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The voxblt Engine: 

A Voxel Frame Buffer Processor * 


Arie Kaufman 

The voxblt Engine (vE) is a 3D frame-buffer processor which manipulates and processes ''3~ bitmaps" (voxel maps) 
stored in a cubic frame buffer of voxels. The vE is the 3D counterpart of the 20 frame buffer processor, which is an 
extended version of the 20 bitbl/ and RasterOps engines. 

The primitives of the vE are subcubes of the cubic frame buffer and are of three kinds: rooms (3D windows), jacks 
(3D cursors), and figurines (3D ,cons). In addition to manipUlating these primitives, the vE also serves as a monitor 
for interaction, as an interfaoe for 3D input devices, and as a channel for inputling into the cubic frame buffer 3D 
voxel images from either 3D scanners or a voxel image database. The vE has been developed as part of the CUBE 
system, In which it operates as an Independent processor executing its own commands stored in a 3D frame-buffer 
display list. A room manager, which is the 3D counterpart of the 20 Window manager, has been implemented on top 
cf the vE 
~~- --,,.~-~- -----~..."-- ... 

1. Introduction 
In the past five years, some attention has been given to developing architectures and 
hardware for volumetric processing [2,3,6,7,9,10,12,13,15,19]. This paper focuses on a 
new breed of volumetric processing. that of a voxel frame buffer processer, i.e., a voxblt 

Engine (vE). The vE, which processes voxel maps, is the 3D counterpart of the 2D frame 
buffer processor (FBP) [I I]. The latter is an extended version of the 2D bUblt [4] and 
RasterOps [18] engines. 

Voxel-based systems are based on the concept that the volume of interest is discretised, 
sampled, and stored in a the Cubic Frame Buffer (CFB), i.e., a full 3D cellular memory of 
voxels (unit volume cells). Each voxel holds a density value in the broad sense, 
representing the colour, material, texture, and translucency ratio of a small unit cube of 
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the real scene. The stored 3D images are directly manipulated using cellular-map or 
voxel-map operations, employing a voxel frame buffer processor, such as the vE. A typical 
CFB is a huge memory buffer of the order of 128M bytes for a 5123 resolution. In 
addition to the storage requirements, an extremely large throughput has to be supported, 
and a special architecture and parallel processing is imperative. The voxel representation 
is especially suitable for empirical data as in medical imaging, biology, geology, and 3D 
image processing. In addition, this representation is becoming common place in 
traditional synthesis applications, like CAD, scientific volume visualisation, and 3D 
simulation and animation. 

The vE is part of the CUBE architecture [10], a 3D voxel-based graphics system. The 
CUBE system, depicted schematically in Figure 1, is a multiprocessor system with three 
processors accessing the CFB, to input, manipulate, and view and render the CFB images. 
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Figure 1: Schematic Diagram of the vE as Part of the CUBE Architecture. 

The vE, which is one of these processors, channels into the CFB empirical/scanned voxel 
images, which are the primary source of CFB data. A geometric model is another source 
of CFB data. The 3D Geometry Processor scan-converts synthetic 3D geometric models 
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into their 3D voxel representation within the CFB, possibly intermixed with the empirical 
data. Once the images, empirical andlor synthetic, are in the CFB they are manipulated 
and transformed by the vE. The third processor, the 3D Viewing Processor, generates 2D 
shaded orthographic projections of the CFB image in a conventional 2D frame buffer of 
pixels. Arbitrary parallel projections can be generated by first transforming the images 
with the vE and then vicwing them through a principal orthographic direction. 

In the CUBE architecture the vE performs part of the operations that conventionally 
would be performed by a geometry processor, a viewing processor, and a video processor. 
By doing so it frees the other processors to concentrate on their own tasks. In addition, 
the vE gives hardware support to operations that would have ordinarily been performed in 
software. This hardware support frees the main CPU from the burden of running in 
software, for example, the room manager, which is the 3D counterpart of the 2D window. 
manager. 

2. vE Primitives 

The vE directly manipulates and processes 3D voxel maps, i.e., sub-arrays of the CFB. 
The primitives of the vE are unstructured portions of the CFB of three types: rooms (3D 
windows), jacks (3D cursors), and figurines (3D icons). Since the CFB is an unstructured 
3D array of voxels, these primitives are the only objects with special meaning to the vE. 
The primitives are manipulated according to the vE instruction list stored by the main 
CPU in a 3D Frame Buffer Display List (FBDL3). 

The prevailing primitive is the room, which is a 3D rectangular box or a cuboid of voxels. 
The room is the 3D counterpart of the 2D window. It is defined by two (x, y, z) 
coordinates defining extreme corners of the room, and a priority value. In case of a space 
conflict between primitives, the one with the highest priority occupies that common space 
within the CFB. This feature is useful in supporting three-and-a-half dimensional 
environment, which is paramount for room management. A room, like its 2D counterpart, 
defines either a "room" (enclosure) of interest to operate upon, or a 3D extent of an object 
that can be thresholded or masked, for example, using the vE commands and registers. 

The jack, which is the 3D counterpart of the 2D cursor, is a small 3D box which provides 
a visual feedback for 3D graphics interaction. A jack is defined by its edge length and its 
center coordinates. In addition to the system-defined jacks, the user may define the 
adequate pattern for each user-defined jack tailored to the application. The 3D jack 
mechanism enables the user to dynamically tour the exterior or interior of the objects, and 
improves user orientation in the 3D environment. Traditionally, 2D cursors have been 
handled by the video processing units. Supporting jacks by the vE alleviates the high load 
already assumed by the video processor and by the 3D viewing processor. While writing a 
3D jack into the CFB, the voxel data covered by it is saved within the vE for later 
restoration (when the jack moves from that location). The jack priority is higher than that 
of the rooms and the figurines, and all jacks have the same priority. Since a 3D jack 
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might be hidden from the user in one or all views, there is an option to display the 
projection of the jack on the screen as if the jack floats in the fourth dimension. 

The I'E supports user-defined 3D figurines. This primitive is similar to the room primitive, 
but it is usually smaller and holds an application-oriented constant image. A figurine is 
defined by two (x, y, z) coordinates and a priority value. The figurine might be either 
bounded (anchored) to a room or float independently, and it gets its priority according to 
this status. A floating figurine behaves like a room and is assigned an independent 
priority. A bounded figurine, however, is assigned the priority value of the bounding 
room, and it is affected by all the operations performed on the bounding room. 

3. vE Tables 

The vE supports five tables for managing its operations. The tables are designed as 
integral parts of the processor in order to reduce the access time and to increase the 
overall speed of the vE. 

The Room Table (RT) holds information of all the currently defined rooms. Each room 
has a unique entry in the RT, which is indexed by the room identifier. In addition, the RT 
holds for each room, its two (x, y, z) coordinates, its priority, and a figurine identifier list 
indexing all the figurines bounded to this room. 

The Jack Table (JT) holds information of all the user-defined and system-defined jacks. 
Each jack has a unique entry in the JT, which is indexed by the jack identifier. The JT 
holds the jack center coordinates, its size, its location in the scratch storage area of the JT, 
and a code specifying whether the original jack pattern or the data that is currently 
covered by it is in the scratch area. 

The Figurine Table (FT) holds information of all the currently defined figurines. Each 
figurine has a unique entry in the FT, which is indexed by the figurine identifier. The FT 
holds for each figurine two (x, y, z) coordinates, its status (bound/float) and its priority. 
For a bounded figurine the FT also holds the room identifier of the bounding room. 

The Priority Table (PT) handles room and figurine priorities. Every room and every 
figurine has an entry in the PT. This entry is defined when a new room or figurine is 
inserted in the RT or the FT, respectively. The purpose of this table, which is sorted by 
the priority, is to speed up the overlapping of primitives when performing operations on 
them, such as clipping. The PT provides the vE with a mechanism to rapidly find the 
priority order between the primitives. 

The Device Table (DT) holds information to supports interaction with the 3D input 
devices. Each input device has a unique entry in the DT which identifies it. The table 
also holds a reference to the jack, if any, attached to that device. 
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4. vE Registers 

Internal registers of the vE can be read, set, or reset, and all subsequent operations are 
consequently affected. The vE has three operating states: passive, active, and suspended. 
The passive state is the initialisation state. The system registers that affect the 
configuration of the vE are alterable only during the initial passive state. All the other 
registers and register fields thereof are alterable also during the active state, in which the 
vE operations are executed. During the suspended state the CPU handles traps. 

The vE registers are divided into four main groups: address, mode, system, and input 
registers. The address registers include general purpose address registers, a Stack Pointer 
(SP) which points to the top of a conventional stack, and a Program Counter (PC) which 
points to the next executable instruction in the FBDL3. 

The mode registers are divided into two subgroups. The first subgroup specifies the 
environment of the system, including the Cfb _Size, Max Rooms. Max Jacks, 
Max Figurines, colour/translucency mode (Colour Mode), number of bits comprising 
each component of a three colour system (Colour Field), and which colour planes in the 
eFB are enabled (Depth_Plane). Each mode register is enabled by a specific bit in the 
Status register. 

The second subgroup includes registers which affect the voxel writing into the CFB: 
zooming control (Zoom), boolean operations on voxels and jacks (Voxel_ Ops and 
Jack _ Ops), masks for texture and filtering (Texture_Mask and Filter), Background and 
Foreground colours, and CFB orientation (Orient), Le., orientation by 0°, 90°, 180°, or 
270° about the primary axes. Any operation performed on the primitives that write voxel 
information into the CFB, e.g., copy, is directly affected by these registers. For example, if 
the X field of the Zoom register, ZoomX, indicates a zoom of factor 2, any voxel written to 
the CFB is automatically replicated along the X direction. If the Origin register specifies 
that the CFB X origin is at its Xmax axis (instead of Xmin ), all subsequent operations into 
the CFB will be reflected (rotated by 180°) with respect to the X CFB origin. 

The system registers define the vE configuration. They include the State register, which 
defines the operating state of the vE (passive, active, or suspended), and the Initial register 
which determines the configuration of the system (three fields for CFB X, Y and Z 
dimensions, and three fields for the maximum number of rooms, figurines, and jacks), and 
is alterable only during the initial passive state. 

Three additional system registers are used for handling errors and traps. The Trap_Enable 
register has a one bit field for each type of error. When an error occurs, the Trap_Enable 
register is used to determine if this error should cause a trap, i.e., change the operating 
state to suspended. The Error register also contains one bit field for each type of error. It 
is used by the jumperr instruction to jump to an appropriate error handling routine based 
upon the type of error. The Stop register is used to pass the error category back to the 
CPU. It is set only if an error is detected and trapping is enabled. 
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The input registers define the input environment assisting in the user-vE interaction. In 
the current implementation two 3D input devices are supported. One is a true 3D device, 
a Polhemus 3SPACE Isotrak specifying 3D position and 3D orientation, called by us the 
kite. The other is a common 2D mouse used for 3D positioning, by exploiting horizontal, 
vertical and diagonal moves (see [14]). The Input Enable and Device Status registers of 
each device indicate whether the device is currently enabled, ready, or "done". In 
addition, there is a Data register for each device which contains the position and 
orientation information accepted from that device. 

5. vE Repertoire 

The vE instruction set contains commands for manipulating the three types of primitives 
(i.e. rooms, figurines, and jacks) as well as system instructions which affect the overall 
operation of the system. The large sets of operations for handling rooms, figurines and 
jacks, and the underlying vE registers provide an extremely flexible environment for 
manipulating the CFB voxel images. All primitives are created and introduced into their 
tables by define, removed by delete, "painted" uniformly by erase, read from the CFB by 
read, written into the CFB by 'write, moved by translate, copied by copy, swapped with 
another primitive by swap, and rotated about a major axis by rotate. Both rooms and 
figurines are scalable (scale) with maximum size restriction applied only to figurine. The 
scaling factor can be any real number (see algorithm details in Section 8.2). Rooms can be 
rotated about any major axis through any angle (see algorithm details in Section 8.3), but 
the rotation angles for figurines and jacks are restricted to multiples of 90°. 

Rooms and figurines, which are assigned priorities, are subject to a change of priority 
command which may affect future placements of primitives in the CFB. Figurines have an 
exclusive instruction for bounding/unbounding figurine tolfrom rooms. An exclusive 
instruction for jacks is for loading a jack pattern (e.g., from the FBDL3, from the stack) to 
the JT storage area. 

The system instructions of the vE include register manipulation, (set, setf - set field, get, 
getf, reset), program flow control (jump, jumperr, call, return), stack control (push, pop), 
state control (active, halt) and input device control (attach device, disattach). 

6. vE Internal Architecture 

The vE is an independent co-processor, which fetches and exccutes its instructions listed in 
the FBDL3 stored in the host computer memory by the CPU. The basic hardware 
organisation of the vE consists of four components: The Fetch Unit, for fetching the next 
instruction to be executed from the FBDL3, decoding it, and fetching data if necessary: 
the Execution Unit for executing the instructions; the CFB Management Unit for 
managing the access to the CFB; and the Control Unit for controlling and synchronising 
the other units. 
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The vE internal organisation can be classified as a pipeline architecture. While fetching an 
instruction, the previous one is decoded and the one before it is being executed. Since 
large amounts of voxels require complex and lengthy computations, the execution stage in 
the pipeline is the bottleneck of the system. Therefore, an emphasis has been placed on 
efficient and diligent algorithms. 

The Execution unit manipulates the CFR images, controls the interaction with 3D input 
devices and handles the processor tables. Care has been taken to provide simple and fast 
operations, especially for the large rooms. The Execution unit consists of five sub-units: 
the Input sub-unit manages the 3D interaction with 3D devices, by polling them at 
specified intervals. The Geometric sub-unit performs the geometrical operations: 
translation, scaling, and rotation. These operations employ incremental transformation 
technique, in which each voxel is transformed with a maximum of 3 additions (see Section 
8), and ex.ploit the parallel memory and the barrel shifter (see Section 4). The Clipping 
and Priority sub-unit handles the clipping of a primitive to other primitives based on their 
priorities (see Section 9). The Voxblt sub-unit performs voxelwise operations such as 
filtering, boolean operations and texture masking (see Section 10). The Table sub-unit 
manages the vE tables as an aid to the other Execution sub-units. 

The CFR Management unit is responsible for writing and reading single voxels, beams of 
voxels, or intervals of voxels, to and from the CFR memory. All CFR accesses are 
channelled through a global control unit monitored by the viewing processor which is the 
heaviest user of the CFB, arbitrating the aeeess of the other processors to the CFB. The 
next section deseribes briefly the memory organisation and its accessing avenues. 

1. Memory Parallelism and Barrel Shifting 

A unique skewed memory organisation enables all the CUBE processors, including the vE, 

to store and retrieve a full beam of voxels simultaneously [8]. The n3 voxel memory is 
divided into n distinct memory modules each having n2 voxels. A voxel (x, y, z) is mapped 
onto the k-th module by: 

k ex + y z) mod n O,,;;;k,x,y,z n-1, (1) 

where the internal mapping (i, j) within the module is: 

i = X, y (2) 

Since two coordinates are constant along any beam, regardless of the view direction, the 
third coordinate guarantees that only one voxel from the beam resides in anyone of the 
modules. 

The physical memory is thus divided into n independently accessible memory modules, 
each with its own local addressing unit, and its own local processing unit (see Figure 2). 
Each voxel of a beam is fetched from a separate memory module and is processed by the 
associated processing unit. The processing units are used primarily for selecting the 
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Figure 2: Parallel Memory Organisation with a Barrel Shifter. 

opaque voxel closest to an observer in order to generate a projection. In addition, the n 

processing units are connected through bi-directional links which enable the barrel shifting 
of the voxel beam across the processing units by a given offset, and then writing it back 
into the CFB memory modules at a different location modulo n. This is actually a fast 
memory to memory beam move mechanism. The barrel shifter provides immediate 
neighbours links as well as "hard-wired" power-of-2 neighbour skips. The number and the 
extent of the skips depend upon the length of a beam, n, with an attempt to minimise the 
average shifting time. 

The parallel memory access and the barrel shifter are exploited by the vE to speed up 
many of its operations on rooms, on beams, or parts thereof. Specifically, geometric 
transformations, like translation or 3D rotation about an axis, mirroring, erasing with a 
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constant colour, etc., are all using these mechanisms. For example, the 3D rotation about 
the x-axis through an arbitrary angle involves taking beams parallel to the x-axis and 

n3relocating them to the new position. The time to rotate a primitive of voxels is 
proportional to n2 log n, rather than the conventional n3 , where n2 is proportional to the 
number of beams and log n is proportional to the barrel shifting cost. In our 
implementation, rotating a room of voxels about a primary axis using these 
mechanisms is estimated to take only 45 milliseconds employing immediate neighbour and 
8-skip neighbour links. 

8. Geometric Algorithms 

Special care has been taken to provide simple and fast geometric transformations 
especially for the large rooms. All transformations, carried out by the Geometric sub-unit 
of the vE, including translation, scaling (anamorphic with non-integral factors), and 
rotation (through any angle), are performed using incremental transformation techniques, 
in which each voxel or a voxel beam is transformed, based on the new position assumed 
by its immediate previous neighbour, with a maximum of 3 additions/increments. The 
algorithms are based on inter- and intra-scan-Iine coherency. In other words, after 
calculating the new location for one voxel/beam, its neighbours relate to it as they did in 
the original location. 

The geometric algorithms also resolve possible overlapping between the source and the 
destination primitives, by performing the operations in a predefined sequence according to 
the orientation algorithm (see Section II). This is necessary since therc is no scratch CFB 
memory available to temporarily hold old voxel information while performing the 
transformation. 

8.1. Translation Algorithm 

The translate operation moves a pnmItive from its source positIon to its destination 
position. The relative translation is characterised by a vector (Tx, and the equation: 

(3) 

An incremental algorithm specifies the position of the next voxel along the X-axis to be 
translated (Xsrc 1, Ysrc , Zsrc) in terms of its predecessor's destination position 

(Xdest , Ycast, Zdest): 

(4) 

Thus, the next voxel position in the destination primitive can be determined by only 
incrementing the appropriate coordinate of the last voxel without performing an addition 
for every voxel. Similar results apply to Y and Z. 

Care must be taken to avoid overlapping, that is, if the destination primitive is partially 
overlapping with the source primitive, then some of the source voxels might be overwritten 
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by the copied voxels before the source voxels are translated, which could distort the 
destination primitive. The current algorithm sets the Orient register so that the translation 
starts from the source corner that is also situated in the destination primitive range (see 
Section 11). If no overlap occurs, then the order of translation is not important. 

8.2. Scaling Algorithm 

The equations for scaling a room about its origin are given in Equation 5. The shifting to 
and from the origin are accounted for in the CFB addressing of the source and the 
destination. 

= Xsrc Sx Ydest = Ysrc Sy Zdest Sz (5) 

Like rooms, figurines are also scalable, but with maximum size restriction. Jacks are not 
scalable. 

The scaling algorithm for rooms simultaneously scales a room along the three axes, where 
the three scaling factors, S" Sy and S" can all be different and not necessarily integers. 
Consequently, the scaling algorithm requires, therefore, three non-integer multiplications 
and three roundings for each voxel, which can result in heavy computations for large 
rooms. The complexity of the computations can be significantly reduced by using an 
incremental algorithm which is based upon: 

(Xsrc + 1) Sx Xsrc Sx + S, Xdest + Sx (6) 

+1) Sy Sy"- Sy = + Sy (7) 

+1) Sz = S7 + Sz = Zdest+ S2 (8) 

The coordinates of the next transformed voxel can thus be obtained by simply adding the 
respective scaling factor to the X, Y, or Z coordinate of the predecessor voxel and 
rounding the results to integer coordinates. 

Precautions must be taken if the scaling factors are greater than I. In this case, applying 
the above transformation to a primitive may produce holes in the scaled primitive, due to 
an increase in the room volume with no increase in voxels. To avert this problem back 

scaling is introduced, i.e., the incremental transformation process is reversed. By 
employing this technique, several voxels in the destination primitive can be mapped to the 
same voxel in the source primitive. To do this we transform two opposite corners of the 
source room, which yields two opposite corners in the destination room. We then step 
through the destination room. At each point in the destination room, we reverse­
transform the coordinates to determine the voxel value for that point. This can be done by 
multiplying the destination coordinates by (lISx, 1 IISz). A more efficient way to do 
this is to step through the source room in parallel with the stepping through the 
destination room. The increments to be used in stepping through the source room are 
(Xiner/Sx , YinerlSy, Zincr/S2 ), where Xiner, Viner and Ziner are the X, Y, and Z increments 
(lor -I) used in stepping through the destination room. 
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As with the translation algorithm, precautions must be taken to avoid overwntmg of 
voxels in the source room before they have been scaled. This is accomplished by properly 
choosing the comer of the room to be used as a starting point for the transformation 
based on the values of Sx. Sy and Sz. 

Below is a pseudo-C code for scaling. assuming that (Xs. Ys , Zs) and (XE' YE, ZE) are the 
starting and ending comer of the destination primitive, respectively, and (Xsrc , Ys' c , Zsrc) is 
the starting corner of the source primitive (the reverse-transformation of (Xs, Y s, Zs), 

SZincr lincrIS,, 

Round 

While (Y,<c YE) 

l 

Increonent oy SYtne, 


Inereon"nt by Ylncr 


Increment by Sllncr 


Increment by llncr 


83. Rotation Algorithm 

The rotation algorithm of the vE rotates a room about its ongm through any angle 0 

relative to a major axis. Positive angles produce clockwise rotations when looking down 
an axis toward the origin. A rotation is performed about only one axis at a time. The 
following discussion is limited to a rotation about the Z axis. Similar equations hold for 
rotating about the X and Y axes. The equations for rotating about the Z axis are: 

Xsrc cosO Ysrc sinO (9) 

Ydest Xsrc cosO + Ysrc sinO (10) 

Like for scaling, the shifting to and from the ongm are accounted for in the CFB 
addressing of the source and destination rooms. Since all the voxeIs along beams parallel 
to the Z-axis are identically rotated, entire beams are moved for each new coordinate 
calculation employing the parallel memory and the barrel shifter. 
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Once again an incremental algorithm is employed to make it possible to determine a 
voxels position without the need to perform heavy computations. In addition, back 
rotation, from destination to source [5], is employed to eradicate holes which could be 
produced from the forward rotation of a room. To accomplish this task the eight corners 
of the source room are first rotated to locate the destination room. Once calculated, the 
minimum coordinates are back rotated by the rotation equation, Equations 9 and 10, by 
replacing (J by -(J. From this point on, the incremental procedure is used to back scan the 
entire room. The c.onstant increments for all voxels/beams are merely sin8 and cos(J. 

Equations 11 and 12 give the coordinates of the point (Xx+t, Yx+1 , back-rotated 
from (Xdest +1, Yoast, Zdes,), while Equations 13 and 14 give the point (Xy';'l' Yy+l' Zdest) 
back-rotated from (Xdest' Ydest +1, Zdest): 

Xx-~ (Xdest 1) cosO Ydestsin(J Xsrc + cos8 (11 ) 

Yx c-l - (Xdest + 1) sin8 + YdestCOS(J Ysrc _. sin(J (12) 

XY+l = Xdestcos(J + (Ydest + 1) sin8 = Xsrc sin(J (13) 

Y y + 1 - Xdest sinO .+ (Ydest + 1) cos(J = Ysrc + cosO (14) 

Note that either set employs only two fixed-point additions that can be performed in 
parallel. Note also that the destination room can be clipped first, then only the visible 
parts need to be back-rotated. 

As in the scaling and translation algorithms, the overlap problem is overcome by starting 
the scan at the source vertex which is also located within the destination room. 

9. Scan-line Clipping Algorithm 

The vE Clipping sub-unit supports several simultaneous rooms and figurines, each of 
which is assigned a unique priority, which is specified at time of definition, and may be 
changed by the user later on. If collision occurs, temporal priority governs. When a room 
or an figurine, r, with two opposite corners, (Xmin' Ymin , Zmin)' and (Xmax , Ymax , Zmax), is 
written into the CFB, by copying it from outside or by moving information within the 
CFB, the clipping algorithm is employed in order to determine which portions of r are not 
obscured by any of the other rooms or figurines. Any room with a higher priority will not 
be overwritten by the incoming object. However, when reading a room, overlapping is 
ignored and priorities play no role in that process. 

The clipping algorithm is a 3D generalisation of a scan-line algorithm [1] adjusted for 
low-level processor implementation. For each scan-line (row of voxels), only the visible 
segments are written into the CFB. This is intrinsicly different from the algorithm 
proposed by Pike (16] at the window manager level, in which the window in question is 
recursively subdivided into subrectangles and all the subrectangles have to be accounted 
for. Here, on the other hand, only the visible segments have to be handled by the vE, the 
invisible sections are handled by the application, e.g., the room manager. 
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A scan-line is obtained differently in five different cases: constant colouring, wntmg, 
copying. zooming, and when orienting a room. The scan-line is clipped by matching it 
against the active table. This table holds the identifiers of those rooms which intersect 
with the current scan-line. To make the process of creating the active table more efficient, 
a temporary table, InterTable, is created as the algorithm is invoked. This table lists the 
identifiers of all rooms that intersect with r, having priorities higher than that of r. It is 
sorted by their Zmin, Ymin and Xmin . As each scan-line is processed. the active table is 
updated from the InterTable. The InterTable is created in Zmin order so that scanning 
through the table can be stopped as soon as the first intersecting room with a Zmin greater 
than the current Z-plane in encountered, thereby making the search less costly. For 
similar reasons, the InterTable is kept also in Ymin and Xmin order. The algorithm in 
pseudo-C code follows: 

Save all jacl<.s 


For (Zscan Zmm' Zscan Zrrax; Zscan+ +) 


Rer10ve from InterTab primitives below 2scan 


50,1 by Y then X all primitives in Inlerlable Intersecling the Zscan line 


For (Yscan Y~,n' Yscan ~ Ymax : Yscan++) 


While (LeftBound Xmax) 

RightBouna ~ Hight X of leftmost primitive ("lett primitive") 

LeftBound ~ Left X of next leftmost primitive Crlght") 

While CLef/Bound,.;; R!ghlBound ane {nlerTab no: emply) 

Get next "right" primitives and update LeftBound 

If Cleft" and "right" are adjacent in sorted list) 

Set run from RightBound 10 LeftBound along 

Yscan line to the voxel value of r; 

Get next "left" and "right" from IIsI 

Else 	 Get the next "left" primitive and update 

R,ghtBounCi If the right edge of the ~ew "left" 

primitive IS to right of RlghtBound 

Restore saved Jacks 

Note that the algorithm has been described assuming that the ZoomX, ZoomY, ZoomZ 
and Orient registers are set at their default values, I, 1, 1 and 0°, respectively. However, 
other values assigned to these registers may drastically affect the way it executes, especially 
since the sequence by which r is clipped is not the order of the input stream. In addition, 
the voxels or intervals of voxels have to be replicated according to the Zoom registers 
before writing runs of voxels between RightBound and LeftBound. 
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Note also that when writing a voxel into the CFB, the mode registers, like Colour Mode, 
Texture Mask and Voxel_ Ops, are consulted (if they are enabled) to determine the correct 
colour. If the Texture_Mask is enabled, the data will be written selectively according to 
the binary mask. If the Voxel_ Ops is enabled, a boolean operation defined by the register 
will be performed between the source primitive and the destination one before the data is 
placed in the CFB (see the next section). 

Boolean Function I Index 

Dest or (not Src) 

no: Des~ 

0 

2 

13 0 o 1 

4 0 ao 
o0 

6 0 o 

Src 

0 

a 
a 

7 0 1 1 

8 o o o 
9 oo 
10 oo 
11 o 
12 o 0 

(not Dest) or Src 13 o 1 

not (Dest and Src) 14 a 
foreground 15 

Table 1: Bitwise Voxel-Ops and Jack-Ops. 

10. Voxel-Ops and Jack-Ops Algorithm 

The voxel-ops and jack-ops algorithm is performed before writing any data into the CFB. 
It is governed by two registers: the Voxel_ Ops register which applies to rooms and 
figurines, and the Jack _ Ops register which applies to jacks. There is a total of 16 voxe1­
wise boolean operations which operate on a source voxel (Src) and a destination voxel 
(Dest) and place the result in Dest. The boolean operations are summarised in Table 1. 
The four bits of the index of the boolean function given in either register are exactly the 
code utilised by the vEto perform the function. These operations are legal only when the 
processor is working either in the Gray_Scale or in the Binary mode. In the Binary mode, 
the Background colour represents a 0 and a Foreground colour represents a I. 
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Table 2: Orientation Table Used by the Orientation Algorithm. Letters within the table refer to 

the coordinates of the primitive: 

t - refers to the minimum coordinate value, 

r - refers to the maximum coordinate value. 

11. Orientation Algorithm 
The Orient register of the vE automatically affects the final orientation of an primitives 
being written into the CFB. When writing into the CFB, the clipping algorithm produces 
scan-lines to be placed in the CFB according to the Orient register. The clipping 
algorithm is unaware of the actual orientation or exact location of the scan-line (or 
primitive for that matter) on which it is currently working. To accomplish this six values, 
based upon the Orient register, are employed: Xmin , Ymin' Zmin, Xmax , Ymax and Zma" marked 
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as x~, y~, z~, xi, Yi, and zj, respectively. If, for example, the Orient register is set such 
that a 1800 rotation is performed about the Z-axis, (orient = 2), then the top and the 
bottom have been switched, so have been the left and the right, however the front and the 
back have remained unchanged. To reflect this action, x~ is the value which corresponds 
to xi, y~ to Yi, z~ to z~, and so on (see Table 2). When several rotations are to be 
performed (orient about more than one axis), turning is done about the X, Y and Z axes in 
that order. Angles refer to clockwise turning when looking down the specified axis toward 
the origin. 

12. Implementations 

A reduced-resolution hardware prototype system of 163 voxels, 8-bit each, has been 
realised in hardware and has been integrated under an IBM-AT with a mouse. This 
prototype has been running successfully in real time under the CUBE software 
environment. The hardware realisation consists of 16 modules, each of which is 
implemented as a custom-built printed-circuit board, containing one CFB module, its 
addressing and processing units, with barrel shifting links between boards. Measured time 
for a small 163 room rotation about a primary axis, for example, is only tenth of a 
millisecond, while the rotation time for a large 5123 room is estimated to be 170 
milliseconds. 

Many components of the CUBE prototype are ideal for VLSI implementation. Currently, 
a larger and more compact implementation in VLSI using CMOS 2.0M technology is being 
developed, where a single VLSI chip implements one board including its memory module. 
An alternative implementation calls for one chip to hold several processing and addressing 
units excluding their memory modules which will be realised with off-the-shelf 
components. 

The vE has been designed, developed and simulated in software at the Ben-Gurion 
University of the Negev and at the State University of New York at Stony Brook. The 
simulations have been written in C on a VAX-780 and SUN workstations running Unix. 
At the Ben-Gurion University the simulation has implemented most of the vE instructions 
using a RAMTEK-9400 as the output device [17]. 

A more complete simulation has been implemented at Stony Brook as part of the CUBE 
system [10,12] on SUN workstations using SunView and the CUBE environment. A 3D 
input device supported in this implementation is a Polhemus 3SPACE Isotrak device, the 
kite. It is used for absolute and relative 3D positioning and 3D orientation, as both a 3D 
locator and a 3D pick device. The mouse is another input device employed as a 3D 
locator, a "triad" mouse (a la [14] ). The third degree of freedom is achieved when the 
mouse is moved diagonally as visually shown in the projection of the jack on the screen. 

The vE user interface relies on the CUBE system user interface. Currently, three interface 
modes are supported: batch mode for reading a FBDL3 from a file or memory, keyboard 
mode for providing vE commands one at a time from the keyboard, and "cubespace" 
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mode for a fully interactive dialogue. in which several 3D interactivc views of the 3D 
space are provided [12). 

One of the direct and most important applications of the vE is the 3D voxel-map room 
manager, i.e., the 3D counterpart of the 2D window manager. In our SUN 
implementation a room manager has been programmed in software on top of the vE 
simulation. It employs major parts of the vE repertoire. The room manager allows the 
application to freely create, delete, move, resize, scale, rotate, swap, and copy overlapping 
voxel-map rooms or figurines. The room manager will take care of all the operations and 
will maintain records of the obscured portions of the primitives, so that the application 
can focus on the contents of the primitives. The basic idea of the vOKel-map room 
manager is based on Rob Pike's window manager and his layered approach to graphics in 
overlapping bitmap layers [16]. However, the operations listed above are supported 
directly by the vE. Specifically, clipping of primitives is supported at a lower level by the 
vE. 
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