
7

The voxblt Engine:

A Voxel Frame Buffer Processor *

Arie Kaufman

The voxblt Engine (vE) is a 3D frame-buffer processor which manipulates and processes ''3~ bitmaps" (voxel maps)
stored in a cubic frame buffer of voxels. The vE is the 3D counterpart of the 20 frame buffer processor, which is an
extended version of the 20 bitbl/ and RasterOps engines.

The primitives of the vE are subcubes of the cubic frame buffer and are of three kinds: rooms (3D windows), jacks
(3D cursors), and figurines (3D ,cons). In addition to manipUlating these primitives, the vE also serves as a monitor
for interaction, as an interfaoe for 3D input devices, and as a channel for inputling into the cubic frame buffer 3D
voxel images from either 3D scanners or a voxel image database. The vE has been developed as part of the CUBE
system, In which it operates as an Independent processor executing its own commands stored in a 3D frame-buffer
display list. A room manager, which is the 3D counterpart of the 20 Window manager, has been implemented on top
cf the vE
~~- --,,.~-~- -----~..."-- ...

1. Introduction
In the past five years, some attention has been given to developing architectures and
hardware for volumetric processing [2,3,6,7,9,10,12,13,15,19]. This paper focuses on a
new breed of volumetric processing. that of a voxel frame buffer processer, i.e., a voxblt

Engine (vE). The vE, which processes voxel maps, is the 3D counterpart of the 2D frame
buffer processor (FBP) [I I]. The latter is an extended version of the 2D bUblt [4] and
RasterOps [18] engines.

Voxel-based systems are based on the concept that the volume of interest is discretised,
sampled, and stored in a the Cubic Frame Buffer (CFB), i.e., a full 3D cellular memory of
voxels (unit volume cells). Each voxel holds a density value in the broad sense,
representing the colour, material, texture, and translucency ratio of a small unit cube of

* This work was supported by the National Science Foundation under grants DCR 8603603, CCR 8743478.
CCR 87170J6, and MIP 8805130.

http://www.eg.org
http://diglib.eg.org

86

the real scene. The stored 3D images are directly manipulated using cellular-map or
voxel-map operations, employing a voxel frame buffer processor, such as the vE. A typical
CFB is a huge memory buffer of the order of 128M bytes for a 5123 resolution. In
addition to the storage requirements, an extremely large throughput has to be supported,
and a special architecture and parallel processing is imperative. The voxel representation
is especially suitable for empirical data as in medical imaging, biology, geology, and 3D
image processing. In addition, this representation is becoming common place in
traditional synthesis applications, like CAD, scientific volume visualisation, and 3D
simulation and animation.

The vE is part of the CUBE architecture [10], a 3D voxel-based graphics system. The
CUBE system, depicted schematically in Figure 1, is a multiprocessor system with three
processors accessing the CFB, to input, manipulate, and view and render the CFB images.

Cubic
Frame
Buffer

,------­ ,------- ,------ ­
, 3D 3D : , Frame , , Video ,, Geometry , .1 Control

Unit
.' Viewing 1--------0-1

Processor'
 r------, Processor , Buffer '----+I Processor,, ,, ,
L ______ , L ______ ,L ______,

~--r-
(Screen)

3D

Frame Buffer 1-01t-----1
 User

Display • Interface
List

Figure 1: Schematic Diagram of the vE as Part of the CUBE Architecture.

The vE, which is one of these processors, channels into the CFB empirical/scanned voxel
images, which are the primary source of CFB data. A geometric model is another source
of CFB data. The 3D Geometry Processor scan-converts synthetic 3D geometric models

87

into their 3D voxel representation within the CFB, possibly intermixed with the empirical
data. Once the images, empirical andlor synthetic, are in the CFB they are manipulated
and transformed by the vE. The third processor, the 3D Viewing Processor, generates 2D
shaded orthographic projections of the CFB image in a conventional 2D frame buffer of
pixels. Arbitrary parallel projections can be generated by first transforming the images
with the vE and then vicwing them through a principal orthographic direction.

In the CUBE architecture the vE performs part of the operations that conventionally
would be performed by a geometry processor, a viewing processor, and a video processor.
By doing so it frees the other processors to concentrate on their own tasks. In addition,
the vE gives hardware support to operations that would have ordinarily been performed in
software. This hardware support frees the main CPU from the burden of running in
software, for example, the room manager, which is the 3D counterpart of the 2D window.
manager.

2. vE Primitives

The vE directly manipulates and processes 3D voxel maps, i.e., sub-arrays of the CFB.
The primitives of the vE are unstructured portions of the CFB of three types: rooms (3D
windows), jacks (3D cursors), and figurines (3D icons). Since the CFB is an unstructured
3D array of voxels, these primitives are the only objects with special meaning to the vE.
The primitives are manipulated according to the vE instruction list stored by the main
CPU in a 3D Frame Buffer Display List (FBDL3).

The prevailing primitive is the room, which is a 3D rectangular box or a cuboid of voxels.
The room is the 3D counterpart of the 2D window. It is defined by two (x, y, z)
coordinates defining extreme corners of the room, and a priority value. In case of a space
conflict between primitives, the one with the highest priority occupies that common space
within the CFB. This feature is useful in supporting three-and-a-half dimensional
environment, which is paramount for room management. A room, like its 2D counterpart,
defines either a "room" (enclosure) of interest to operate upon, or a 3D extent of an object
that can be thresholded or masked, for example, using the vE commands and registers.

The jack, which is the 3D counterpart of the 2D cursor, is a small 3D box which provides
a visual feedback for 3D graphics interaction. A jack is defined by its edge length and its
center coordinates. In addition to the system-defined jacks, the user may define the
adequate pattern for each user-defined jack tailored to the application. The 3D jack
mechanism enables the user to dynamically tour the exterior or interior of the objects, and
improves user orientation in the 3D environment. Traditionally, 2D cursors have been
handled by the video processing units. Supporting jacks by the vE alleviates the high load
already assumed by the video processor and by the 3D viewing processor. While writing a
3D jack into the CFB, the voxel data covered by it is saved within the vE for later
restoration (when the jack moves from that location). The jack priority is higher than that
of the rooms and the figurines, and all jacks have the same priority. Since a 3D jack

88

might be hidden from the user in one or all views, there is an option to display the
projection of the jack on the screen as if the jack floats in the fourth dimension.

The I'E supports user-defined 3D figurines. This primitive is similar to the room primitive,
but it is usually smaller and holds an application-oriented constant image. A figurine is
defined by two (x, y, z) coordinates and a priority value. The figurine might be either
bounded (anchored) to a room or float independently, and it gets its priority according to
this status. A floating figurine behaves like a room and is assigned an independent
priority. A bounded figurine, however, is assigned the priority value of the bounding
room, and it is affected by all the operations performed on the bounding room.

3. vE Tables

The vE supports five tables for managing its operations. The tables are designed as
integral parts of the processor in order to reduce the access time and to increase the
overall speed of the vE.

The Room Table (RT) holds information of all the currently defined rooms. Each room
has a unique entry in the RT, which is indexed by the room identifier. In addition, the RT
holds for each room, its two (x, y, z) coordinates, its priority, and a figurine identifier list
indexing all the figurines bounded to this room.

The Jack Table (JT) holds information of all the user-defined and system-defined jacks.
Each jack has a unique entry in the JT, which is indexed by the jack identifier. The JT
holds the jack center coordinates, its size, its location in the scratch storage area of the JT,
and a code specifying whether the original jack pattern or the data that is currently
covered by it is in the scratch area.

The Figurine Table (FT) holds information of all the currently defined figurines. Each
figurine has a unique entry in the FT, which is indexed by the figurine identifier. The FT
holds for each figurine two (x, y, z) coordinates, its status (bound/float) and its priority.
For a bounded figurine the FT also holds the room identifier of the bounding room.

The Priority Table (PT) handles room and figurine priorities. Every room and every
figurine has an entry in the PT. This entry is defined when a new room or figurine is
inserted in the RT or the FT, respectively. The purpose of this table, which is sorted by
the priority, is to speed up the overlapping of primitives when performing operations on
them, such as clipping. The PT provides the vE with a mechanism to rapidly find the
priority order between the primitives.

The Device Table (DT) holds information to supports interaction with the 3D input
devices. Each input device has a unique entry in the DT which identifies it. The table
also holds a reference to the jack, if any, attached to that device.

89

4. vE Registers

Internal registers of the vE can be read, set, or reset, and all subsequent operations are
consequently affected. The vE has three operating states: passive, active, and suspended.
The passive state is the initialisation state. The system registers that affect the
configuration of the vE are alterable only during the initial passive state. All the other
registers and register fields thereof are alterable also during the active state, in which the
vE operations are executed. During the suspended state the CPU handles traps.

The vE registers are divided into four main groups: address, mode, system, and input
registers. The address registers include general purpose address registers, a Stack Pointer
(SP) which points to the top of a conventional stack, and a Program Counter (PC) which
points to the next executable instruction in the FBDL3.

The mode registers are divided into two subgroups. The first subgroup specifies the
environment of the system, including the Cfb _Size, Max Rooms. Max Jacks,
Max Figurines, colour/translucency mode (Colour Mode), number of bits comprising
each component of a three colour system (Colour Field), and which colour planes in the
eFB are enabled (Depth_Plane). Each mode register is enabled by a specific bit in the
Status register.

The second subgroup includes registers which affect the voxel writing into the CFB:
zooming control (Zoom), boolean operations on voxels and jacks (Voxel_ Ops and
Jack _ Ops), masks for texture and filtering (Texture_Mask and Filter), Background and
Foreground colours, and CFB orientation (Orient), Le., orientation by 0°, 90°, 180°, or
270° about the primary axes. Any operation performed on the primitives that write voxel
information into the CFB, e.g., copy, is directly affected by these registers. For example, if
the X field of the Zoom register, ZoomX, indicates a zoom of factor 2, any voxel written to
the CFB is automatically replicated along the X direction. If the Origin register specifies
that the CFB X origin is at its Xmax axis (instead of Xmin), all subsequent operations into
the CFB will be reflected (rotated by 180°) with respect to the X CFB origin.

The system registers define the vE configuration. They include the State register, which
defines the operating state of the vE (passive, active, or suspended), and the Initial register
which determines the configuration of the system (three fields for CFB X, Y and Z
dimensions, and three fields for the maximum number of rooms, figurines, and jacks), and
is alterable only during the initial passive state.

Three additional system registers are used for handling errors and traps. The Trap_Enable
register has a one bit field for each type of error. When an error occurs, the Trap_Enable
register is used to determine if this error should cause a trap, i.e., change the operating
state to suspended. The Error register also contains one bit field for each type of error. It
is used by the jumperr instruction to jump to an appropriate error handling routine based
upon the type of error. The Stop register is used to pass the error category back to the
CPU. It is set only if an error is detected and trapping is enabled.

90

The input registers define the input environment assisting in the user-vE interaction. In
the current implementation two 3D input devices are supported. One is a true 3D device,
a Polhemus 3SPACE Isotrak specifying 3D position and 3D orientation, called by us the
kite. The other is a common 2D mouse used for 3D positioning, by exploiting horizontal,
vertical and diagonal moves (see [14]). The Input Enable and Device Status registers of
each device indicate whether the device is currently enabled, ready, or "done". In
addition, there is a Data register for each device which contains the position and
orientation information accepted from that device.

5. vE Repertoire

The vE instruction set contains commands for manipulating the three types of primitives
(i.e. rooms, figurines, and jacks) as well as system instructions which affect the overall
operation of the system. The large sets of operations for handling rooms, figurines and
jacks, and the underlying vE registers provide an extremely flexible environment for
manipulating the CFB voxel images. All primitives are created and introduced into their
tables by define, removed by delete, "painted" uniformly by erase, read from the CFB by
read, written into the CFB by 'write, moved by translate, copied by copy, swapped with
another primitive by swap, and rotated about a major axis by rotate. Both rooms and
figurines are scalable (scale) with maximum size restriction applied only to figurine. The
scaling factor can be any real number (see algorithm details in Section 8.2). Rooms can be
rotated about any major axis through any angle (see algorithm details in Section 8.3), but
the rotation angles for figurines and jacks are restricted to multiples of 90°.

Rooms and figurines, which are assigned priorities, are subject to a change of priority
command which may affect future placements of primitives in the CFB. Figurines have an
exclusive instruction for bounding/unbounding figurine tolfrom rooms. An exclusive
instruction for jacks is for loading a jack pattern (e.g., from the FBDL3, from the stack) to
the JT storage area.

The system instructions of the vE include register manipulation, (set, setf - set field, get,
getf, reset), program flow control (jump, jumperr, call, return), stack control (push, pop),
state control (active, halt) and input device control (attach device, disattach).

6. vE Internal Architecture

The vE is an independent co-processor, which fetches and exccutes its instructions listed in
the FBDL3 stored in the host computer memory by the CPU. The basic hardware
organisation of the vE consists of four components: The Fetch Unit, for fetching the next
instruction to be executed from the FBDL3, decoding it, and fetching data if necessary:
the Execution Unit for executing the instructions; the CFB Management Unit for
managing the access to the CFB; and the Control Unit for controlling and synchronising
the other units.

91

The vE internal organisation can be classified as a pipeline architecture. While fetching an
instruction, the previous one is decoded and the one before it is being executed. Since
large amounts of voxels require complex and lengthy computations, the execution stage in
the pipeline is the bottleneck of the system. Therefore, an emphasis has been placed on
efficient and diligent algorithms.

The Execution unit manipulates the CFR images, controls the interaction with 3D input
devices and handles the processor tables. Care has been taken to provide simple and fast
operations, especially for the large rooms. The Execution unit consists of five sub-units:
the Input sub-unit manages the 3D interaction with 3D devices, by polling them at
specified intervals. The Geometric sub-unit performs the geometrical operations:
translation, scaling, and rotation. These operations employ incremental transformation
technique, in which each voxel is transformed with a maximum of 3 additions (see Section
8), and ex.ploit the parallel memory and the barrel shifter (see Section 4). The Clipping
and Priority sub-unit handles the clipping of a primitive to other primitives based on their
priorities (see Section 9). The Voxblt sub-unit performs voxelwise operations such as
filtering, boolean operations and texture masking (see Section 10). The Table sub-unit
manages the vE tables as an aid to the other Execution sub-units.

The CFR Management unit is responsible for writing and reading single voxels, beams of
voxels, or intervals of voxels, to and from the CFR memory. All CFR accesses are
channelled through a global control unit monitored by the viewing processor which is the
heaviest user of the CFB, arbitrating the aeeess of the other processors to the CFB. The
next section deseribes briefly the memory organisation and its accessing avenues.

1. Memory Parallelism and Barrel Shifting

A unique skewed memory organisation enables all the CUBE processors, including the vE,

to store and retrieve a full beam of voxels simultaneously [8]. The n3 voxel memory is
divided into n distinct memory modules each having n2 voxels. A voxel (x, y, z) is mapped
onto the k-th module by:

k ex + y z) mod n O,,;;;k,x,y,z n-1, (1)

where the internal mapping (i, j) within the module is:

i = X, y (2)

Since two coordinates are constant along any beam, regardless of the view direction, the
third coordinate guarantees that only one voxel from the beam resides in anyone of the
modules.

The physical memory is thus divided into n independently accessible memory modules,
each with its own local addressing unit, and its own local processing unit (see Figure 2).
Each voxel of a beam is fetched from a separate memory module and is processed by the
associated processing unit. The processing units are used primarily for selecting the

92

Control~________-'_________~....~~~~~~r-__________________--'
Urut r

n-J:0:

Data

Bus

Barrel

Shifting

[Voxel Value

Depth Value

to FB/LUT/Shading Unit

Figure 2: Parallel Memory Organisation with a Barrel Shifter.

opaque voxel closest to an observer in order to generate a projection. In addition, the n

processing units are connected through bi-directional links which enable the barrel shifting
of the voxel beam across the processing units by a given offset, and then writing it back
into the CFB memory modules at a different location modulo n. This is actually a fast
memory to memory beam move mechanism. The barrel shifter provides immediate
neighbours links as well as "hard-wired" power-of-2 neighbour skips. The number and the
extent of the skips depend upon the length of a beam, n, with an attempt to minimise the
average shifting time.

The parallel memory access and the barrel shifter are exploited by the vE to speed up
many of its operations on rooms, on beams, or parts thereof. Specifically, geometric
transformations, like translation or 3D rotation about an axis, mirroring, erasing with a

93

constant colour, etc., are all using these mechanisms. For example, the 3D rotation about
the x-axis through an arbitrary angle involves taking beams parallel to the x-axis and

n3relocating them to the new position. The time to rotate a primitive of voxels is
proportional to n2 log n, rather than the conventional n3 , where n2 is proportional to the
number of beams and log n is proportional to the barrel shifting cost. In our
implementation, rotating a room of voxels about a primary axis using these
mechanisms is estimated to take only 45 milliseconds employing immediate neighbour and
8-skip neighbour links.

8. Geometric Algorithms

Special care has been taken to provide simple and fast geometric transformations
especially for the large rooms. All transformations, carried out by the Geometric sub-unit
of the vE, including translation, scaling (anamorphic with non-integral factors), and
rotation (through any angle), are performed using incremental transformation techniques,
in which each voxel or a voxel beam is transformed, based on the new position assumed
by its immediate previous neighbour, with a maximum of 3 additions/increments. The
algorithms are based on inter- and intra-scan-Iine coherency. In other words, after
calculating the new location for one voxel/beam, its neighbours relate to it as they did in
the original location.

The geometric algorithms also resolve possible overlapping between the source and the
destination primitives, by performing the operations in a predefined sequence according to
the orientation algorithm (see Section II). This is necessary since therc is no scratch CFB
memory available to temporarily hold old voxel information while performing the
transformation.

8.1. Translation Algorithm

The translate operation moves a pnmItive from its source positIon to its destination
position. The relative translation is characterised by a vector (Tx, and the equation:

(3)

An incremental algorithm specifies the position of the next voxel along the X-axis to be
translated (Xsrc 1, Ysrc , Zsrc) in terms of its predecessor's destination position

(Xdest , Ycast, Zdest):

(4)

Thus, the next voxel position in the destination primitive can be determined by only
incrementing the appropriate coordinate of the last voxel without performing an addition
for every voxel. Similar results apply to Y and Z.

Care must be taken to avoid overlapping, that is, if the destination primitive is partially
overlapping with the source primitive, then some of the source voxels might be overwritten

94

by the copied voxels before the source voxels are translated, which could distort the
destination primitive. The current algorithm sets the Orient register so that the translation
starts from the source corner that is also situated in the destination primitive range (see
Section 11). If no overlap occurs, then the order of translation is not important.

8.2. Scaling Algorithm

The equations for scaling a room about its origin are given in Equation 5. The shifting to
and from the origin are accounted for in the CFB addressing of the source and the
destination.

= Xsrc Sx Ydest = Ysrc Sy Zdest Sz (5)

Like rooms, figurines are also scalable, but with maximum size restriction. Jacks are not
scalable.

The scaling algorithm for rooms simultaneously scales a room along the three axes, where
the three scaling factors, S" Sy and S" can all be different and not necessarily integers.
Consequently, the scaling algorithm requires, therefore, three non-integer multiplications
and three roundings for each voxel, which can result in heavy computations for large
rooms. The complexity of the computations can be significantly reduced by using an
incremental algorithm which is based upon:

(Xsrc + 1) Sx Xsrc Sx + S, Xdest + Sx (6)

+1) Sy Sy"- Sy = + Sy (7)

+1) Sz = S7 + Sz = Zdest+ S2 (8)

The coordinates of the next transformed voxel can thus be obtained by simply adding the
respective scaling factor to the X, Y, or Z coordinate of the predecessor voxel and
rounding the results to integer coordinates.

Precautions must be taken if the scaling factors are greater than I. In this case, applying
the above transformation to a primitive may produce holes in the scaled primitive, due to
an increase in the room volume with no increase in voxels. To avert this problem back

scaling is introduced, i.e., the incremental transformation process is reversed. By
employing this technique, several voxels in the destination primitive can be mapped to the
same voxel in the source primitive. To do this we transform two opposite corners of the
source room, which yields two opposite corners in the destination room. We then step
through the destination room. At each point in the destination room, we reverse­
transform the coordinates to determine the voxel value for that point. This can be done by
multiplying the destination coordinates by (lISx, 1 IISz). A more efficient way to do
this is to step through the source room in parallel with the stepping through the
destination room. The increments to be used in stepping through the source room are
(Xiner/Sx , YinerlSy, Zincr/S2), where Xiner, Viner and Ziner are the X, Y, and Z increments
(lor -I) used in stepping through the destination room.

95

As with the translation algorithm, precautions must be taken to avoid overwntmg of
voxels in the source room before they have been scaled. This is accomplished by properly
choosing the comer of the room to be used as a starting point for the transformation
based on the values of Sx. Sy and Sz.

Below is a pseudo-C code for scaling. assuming that (Xs. Ys , Zs) and (XE' YE, ZE) are the
starting and ending comer of the destination primitive, respectively, and (Xsrc , Ys' c , Zsrc) is
the starting corner of the source primitive (the reverse-transformation of (Xs, Y s, Zs),

SZincr lincrIS,,

Round

While (Y,<c YE)

l

Increonent oy SYtne,

Inereon"nt by Ylncr

Increment by Sllncr

Increment by llncr

83. Rotation Algorithm

The rotation algorithm of the vE rotates a room about its ongm through any angle 0

relative to a major axis. Positive angles produce clockwise rotations when looking down
an axis toward the origin. A rotation is performed about only one axis at a time. The
following discussion is limited to a rotation about the Z axis. Similar equations hold for
rotating about the X and Y axes. The equations for rotating about the Z axis are:

Xsrc cosO Ysrc sinO (9)

Ydest Xsrc cosO + Ysrc sinO (10)

Like for scaling, the shifting to and from the ongm are accounted for in the CFB
addressing of the source and destination rooms. Since all the voxeIs along beams parallel
to the Z-axis are identically rotated, entire beams are moved for each new coordinate
calculation employing the parallel memory and the barrel shifter.

96

Once again an incremental algorithm is employed to make it possible to determine a
voxels position without the need to perform heavy computations. In addition, back
rotation, from destination to source [5], is employed to eradicate holes which could be
produced from the forward rotation of a room. To accomplish this task the eight corners
of the source room are first rotated to locate the destination room. Once calculated, the
minimum coordinates are back rotated by the rotation equation, Equations 9 and 10, by
replacing (J by -(J. From this point on, the incremental procedure is used to back scan the
entire room. The c.onstant increments for all voxels/beams are merely sin8 and cos(J.

Equations 11 and 12 give the coordinates of the point (Xx+t, Yx+1 , back-rotated
from (Xdest +1, Yoast, Zdes,), while Equations 13 and 14 give the point (Xy';'l' Yy+l' Zdest)
back-rotated from (Xdest' Ydest +1, Zdest):

Xx-~ (Xdest 1) cosO Ydestsin(J Xsrc + cos8 (11)

Yx c-l - (Xdest + 1) sin8 + YdestCOS(J Ysrc _. sin(J (12)

XY+l = Xdestcos(J + (Ydest + 1) sin8 = Xsrc sin(J (13)

Y y + 1 - Xdest sinO .+ (Ydest + 1) cos(J = Ysrc + cosO (14)

Note that either set employs only two fixed-point additions that can be performed in
parallel. Note also that the destination room can be clipped first, then only the visible
parts need to be back-rotated.

As in the scaling and translation algorithms, the overlap problem is overcome by starting
the scan at the source vertex which is also located within the destination room.

9. Scan-line Clipping Algorithm

The vE Clipping sub-unit supports several simultaneous rooms and figurines, each of
which is assigned a unique priority, which is specified at time of definition, and may be
changed by the user later on. If collision occurs, temporal priority governs. When a room
or an figurine, r, with two opposite corners, (Xmin' Ymin , Zmin)' and (Xmax , Ymax , Zmax), is
written into the CFB, by copying it from outside or by moving information within the
CFB, the clipping algorithm is employed in order to determine which portions of r are not
obscured by any of the other rooms or figurines. Any room with a higher priority will not
be overwritten by the incoming object. However, when reading a room, overlapping is
ignored and priorities play no role in that process.

The clipping algorithm is a 3D generalisation of a scan-line algorithm [1] adjusted for
low-level processor implementation. For each scan-line (row of voxels), only the visible
segments are written into the CFB. This is intrinsicly different from the algorithm
proposed by Pike (16] at the window manager level, in which the window in question is
recursively subdivided into subrectangles and all the subrectangles have to be accounted
for. Here, on the other hand, only the visible segments have to be handled by the vE, the
invisible sections are handled by the application, e.g., the room manager.

97

A scan-line is obtained differently in five different cases: constant colouring, wntmg,
copying. zooming, and when orienting a room. The scan-line is clipped by matching it
against the active table. This table holds the identifiers of those rooms which intersect
with the current scan-line. To make the process of creating the active table more efficient,
a temporary table, InterTable, is created as the algorithm is invoked. This table lists the
identifiers of all rooms that intersect with r, having priorities higher than that of r. It is
sorted by their Zmin, Ymin and Xmin . As each scan-line is processed. the active table is
updated from the InterTable. The InterTable is created in Zmin order so that scanning
through the table can be stopped as soon as the first intersecting room with a Zmin greater
than the current Z-plane in encountered, thereby making the search less costly. For
similar reasons, the InterTable is kept also in Ymin and Xmin order. The algorithm in
pseudo-C code follows:

Save all jacl<.s

For (Zscan Zmm' Zscan Zrrax; Zscan+ +)

Rer10ve from InterTab primitives below 2scan

50,1 by Y then X all primitives in Inlerlable Intersecling the Zscan line

For (Yscan Y~,n' Yscan ~ Ymax : Yscan++)

While (LeftBound Xmax)

RightBouna ~ Hight X of leftmost primitive ("lett primitive")

LeftBound ~ Left X of next leftmost primitive Crlght")

While CLef/Bound,.;; R!ghlBound ane {nlerTab no: emply)

Get next "right" primitives and update LeftBound

If Cleft" and "right" are adjacent in sorted list)

Set run from RightBound 10 LeftBound along

Yscan line to the voxel value of r;

Get next "left" and "right" from IIsI

Else 	 Get the next "left" primitive and update

R,ghtBounCi If the right edge of the ~ew "left"

primitive IS to right of RlghtBound

Restore saved Jacks

Note that the algorithm has been described assuming that the ZoomX, ZoomY, ZoomZ
and Orient registers are set at their default values, I, 1, 1 and 0°, respectively. However,
other values assigned to these registers may drastically affect the way it executes, especially
since the sequence by which r is clipped is not the order of the input stream. In addition,
the voxels or intervals of voxels have to be replicated according to the Zoom registers
before writing runs of voxels between RightBound and LeftBound.

98

Note also that when writing a voxel into the CFB, the mode registers, like Colour Mode,
Texture Mask and Voxel_ Ops, are consulted (if they are enabled) to determine the correct
colour. If the Texture_Mask is enabled, the data will be written selectively according to
the binary mask. If the Voxel_ Ops is enabled, a boolean operation defined by the register
will be performed between the source primitive and the destination one before the data is
placed in the CFB (see the next section).

Boolean Function I Index

Dest or (not Src)

no: Des~

0

2

13 0 o 1

4 0 ao
o0

6 0 o

Src

0

a
a

7 0 1 1

8 o o o
9 oo
10 oo
11 o
12 o 0

(not Dest) or Src 13 o 1

not (Dest and Src) 14 a
foreground 15

Table 1: Bitwise Voxel-Ops and Jack-Ops.

10. Voxel-Ops and Jack-Ops Algorithm

The voxel-ops and jack-ops algorithm is performed before writing any data into the CFB.
It is governed by two registers: the Voxel_ Ops register which applies to rooms and
figurines, and the Jack _ Ops register which applies to jacks. There is a total of 16 voxe1­
wise boolean operations which operate on a source voxel (Src) and a destination voxel
(Dest) and place the result in Dest. The boolean operations are summarised in Table 1.
The four bits of the index of the boolean function given in either register are exactly the
code utilised by the vEto perform the function. These operations are legal only when the
processor is working either in the Gray_Scale or in the Binary mode. In the Binary mode,
the Background colour represents a 0 and a Foreground colour represents a I.

99

Table 2: Orientation Table Used by the Orientation Algorithm. Letters within the table refer to

the coordinates of the primitive:

t - refers to the minimum coordinate value,

r - refers to the maximum coordinate value.

11. Orientation Algorithm
The Orient register of the vE automatically affects the final orientation of an primitives
being written into the CFB. When writing into the CFB, the clipping algorithm produces
scan-lines to be placed in the CFB according to the Orient register. The clipping
algorithm is unaware of the actual orientation or exact location of the scan-line (or
primitive for that matter) on which it is currently working. To accomplish this six values,
based upon the Orient register, are employed: Xmin , Ymin' Zmin, Xmax , Ymax and Zma" marked

100

as x~, y~, z~, xi, Yi, and zj, respectively. If, for example, the Orient register is set such
that a 1800 rotation is performed about the Z-axis, (orient = 2), then the top and the
bottom have been switched, so have been the left and the right, however the front and the
back have remained unchanged. To reflect this action, x~ is the value which corresponds
to xi, y~ to Yi, z~ to z~, and so on (see Table 2). When several rotations are to be
performed (orient about more than one axis), turning is done about the X, Y and Z axes in
that order. Angles refer to clockwise turning when looking down the specified axis toward
the origin.

12. Implementations

A reduced-resolution hardware prototype system of 163 voxels, 8-bit each, has been
realised in hardware and has been integrated under an IBM-AT with a mouse. This
prototype has been running successfully in real time under the CUBE software
environment. The hardware realisation consists of 16 modules, each of which is
implemented as a custom-built printed-circuit board, containing one CFB module, its
addressing and processing units, with barrel shifting links between boards. Measured time
for a small 163 room rotation about a primary axis, for example, is only tenth of a
millisecond, while the rotation time for a large 5123 room is estimated to be 170
milliseconds.

Many components of the CUBE prototype are ideal for VLSI implementation. Currently,
a larger and more compact implementation in VLSI using CMOS 2.0M technology is being
developed, where a single VLSI chip implements one board including its memory module.
An alternative implementation calls for one chip to hold several processing and addressing
units excluding their memory modules which will be realised with off-the-shelf
components.

The vE has been designed, developed and simulated in software at the Ben-Gurion
University of the Negev and at the State University of New York at Stony Brook. The
simulations have been written in C on a VAX-780 and SUN workstations running Unix.
At the Ben-Gurion University the simulation has implemented most of the vE instructions
using a RAMTEK-9400 as the output device [17].

A more complete simulation has been implemented at Stony Brook as part of the CUBE
system [10,12] on SUN workstations using SunView and the CUBE environment. A 3D
input device supported in this implementation is a Polhemus 3SPACE Isotrak device, the
kite. It is used for absolute and relative 3D positioning and 3D orientation, as both a 3D
locator and a 3D pick device. The mouse is another input device employed as a 3D
locator, a "triad" mouse (a la [14]). The third degree of freedom is achieved when the
mouse is moved diagonally as visually shown in the projection of the jack on the screen.

The vE user interface relies on the CUBE system user interface. Currently, three interface
modes are supported: batch mode for reading a FBDL3 from a file or memory, keyboard
mode for providing vE commands one at a time from the keyboard, and "cubespace"

101

mode for a fully interactive dialogue. in which several 3D interactivc views of the 3D
space are provided [12).

One of the direct and most important applications of the vE is the 3D voxel-map room
manager, i.e., the 3D counterpart of the 2D window manager. In our SUN
implementation a room manager has been programmed in software on top of the vE
simulation. It employs major parts of the vE repertoire. The room manager allows the
application to freely create, delete, move, resize, scale, rotate, swap, and copy overlapping
voxel-map rooms or figurines. The room manager will take care of all the operations and
will maintain records of the obscured portions of the primitives, so that the application
can focus on the contents of the primitives. The basic idea of the vOKel-map room
manager is based on Rob Pike's window manager and his layered approach to graphics in
overlapping bitmap layers [16]. However, the operations listed above are supported
directly by the vE. Specifically, clipping of primitives is supported at a lower level by the
vE.

13. Acknowledgement
This work was supported by the National Science Foundation under grants DCR 8603603,
CCR 8743478, CCR 8717016, and MIP 8805130. The author wishes to thank all the
dedicated individuals who have worked on the vE project: R. Bakalash, C. Lin, T.
Rosenwaks, M. Waldman, and X. Zhong.

References

L 	 J. D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, MA, 1982.

2. 	 S. Goldwasser and R. A. Reynolds, "An Architecture for the Real-Time Display of
Three Dimensional Objects," Proceedings International Conference on Parallel
Processing, 1983.

3. 	 S. M. Goldwasser, "A Generalized Object Display Processor Architecture," iEEE
Computer Graphics & Applications, vol. 4, no. 10, pp. 43-55, October 1984.

4. 	 L. J. Guibas and J. Stolfi, "A Language for Bitmap Manipulation," ACM
Transactions on Graphics, vol. 1, no. 3, pp. 191-214, July 1982.

5. 	 R. D. Hersch, "Raster Rotation of Bilevel Bitmap Images," Proceedings
EUROGRAPHICS'85, pp. 295-308, Nice, France, September 1985.

6. 	 D. Jackel, "The Graphics PARCUM System: A 3D Memory Based Computer
Architecture for Processing and Display of Solid Models," Computer Graphics Forum,
vol. 4, pp. 21-32, 1985.

7. 	 G.J. Jense and D.P. Huijsmans, "Hardware Support for the Display and
Manipulation of Binary Voxel Models," in this book, 1989.

102

8. 	 A. Kaufman, "Memory Organization for a Cubic Frame Buffer," Proceedings
EUROGRAPHICS '86, pp. 93-100, Lisbon, Portugal, August 1986.

9. 	 A. Kaufman, "Towards a 3-D Graphics Workstation," in Advances in Graphics
Hardware I, ed. W. Strasser, pp. 17-26, Springer-Verlag, 1987.

10. 	 A. Kaufman and R. Bakalash, "Memory and Processing Architecture for 3-D Voxel­
Based Imagery," !EEE Computer Graphics & Applications, pp. 10-23, November 1988.

11. 	 A. Kaufman, "A Two-Dimensional Frame Buffer Processor," in Advances in Graphics
Hardware lI, ed. A.A.M. Kuijk, and W. Strasser, Springer-Verlag, 1988.

12. 	 A. Kaufman, "The CUBE Workstation a 3-D Voxel-Based Graphics Environment,"
The Visual Computer, vol. 4, no. 4, 1988.

13. 	 D.J. Meagher, "Interactive Solids Processing for Medical Analysis and Planning,"
Proceedings NCGA'84, vol. 2, pp. 96-106, Anaheim, CA. May 1984.

14. 	 G.M. Nielson and D.R. Jr. Olsen, "Direct Manipulation Techniques for 3D Objects
Using 2D Locator Devices," Proceedings ACAl Workshop on Interactive 3D Graphics,
pp. 175-182, Chapel Hill, NC, October 1986.

15. 	 T. Ohashi, T. Uchiki. and M. Tokoro, "A Three-Dimensional Shaded Display
Method for Voxel-Based Representation," Proceedings EUROGRAPHICS '85. pp.
221-232, Nice, France. September 1985.

16. 	 Rob Pike. "Graphics in Overlapping Bitmap Layers," ACM Transactions on Graphics.
vol. 2, no. 2, pp. 135-160, April 1983.

17. 	 T. Rosenwaks, "A 3-D Frame Buffer Processor," M.S. Thesis, Ben-Gurion University.
Beer-Sheva, 1985.

18. 	 R. Sproull, I. E. Sutherland, A. Thompson. S. Gupta. and C. Minter, "The 8 by 8
Display." ACM Transactions on Graphics. vol. 2, no. 1, pp. 32-56, January 1983.

19. 	 T. Uchiki and M. Tokaro, "SCOPE: Solid and Colored Object Projection
Environment," Transaction of the Institute of Electronics and Communication Engineers
ofJapan, vol. 68-D, no. 4, pp. 741-748, April 1985.

