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Content-Addressable Memories 
for Quadtree-8ased Images 

J.V. Oldfield, R.D. Williams, I\J.E. Wiseman, M.R. BrOle 

Quadtrees are attractive for storing and processing ,mages with area coherence, but performance has been limited by 
software overheads. A Content-Addressable Memory (CAM) with ternary storage allows single-cycle searches by pixel 
coordinate, quadrant or rectangle. To use thiS feature effectively the authors have reviewed a range of quadlree 
orocessing functions relevant to computer graphics and Image processing, and some new algorithms have been 
discovered, The proposed VLSI chip has microcoded logic on each row, as weli as its CAM cells, This architecture 
has been simulated In fine detail with the aid of the Connection Machine as well as by much slower, conventional 
computers. The combination of quadtrees and CAMs offers Significant improvement in performance for display 
systems and image processing, 
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1. Introduction 
Content-addressable memories have been in and out of the literature (see, for example, [3]) 
for many years, and several aspects of their use were reported long ago when digital 
technology was totally different from today's. Indeed, most of the early work had no 
practical application because the technology was not ready component cost was high 
and complexity in memory was a thing to avoid. Superconducting logic was a subject for 
research in the 19605 and CAM might have found its place there if only the research had 
born fruit. Several papers were published (for example [18]) about Cryogenic memory cell 
design with content-addressability. 
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Now the situation is changed - semiconductor technology is ready to deliver devices with 
very large component count and designers are looking for ways to exploit complexity 
usefully. We may find that the day of the CAM has come. This paper describes a memory 
cell design, a memory architecture and some algorithms for use that promise high speed 
and operational simplicity for processing certain kinds of spatial data. Quadtree encoded 
image data is what we have studied most, but there are other forms of spatial data that 
could use similar methods to exploit a suitable CAM design. 

Quadtree encoding is a form of recursive image decomposition that uses area coherence to 
compact (code) the image. A square array of pixels of image data is tested for 
homogeneity. If it is homogeneous, or if the square is sufficiently small, then it is issued as 
part of the image coding; otherwise it is divided into 4 equal smaller squares and the test 
is repeated on each one. The process starts with the whole image and continues until there 
are no more squares to test. There are several possible representations for the code: the 
squares can be attached by pointers from nodes in the decomposition tree, they can be 
inferred from some traversal order of the tree, or they can be listed as squares having 
some size and belonging to some image position. The latter method is of interest to us 
here. In this method the principle is that each square is represented by a record of two 
fields. One field contains a colour value, the other a loeational code. The locational code is 
written in ternary where Oll/* indicates left/right/both or above/below/both (both means 
no subdivision). A pair of such ternary digits (trits) then describes an arc from a node in 
the decomposition tree, and a sequence of pairs (referred to as the locational code) will 
describe a path to any particular node from the root, and hence identify that node. The 
locational code is stored left justified in its field with trailing * trits. Their number 
indicates the size of the square, and the rest of the code its position in the tree. Since each 
leaf node identifies the path by which it was reached, we need not store non-leaf nodes. 
We shall see that this is a reasonably compact and convenient way to hold quadtree data 
in CAM. A binary tree decomposition is equally possible. 

A reason to be interested in tree-encoded image data is that some operations on images 
may be carried out more efficiently on the coded form than on a raster of pixels and, of 
course, the coded form (usually) saves storage space. Spatial indexing into locational 
coded quad tree data is particularly simple - one just uses the locational code of some 
desired position to match against the locational codes stored, with * interpreted as "match 
anything". One can pass over the list of leaves carrying out this test, or (better) store the 
list in CAM and use the spatial index value as an access key. Searching with any key 
requires only a single memory cycle (of the order of lOOns). There are other tree 
operations, some of which work dramatically better in a CAM implementation, and these 

issues are the subject of this paper. 

A CAM [7] can compare its contents with a given search pattern for every row 
simultaneously. Present-day CAMs may take advantage of improvements in density and 
speed for random-access memory, since they can use similar MOS circuit techniques and 
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fabrication processes. It is now feasible to store quite wide words, e.g. 32-64 bits, in a 
single CAM chip, and so avoid the problem of resolving partial matches on portions of a 
word held in separate chips. There is advantage in organising a CAM application so that 
information is stored in a completely address-independent and order-insensitive manner. 
Often it is necessary to search on a specific field or fields of each word, and a mask 
register may be incorporated for field selection. Since a search pattern may match more 
than one row, multiple responses may occur. Sometimes these must be processed 
sequentially, and so a multiple-response resolver is included, but often a common 
operation, such as changing a selected field for every responder, can be carried out in one 
memory cycle (using a multiple-write operation). 

This application is based on a relatively new CAM feature, namely the capability of 
storing trit values, which was originally applied in logic programming [2}. Storing "don't 
care" trits is distinct from specifying "don't care" trits in a search pattern. Wade and 
others [24] developed and tested a 2k trit chip, based on a 5-transistor dynamic CAM celt 
and suggest that a 32k trit design with a cycle time of lOOns is feasible with a 2-micron 
enhanced CMOS process. It is also possible to use static CAM cells with trit storage, and 
a 15-transistor cell has been reported [22], though obviously the number of trits per chip 
will be much lower. Chips can readily be cascaded vertically to form CAM structures of 
virtually unrestricted size. Selection takes place as a result of operations by row logic in 
conjunction with row status bits. These allow a sequence of qualified search operations to 
take place. 

With microcoded row logic and status bits, the CAM becomes a single instruction, 
multiple data stream (SIMD) computer. Since established algorithms for computer 
graphics and image processing are based on a von Neumann architecture, it is important 
to reconsider them to exploit the concurrency possibilities of a SIMD architecture. 

2. Locational Codes for Quadtrees 

The locational code method for representing quadtree leaves was introduced in the 
previous section. The code describes the position and size of the quadrant associated with 
the leaf. With binary image data, only the locational codes for the black leaves need be 
stored, because the codes for the white leaves can be inferred from them. With multi­
valued image data an additional colour field must also be stored, although the background 
nodes can still be omitted. This method of representation was first reported by Gargantini 
[4] and Oliver and Wiseman [1 J, 12], and has found favour with a number of researchers 
since. 


In deriving locational codes suitable for CAM the origin of the image is assumed to be at 

the top left-hand corner. For each quadrant the bit patterns of the x and y coordinates of 

the top left-hand comer are calculated. Depending on the size (width or height) of the 

quadrant, the bottom m bits of both the x and Y patterns are replaced by "don't cares", 

which are represented by *'s. The two resulting trit patterns (xn ... X1 xo) and (Yn ... Y1 Yo) 
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id location colour 

A 01 0000" 01 

B 01 0010"" 01 

C 01 0001 01 

0 01 0011 00 

E 01 1000" 01 

F 01 101000 01 

G 01 101010 10 

H 01 101001 10 

01 101011 10 

01 100100 00 

K 01 100110 01 

L 01 100101 00 

M 01 100111 10 

N 91 1011 10 

0 01 01 00 

P 01 11 10 

Figure 1: Sample image. Table 1: CAM contents. 

are interleaved to produce the locational code (xnYn ... X1Y1XOYO). The value m is log 2 of 
the quadrant's size and may be thought of as the level, assuming that pixel-sized quadrants 
are at level O. The CAM contents for the 8 X 8 image shown in Figure I are given in 
Table 1. Note that background quadrants are always stored. 

Each pair of trits effectively stores a 2 bit code identifying the quadrant (00 = NW, 01 = 

SW, 10 = NE and 11 = SE). This particular coding scheme is determined by the choice 
of origin and the order of interleaving (i.e. x before y). Different choices would have led to 
different coding schemes, but this would only have affected the decoding algmithms, and 
not the other software. With locational codes stored in normal memory the choice of 
coding scheme affects the order of storage, but with CAMs there is no concept of order as 
data can only be retrieved by content and not by address. 

The fifth code for each pair of trits is the "don't care" pair (**), which can be translated 
as meaning all four sub-quadrants. Enumerating the "don't care" code in all its positions 
produces the locational codes of each pixel within the quadrant. However, it is 
unnecessary to actually perform the enumeration, because a "don't care" will match on 
either a "0" or a "1". This is the key to the efficiency and elegance of the CAM method. 
An enquiry quadrant will not only match on equal-sized or smaller quadrants, but also on 
larger quadrants. 

Setting a different number of trits to "don't care" in x and Y produces locational codes 
which describe certain rectangles. For instance, the top scan line is (*0*0*0) and the 
bottom half of the image is (* 1****). When this type of code is used as a search pattern 
all quadrants either within the rectangle, or intersected by the rectangle, will match. If the 
image were represented by a binary tree, as opposed to a quad tree, the CAM could also 
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store rectangles. For the data in Figure I, A and C combine to give (000***), G and I 
combine to give (1010 I *), and J and L combine to give (10010*). Although binary trees 
could be used instead, with some saving in space, they also complicate the algorithms; it is 
for this reason that quad trees were chosen, and rectangles used only for searching. 

3. Applying CAM to Quadtree Operations 

Over the past decade a multitude of quad tree algorithms have been published for a variety 
of quad tree representations. In [16] Samet presents a comprehensive survey of much of the 
earlier work. It is beyond the scope of this paper to perform a detailed analysis and 
comparison of all the quadtree algorithms and their CAM counterparts. Instead, a more 
informal treatment of CAM quadtree algorithms will be presented, with the intention of 
giving the flavour of the techniques and methods used in their design, and also of 
indicating which operations are likely to benefit the most. A more rigorous survey is 
contained in [25]. In section 6, one of the algorithms will be examined in more detail, and 
sample code and simulation results will be given. 

Conventional quad tree algorithms are generally designed to minimise the number of node 
accesses. The actual cost of an access depends on the type of quad tree. but whatever the 
representation the cost will only be constant for sequential access. Therefore many 
algorithms traverse or build their quad trees in the order in which they are stored, and 
effectively sort the input or output data. Note that if such an algorithm requires no post or 
pre-sorting then it is in some sense optimal, and usc of CAM will not improve it. Other 
methods make use of pointers or links to reduce the time taken to access a node 
randomly. With CAM a search is only a single cycle of the hardware. Consequently, 
algorithm design is not inhibited by node access times, and simple and efficient algorithms 
can be developed for quad tree operations. 

What follows is a discussion of typical operations. For convenience these will be grouped 
into four broad categories: those that build quadtrees from some other form of data; those 
that traverse an existing quadtree to derive some non-quadtree result; those that perform 
set operations; and those that use neighbour finding techniques. First, the logical fields 
into which each CAM word is divided will be outlined. 

3.1. CAM Fields 

From now on each CAM word will be regarded as holding three fields: id, location and 
colour. The lengths of these fields depend on the application, but typical values for a 32 
trit wide CAM might be: id (4), location (20) and colour (8). 

The id field permits several quadtrees to be stored at once, and is also used to indicate 
'free' words. Initially a multiple-write sets all words to 'free'. A new word can be found at 
any time by searching with an id pattern of 'free' and selecting the first responder. The id 
field is then set to the number of the quad tree concerned, along with new values for the 
other fields as desired. 
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The location field stores the locational codes described in the previous section. A 20 trit 
wide field allows a maximum image size of 1024 X 1024 pixels. 

The colour field stores the value associated with the quadrant. The term colour is used 
purely for convenience, as any identifier can be stored here. The user may wish to view the 
field as being comprised of sub-fields, or may wish to store "don't cares". However, these 
possibilities have not been explored and it is assumed that the field contains only a simple 
bit pattern. 

To simplify the algorithms still further one value from both the id and colour fields has 
been reserved for special use. These values are needed in some algorithms to indicate 
stages of intermediate processing and to avoid using an external stack. 

3.2. Quadtree Creation 

Two ways in which other representations can be converted into quadtrees are divide and 
conquer (recursive sub-division) and node insertion. With the divide and conquer method 
each quadrant is tested against the input data to determine its colour. When the quadrant 
is not homogeneous, it is sub-divided into four and the process applied to each sub­
quadrant. The initial quadrant covers the whole image space, and sub-division is repeated 
until pixel level is reached. Divide and conquer has the disadvantage that the input data 
has to be rescanned for cach quadrant. However, if re-scanning is not costly, this will be 
an efficient method for conventional quadtrees which store nodes in depth-first order. In 
this situation CAM has no particular advantage. 

With the insertion method the input data is converted to a list of leaf nodes (background 
nodes are not inserted). The quad tree is initially set to all background and each node is 
inserted into its correct position, with background nodes sub-divided as necessary. In 
effect, this method transfers the input data search to a quadtree search. Therefore, in this 
situation CAM is advantageous, because a quadtree search is performed in a single cycle. 
Unfortunately, the insertion method as described does not guarantee to produce a minimal 
quad tree. This redundancy may be ignored and performance impaired, or the quadtree 
may be compacted locally "on the fly" or globally after the final node has been inserted 
(but there is no quick way of compacting quadtrees stored in CAM). For some types of 
data a better solution is to insert maximal nodes, as proposed by Shaffer and Samet [19]. 
Their method maintains a list of active nodes and only inserts a node when it is clear that 
it cannot be merged with others. 

We have independently developed a maximal node method for inserting raster data into a 
CAM quadtree. It does not use an active list, but stores this information in the CAM as 
the quadtree is being built. The quadtree is initialised to a single-background coloured 
quadrant covering the whole image space. Each run-length (i.e. sequence of identically 
coloured pixels in the raster) is converted into a list of maximal quadrants that extend as 
far as possible into the unprocessed data. When adjacent quadrants ean be represented by 
a single Ioeational code they are merged into rectangles. For instance, assuming that the 
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image data in Figure 1 were represented by run-lengths, this algorithm would generate 
(00****), (1000**) and (101000) for the first run-length in row I, and (00*0*1) and 
(1000* I) for the first run-length in row 2. The codes for the rectangles are used as the 
search pattern to discover the current (i.e. predicted) colour. If this colour is incorrect it 
must be changed, and if the matching quadrant is larger it must be successively 
subdivided. Because the quadrants that are inserted are maximal, there is never any need 
to compact redundant quadrants. 

We have discovered an interesting alternative to divide and conquer for generating the 
quad tree entries of Manhattan rectangles. The x and y coordinate ranges are converted 
into minimal covering sequences of trits, i.e. using *8 whenever possible. The entries are 
then combined in all cDmbinations, expanding *s into 0 and 1 only when the numbers of * 
trits do not correspond. This scheme is faster than divide and conquer, particularly for 
small rectangles, and exploits the absence of ordering in a CAM-based quad tree. 

3.3. Quadtree Traversal 

There are a number of operations that involve visiting some, or all, of the quadtree's 
nodes, and performing some task at each node. When the order of the traversal is 
important, nodes can be sorted by location, such as preorder or raster scan order, or by 
colour. For a conventional quadtree the most efficient order for traversal is of course the 
order in which the nodes are stored, and if every node has to be visited then CAM cannot 
possibly make any improvement. The CAM algorithm to visit every node in any order 
consists of a single search with location and colour patterns of "don't care", and a loop to 
process each responder. The preorder, or depth first, traversal algorithm uses recursive 
sub-division and terminates when the multiple response resolver indicates a single match. 

A type of breadth-first traversal algorithm, which visits the nodes in order of size, can be 
implemented very effectively with CAM. It involves searching for "don't cares" in the 
location field to determine the quadrant's size. For example, to discover whether the CAM 
has a "don't care" in the most significant trit of the location field a search pattern of 
(0*****) is used and the responders to this search are searched again for a pattern of 
(1 *****). For the data in Table I no words respond after these two searches. However, 
when the 4 X 4 quadrants are searched for with (**0***) and (**1***), 0 and P respond. 
At the next level the search patterns are (****0*) and (**** 1 *), and A, B, C, D, E and N 
respond, as do 0 and P again. Therefore, after every pair of searches a multiple-write 
must be used to change the id field to the reserved value. This stops quadrants from 
previous levels from responding again. After the 2 X 2 quadrants have been processed only 
the pixel-sized quadrants will remain and these will respond to a single search for 
(******). A final multiple-write is needed to reset the id field. When displaying quadtrees, 
breadth-first methods produce successively better approximations to the image, whereas 
depth first methods do not. As a result the observer perceives the image more quickly with 
breadth-first traversals. 
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Frequently image data is required in raster scan order. Samet [15] has presented a 
selection of algorithms for this type of conversion for fully pointered quad trees. The 
simplest algorithm is a top-down approach that visits each run in a row in succession, 
starting at the root. The other algorithms are bottom-up and make use of neighbour 
finding techniques. The CAM algorithm for scan conversion is exceedingly simple. For 
each row the locational code of the left-most pixel is used as the initial search pattern. The 
size of the responding quadrant is added to the current x value to give the coordinates of 
the next search pixel. When the colour of the responding quadrant matches the colour of 
the current run the run's length is incremented by the quadrant's otherwise a new run 
is started. These steps are repeated until the end of the row is reached. 

The traversal algorithms described so far have involved searching for a specific location 
pattern with a "don't care" colour pattern. The responders indicate the colour at the 
specified location. The inverse operation is to find the locations of the specified colours. A 
query, such as "find all red quadrants", will generally require a complete traversal of a 
conventional quadtrec. Information stored at non-terminal nodes indicating the colours of 
the siblings would help to prune the search, or alternatively indices or quadtrees for each 
colour could be maintained. However, all these solutions generate an overhead for other 
operations. With CAM quadtrees a single search, using a "don't care" location pattern 
and the required colour pattern (red), will answer the query. 

Using two searches and a microprogrammed logic operation it is possible to search for all 
nodes that are not a given colour. The first search finds all words for the quad tree under 
consideration and the second search finds all words for the colour to be eliminated. These 
are combined with an operation of (A AND NOT B). 

To visit each node for every colour normally entails multiple passes over a conventional 
quadtree. For example, a plotter routine which minimised pen changes would be 
expensive. However, some operations, such as computing the area or centre of mass [20] 
for each colour, can be performed with a single traversal if an array of partial sums is 
maintained. For 8 bit colours, only a 256-e1ement array is required, but if the colour field 
is large a dictionary is needed. The CAM approach to this type of operation is to search 
on each colour in turn. If these are not known in advance and the colour space is sparse, a 
binary chop can be used on the colour field. Starting with a colour pattern of "don't 
cares", the CAM is recursively searched. When there are multiple responses the colour 
code is refined in the most significant trit, and the search repeated on the left and right 
halves. 

3.4. Set Operations 

The three basic set operations for binary data are union (OR), intersection (AND) and 
complement (NOT) [20]. For multi-valued data a new definition of these operations is 
required. By assigning a priority to one of the quad trees, useful counterparts for union and 
intersection ean be defined. The union operation becomes a replacement operation, in 



75 

which the non-background data from one quadtree replace the data in the same location 
in the other quadtree. The intersection operation becomes an extraction operation, in 
which the non-background data in one quadtree are replaced with the data in the same 
location in the other quadtree. The corresponding multi-valued operation for complement 
is a general re-colouring, using a mapping from the original set of colours to the new set 
of colours. For conventional quad trees, union and intersection type operations can be 
performed by traversing the two quadtrees in parallel, and complement is performed with 
a single traversal over the quadtree. 

A CAM quadtree can be re-coloured with a sequence of searches and multiple-writes. For 
instance, to complement a black and white quad tree, all black nodes are set to the 
reserved colour, all white nodes are set to black, and all reserved colour nodes are set to 
white. The time taken by this algorithm is proportional to the number of colours in the 
quad tree and is independent of the number of quadrants. 

The benefit of CAM for replacement and extraction is less dramatic; and if the two input 
quad trees are similar in size there is probably no advantage at alL However, when one 
input quad tree is considerably smaller than the other, the set operation can be performed 
in situ, without visiting every node of the larger input quadtree. The minor edit problem, 
in which a small part of the main image has to be updated, is an example of a 
replacement operation between different sized quadtrees and is discussed in [10]. 

3.5. Neighbour Finding Operations 

Operations involving neighbour finding are well suited to CAM quadtrees, because the 
properties of locational codes enable search patterns to be generated for rectangular areas. 
Each of the one-pixel wide border rectangles, for any quadrant, can be represented by a 
single locational code. For the seed quadrant in Figure 2 and the data of Figure I, the 
locational codes for the North, East, South and West borders are (0010*1), (10010*), 
(0] 10*0) and (00011 *) respectively, and B, J, L, 0 and C will respond to these search 
patterns if the colour pattern is "don't care". Operations requiring the 8-connected 
neighbours must also check the four corner pixels. 

In [13] Rogers describes a naive method for flood-filling an array of pixels. Initially the 
seed is pushed onto the stack. Every time a pixel is popped from the stack its colour is 
changed to the new colour, and each of the four neighbours which match the original 
colour are pushed onto the stack. The stack is processed in this manner until it becomes 
empty. The method is robust and works for convoluted regions, but requires a large stack 
and is inefficient because a single pixel is likely to appear on the stack many times. 
Rogers goes on to describe a more efficient scan line version, but this is also more 
complicated and more restrictive. With CAM the naive method can be used on quad trees, 
but it does not require any stack space and only processes each quadrant once. First, the 
seed quadrant's colour is changed to the new colour. The quadrants that are the same 
colour as the seed and intersect the border rectangles are pushed onto the "stack", using a 
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Figure 2; Neighbour finding. 

multiple-write to change the colour field to the reserved colour. The next word with the 
reserved colour is retrieved (i.e. popped from the stack) and becomes the seed, and the 
whole process repeats. However, because the colour field has been changed to the reserved 
colour a quadrant cannot be found again by a subsequent search, so each is only 
processed once. 

The operation of connected component labelling assigns separate labels to each distinct 
black region. A labelling algorithm for CAM quadtrees can be implemented as a series of 
flood fins. Any black quadrant can be chosen as the first seed quadrant, and the new 
colour corresponds to the first label. The reserved value of the identifier field is used to 
indicate black quadrants which have already been processed. Thus when the first flood fill 
terminates, the next unprocessed black quadrant can be fetched, the label incremented, 
and the whole process repeated until all black quadrants have been processed. A similar 
nested loop technique is also used in region growing algorithms. 

With the 8-connected neighbour search patterns a number of boundary operations can be 
performed. For example, to find the boundary pixels in a black and white image the white 
neighbours of each black quadrant are searched for. A single pixel border of the reserved 
colour can then be inserted into the matching white quadrants. When all the black 
quadrants have been processed they are set to white using a multiple-write, and the 
reserved colour pixels are set to black. Alternatively, the black regions can be enlarged by 
setting the reserved colour pixels to black, or shrunk by reversing the roles of black and 
white. 
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4. CAM Architecture 
Our design is based on prior experience with CAM prototypes for logic programming 
applications [9, including actual fabrication and testing of prototype designs. Figure 3 
shows the overall architectural arrangement of our trial design. CAM words are divided 
into three fields, but trit storage is only used for the locational code. 

WORD IN 

MASK 

id locational code colour 

array of CAM CELLS 
m words of n trits 

Ll G L2 M 
P R 
L R 
B 

no/one/some 
respondcB 

'--_________-' gel next re'ponder 

Figure 3: Chip floor plan. 

The row logic is repeated identically on every row, and is controlled by vertical microcode 
control lines. Figure 4 shows the arrangement. The match line is the output of the 
corresponding CAM row, and will be high if the row was selected for the previous CAM 
search operation, and a perfect match occurred. Its state may be latched in Ll if the 
control signal Id I is high. The general-purpose logic block (GPLB) is identical in function 
to the OMIT data path version [8], but is implemented in dynamic CMOS circuits. It 
allows any of the 16 functions of two boolean inputs to be generated. Note that this 
includes the case of all outputs high, e.g. to select every row for a CAM search. There is a 
latch bit L2 which may be selected to keep the GPLB result. It is part of the multiple 
response resolver (MRR), and the row select line will be driven by it if the switch is set to 
O. Alternatively the (unique) output of the MRR may control the row select line, i.e. if a 
single-word operation such as read is desired. 

In each CAM cycle, row logic may be performed as well as a memory operation, i.e. read, 
write or search, or a mask change. There is also a memory 'no operation' code for use if 
only row logic is to be performed in a given cycle. 
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get next 
(from row CAM cells) rcspondcr 

mull. resp. res. 
general 
purpose 
logic

Idl block: 

td2 

o 
select switch 

(to row CAM cells) 

Figure 4: Row logic. 

5. Simulation Studies 

In order to explore the benefits of the CAM approach more fully. a software simulation of 
the hardware was needed. It was decided that this simulation should provide an interface 
that precisely models the chip at a functional level. That is. the procedure calls provided 
by the simulator should exactly mimic the functions that the proposed chip will perform, 
once it has been fabricated. There are many reasons to simulate the chip at such a detailed 
level. By actually implementing algorithms that have been developed, the completeness of 
the set of functions that the chip needs to perform can be verified. By using the 
simulation to operate on a variety of different sized problems, statistics can be gathered on 
the size of the CAM array that is required, as well as the number of operations that the 
chip performs. This can be useful for determining which functions are critical, as well as 
indicating under what circumstances significant benefits can be gained by pipelining 
operations. Finally, the simulator provides a testbed for new ideas in chip functionality, 
encouraging the development of a better architecture. 

A CAM array is an example of an SIMD architecture. Every word in the array can be 
thought of as an individual processor, each with the capability of performing comparison 
and masking operations. Also, certain functions can be performed on a global level, such 
as multiple response resolution. In order to simulate a large array of CAM, of the order of 
8K words or more, a significant amount of processing needs to be done. To provide a 
simulator that can operate on such an array in a timely fashion, the Connection Machine, 
produced by Thinking Machines, Inc., was utilized. The Connection Machine [5] is 
another SIMD architecture, where each processor is actually an ALU with a small amount 
of memory. The system is configured with a VAX-8800 front-end processor, which acts as 
a control processor, and provides instructions to each of the 32K processors in the 
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Connection Machine array. Each processor executes the same instruction in lock step, thus 
allowing operations on large CAM arrays to be simulated by a sequence of a fixed number 
of instructions. 

Each processor in the Connection Machine array is used to simulate one row of the CAM 
array. Each processor holds the data bits and "don't care" mask for that row, as well as 
the two registers, match line, and select line. Memory operations, such as read or compare, 
are executed by a simple, non-iterating sequence of instructions. After each memory 
operation is performed, the row logic must be evaluated, which again is a simple sequence 
of instructions. Each Connection :'vfachine processor executes the instructions on its own 
set of data, just as a CAM array would opcrate on its data in parallel ovcr all the rows. 
When utilised in this manner, the Connection Machine provides a straightforward, highly 
efficient simulation of the proposed CAM array. For example, generating a quadtree of 
depth 8 containing 3668 leaf nodes, using the Connection Machine provides a factor of 6 
speed-up over a VAX 8800-based implementation. 

6. Example 

All the algorithms presented in this paper have been implemented and tested with various 
CA:'vf simulators. The software is written in C and uses a two-level interface to CAM. The 
top level interface is specific to quad tree applications and consists of the following 
procedures: 

Search (Id, location, colour) 


ReSewch (GPLB _ op, ,d, location, coloJr) 


Mult:pleResponse 0 

StngleWnte (maSK, Id, locaton, colour) 


MU:iialeWrite (mask, Id, location, colour) 


Read (ld, location. colour) 


NextResponder 0 


The ReSearch procedure enables two searches to be combined with a GPLB operation. 
The MultipleWrite procedure writes to all selected words (switch setting 0), whereas the 
SingleWrite procedure only writes to the word selected by the multiple response resolver 
(switch setting I). The top level interface is responsible for converting the quad tree fields 
into a single 32 trit word, setting the appropriate registers, and calling the application­
independent Jow level interface. The Jow level interface can either use the Connection 
Machine or a crude array version of the simulator which is used for checking. 

Connected component labelling is a quad tree operation that has received attention from 
several authors [I, 14, 17,23]. In [21] an algorithm which uses CAM is described, but the 
CAM is used only for the "union-find" operation and quadtrees are not used. The code 
for the CAM quad tree version of the algorithm is given below: 
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CAMlabel (id) 


tnts Id; 


!" labe! each dislincl clack region 

Inls locallon, next, code [4J, duremy; 


int l. n, counter = 2; 


If (! Search (rd, ANY, BLACK» relurn; 


MulllpleWrlte (10, RESERVED, ANY, ANY); 


while (Search (RESEf1VED, ANY, ANY» ( 


Read (&dummy, &Iocalion, &dummy); 


next ~ EncodeColour (+ +counler); 


while (TRUE) ( 


SlngleWrite(lD I COLOUR, Id, ANY, next); 


n ~ Get4Neighbour5 (location, code); 


if (n 0) break; 


for (I ~ 0; I n: 1"7 +) { 


If (Search (RESERVED, code [I], BLACK) 

MultlpleWrlle(COLOUR, ANY, ANY, f1ESERVED): 

if (Search (RESERVED, ANY, RESERVED) ( 

Read (&dummy, &Iocation, &dummy); 

} else 

break; 

mt Get4Neighbours (location, code) 


tnl8 locallon, code []: 


/" return border locatio~al codes for 4-connected neighbours " 

int n ~ 0, x, y, s, dummy; 

OecodeRecl (Iocalio~. &x. &y, &5, &dummy); 


if (x 0) code [n"" + J EncodeRecl (x-I, y, " 5); 


if (y 0) code [n++J EncodeRecl (x, y-I, 5, 1); 


if (x+s SIZE) code [n++] EncodeRecl (X+5, y, 1. 5); 


if (y+s < SIZE) code [n++J EncodeRecl (x, y+s, s. 1); 


relurn (~); 


The encoding and decoding routines are omitted here as these are straightforward, as are 
the constants which should be obvious, with the possible exception of ANY which is "don't 
care" and RESERVED which is the reserved value (all l's). The outer loop of the CAMlabel 
procedure processes each distinct BLACK region and the inner loop processes each 
quadrant within that region. The running time of the algorithm is therefore proportional 
to the number of black nodes in the quadtree, as can be seen from the simulation statistics 
in Table 2 for the data shown in Figure 5. On average, five calls are made to search for 
each black node (i.e. inside the inner while loop). 
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Figure 5: Depth 7 data. 

6 8 9 

328 904 2324 3683 


883 2191 5095 7861 


1689 4537 11637 18432 


328 904 2324 3683 


writes 582 1688 4225 6579 

no~ops 1689 4537 11637 18432 


set· masks 374 1148 2722 4350 


cycles 7261 19943 50731 80170 


Table 2: Statistics for component labelling 

In (23) Unnikrishnan et al presented comparative figures for connected component 
labelling algorithms. Their new algorithm required only 90 searches, whereas two other 
algorithms required 869 and 938 searches respectively. For the same data the CAM 
algorithm requires 249 searches, but searching would be quicker in a CAM. This 
performance comparison may seem inconclusive, but there are two points worth noting: 
the CAM algorithm is very simple, and more importantly, the CAM method has needed 
no special adaptation to optimise its use for connected component labelling. 

7. Wider Aspects and Further Work 
The methods described have assumed that the complete image can be stored in the CAM, 
which is unrealistic for some applications. A geographic information system (GIS) must be 
capable of handling large volumes of data. Therefore, the present algorithms need 
modification before a GIS which utilised CAM could be built. A paging scheme, which 
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divides the CAM into logical sections, is currently being investigated. One section would 
store an index formed from the higher levels of the quadtree. Other sections would be used 
for storing the lower levels as they are paged in, and some sections would be reserved for 
storing results that "carryover" from one page to another. 

A much simpler modification to the present algorithms. which would be relevant to GIS 
applications, is to allow several colours (i.e. several values for one attribute) to be stored 
at each leaf node. This can be achieved by using an extra word for each additional colour, 
with the other two fields kept the same. Alternatively, it may be possible to store "don't 
cares" in the colour field to indicate multiple attributes. Recording variable length colour 
information can be cumbersome for many conventional quad tree storage structures, so this 
trivial extension to the CAM methods will make them even more appealing for some 
applications. 

An interesting use for multiple attributes is in storing truncated quadtrees. Instead of 
storing "average" values, and losing colour information, each sibling colour could be 
stored. Because the truncated quadtree requires two less trits for each pruned level, an 
exact pixel count can be maintained for each colour, so only positional information is lost. 
This technique requires further research, but it may be suitable for reasonably static 
databases. 

The locational code methods are equally applicable to 3D data, and similar algorithms 
could be developed for octrees. One application area likely to benefit from CAM is ray­
tracing. Here, two of the most costly operations are refining the object space in situ and 
following a ray into adjacent voxels. The replacement and neighbour finding techniques 
already described would make a significant improvement to these operations. 

The simulation studies referred to here have confirmed the appropriateness of the CAM 
architecture proposed. We plan further simulation studies including performance 
estimation prior to completing prototype chip layouts for fabrication by the USCIISI Fast 
Turnaround Fabrication Service (MOSIS). 

8. Conclusion 

Storing quad trees in Content-Addressable Memory with ternary-coded locational codes is 
attractive in several respects. CAMs can be searched rapidly for either single or multiple 
responders, and selected responder fields can be changed to the same pattern 
simultaneously. 

Our survey of algorithms for quad tree applications in computer graphics and image 
processing shows that in many significant cases CAM improves the performance 
substantially, and at worst leaves the performance unchanged. Simulation studies have 
been performed on several single-processor computers and one massively-parallel one. the 
Connection Machine (eMl). They demonstrate the appropriateness of the trit storage 
scheme along with its related algorithms, and can be applied effectively with general­
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purpose SIMO computers as well as the novel architeeture proposed here. It remains to 
confirm the simulation results by the development of experimental CAM chips and CAM­
based display systems. 
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