
1 

A VLSI Design Strategy for Graphics 

AD. Nimmo, P.F. Lister, and R.L. Grimsdale 

---_ ..._-_...._-_..._-_...._-_.... _-­
The lools available for ASIC design now offer the features and functionality r1ecessary to permit ideas to be realised in 
silicon In a relatively short period of lime, This paper introduces work undertaken at Sussex University intended 10 
lead to a more complete VLSI Design Strategy. uSing ECAD packages provided by Mentor Graphics. In particular. il 
focuses on the use of Behavioural simulation lools and includes a worked example . 
..--.. ....---...---....---...---...---....~ ----~ 

1. Introduction 
VLSI Design for Graphics is different from that required for standard graphics processors, 
for example, the TMS34010 Graphics Processor [I]. An ASIC for graphics attempts to 
optimise operations, like a dot product, by careful consideration of the data types and 
organisation, the data paths and arithmetic units required, the type of control, possible 
parallel operations and storage types and memory allocation. The ASIC parts being 
designed at the University of Sussex are to perform database, geometry and display 
solutions at very high speeds for applications like flight simulator displays or very high 
performance workstation displays and coprocessors. 

The classic example of a graphics ASIC implemented as Algorithms in Silicon was used in 
the IRIS Workstation [2] from Silicon Graphics, Inc., where one VLSI circuit, the 
Geometry Engine [3], essentially a four-c.omponent vector floating point processor is used 
to accomplishing three basic graphics operations - matrix multiplication, geometric 
clipping and mapping to screen coordinates. A similar approach was taken by Seillac Co., 
Ltd. for the Seillac-7 Display Station [4] where a mixture of standard microprocessors, 
bit-slice processors. multiplier circuits and custom VLSI were employed. An indication of 
where specialist processor parts are heading is shown by Silicon Graphics Iris GT 
Workstation [5] whose geometry subsystem employs five floating-point engines based on 
Weitek 3332 floating-point units, controlled by propriety i.c.'s. 

An Approach to VLSI design must remain flexible to adapt to project requirements but 
should always provide a coherent framework. Ideally all the research. algorithm and code 
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development, data generation and simulation work, ASIC development and final hardware 
development should be performed using an integrated toolset. Although this is not 
possible, some common data transfer route should be found to facilitate data transfer 
between the different stages of design. 

A flexible design framework which all members of a team adhere to aids cross verification, 
notification and completion of the necessary tasks. This is important when a design is to 
be modified so parallel activities can be updated and checked for data integrity. 

The development of VLSI designs specifically for graphics encompasses several aspects of 
processor and system design from a variety of fields: 

• Behavioural Specification of the Design. 

• Architecture Design, including control options such as: 

• Dedicated (e.g. PLA). 

• Writable Control Store (e.g. Ram Store). 

• Writable Instruction Set Computer (WISC). 

• Complex Instruction Set Computer (CISC). 

• Reduced Instruction Set Computer (RISC). 

• Very Long Instruction Word (VLIW). 

• Simulation - behavioural and functional. 

2. The Choice of Design Tools 
The chosen tools should be user-friendly (with a short response time), exhibit a consistent 
interface between the tools in a given package and should offer a high degree of 
comparability with similar tools, thus ensuring standard file interchange facilities. 

There must be an awareness of the different silicon implementation routes available 
these include Gate Array, Standard Cell and Silicon Compilation. This decision is actually 
coming to be of less importance because several integrated circuit manufacturers can now 
offer an implementation-independent design route - initial chips are produced with a gate 
array for evaluation, then the design can be transferred to standard cell, perhaps in a more 
dense technology to reduce die size and cost while improving speed and yield. For the 
majority of designers though, a decision, based on economics, has to be made early on in 
the design cycle. 

Whilst the implementation methods described here and the tools used to create the VLSI 
part are sufficiently accurate and capable of providing a high quality integrated circuit, the 
end product will only be as good as the initial design work. It is crucial, for any design, to 
perform extensive simulation and testing of the circuit(s). 

The design tools used will have some form of simulator, to check timing and interactively 
ensure the correct manipulation of data. Although simulation of a circuit may prove it to 
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be functional, it is only from experience or by some method of prototyping candidate 
architectures that the designer can be sure the optimal design has been chosen, given the 
limitations of the tools and manufacturing process. 

3. A Design Framework 

Our design strategy is shown in Figure 1. This is intended to provide a clear framework 
for the designer while remaining flexible enough to adapt with project requirements. 

Inl tlol Proble" 

Figure 1: A Design Strategy_ 

3.1. The Initial Problem Statement 

In the following sections it will be assumed that an algorithm performs a single well­
defined function [6]. The idea of an initial problem statement introduces the requirements 
of the intended system this might be to take data from a given 3-d database of 
polygons and display these on a monitor. There are several algorithms to be performed in 
this task [7], for example back facing surface removal, view transformation, clipping, 
perspective projection and gradient calculations. Already a hierarchical structure has 
developed breaking a problem down into simpler units at this stage lends itself to 
structured development, which can be used in the following design stages in terms of both 
architecture design and simulation. 
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3.2. The Algorithm 

3.2.1. The Virtual Algorithm. The Virtual Algorithm is the stage of development where the 
computational steps to be performed have been fully determined, e.g. pseudocode. If is 
system and architecture-independent. 

3.2.2. The Architecture-Dependent Algorithm. This algorithm represents the association of 
the Virtual Algorithm steps with a particular architecturet . 

3.2.3. Source Code Development. 

3.2.3.1. Hierarchical Development. Top-down programming allows the designer to specify 
the overall structure of a program while hiding unnecessary detail. The lowest level of 
which a program is written depends on how much information is required. For example. a 
routine requires that two numbers are multiplied together yielding a result in a specified 
time. For simplicity, the multiply statement of the language in use could be used. 
However, this provides little information information which would be needed for 
control purposes. This information would be made available if the programmer 
implemented his own multiply routine, yielding additional information at the expense of 
longer program development. Therefore it is suggested that source code be developed in 
several stages, at increasing levels of complexity. Starting out with this approach permits 
substitution of 'simple' operations with function calls and parameters to the necessary 
routines, obviating the need to continuously re-write code. The level where no further 
programming is necessaryt should reflect the fulfilment of a set of data needed for testing 
and confirming the correct operation of the circuit. The method outlined here relies soley 
on the availability of a computer and a programming language a way of integrating this 
method with the Mentor Graphics CAD system will be discussed later. 

This strategy is particularly suited to graphics operations intended for ASCI's with a 
modular architecture and may also be used as the basis for related areas, such as a 
database processor, used for manipulation and ordering of graphical data. 

3.2.3.2. Function Partitioning. Currently there are no widely available tools to automate 
function partitioning at either the system level or chip level. Deciding which system and 
chip architectures should be used is usually performed manually - often relying on 
experience. This is usually accomplished by the method shown in Figure 2. 

There is no formal way of predicting how many iterations will be needed to produce a 
satisfactory architecture. Several ways have been identified to speed up this process. 

t architecture refers to the particular level at which the designer is working ~- the system architecture or the 

chip architecture. 


:\: this does not imply that the stage outlined here should comprise one task it is iterative in nature. 
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Figure 2: Manual Partitioning, 

l. 	The use of graphics-based ECAD tools provide a standard environment in which to 
develop and refine an architecture according to Figure 2. This still relies on much 
manual work, but the ease with which functional blocks, whether standard parts or 
user-defined, can be manipulated and connected should decrease the development 
cycle. There will often be some form of hardware description language or behavioural 
language functionality built into the ECAD tools, for example, Mentor Graphics 
Behavioural Language Modelling (BLM) software. BLM allows the functionality of a 
block, in terms of inputs and outputs, to be described in C or Pascal 

2, 	 Automation of the partitioning process can be compared to optimising language 
compilers - data flow andlor control flow information can be taken from a high level 
specification or description of a circuit. The choice of language in which to write this 
specification could perhaps be a Functional languaget , in order to control the 
operations per piece of data*, or a language like C to yield information about a control 
strategy§. Output could be textual or graphical. 

3. 	 A.I. and Knowledge-based techniques could be used similarly to the automatic process 
given above, except a database of information would be built (and appended) and used 
to generate more 'intelligent' structures. There is much scope for investigation in the 
two automated approaches. 

t for information, see [8].

*data flow optimisation. 

§ control flow optimisation. 
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C is used at Sussex University for source code development because it is highly portable, it 
has the ability to create and manipulate data structures to bit level and is the language of 
choice for BLM. One deficiency is its inherent serialism, although this is overcome with 
BLM software tools. Candidates suitable for parallel system development include Occam 
[9] and Ada[lO]. 

3.3. Design Simulation 

3.3.1. The importance of Simulation. Simulation is the process of representing or 
modelling the behaviour of systems, on a computer, to record system responses. It involves 
designing a model of the system and conducting experiments on that model for the 
purpose of evaluating various strategies for the operation, and understanding the 
behaviour, of the system. In all areas of design, ECAD, MCAD or others, simulation 
allows the designer to test the operation of, for example, an electrical circuit, or the strains 
on a road bridge, or a growth projection for a population study. 

Simulation of VLSI circuits can be used to predict performances, test various 
architectures, produce test data, help implement instruction sets, and other tasks which 
previously would have been done by breadboarding discrete versions of each design 
iteration. 

The tools available for simulation can usually operate at several different levels depending 
on the results needed and the time available, although for something as complex and 
expensive as a custom chip set there is a definite need to identify suitable strategies for the 
design and simulation aspects. Identification of the processes and data required at each 
stage of a design is essential together with constant cross-checking and verification 
between the separate development paths of a project. This is shown in the design and 
simulation strategy of aq 16-bit processor by the Xerox Corporation [II] where 
specification and architecture work were performed by Xerox engineers and expertise on 
MOS implementation was done by Silicon Compilers Inc., suppliers of the GENESIL 
Silicon Compiler. 

3.3.2. Simulation Techniques. There are several steps in the simulation of a design. Initial 
simulation using a programming language has been discussed, while the simulation 
provided by the silicon design tools used will often be to complex at this stage in 
development. A suggested intermediate step is to employ some form of hardware 
description language or an equivalent. The equivalent method being used at Sussex is 
based on Mentor Graphics BLM software. (It is possible to incorporate this simulation 
step and the task of function partitioning into one stage). This allows the designer to 
specify the behaviour of a design in C or Pascal and also to include as many checks 
throughout the simulation, as part of the simulation, as required. As much or as little 
architectural information can be included as is deemed necessary depending on what 
results and responses are required at a given stage. These tools can often make use of all 
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the workstation capabilities - using a graphics node to display simulation results, using 
interprocess communication and mailbox facilities to speed up operations through the use 
of parallelism at the workstation (UNIX) process level and using other nodes to simulate 
other parts of a complete system. 

The use of the BLM tools is a method of prototyping under investigation at Sussex - it 
shows promise for simulating anything from the system level through board level to chip 
level. The use of these tools at this abstract level is not believed to be widespread 
throughout industry [12], probably due to the initial learning involved and lack of support 
from i.c. manufacturers. 

4. Behavioural Language Modelling - A Worked Example 
A worked example of a BLM is included, from specification to implementation, to show 
the relative simplicity and style in which they may be constructed. A relatively simple 
32 X 32 bit multiplier has been chosen to illustrate several of the features available. 

Mul tipller 

nul tlpll er. bin 
IN 

clock 11:01 

IN nul tlpllcond 131 :13) 

volldOOUT 

... "sul t 163: 13) .oUT 

IN nulllplier [31:01 

reset hold 
v V 

IN IN 

Figure 3: The Multiplier Symbol. 

4.1. Specification 

The basic specification decided upon was as follows, 

\. 32 X 32 bit unsigned multiply, 64 bit result. 

2. Asynchronous reset operation requires 3 clock cycle. 

3. Operates with overlapping or non-overlapping 2-tp clock. 
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4. Inputs and calculations must occur when <1>-0 set., outputs must occur when tp-J set. 

S. Has a VALID output (active low) to indicate a valid result. 

6. Has an optional asynchronous HOLD (active low) input. 

4.2. Symbol Creation and Schematic Capture 

The Multiplier symbol was created using Mentor Graphics SYMED (Symbol Editor). It is 
shown in Figure 3. The design schematic is shown in Figure 4. 
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Vel 11 d 

rasul t 163,01 

nul tlpl I.,' 131,01 ".,d tlpll.,. elllOJ 

~. 
~ 
L "' 
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Figure 4: The Multiplier Schematic. 

Symbol creation and schematic capture are standard features of most ECAD packages. 
These allow the designer to create a legible drawing. Together with hierarchical capture, a 
complex design can be shown more simply on several sheets t. 

Of note are the bus naming convention «bus name>(msb:lsb) ) and the use of 
connectors at the ends of busses and single nets to interface the real world. 

t sheets are virtual pages used by the schematic capture package. 
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43. Code Development 

The simulator is event driven - a change on any net connected to a pin or bus will cause 
the code associated with that pin or bus to be executed. This code performs the required 
internal operations and will often require to output values on the output pins. If multiple 
instances of the same block are used on a sehematic, only one copy of the executable code 
is used therefore if internal data specific to blocks is needed memory must be 
allocated for every instance of that block. Commented segments of code from the 
MULTIPLIER example are given on the following pages. 

suueture for 64-blt result 
typedef struet ( 


unsigned lorg Isw: 

unsigned lor.g msw; 


: VLONG, "VLONG PTR: 

I~' struc1ure for user data area ! 


typede! struet ( 

unSigned long multiplicand: 


long multiplier: 

result; 


short la!ency _counter. 

short reset counter; 

BOOLEAN reset flag: 

BOOLEAN hold flag' 

BOO~EAN valic~flag: 
BOOLEAN result flag: 

BOOLEAN multiplicand flag: 

BOOLEAN multiplier flag: 


vOid multiplier aliocateO 

( ~ 


long struet_len: 

, , allocate storage for internal multiplier values 

~ sizeof(s:ate info I): 


. aliocate)8:st"JClle~, &stale_ptr): 


structure NOT initialised - thIs will be done on reset 

r Instance pOinter to user data area / 

_instance_ptr->user_dat(area ~ (char C')state_p!r: 


return; 


This allocates sufficient memory for each instance and allows each instance to access only 
its own user data. The declared structure acts as a template for the data. 

The only external events of interest are the clock signals, RESET and HOLD. RESET and 
HOLD set flags within the user data area while the clock signals, together with a counter, 
call the necessary functions at the correct clock cycle. N.B. This is only one method of 
ensuring correct operation, other methods exist. 
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void multiplier clockO 
{ ­

&& (phase_1 ~ ~ QSIM _ ONE))( 

handles non-overlapping clocks "I 
&& (phase_O -- QSIM_ONE)) ( 

else if && (phase_1 -- QSIM_ONE)) ( 

state ptr->p phase 0 


state =ptr->p=phase=1 

return; 

The functions which dictate the operations per clock cycle are shown below, followed by 
routines for input, calculation and output. 

void phase 0 statementsO 
( - ­

I * check for a reset condition 

test reset flagO; 


checkthat a reset has completed 

if (state ptr->reset counter -- OxFF) { 


switch (state ptr->clock counter) ( 

case-O: input mUltiplicandO; 


break; 

case 1: mput multlplier{); 


break; 

case 2: multiply calculate(); 


break; ­

return; 
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void phase 1 slalementsO 
( - ­

It (state ptr->reset counter ~~ OxFF) ( 
-switch (state ptr->clock counter) ( 

case-O: It (state ptr->hold flag && state ptr->result flag) ( 
output resultO: - -
outpuCvalid(OSIM _ZERO): 

output_ valid(OSIM-ONE); 

break: 
case 1: if (state ptr->hold-Ilag && state ptr->result flag) ( 

-output result(): - ­
outpul=valld(OSIM _ZERO): 

} 
else ( 

output valid(OSIM ONE): 
} breaK; - ­

case 2: If (state ptr->hold flag && slate ptr->result flag) ( 
-output result(); - ­

reset valid flag "I 
state ptr.>valid flag - FALSE; 
output_valid(OSiM _ONE): 

oreak: 
case 3- if (state ptr->hold flag && state ptr->result flag) ( 

-output.resUitO; - ­
Dutput_valid(QSIM _ZERO); 

oreak; 
case 4: 	output resull0; 

Qutput-valid(OSIM ZERO); 
break:" ­

I'" increrrent clock counter ,', I 

state ptr->clock cQunter++; 

il (state ptr->cIDCk-counter > 4) ( 

state-ptr.>clack_counter 0: 

return; 

voie mput multiolicandO 
( ­

short bit; 

unsigned long data_bit. multiplier_value: 


Input data from multiplicand Input 

multiplier value 0; 

for (bit --0; bit <: 32: bil++) ( 


data bit qsim con value[(*(qsim instance ptr 
- - - • >muttipller I multipiicand)) 

.>bits[bit]];- ­
multiplier_value data_bit <: <: bit; 

/~' save input internally 
state ptr·>multipllcand multiplier value; 

I' set multiplicand flag * ! 


state-ptr->multipllcand _flag - TRUE; 


return; 
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0; ro oils nO_hlts++) { 

VOid Input multlplierO 
( ~ 

short bit; 
unsigned long daia~bit, mul!iplier~value; 

->blts[bitJJ; 
multiplier~value + ~ data _bit illt; 

save input Internally 
,tr->mult:plier = multiplier value: 
multiplier flag I ­

state_Pt(.>multplier~flag ~ TRUE; 


return 

void rr-ultlply calculateO 
{ 

short shifted, m s bit ;)oS!tlon. 
unsigned long rr:ultlplle,_posit on, 

shifted 0; 

shift pOinter ~ 1, 

multiplier _pOSition ~ state~ptr->multiplier; 


find n; s bit pOSit,on to optimise mUltiply time / 
while (!(multlD-ier position & M S BIT MASK» && shifted < 32) { 

mliltlplier position 
shif:ad-+: 

~ 32-shlfted, 
(32x32~64)blt multiply 

state ptr->resl.IIUsw 0; 

51818-ptr-> resull. msw ~ 0; 


for (nO blls ~ 

- b, :_posilO,o ­

bit mul:iolier 
i~ (bit mult·piier) ( 

- ! \- do least significant long w:::>rd 

if 

carry test 
/"e if 

ca~ry test; 
I" do mos: significart long wore .~ / 

+""" sta~e atr->mJ!tiDilca~d 

I ,; set result flag ,; I 
state Ptr->'esull flag 

stale - ptr- >muillpikanc flag FALSE: 

stale =plr- >mulllplier_flag FALSE: 

return; 
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vOfd output_resultO 

I 
short bit: 

retuf'l, 

4.4. Results 

The waveforms for simulation of the multiplier example are given in Figures 5 to 8. These 
show inputs and outputs from the multiplier with an arbitrary time scale. The main 
objectives of this example are to show the simplicity with which a BLM can be written 
it requires only basic knowledge of C. the flexibility available simulation of a faster 
multiplier can be achieved by reordering the function calls with in the clock routines, and 
how timing of the program is independent of the simulation timing. Output can be 
scheduled for any time the user requires. 

Many other options could have been included in the simulation. including extensive error 
checking with message reporting, using multiple instances of the multiplier on one sheet to 
demonstrate the independence of each block, or even creating further blocks within the 
multiplier block to perform the simulation at a lower level. without resorting to a gate­
level model. 

5. Conclusion 
The work carried out with graphics VLSI design using the strategy presented and 
Behavioural Language Modelling at Sussex has been found to give us a consistent 
environment in which to work and a more complete method for partitioning. simulating 
and evaluating stages of a design. We have found this to be practical when a relatively 
straightforward design is to be evaluated or the level of internal detail is kept minimal. 
The results obtained can be used to collate statistical information about function usage, 
pin usage. etc., to detect, for example, bottlenecks in a design. For complex designs, the 
effort of software writing and debugging a BLM can be considerable. although if this route 
is chosen from the outset of a design, integration of stages can minimise this. 

This work has been undertaken as part of a collaborative project with GEC Hirst 
Research Centre and Singer Link-Miles. funded by the Alvey Directorate. The 
contribution of all members of this consortium is acknowledged. 
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