaches to 
this problem. Both try to distribute the necessary computations on a multiprocessor 
network [AF86], [GF85]. 

The first one that has been investigated very thoroughly in the past, tackles the problem 
by partitioning the screen into smaller area~, in the extreme case into the single pixels. A 
processor is assigned to each such area. The processors receive the transformed and 
clipped objects from a geometry processor. Every processor looks whether an object covers 
the associated pixel and conditionally stores the depth and the colour of that object. The 



123 

depth is used to determine the object lying closest to the viewer. This is done by 
comparing the stored depth value with that of the new object. After all objects have been 
sent, the portions of the screen that are associated with the processors contain an image of 
the scene with removed hidden surfaces. This solution is a distributed implementation of 
the popular z-bufl'er algorithm [EyI87], [Dem85]. 

The second approach distributes the scene's objects amongst several processors. For every 
pixel, each processor scan converts its objects and computes their depth value. In a second 
step, the depth values of all the objects at a certain pixel are compared and the closest one 
is put forward to the screen. This approach constitutes a parallel realization of the z-buffer 
algorithm, too [CD8l], [FR82], [Wei81]. 

A comparison of these solutions shows that they are complementary. For a given number 
of processing elements, the image space partitioning is restricted in the nwnber of pixels 
that can be handled whereas object space partitioning limits the numbers of objects in the 
scene. On the other hand. the performance (e.g. update rate of the image) of a system 
employing image space partitioning decreases with an increasing number of objects. 
Performance of a system partitioned in object space degrades when the screen resolution is 
raised. 

We are exploring the object oriented approach because we think that, in the future, scene 
complexities will increase so much that a pixel oriented partitioning will not give the 
desired performance. 

PROOF (Pipeline for Rendering in an Object Oriented Framework) is a system that 
speeds up the rendering task by handling the objects of the scene independently and in 
parallel. Because our system forms a distributed z-buffer it will show aliasing deficiencies if 
no care is taken to avoid them. Therefore, special circuitry is provided to avoid aliasing. 
In order to generate pictures with a high degree of realism, we have defined the PROOF­
architecture such that a Phong-like shading can be incorporated into the system. 

3. Description of PROOF 

3.1. System Overview 

PROOF consists of three main building blocks (Figure 1). The task of the geometry 
processor consists of all calculations that are required by the following stages to render the 
image. This comprises the transformations, the clipping, and some shading calculations. 
The design of the geometry processor is out of the scope of our project. There already 

exist designs that are capable of computing these data [Cla82], [F*88j. 


The first stage after the geometry processor is formed by a pipeline of object processors. 

The tasks of the object processor pipeline (henceforward called OPP) is scan conversion 
and hidden surface removal of the objects in the scene. Furthermore, it provides data that 
are needed by the following stages for shading and filtering. The OPP is an 



124 

scene scene 
description transformation 

Geometry Processor 

object 
processors 

shading 
processors 

filter 
processors 

frame buffer 

Figure 1: The system architecture 01 PROOF 

implementation of the object oriented solution to computer image generation. Every 
element of the OPP, called object processor (henceforward referenced as OP), can store 
one object. The geometry engine is pushing "pixels" into the OPP. The output of the opp 
is, for every pixel, a list of objects that are potentially visible at this pixel. The 
construction of this list is explained in the following section. 

The shading stage calculates the colour of all objects in this list. The shading algorithm 
will incorporate ambient light as well as diffuse and specular reflections. For every pixel, 
the shading stage produces a Jist of shaded objects. 

The final pixel colour is computed by the filter stage. The fllter takes the list of objects 
and computes a subpixel mask that indicates which object is actually visible at which 
sub pixel. The colours of the contributing objects are combined by weighted flltering 
resulting in the final pixel colour. 

Between these three stages there are look-up tables (LUT) that provide information 
necessary for the following stage. The LUTs reduce the amount of data that has to be 
propagated through the system. If necessary, the LUTs are updated by the geometry 
processor before the start of a new picture. 



125 

The coloured pixels that are produced by the filter stage are written into a frame buffer. 
Our ultimate goal is real-time generation of pictures, which implies the generation of pixels 
at video rate. In this case a frame buffer would be obsolete. However, there are several 
reasons to incorporate a frame buffer. The first versions of our system will probably not 
work at the intended speed, which will make a frame buffer necessary. The second reason 
is that there are many algorithms, e.g. in image processing, that work on the basis of pixel 
images. The frame buffer will allow an interface to such applications. The frame buffer 
will also serve as a common interface of our system to other graphics systems. We are 
planning to use low cost graphics hardware for the generation of text, cursor symbols, etc. 
These graphics systems would write their output directly into the frame buffer. 

3.2. The Object List 

As already mentioned, a list of objects that are potential contributors to a pixel is 
propagated through the pipeline. The reason for this procedure is to compute more 
accurately the pixel colour in order to get rid of the aliasing problems. Because these 
problems stem from the fact that only one object is associated with each pixel, we collect 
all objects that may influence the pixel's colour. Such objects are characterized by thc 
following properties: 

• 	 The object covers the pixel at least partially, that is the pixel is a part of the object or 
it is intersected by the edge of the object. 

• 	 There is no opaque object closer to the viewer that covers the pixel completely. 

Objects that have these properties are included in the list such that the list is sorted by 
depth with the closest object first. 

The construction of the list is carried out by the OPP. Thc compression of the list to one 
colour takes place in the filter stage. 

3.3. Communication in the System 

PROOF will be composed out of many integrated circuits. High speed communication in 
such a large system constitutes a big problem because of scveral effects like wire delay, 
clock skews, noise, waveform distortion, etc. The most severe of these are wire delay and 
clock skews. Fortunately, our architecture is mostly organized in a pipelined manner. We 
took advantage of this fact by stressing the locality of the interconnections in our 
communication scheme. Although there is no global clock in the system, all processing 
elements are synchronous circuits. The clock is distributed along the pipeline. This 
guarantees that neighbours in the pipeline always share the same clock with only little 
clock skew. This simplifies the design of the interfaces since there are no synchronization 
problems. 



126 

4. The Object Processor Pipeline 

4.1. Task of the OPP 


The OPP is responsible for scan conversion and hidden surface removal. This is 

accomplished by a pipeline of object processors [Sch88]. Each of these object processors 

store the description of one object and scan converts this object. The depth sorted list of 

objects for every pixel is constructed in the OPP. The list entries describe the properties of 

the object at the current pixel. This comprises the object identifier, the depth value, 

interpolated normal vectors (i.e. normal to the surface of the object), and geometric data 

describing the position of the object in relation to the pixel centre. 


4.2. Properties of the OPP 


The object-oriented approach exhibits some advantages and some drawbacks. 


• 	 In contrast to image space partitioning. the OPP allows to render rather complex 
scenes with only modest degradation in performance. 

• 	 The OPP is capable of generating pictures in real-time (30 frames per second) at 
medium screen resolutions (512X512). 

• 	 In its principle architecture the number of objects in the scene is limited by the 
number of OPs. 

The architecture offers considerable potential for overcoming this last limitation. We are 
currently investigating several ways that lead to a graceful degradation in performance if 
the number of objects exceeds the number of OPs. One could be to establish a feedback of 
the output of the OPP to its input. Another alteruative is to utilize a single OP several 
times per frame by objects that do not overlap in the y-coordinate. 

Reset 

Registers 
Primitive 
Processor 

F 
I to OPi+l 
F 
0 

Comparator Data 

Figure 2: Block diagram of an object processor 



127 

4.3. Description of the Object Processor 

The elements of the OPP are the object processors. They store and scan convert objects of 
a certain type of primitive. At the present time, the OPs can only handle triangles and 
vectors. However, the architecture of the OP can easily be changed to process primitives of 
another type. This has been achieved by encapsulating the parts of the OP that are 
dependent on the primitive type. This part is called the primitive processor. The rest of the 
OP is not influenced by the actual primitive type. This enables us to design a family of 
object processors that only differ in a specially designed primitive processor. 

The internal structure of the OP consists of two main blocks (primitive processor and 
comparator) and some auxiliary functions (FIFO and communication) (Figure 2). The 
primitive processor contains registers that store the parameters which describe the stored 
object. These parameters describe the geometry of the object (e.g. vertices, control points, 
etc.), the degree of coverage of the pixel (completely, partially, not at all), and the normal 
vectors to the surface. The contents of these registers is used to scan convert the object 
and to linearly interpolate depth value and normal vector across the object. 

The output of the primitive processor, i.e. object identifier, depth value, and normal vector 
are sent forward to the comparator. Here, a comparison of the depth value of the stored 
object and that of the incoming object takes place. The object being closer to the viewer is 
selected for the propagation to the next OP. The degree of overlapping of the current pixel 
and the object sent rules how the retained object is processed further. If the object sent 
covers the pixel partially the object held back will be sent in the next time-slot, because 
this object may still contribute to the current pixel. If the object sent covers the pixel 
totally the object kept is discarded. In case that it is the incoming object that is discarded 
implies that the objects in the rest of the list of a particular pixel can be discarded as well. 
This procedure guarantees that all lists in the OPP are constructed according to the rules 
defined above. 

Obviously, insertion/removal of objects to/from the list the length of the list. This 
causes jams (in case of insertion of an object) and holes (in case of removal of objects) in 
the data flow. In order to absorb these variations in the rate of data flow we have 
included a FIFO in our architecture. It serves as a buffer for incoming data if the stored 
object is inserted; in case of the deletion of a list tail it supplies data quickly, thus 
implementing a kind of cache memory. The length of the FIFO depends lightly on the 
statistical properties of the scene to be rendered and the kind of distribution of the objects 
along the pipeline. Simulations indicate that a FIFO that can store the description of only 
one object is sufficient (increasing the length of the FIFO will result in performance gains 
less than 2 %). 



128 

4.4. An Object Processor for Triangles 

It has been said before that the concept of the object processor is suited for a large variety 
of primitives types. At present, we are designing an OP with a primitive processor for 
triangles and vectors (in fact, vectors are described like triangles, but only one edge is 
displayed). The triangles are described by the bounding lines. These lines are given in the 
normal form 

I:xcosa+ysina-p 0 

The distance d of a pixel at (xo, Yo) and I is given by: 

d(xo. Yo) Xo cosa + Yo sina- p (1) 

The distance d can be easily computed incrementally from pixel to pixel and from scanline 
to scanline [CD8l), 

4.5. Coverage Calculations 

To enable the comparator to manage the lists correctly it is necessary that the primitive 
proecssor determines how much the current pixel is covered. This decision is ternary: An 
object may cover a pixel not at all, partially, or completely. The pixel is covered partially if 
an edge of the object is intersecting the pixel. Although this seems to be trivial, it is not 
simple to decide whether an object covers the pixel partially or not. This is due to several 
items: 

• 	 Most important is the way the object is described. The kind of description may be well 
suited for scan conversion and interpolation (as it is with the outlined description of 
the triangles) but it may complicate the classification of the coverage. 

• 	 Usually, all computations are related to pixel centres. Thus, coverage normally means, 
the pixel centre is covered. Unfortunately, we are not concerned with the pixel centre 
but with the boundary of the pixeL 

• 	 To allow a reasonable anti-aliasing the obje.cts have to be defined with subpixel 
precision. This also implies that coordinates, e.g. object vertices, might be located on 
subpixel centers and not on pixel centers. This gives rise to some problems because the 
OPs are calculating on pixel coordinates. 

• 	 Rounding errors may result in wrong coverage decisions. This kind of errors can be 
eliminated on the expense of some extra bits in the description of the objects at the 
CDst of more hardware and an increase of time for computations. 

The concrete example of the primitive processor for triangles might illustrate this. Using 
the description of the triangle as outlined above it is very simple to decide whether the 
pixel centre is inside the triangle or not. This is established by testing if, for all edges i, the 
distances d; have the same sign. It is far more difficult to decide whether any part of the 
pixel is covered by the object. We have tried several solutions, none of them being entirely 
satisfying. One way is to let the triangles grow by half the diameter of a pixel. This new 



129 

triangle has the property that the pixel centre of any pixel that is intersected by the 
original triangle is located inside the grown triangle. Thus, the test for "pixel area inside a 
triangle" has been transformed to the simpler test for "pixel centre inside a triangle". The 
drawback of this procedure is that in case of very acute angles many pixels are classified 
as partially covered although they are uncovered. 

This leads to the issue of the behaviour of the coverage algorithm: A coverage algorithm is 
said to be good-natured if all pixels that are covered partially by the object are classified as 
such. A good-natured algorithm might classify pixels as partially covered although they 
are covered completely or not at all. Such algorithms are called good-natured because 
they do not miss any object that should be included in the list of objects. Objects that 
have been included into the list unnecessarily will be invisible in the picture because of the 
filtering step at the end. 

In contrary, an algorithm is malicious if it does not detect all pixels that are covered 
partially. This behaviour is unwanted because this would result in a loss of information ­
either about that object, if the pixel has been classified as uncovered, or about the objects 
lying behind that object, if the object has been (incorrectly) identified as completely 
covering the pixel. 

What we are searching are, of course, good-natured algorithms. Currently, our 
investigations are aiming for two goals. The first is the development of algorithms that are 
good-natured but exhibit only little erroneous behaviour. This is done by refining the 
algorithm outlined above (grown triangle). In parallel to this, we are estimating the loss of 
performance that is caused by such algorithms. We are, therefore, studying various 
pictures according to their common statistical properties. On the basis of these studies we 
will decide how much extra effort is reasonable for the improvement of the algorithm. 

5. The Shading Stage 
Shading methods consist of two parts: the computation of an illumination model, which 
determines the radiant intensity at a given point, and the shading algorithm, which gives us 
an instruction where to use which illumination model with which parameter values. The 
task of the shading stage is to give a certain pixel an adequate colour, that is: to compute 
the illumination model. 

As the shading algorithm is strongly connected to the computations that are performed by 
the object processor pipeline, we will now present the options to integrate a shading stage 
into the PROOF system architecture. Afterwards, we will discuss some approaches to the 
computation of an illumination model, assuming that we want to integrate a Phong 
algorithm. 



130 

5.1. Shading Algorithms and their Impact on the Architecture 

For obvious reasons, we have to restrict ourselves to incremental, interpolating shading 
algorithms: The database consists of objects that approximate the true geometry of the 
objects, thus, to obtain a smooth appearance, interpolation schemes have to be used. OUf 
ultimate goal of PROOF is to build a real time image generation system, due to which we 
have to consider algorithms with low computational complexity. Algorithms of that type 
have been introduced in literature by Gouraud [Gou71] and Phong [Ph075]. A 
modification of Phong's algorithm was presented by Bishop and Weimer [BW86]. We 
want to examine these three approaches and see, how they would fit into the architecture. 

Gouraud algorithm. The interpolation schemes as performed by the object processors can 
be used to interpolate colour values. The colour values at the vertices of a polygon have to 
be computed before the interpolation takes place. As a consequence, we have to integrate 
the shading stage between geometry engine and object processor pipeline. In fact, this 
could also mean that the shading calculations are done by the geometry engine. 

Phong algorithm. Exploiting the interpolating capabilities of the object processors, 
interpolation of normals can be handled. too. These normal vectors are input for the 
illumination modeL This results in locating the shading stage between object processor 
pipeline and filter stage. 

Fast Phong algorithm. The approach of fast Phong shading is an approximation of 
Phong's algorithm and an illumination model by developing the formula into a Taylor 
series. The resulting scheme -for simple illumination models- is a quadratic function in x 
and y. As the illumination model is already included, no separate shading stage has to be 
implemented. All computations can take place within the object processors. 

Several pros and cons can be stated for the approaches examined before: 

• 	 It is common sense that for most cases, Phong shading is better than Gouraud shading 
considering the visual effects. 

• 	 The evaluation of a quadratic function in the object processors is not desirable for the 
reasons first that it increases computation times and hence decreases the performance 
and second that it doubles the load time for the parameters. 

• 	 In the case of Gouraud shading, the computation of the illumination model has to be 
performed once for each vertex of the scene. In contrast, for Phong shading, this 
computation has to be done approximately the number of pixels times the average 
number of objects in a list. This results in much more parallel shading substages. 

Our conclusion is that Phong shading is desirable but that Gouraud shading fits better 
into the architecture proposed. In the near future, development of the illumination model 
will continue to reduce computational costs. Therefore, we will now discuss the impact of 
illumination models. 



131 

5.2. D1umination Models and their Impact on the Architecture 

The complete illumination model we want to consider, includes ambient light, diffuse and 
specular reflection. 

kd'ia + ±[kd'II'(N'L) kS'II'(N'H)mJ 
1=1 

~ and ks denote the diffuse and the specular reflectance, respectively, m is the glossiness 
of the object and la and II are the ambient and point light source intensities, The normal 
to the surface Nand the direction of the light source L. together with the highlight vector 
H form the rest of the parameters. 

We want to look at the computation of I, assuming that we implement a Phong algorithm 
and integrate the shading stage between opp and filter stage. This assumption leads to 
the fact that we cannot perform computations incrcmentally. For every pixel and every 
object in the pixel list, the equation for I has to be evaluated independently. This 
independence can be an advantage, too: parallel computations are easily feasible. 

lightsollrce no. 1 

lightsoorce no" L 

j control 

Figure 3: One pipeline out of the shading stage. 



132 

5.2.1. Shading Stage Design. As Land H change for every light source, the single terms of 
the sum can be computed independently. It is reasonable to have a pipeline of light source 
stages, so that the overall sum can be broken up into sums of two operands (see Figure 3). 
The initial value, which is fed into the pipeline, is the ambient term. A single part of that 
pipeline is called light source processor. Investigations into possible parallel andlor 
pipeline arrangements of these processors have been made before [Cla88a]. They indicate 
that -depending on the computing times- up to 100 of such processors would be 
needed. This demonstrates clearly the need for a time reduction in a single light source 
processor by restricting e.g. the illumination model. 

There will be three types of light source processors, one for the computation of the 
ambient term, one for the computation of the diffuse term of a specific light source, and 
one for the computation of the specular term. 

As the timing constraints are such that the pixel rate, given by the OPP is valid for the 
output of this stage, too, only one pipeline will not be sufficient. Because the computations 
can be performed independently, a simple round robin arbitration of the incoming data 
onto the shading pipelines is a possible arrangement. Only the control signals have to be 
propagated to all light source processors. Another round robin unit will sort the signals for 
sending them to the filter stage in the correct order. 

5.2.2. Design of a Shading Processor. The task of a single light source processor is to 
compute a colour value for a particular pixel, a particular object, and a specific light 
source, that means to take the parameters kd , ks , x , Y , z , and N coming from the OPP 
or a look-up table, respectively, and to compute a part of the illumination model. 

For the sake of the generality of our processor design, we have chosen to develop only one 
processor that can compute the formula: 

1;+1 = M-(N'B)m +I; 
This processor can have three forms, depending on its posJtlOn in the pipeline (see 
Figure 3). A first design is presented in Figure 4. Optional parts, for which it is not yet 
decided if they are necessary, are shown with dashed lines. 

At first sight, it seems to be attractive to implement a light source processor as a look-up 
table. Unfortunately, this look-up table would have to have a 216 bit entry and a word 
length of 24 bit, which is practically not implementable. But look-up tables still remain 
attractive for the implementation of parts of the formula. For example, xY can be realized 
using this technique. 

Further investigations showed that the normalization of the vectors N , Land Hare cost­
intensive. Restricting ourselves to directional instead of positional light sources leads to 
constant values for Land H. If we can decide for this restriction, the normalization of N 
remains in the critical path of the computation. Experiments lead us to the hypothesis that 
the normalization of the normal can hopefully be omitted, and hence, the computational 



133 

Figure 4: Basic design of a shading processor. 

intensive calculations would be reduced. Some pictures illustrating this hypothesis are 
shown in colour plates included in the appendix. 

The next step evaluating this hypothesis is to determine constraints that have to be taken 
into account during the triangulation. These steps consist of visual and mathematical 
investigations of the formulas. The results will enable us to decide, if the reduction of the 
illumination model is feasible. 

6. The Filter Stage 
In order to avoid aliasing errors, filtering of the colours of the contributing objects is 
performed in the final stage of the PROOF system. OUf filter algorithms are based on a 
subpixel grid with a subpixel resolution of 8 X 8 sub pixels. The filter area will be 2 X 2 
pixels. The filter algorithm is able to process both opaque and transparent objects. 

6.1. Task of a Filter Processor 

The filter stage is built from processing elements each of which is responsible for one 
subscanline. The processing elements determine the subpixeJ mask, i.e. the array that states 
which object is visible at a certain subpixel. The construction of the subpixel mask starts 
with the first object in the list and determines which subpixels are covered. These 
sub pixels are tagged. Then, the next object is examined. In the end, the subpixel mask 
indicates, for every subpixeJ, the visible object. The determination of the subpixels 



134 

covered by an object is similar to the coverage algorithm used in the OPs: For every 
subpixel, a deeision is made whether the subpixel (centre) lies inside the object. 

In order to speed up the calculation of the subpixel mask, the filter processors take 
advantage of results from the OPP [Rom88J, The opp delivers at its output the distances 
d of the centre of the current pixel and the edges describing an object. Starting from these 
values, the filter processors calculate the distances from the edges to the subpixel centres. 
This is done by using that 

dsp(x" Y;) (8x x,) cos a: + (8y + y;)sina: - p 

where is the distance from the to a subpixel with the offset (x;, y,) from the pixel 
centre. The formula assumes a grid of 8 X 8 subpixels and that the pixel centre is at (x,y). 

Using (1) this formula can be simplified to 

dsp(x;, y;) = d(x, y) x;'cosa + y;'sina 

This formula shows that dsp can be obtained from d by adding the appropriate multiples 
of sina and cosa. The parallel calculation of these multiples can be advantageously 
mapped on a tree structure. The tree is constructed from nodes with two inputs and two 
outputs. The inputs are called the main input and the auxiliary input. The tree structure 
is formed by the outputs and the main inputs, i.e. the left output of a node is connected 
to the main input of its left child node and the right output to the main input of its right 
child node. The left output of a node takes the value of the main input. The value of the 
right output is the sum of the two inputs. The value at the second, auxiliary input of the 
node depends on the level of the node in the tree. If we assume that the leaves of the tree 
form the level 0 of the tree the auxiliary inputs are supplied with the value 2L

• cos a or 
2L ·sina respectively (here L is the level of the node in the tree). The multiples to be 
calculated are the values at the leaves of the tree. Using this tree structure, two trees and 
some negators are required to compute the distances of the to the subpixels. 

After the subpixeJ mask has been determined the colours of the contributing objeets are 
combined. This is established using a filter function. We are currently investigating 
different filter functions. With regard to a hardware implementation we will probably 
choose a filter function that can be easily expressed in terms of powers of two of the 
contributing subpixel colours. 

6.2. Filter Stage Design 

Designing the filter demands exactly the same reflections as the design of the shading 
stage. Those considerations have been published elsewhere [Cla88b]. They resulted in an 
amount of at least ten up to hundred filter processors that will be needed, depending of 
the computing time needed by a single processor. These processors can easily perform 
their work in parallel, controlled by a simple round robin arbitration. Hence, the goal of 
the filter stage design has to be a reduction of time for the single processor, too. 



135 

7. Current Work 
It became already clear in the previous chapters and sections that the stages of PROOF 
are defined at different levels of detail. Of all stages, the development of the OPP is the 
most advanced. We are currently finishing an architectural simnlation of the OP. A gate 
level design of the OP will start soon. 

In contrast to the OPP, we have not yet finished the algorithmic research for the shading 
stage. Different algorithmic alternatives are currently investigated for their suitability for 
both a hardware implementation and their adaptability to the PROOF architecture. The 
study of algorithms will be followed by the design and simulation of the architecture of a 
shading processor. 

At the present. behavioural and architectural simulations are carried out for the filter 
stage. 

8. Conclusion 
We presented the system architecture of PROOF. PROOF is a system that aims at high 
speed image generation. It performs all tasks of the pixel processing part of the computer 
image generation. This includes scan conversion, hidden surface removal, shading, and 
anti-aliasing. PROOF stands for Pipeline in an Object Oriented Framework which 
indicates that the architecture divides the rendering process in object space. This results in 
the object processor pipeline that consists of many processing elements each of them being 
responsible for one object. Pixels are pushed through the pipeline. A list of objects that are 
potential contributors to the pixel colour are associated with each pixel. 

A stage for shading the objects in these lists follows after the object processor pipeline. It 
is planned to implement a Phong-like shading algorithm together with the modeling of 
diffuse and specular reflections in order to produce pictures with a high degrec of realism. 

The list of shaded objects is fed into a filtering stage. The colours of all objects in the list 
are combined in order to produce the final pixel colour. This combination is done on the 
basis of a sub pixel grid. The single colours are weighted in accordance to the number of 
subpixels they cover. 



136 

References 

[AF86] 	 Gregory D. Abram, and Henry Fuchs, "VLSI Architectures for Computer 
Graphics", In G. Enderle, editor, Advances in Computer Graphics I, pp 6-21, 
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. 

[BW86] G. Bishop and D.M. Weimer, "Fast Phong Shading", ACM Computer Graphics, 
vol. 20, no. 4, pp 103-106, August 1986. 

[C*87] R. L. Cook et aI., "The Reyes Image Rendering Architecture", ACM Computer 
Graphics, vol. 21, no. 4, pp 95-102, July 1987. 

[CD81] 	 D. Cohen, and S. Demetrescu,"A VLSI approach to Computer Image Genera­
tion." Technical Report, Information Sciences Institute, University of Southern 
California, 1981. Presentation at SIGGRAPH 1980. 

[Cla82] 	 James H. Clark, "The Geometry Engine: A VLSI Geometry System for Graph­
ics", Computer Graphics, vol. 16, no. 3, pp 127-133, July 1982. 

[Cla88a] Ute Claussen, "Parallel Scan Conversion", In M. Cosnard et aI., editors, Proceed­
ings of the IFlP WG 10.3 Working Conference on Parallel Processing, IFIP, 
Elsevier Science Publishers (North-Holland), Amsterdam, 1988. 

[Cla88b] Ute Claussen, "Parallel Subpixel Scanconversion", In A. A. M. Kuijk, and W. 
Strasser, editors, Advances in Computer GraphiCS Hardware II, EurographicSem­
inars, pp 155-166, Springer, Berlin, Heidelberg, New York, Tokyo, 1988. 

[Cro87] 	 F. Crow, "The Origins of the Teapot", IEEE Computer Graphics and Applications. 
pp 8-17, January 1987. 

[Dem85] Stefan Demetrescu, "High Speed Image Rasterization Using Scan Line Access 
Memories", In Henry Fuchs, editor, Proceedings of the Chapel Hill Conference on 
VLSI, pp 221-243, Computer Science Press Inc., 1803 Research Blvd., Rockville, 
Maryland 20850, 1985. 

[Duf79] 	 T. Duff, "Smoothly Shaded Renderings of Polyhedral Objects on Raster 
Displays", ACM Computer Graphics, vol. 13. no. 2, pp 270-275, 1979. 

[EyJ87] 	 J. Eyles, "Pixel Planes Project", In A. A. M. Kuijk, and W. Strasser, editors, 
Advances in Computer Graphics Hardware II, EurographicSeminars, pp 183-207. 
Springer, Berlin, Heidelberg, New York, Tokyo, 1988. 

[F*88] 	 H.R. Finch et aI., "A Multiple Application Graphics Integrated Circuit", In A. 

A. M. Kuijk, and W. Strasser, editors, Advances in Computer Graphics Hardware 
II, EurographicSeminars, pp 81-92, Springer, Berlin, Heidelberg, New York, 
Tokyo, 1988. 

[FR82} 	 Donald Fussell, and Bharat Deep Rathi,"A VLSI-Oriented Architecture for 
Real-Time Raster Display of Shaded Polygons", In Proceedings of Graphics Inter­
face '82, pp 373-380, The National Research Council of Canada, 1982. 



137 

[GF85] 	 Andrew Glassner, and Henry Fuchs, "Hardware Enhancements for Raster 
Graphics". In Rae A. Earnshaw. editor, Fundamental Algorithms for Computer 
Graphics, pp 631-658, NATO ASI, Springer-Verlag, Berlin, Heidelberg, New 
York, Tokyo, 1985. 

[Gou7]] H. Gouraud, "Continuous Shading of Curved Surfaces", IEEE Transactions on 
Computers, vol. C-20, no. 6, pp 623-628, June 1971. 

[Ph075] B. T. Phong, "Illumination for Computer Generated Images", Communications of 
the ACM, vol. 18, no. 6, pp 311-317, June 1975. 

[Rom88] Claudia Romanova, "Effektives Anti-Aliasing fur die Bilderzeugung auf 
Rastersichtgeraten", ]n Proceedings of Fachgespriich Visualisierungsteclmiken lind 
Algorithmen, Gesel1schaft fUr Informatik, Osterreichische Computer Gesellschaft, 
1988. To appear in Informatik-Fachberichte, Springer-Verlag. 

[Sch88] 	 Bengt-Olaf Schneider. "A Processor for an Object-Oriented Rendering System" 
In Computer Graphics Forum, vol. 7, no. 4, pp 301-309, December 1988. 

(Wei81] 	 Richard Weinberg, "Parallel Processing Image Synthesis and Anti-Aliasing", 
Computer Graphics, vol. 15. no. 3, pp 55-62. August 1981. 



Appendix 

This appendix presents some figures, on which we base our assumption, that in some cases. 
normalization of the normal vectors can be omitted. As an example, we have chosen the teapot 
from [Cro87], because it is often used to demonstrate shading methods. Figure 5 shows a coarsely 
triangulated pot, rendered with a Phong shading algorithm, using the normalized normal vectors. 
In contrast, normalization has been omitted in the next figure. The second teapot seems to be 
"textured" in the regions where it is highlighted. Here, the triangulation is "visible". This is due to 
the fact, that using the unnormalized normal vector results exactly in the same effects as with a 
Gouraud shading [Duf79]. What Duff suppressed is the fact that this is only true for the diffuse 
components, but not for the specular component. 

Figure 5: "Coarse" teapot rendered with Phong shading using the normalized normal vectors. 



139 

Figure 6; "Coarse" teapot rendered with Phong shading using the unnormalized normal vectors. 

The next two figures are rendered from a teapot database with a higher granularity. As can be 
seen, both figures where normalized normal vectors are used, do not differ very much from each 
other. But, on the other hand, the last figure, showing the finer teapot rendered using the 
unnormalized normal vector, is only "textured" at some critical points, where the slopes of the 
nonnal vectors of adjacent triangles differ very much. This is due to the fact that a little 
difference in the angle between nonnal vectors will be raised to a power and thus amplified. 
Hence, we can omit normalization, if the diffuse component predominates, and if differences 
between adjacent normal vectors are small. 

Hopefully, this could lead us to an adaptive triangulation of the scene. Or, in consequence, these 
ideas result in a triangulation of such fine parts as the micropolygons, that only have to be fiat 
shaded [C*87]. 



140 

Figure 7: "Fine" teapot rendered with Phong shading using the normalized normal vectors. 

Figure 8: "Fine" teapot rendered with Phong shading using the un normalized normal vectors. 


