
3

Point-driven Generation of Images from a
Hierarchical Data Structure

Dirk de Jong, Paul van Siobbe, and Marinus van Splunter

In this paper, a system IS described which renders an image from a hierarchical data structure in a point-driven way.
The data structure allows dynamic color mapping and arbitrary affine transformat·ons of objects with respect to their
parent coordinate system. The point driven method allows for easy VLSI implementation, efficient use oj memory and
exploitation of parallelism.

CR Categories and Subject Descriptors:
1.3. ~ [Computer Graphics] : Hardware Architecture - Raster display devices
1.3.3 [Computer Graphics] : Picture/Image Generation - Display Algonthms
1.3.5 [Computer Graphics] : Computational Geometry and Object Modeling
E.1 [Data]: Data Structures
F.2 2 (AnalysIs of Algorithms and Problem Complexity] : Nonnumerical Algorithms and Problems - Computations
on discrete structures; Geometrical problems and computations

1. Introduction
During the last 20 years, fast developments in the area of computer graphics have taken
place, developments concerning more efficient and powerful algorithms and
implementation of these in dedicated hardware. Although a standard [pHIGS] has been
developed in which the use of hierarchically defined objects plays a major role, little effort
has been spent on the development of dedicated hardware capable of exploiting this
hierarchy. Exceptions are the VS8000 workstation from DEC and the PS300 from E&S.

Hierarchical modeling is a powerful and compact way of designing objects. With this idea
in mind special hardware has been developed to generate a 2-dimensional image from a
hierarchical data structure. In contrast with existing approaches, for each pixel
independently a hierarchical data structure is scanned using the corresponding world
coordinates. In this way the raster image is not built up object by object into the picture
memory but generated point by point. The data structure comprises two object types:

http://www.eg.org
http://diglib.eg.org

28

primitive and composed. The primitive objects are defined by a list of Bezier curves. A
point containment test for these primitives, and an implementation of this test in
dedicated hardware was designed by Corthout [COJO]. The composed objects contain
color information and transformation information, to relate the local coordinate system of
the object to the viewing coordinate system. Furthermore the deseription contains a
bounding box representing the smallest reetangular region inside which the object is
contained and two pointers to define the relations between the objects

The point-driven approach which was followed in this design offers a number of
advantages such as easy implementation in VLSI. The classical approach can be outlined
as follows:

a transformation

b clipping

c preprocessing (linearization, sorting)

d filling of spans

The last three steps can be omitted by applying a point-driven approach. The point-driven
approach holds that for each point independently it is investigated whieh object it is part
of. The test is repeated for every point within the viewport. It is obvious that the clipping
problem is omitted because all the points are in the viewport. The last step does not exist
either in this approach since we don't have to generate the inside area from a contour. but
only have to test if a point is inside a contour. For the same reason also step c becomes
superfluous. Besides the computational simplicity (see also [CHAZ]) some additional
advantages can be mentioned.

For interaction purposes it is often necessary to identify an object a user is pointing at
with some device. With an object-driven method it can be very difficult or impossible to
display a set of cyclically ordered objects. It is shown in Appendix B that the point-driven
approach provides a very simple solution. A general way of anti-aliasing can be applied
without extra memory usage. Two other circumstances in which the algorithm is more
efficient than its object driven counterpart is dynamic color mapping and generating data
in random order. Finally since no preprocessing is done, no intermediate memory is
required for this stage. A disadvantage of the point-driven method is that it is slower than
the object-driven method when implemented on a single general purpose processor.
However, the algorithms are easier to implement in dedicated hardware and a further
improvement of speed is possible by a virtually unlimited amount, through the application
of image space parallelism.

29

Figure 1: Example: Implementation of a window manager in the hierarchical data structure,

2. The Data Structure

The data structure will be explained with an example which may also be an application. In
Figure I an example is shown of a data structure which could occur in a window manager
environment. The structure consists of primitive- and composed objects. The primitive
objects describe shapes, in this case Bezier shapes which are composed of a list of Bezier
curves. The composed objects are connected to a group of more simple sub objects. The
main structure is determined by the two pointers child and next.

Child is the pointer to the first sub-object and next points to the next object. The priority
in which objects are displayed depends on the order in which they appear in the graph. In
this example the object cursor has a higher priority than the object menu and the object
window. In Figure 2 the contents of the composed objects are shown in some more detail.
The data can be divided in four main blocks:

I Structural information(the pointers child and next) explained above

2 Surface information (Color and dynamic color mapping)

3 Transformation information regarding the position and orientation of objects

4 Bounding Box information.

The color of an object belongs to the surface information. The color may be defined as an
RGB value but also a dynamic color may be applied (specified by flag S). In this case the
color is defined as a structure. In both cases the color of an object can be inherited by its

29

Figure 1: Example: Implementation of a window manager in the hierarchical data structure.

2. The Data Structure

The data structure will be explained with an example which may also be an application. In
Figure 1 an example is shown of a data structure which could occur in a window manager
environment. The structure consists of primitive- and composed objects. The primitive
objects describe shapes, in this case m:zier shapes which are composed of a list of Berier
curves. The composed objects are connected to a group of more simple sub objects. The
main structure is determined by the two pointers child and next.

Child is the pointer to the first sub-objeet and next points to the next object. The priority
in which objects are displayed depends on the order in which they appear in the graph. In
this example the object cursor has a higher priority than the object menu and the object
window. In Figure 2 the contents of the composed objects are shown in some more detail.
The data can be dhided in four main blocks:

Structural information(the pointers child and next) explained above

2 Surface information (Color and dynamic color mapping)

3 Transformation information regarding the position and orientation of objects

4 Bounding Box information.

The color of an object belongs to the surface information. The color may be defined as an
RGB value but also a dynamic color may be applied (specified by flag S). In this case the
color is defined as a structure. In both cases the color of an object can be inherited by its

30

Structural: Child

Next

I Color: Color (RGB or a reference)

Flags I,A,S

Transformation: Translation
(Tx,Ty)
Matrix
(Mxx,M)(y,Myx,Myy}

Bounding Box, Xmin,Ymm

Xmax,Yrnax

Figure 2: Overview of data contained by a composed object

subobjects, but it can also be overwritten. The behavior depends on two additional flags (I

and A) and will be described in more detail in the next paragraph.

The transformation information describes the orientation and position of an object relative

to its parent coordinate system. Currently affine transformations are allowed.

Some extra information is added to the data structure in order to speed-up the rendering

process. The bounding box describes the smallest rectangle in which an object fits. The

bounding box is described in the parent coordinate system.

3. A Description of the Algorithm

A compact description of the algorithm is shown in Appendix A. The function
Com InsideO determines if a point p is contained in a composed object o. Another
function not further exposed here is Bez InsideO which determines if a point p is
contained in a Bezier shape which is pointed at by o->child. A coordinate transform is
done by the function TransformO. In order to implement top down and bottom up
coloring, the parameters c and i are passed to Com _ InsideO. A color can be inherited
from an object which is defined higher in the hierarchy, via parameter c. Whether the
color is inherited or not, depends on the value of the flag i and the value of the local flag
o->a.

Texture mapping is enabled with the parameters sand ps. If a texture is mapped on an
object, the color of the object is interpreted as a reference to another object. The final
color is determined by a recursive call to that object. With a slightly more complicated
algorithm it is possible to apply a circular depth ordering. The algorithm outlined above is
repeated for every point on the screen. A viewing transformation may take place between
the display coordinates of a point and the coordinates with which the algorithm is called
(See Figure 3).

31

,--------"'=_, wixl.wiyl
viewport

vpxO,vpyO "'""__--.J
window

wixO,wiy)"'---------'

Display Application

Figure 3: Relation between display- and application coordinates.

4. Hardware Implementation

4.1. An Overview

Each point processor consists of four main modules. These modules (Point Generator,
Hierarchy Processor, Transformation Processor and Bounding Box Test) are shown in
Figure 4 in relation with two other components (Display Device and B(:zier Processor). In
order to provide a clear overview, only the most important signals and busses are shown.
The Point Generator mediates between the Display Device and the application. For every
point on the display the Point Generator calculates the corresponding point in application
coordinates. If the image has to be anti-aliased the Point Generator generates a set of
application coordinates of which the corresponding colors are averaged. A request (Get
Point) is sent to the Hierarchy Processor to calculate the color while at the same time the
application coordinate of the point is made available to the Transformation Processor.

The Hierarchy Processor determines to which object in the tree a certain query point
belongs. For performing this task it uses the results of the Bounding Box Test and the
Bezier Processor. Depending on the path through the tree, the Hierarchy Processor assigns
a color to the query point. As soon as the Hierarchy processor is finished the signal HP
ready will be set to assert that the value on the color bus is valid. The Transformation
Processor transforms the query point to the local coordinate system of each object. The
Bounding Box Processor performs a global test to determine whether it makes sense to
wait for the coordinate transform and evaluate an object still further, or that the next
object available should be evaluated.

The result is communicated with the signal Out-box. The Bezier Processor determines if a
point is contained in a primitive and replies with the signal BP-result. In order to decrease
computation time the bounding box test and the transformation are implemented in
parallel. The current design supports two interaction primitives which are frequently used
in an interactive environment. A user can specify the address of an object (primitive or
composed).

32

Display Device

Display Point

Initial
A'Ji~fation

Transfonnation

Processor

Point Generator

Gel-Point

Hierarchy Processor

Out-box

Bounding

Box

Processor
Processor Bezier

Address

SP Address Bus

Parent Application Point Child Application Point

Figure 4: An overview of the structure processor and its environment.

When a pixel is rendered within this object a signal is generated. In the second case the
user can specify a point with a pointing device. The corresponding path will be registered
in an array which is accessible for the application.

In the following paragraphs we will give a more detailed discussion of the four modules

4.2. The Point Generator

The point generator (see Figure 5) is responsible for the viewing transformation as well as
anti-aliasing. The point loop generates the coordinates in a sequential order, although this
is not required by the structure processor. If an anti-aliased version of the image is to be
rendered an offset is added to this coordinate by the anti-alias loop. The anti-alias loop
traverses a sequence offsets once for each original coordinate. The loop may generate 4 or
16 offsets. Subsequently the composed coordinate is transformed to application
coordinates. On the other side of the controller the part is shown which delivers the color
to the display device. If an un-anti-aliased version of the image is rendered, the color
which is returned by the hierarchy processor is directly sent to the display device. If
however the image is to be anti-aliased, the colors which are returned by the hierarchy
processor are accumulated until the anti-alias loop is finished and subsequently the sum is
divided by 4 or 16.

33

Get-Point ~
HP-readY!

COLOR OUT

ontroller

INITIAL
APPLICATION
POINT

COLOR BUS

Figure 5: A functional overview of the point generator.

4.3. The Hierarchy Processor

The heart of the structure processor is the hierarchy processor. A task of the hierarchy
processor is to interpret the data structure and to select primitives for the Bezier processor.
Only those primitives are selected whose bounding box contains the query point. A second
task is to assign a color to each point. We will give a more detailed explanation of the
hierarchy processor guided by Figure 6.

For every query point the hierarchy processor starts with selecting the root object. The
address of this object is contained in the root register. The current address is put on the
address bus so that this is available for the peripheral processors (the transformation
processor and the bounding box processor). The data belonging to this address is copied
to registers. Depending on the result of the bounding box test. the type of object etc. the
follmving address which is selected is the successor address, the child address, the color
(interpreted as an address), or an address popped from the stack. If the hierarchy
processor has found an object which refers to a primitive such that the query point is
inside the bounding box of this object a query is sent to the Bezier processor for
determining point containment in the curve which is referred to. If the B<!zier processor
determines that the query point is inside. the color which is assigned to the point is
returned to the point generator.

34

Bezier Address

Ju To other
modules

Figure 6: An overview of the hierarchy processor,

4.4. The Bounding Box Processor

The simplest module in the design (shown in Figure 7) is the bounding box test. This test
enables a fast pruning of the tree for every query point. In order to perform the test as
fast as possible, the four edges of the bounding box are compared to the query point in

parallel.

rOu,·box

6~T'YMAXGE·XMIN ~Ll $YWNU_ G
PARENT Jt

c£J
-b
~
tt t I

Figure 7: Overview of the bounding box processor,

x

y

SP·ADDRESS BUS

i - -

~'D'S' ~'D'S'.RAM RAM
(B,B,) (B,B.)

35

4.5. The Transfonnation Processor

The transfonnation processor (see Figure 8) performs the coordinate transform of the
query point from the parent coordinate system to the local coordinate system of the child
object. In order to guarantee a transform which is as fast as possible depending on the
type of transform used, the most efficient path is selected with two multiplexers. The part
which performs the actual transformation is enclosed in the dashed box. Outside the box
the stack is shown to save the context, registers for the value of the query point in parent
and child coordinate systems, the structure query point, a register with a query point for
the Bezier processor and some buffers to prevent bus collisions.

SP Address nus

CItlLDAf'P,
POINT

XllUSA
liDS .-----~----~ -----.
RAM

5P Data Hu~

Figure 8: A functional overview of the part of the transformation processor which is responsi

ble for computing the x-coordinate. The part that computes the y-coordinate is identical.

5. Parallelism
Implementation of an algorithm in dedicated hardware and exploiting parallelism will in
general improve the performance. In this case four possible ways of parallelism exist,
depending on the domain in which the division of tasks is applied. Image space
parallelism is the approach where each processor renders a part of the screen. In a system
where object space parallelism is applied, each processor will render a part out of the set
of objects. But still other approaches are possible: Parallelism can be applied somewhere

· 36

on the path from object to image. This last approach will be referred to as in-between
parallelism. In-between parallelism ean be implemented in a sequential way (pipeline), or
by a simultaneous execution of equivalent tasks. An overview of the four types of
parallelism is shown in Table 1.

Table 1: An overview of approaches for parallelism.

In general the first two approaches will require extra memory. If parallelism in image
space is applied, each processor needs its own copy of the data structure. In the case of
object space parallelism the processors only need that part of the data structure which
they have to display, but they will need a fuB copy of the frame buffer, so that the
processors don't have to wait for each other. The other two approaches do not require
extra memory, but are limited in application. For instance the bounding box test can be
improved with a factor four by testing the four edges of the box in parallel, but more than
four times is not possible. The same applies to the pipeline. The optimal improvement of
the speed depends of the number of independent modules.

In our approach, a combination of a number of methods mentioned previously can be
used. First the bounding box test and the transformation are implemented in parallel. A
parallel implementation in image space is very easy because each processor only computes
one pixel at a time. But also parallelism in object space is possible if the processors are
used in combination with a preprocessor that selects the parts of the data structure which
are significant for each point processor. If the processors are used in that way. the
performance may increase more then linearly. while at the same time the required amount
of memory per processor decreases.

6. Conclusion

The approach described in this paper offers large advantages for a number of 2D
applications. Although the implementation of the point-driven algorithm may be slower
than its object driven counterpart when implemented on a sequential processor, the point
driven algorithms can be implemented in much simpler dedicated hardware and
parallelism can be applied in a straightforward way. Further extensions are the
implementation of primitive objects described by bitmaps and addition of an explicit
priority, semi transparent objects etc. This hardware can be a powerful support for an
environment in which text and graphics are integrated in a hierarchical framework.

37

References

[CHAZ] B. Chazelle, and D.Dobkin, "Detection is easier than computation.", In Annual
ACM Symposium on Theory oj Computing, Los Angeles (1980), pp 146-153

[CLARK] Clark J.H., "Structuring a VLSI System architecture", Lambda, second quarter
1980, pp 25-30

[COJO] M.E.A. Corthout, and H.B.M. Jonkers, "A New Point Containment Algorithm
for B Regions in the Discrete Plane", In Theoretical Foundations oj Computer
Graphics and CAD NATO ASI Report 1988, pp 279-306, Springer Verlag

[DIPPEl Dippe M., and Swenson J., "An Adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis", ACM Siggraph vol 18, 1984,
pp 149-158

[FUCHS] Fuchs H. et aI, "Fast Spheres, Shadows, Textures, Transparencies, and image
enhancements in Pixel Planes", ACM Siggraph, vol 19, 1985, pp 111-120

[pHIGS] American National Standard for the functional specification of the
Programmers Hierarchical Interactive Graphics Standard (PHIGS) X3H3/85
21 ,X3H31/85-05

Appendix A: A Compact Description of the Algorithm

Com~Inside (OBJECT 0, POI~T P , COcOR c , BOOl, BOOl ,POINT

POINT Query Po,,:! ':'!

BOOL I: j ~ Flag, InhEnt Color? .;;

BOOl S r Flag Structure Cofor " /;

POI'lT Query Poirt within Structure /

COLOR I Color ~'I

do I

I: (Box_Inside (o· >box,)) {

/.; Query POint inside 80x of Curiem OOject .' I

/'" ~o firs! Iransformatton to local coordina:e system· I

P = Tra'lsform (0->tran6 ,P);

"("11)(
Overwnte In~e~lted color and sel 0: flags" J

C s
'f(J(

PS P;

} €'se {
!" Keep :nhented color and sel of flags ;. /

C c; I "'" I; S s;

"(S) (

PS ~ ps,

If (type (0) == prllnltive; {

If (Bez Inside (P)) (

j'(S) {

C = Com_!rsld€ (PS. 0, 0, 0, 0 L

i else {

C ~ ·1:

}.:S€ {
C "'" Com 'ns'de (O->Chllc, P, ,S, PS);

Query Po,n: IS OutSide Box 01 CurreN Object !

-1;

} while (C -1 &&(0 o->nexl);~ NIL)

fatUI" (C):

Appendix B: Cyclic Depth Ordering

The following code will determine if a query point is inside a cyclically defined object.

Com_'ns<deC (OBJECT 0, POINT P COLOR c , Baal i , Baal s , POINT ps) (

COLOR C,C1, /' Color I

C = Com_Inside (O,p,C,I,S,pS);

If (C I~ -1) (

If (o->next == NIL) return C,

do (

If (o->next == NIL) {

C1 = Com_Inside (0, p, C, I, S, ps) ,

If (C1 != -1) return (C1);

else return (C),

} else 0 = o->next,

I while (1);

) else return (Com_Inside (0, p, C, I. S, ps));

