A VLSI Design Strategy for Graphics

A.D. Nimmo, P.F. Lister, and R.L. Grimsdale

The toals available for ASIC design now offer the features and functionality necessary to permit ideas 1o be realised in
sificon it a relatively short period of time. This paper introduces work undertaken at Sussex University intended to
lead to a more complate VLS Design Strategy, using ECAD packages provided by Mentor Graphics. In particular, it
focuses on the use of Behavioural simulation tools and includes a worked example.

1. Introduction

VLSI Design for Graphics is different from that required for standard graphics processors,
for example, the TMS34010 Graphics Processor [1]. An ASIC for graphics attempts to
optimise operations, like a dot product, by careful consideration of the data types and
organisation, the data paths and arithmetic units required, the type of control, possible
parallel operations and storage types and memory allocation. The ASIC parts being
designed at the University of Sussex are to perform database, geometry and display
solutions at very high speeds for applications like flight simulator displays or very high
performance workstation displays and coprocessors.

The classic example of a graphics ASIC implemented as Algorithms in Silicon was used in
the TRIS Workstation [2] from Silicon Graphics, Inc., where one VLSI circuit, the
Geometry Engine [3], essentially a four-component vector floating point processor is used
to accomplishing three basic graphics operations — matrix multiplication, geometric
clipping and mapping to screen coordinates. A similar approach was taken by Seillac Co.,
Ltd. for the Seillac-7 Display Station {4] where a mixture of standard microprocessors,
bit-slice processors, multiplier circuits and custom VLSI were employed. An indication of
where specialist processor parts are heading is shown by Silicon Graphics Iris GT
Workstation [5] whose geometry subsystem employs five floating-point engines based on
Weitek 3332 floating-point units, controlled by propriety i.c.’s.

An Approach to VLSI design must remain flexible to adapt to project requirements but
should always provide a coherent framework. Ideally all the research, algorithm and code

delivered by

EC

www.eg.org

EUROGRAPHICS

DIGITAL LIBRARY
diglib.eg.org

http://www.eg.org
http://diglib.eg.org

development, data generation and simulation work, ASIC development and final hardware
development should be performed using an integrated toolset. Although this is not
possible, some common data transfer route should be found to facilitate data transfer
between the different stages of design.

A flexible design framework which all members of a team adhere to aids cross verification,
notification and completion of the necessary tasks. This is important when a design is to
be modified so parallel activities can be updated and checked for data integrity.
The development of VLSI designs specifically for graphics encompasses several aspects of
processor and system design from a variety of fields:
® Behavioural Specification of the Design.
® Architecture Design, including control options such as:

s Dedicated (e.g. PLA}.

e Writable Control Store (e.g. Ram Store).

» Writable Instruction Set Computer (WISC).

s Complex Instruction Set Computer (CISC).

¢ Reduced Instruction Set Computer (RISC).

s Very Long Instruction Word (VLIW).

& Simulation -~ behavioural and functional.

2. The Choice of Design Tools

The chosen tools should be user-friendly (with a short response time), exhibit a consistent
interface between the tools in a given package and should offer a high degree of
comparability with similar tools, thus ensuring standard file interchange facilities.

There must be an awareness of the different silicon implementation routes available —
these include Gate Array, Standard Cell and Silicon Compilation. This decision is actually
coming to be of less importance because several integrated circuit manufacturers can now
offer an implementation-independent design route — initial chips are produced with a gate
array for evaluation, then the design can be transferred to standard cell, perhaps in a more
dense technology to reduce die size and cost while improving speed and yield. For the
majority of designers though, a decision, based on economics, has to be made early on in
the design cycle.

Whilst the implementation methods described here and the tools used to create the VLSI
part are sufficiently accurate and capable of providing a high quality integrated circuit, the
end product will only be as good as the initial design work. It is crucial, for any design, to
perform extensive simulation and testing of the circuit(s).

The design tools used will have some form of simulator, to check timing and interactively
ensure the correct manipulation of data. Although simulation of a circuit may prove it to

be functional, it 1s only from experience or by some method of prototyping candidate
architectures that the designer can be sure the optimal design has been chosen, given the
linmtations of the tools and manufacturing process.

3. A Design Framework

Our design strategy is shown in Figure 1. This is intended to provide a clear framework
for the designer while remaining flexible enough to adapt with project requirements.

Initial Problem Stelement]

System Speclificotlions(!
& Coneiralnts

ﬂlgorilhm prrooch

T Tlrchitectora~
IDependent H!gnrithnl [Silicon Oesign Toolql
N :
Sinuletion Simulolion Tools H
IT Cangusge! i
B :
Bahovioural Mado} 1ing! '
M B —
- - Design }
lDeslgm MQdiF]CGtion] Cheracierisation] |
- !

Test So(tuore] [E
A ti
Shslon Sofluare !So?tuare erifice ons

rf;rgai ﬂrchitecture|

Valid Design

Figure 1: A Design Strategy.

3.1. The Initial Problem Statement

In the following sections it will be assumed that an algorithm performs a single well-
defined function [6]. The idea of an initial problem statement introduces the requirements
of the intended system — this might be to take data from a given 3-d database of
polygons and display these on a monitor. There are several algorithms to be performed in
this task [7}, for example back facing surface removal, view transformation, clipping,
perspective projection and gradient caleulations. Already a hierarchical structure has
developed — breaking a problem down into simpler units at this stage lends itself to
structured development, which can be used in the following design stages in terms of both
architecture design and simulation.

3.2. The Algorithm

3.2.1. The Virtual Algorithm. The Virtual Algorithm is the stage of development where the
computational steps to be performed have been fully determined, e.g. pseudocode. If is
system and architecture-independent.

3.2.2. The Architecture-Dependent Algerithm. This algorithm represents the association of
the Virtual Algorithm steps with a particular architecture!,

3.2.3. Source Code Development.

3.2.3.1. Hierarchical Development. Top-down programming allows the designer to specify
the overall structure of a program while hiding unnecessary detail. The lowest level of
which a program is written depends on how much information is required. For example, a
routine requires that two numbers are multiplied together yielding a result in a specified
time. For simplicity, the multiply statement of the language in use could be used.
However, this provides litile information — information which would be needed for
control purposes. This information would be made available if the programmer
implemented his own multiply routine, yielding additional information at the expense of
longer program development. Therefore it is suggested that source code be developed in
several stages, at increasing levels of complexity. Starting out with this approach permits
substitution of ‘simple’ operations with function calls and parameters to the necessary
routines, obviating the need to continuously re-write code. The level where no further
programrming is necessary* should reflect the fulfilment of a set of data needed for testing
and confirming the correct operation of the circuit. The method outlined here relies soley
on the availability of a computer and a programming language — a way of integrating this
method with the Mentor Graphics CAD system will be discussed later.

This strategy is particularly suited to graphics operations intended for ASCI's with a

modular architecture and may also be used as the basis for related areas, such as a
database processor, used for manipulation and ordering of graphical data.

3.2.3.2. Function Partitioning. Currently there are no widely available tools to automate
function partitioning at either the system level or chip level. Deciding which system and
chip architectures should be used is usually performed manually — often relying on
experience. This is usually accomplished by the method shown in Figure 2.

There is no formal way of predicting how many iterations will be needed to produce a
satisfactory architecture. Several ways have been identified to speed up this process.

1 architecture refers to the particular level at which the designer is working — the system architecture or the
chip architecture.

¥ this does not imply that the stage outlined here should comprise one task — it is iterative in natare.

unciien Pertitioning

Simulation

unsatisfactlory

Evalueiion

Figure 2: Manual Partitioning.

1. The use of graphics-based ECAD tools provide a standard environment in which to
develop and refine an architecture according to Figure 2. This still relies on much
manual work, but the ease with which functional blocks, whether standard parts or
user-defined, can be manipulated and connected should decrease the development
cycle. There will often be some form of hardware description language or behavioural
language functionality built into the ECAD tools, for example, Mentor Graphics
Behavioural Language Modelling (BLM) software. BLM allows the functionality of a
block, in terms of inputs and outputs, to be described in C or Pascal

2. Automation of the partitioning process can be compared to optimising language
compilers — data flow and/or control flow information can be taken from a high level
specification or description of a circuit. The choice of language i which to write this
specification could perhaps be a Functional language*, in order to control the
operations per piece of data* or a language like C to yield information about a control
strategy®. Output could be textual or graphical.

3. A.L and Knowledge-based techniques could be used similarly to the automatic process
given above, except a database of information would be built (and appended) and used
to generate more ‘intelligent’ structures. There is much scope for investigation in the
two automated approaches.

t for information, see [8].
§ data flow optimisation.
§ control flow optimisation.

C is used at Sussex University for source code development because it is highly portable, it
has the ability to create and manipulate data structures to bit level and is the language of
choice for BLM. One deficiency is its inherent serialism, although this is overcome with
BLM software tools. Candidates snitable for parallel system development include Occam
[9] and Ada[10].

3.3. Design Simulation

3.3.1. The importance of Simulation. Simulation is the process of representing or
modelling the behaviour of systems, on a computer, to record system responses. It involves
designing a model of the system and conducting experiments on that model for the
purpose of evaluating various strategies for the operation, and understanding the
behaviour, of the system. In all areas of design, ECAD, MCAD or others, simulation
allows the designer to test the operation of, for example, an electrical circuit, or the strains
on a road bridge, or a growth projection for a population study.

Simulation of VLSI circuits can be used to predict performances, test various
architectures, produce test data, help implement instruction sets, and other tasks which
previously would have been done by breadboarding discrete versions of each design
iteration.

The tools available for simulation can usually operate at several different levels depending
on the results needed and the time available, although for something as complex and
expensive as a custom chip set there is a definite need to identify suitable strategies for the
design and simulation aspects. Identification of the processes and data required at each
stage of a design is essential together with constant cross-checking and verification
between the separate development paths of a project. This is shown in the design and
simulation strategy of aq 16-bit processor by the Xerox Corporation [11] where
specification and architecture work were performed by Xerox engineers and expertise on
MOS implementation was done by Silicon Compilers Inc., suppliers of the GENESIL
Silicon Compiler.

3.3.2. Simulation Techniques. There are several steps in the simulation of a design. Initial
simulation using a programming language has been discussed, while the simulation
provided by the silicon design tools used will often be to complex at this stage in
development. A suggested intermediate step is to employ some form of hardware
description language or an equivalent. The equivalent method being used at Sussex is
based on Mentor Graphics BLM software. (It is possible to incorporate this simulation
step and the task of function partitioning into one stage). This allows the designer to
specify the behaviour of a design in C or Pascal and also to include as many checks
throughout the simulation, as part of the simulation, as required. As much or as little
architectural information can be included as is deemed necessary depending on what
results and responses are required at a given stage. These tools can often make use of all

the workstation capabilities — using a graphics node to display simulation results, using
interprocess communication and mailbox facilities to speed up operations through the use
of parallelism at the workstation (UNIX) process level and using other nodes to simulate
other parts of a complete system.

The use of the BLM tools is a method of prototyping under investigation at Sussex — it
shows promise for simulating anything from the system level through board level to chip
level. The use of these tools at this abstract level is not believed to be widespread
throughout industry [12], probably due to the initial learning involved and lack of support
from i.c. manufacturers.

4. Behavioural Language Modelling — A Worked Example

A worked example of a BLM is included, from specification to implementation, to show
the relative simplicity and style in which they may be constructed. A relatively simple
32 X 32 bit multiplier has been chosen to illustrate several of the features available.

multiplier

multiplier.bin

IN
clock (1:0]
INfuwltiplicend (31:0)
val1dOUT
resul i (63:01{0UT
INfsultiplier(31:8)
resel hold
¢
IN iN

Figure 3: The Multtiplier Symbol.

4.1. Specification

The basic specification decided upon was as follows,

1. 32 X 32 bit unsigned multiply, 64 bit result.

2. Asynchronous reset operation requires 3 clock cycle.

3. Operates with overlapping or non-overlapping 2-¢ clock.

10

4. Inputs and calculations must occur when ¢-0 set., outputs must occur when ¢-1 set.
5. Has a VALID output (active low) to indicate a valid result.
6. Has an optional asynchronous HOLD (active low) input.

4.2. Symbol Creation and Schematic Capture

The Multiplier symbol was created using Mentor Graphics SYMED (Symbol Editor). It is
shown in Figure 3. The design schematic is shown in Figure 4.

mulliplier
multiplisr bin

——) VTN)

aTock (1207
mulllplicand (31 0 DD mmmmmmnul tiplicond (31:0)

vl idD—"{>yalld
roaul 1163 0) femsmmend™S g] £ (63: 0}

nultipller (31: 0] [mmmmmmminultiol lar (31:0)

reset hobd

reseiH
LR/ s S—

Figure 4: The Multiplier Schematic.

Symbol creation and schematic capture are standard features of most ECAD packages.
These allow the designer to create a legible drawing. Together with hierarchical capture, a
complex design can be shown more simply on several sheets',

Of note are the bus naming convention {<Cbus name>-(msb:lsb)) and the use of
connectors at the ends of busses and single nets to interface the real world.

1 sheets are virtual pages used by the schematic capture package.

11

4.3. Code Development

The simulator is event driven — a change on any net connected to a pin or bus will cause
the code associated with that pin or bus to be executed. This code performs the required
internal operations and will often require to output values on the output pins. If multiple
instances of the same block are used on a schematic, only one copy of the executable code
is used therefore if internal data specific to given blocks is needed memory must be
allocated for every instance of that block. Commented segments of code from the
MULTIPLIER example are given on the following pages.

/7 structure for 64-pit result =/
typadef struct |
unsignad long isw:
unsigned tong msw;
§ VLONG, “VLONG PTR;
/% structure for usserirjata area */
typedef struct |
unsigned long multiplicand:
unsigned long multipher;
VLONG result;
short p phase 0;
short p phase 1,
short clock counter;
short latency counter:
short reset cBunter;
BOCLEAN reset flag;
BOOLEAN hold Tlag:
BOOLEAN valic-flag;
BOOLEAN result flag;
BOOLEAN muttiphcand flag;
BOOLEAN rnultiplier flag;
1 state info t;
static state nfo_t “state_ptr;

void multiplier_atiocate()

{

long struct_len;

7* allocate storage for internal muttipher values */
struct_len = sizeof(state_info_t);
auim_allocatedstruct_len, &slate_ptr),

/% structure NOT initiglised — this will be done on reset ™/

/% et instance pointer to user data area */
qsim_instance_ptr->user_data_area = {(char *)state ptr;
et

This allocates sufficient memory for each instance and allows each instance to access only
its own user data. The declared structure acts as a template for the data.

The only external events of interest are the clock signals, RESET and HOLD. RESET and
HOLD set flags within the user data area while the clock signals, together with a counter,
call the necessary functions at the correct clock cycle. N.B. This is only one method of
ensuring correct operation, other methods exist.

12

void muttiplier_clock()
{
/% phase 0 - input, calculate */
/7 phase 1 -~ output */
short int phase {, phase 1.
/7 set instance pointer 16 correct user data area */
state ptr = (state_info 1) QS\m_instanEe_plr->user data area:
7 input value on clock(0] pin *7 -7
phase O = gsim_con valus{{*(gsim_mstance_pir->>multiplier_|_clock)->tits[0]];
77 input value on clock[1] pin *7
phase 1 = gsim con value{{*{gsim instance ptr->multiplier 1 clock))->bits[1]]:
/* only do if either value == QSIM_ONE */ o
if {(phase 0 == QSIM_ONE) || (phase_t == QSIM_ONE)) {
77 test input values — takes care of overlapping 2-phase clock *7
it {phase 0 == phase 1) [
/* find which phase has changed since previous clock event */
it {{phase 0 != state ptr-=»p phase 0) && (phase 0 == QSIM_ONE)) {
/% do all the phase 0 stuff */
phase_Omstatementg();

}

elee if ({phase 1 1= state ptr->>p phase 1) && (phase_1 == QSIM_ONEN{
/7 do all the phase 1 stuff */
phase 1_staternents(y;

}
else {
/7% handles non-overlapping clocks */
it ((phase_0 1= state_ptr-2»p_phase_0} && (phase 0 == QSIM_ONE)) {
/" do phase 0 stuff */
phase 0 statements();

)

else if ((phase 1 != state pir->>p phase 1) &8 (phase 1 —= QSIM_ONE)) {
/¥ do phase 1 stuff */
phase 1 statements();

}
)
state ptr->>p phase 0 = phase 0;
state ptr-==p phase 1 = phase 1;
return; - B

The functions which dictate the operations per clock cycle are shown below, followed by
routines for input, calculation and output.

void phase O statements(
{
7* check for a reset condition */
test_reset_flag():
/% check that a reset has completed ™/
if (state_ptr->reset counter == (xFF) {
switch (state ptr->>clock counter) |
case U input_rmultiplicand(y;

break;
case 1: input multiplier()
oreak;
case 2: mulliply calculatel);
break;
}
}
return;

void phase 1_stalements(

{

1t (state_plr-s>reset counter =— OxFF) {
switch (state_ptr->>clack_vounter) {

}

case (:

case 1:

case 2

case 3

case 4.

it (statem;_)tnbhold_ﬂag && state_ptr-=»result flag) {
output result();
output_valid(QSIM_ZERO);

)

else
output_valid{QSIM-ONE);

}

break;

if {state_ptr->-hold-flag && state_pte->>result_flag) {
output_result();
output_valid(GSIM_ZERO);

}

else {
output_valid(QSIM_ONE);

} break;

i (state ptr—>holdnflag && state ptr->-result flag) {
Toutput result(); -
/% reset valid flag */
state_ptr->»valid flag ~ FALSE;
output_valid(QSIM_ONE);

}

oreak;

it {state_ptr->>hold_flag && state_pir->>result_flag) {
output-resul();
output valid(QSIM_ZERO):

}

break;

output_resuft(y;

output_ valiki{QSIM_ZEROY,

break;

£ increment clock_counter */

state ptr->>clock counter-++;

if (state_ptr->clack-counter > 4) {
state-pir-»clock_counter = O;

}
}

return;

void mput_multiniicand()

{

short bit;

unsighed long data_bit, multiplier_value;

7% input data fram multipticand input */
multiplier_vaiue = 0;
for {bit = 0; bit <2 32; bit++) {

data_bit = gsim_con_value{{*(asim_instance_ptr

-=muitiplier_f_multiplicand))
->=bits[bit]L;

multipfier_value += data_bit << bit;

/* save input internally */

state ptr->multiplicand = multiplier value,
7 set multiplicand flag */
state-ptr->multiplicand flag = TRUE;

return;

13

14

void nput_multiplier()

{
shiort bit;
unsigred long cata_bit, mutliplier_value;

£ input data from multiplier nput =/

multiplier_value — G;

for (bit = O bit << 32; bit++) {
data_bit = gsum_con value{{*(qsim_instance_otr

T -multipher | multiplier))
-==biisfbit]];

muitiplier_value += data_bit << hit;

}

7% save input internalty */

state_ptr-=>muitiplier = multiplier_value;

/* set multipher flag */ -

state_plr-=rauftplier_flag - TRUE;

retrn

void multiply calculate(y
{
short shifted, m s bit_posihion, shilt_pointer, no_bis;
unsigned fong mulliplier_position, bit_position, tut_rwitiphier, carry-test;

shifted = 0;
shift_ponter = 1;
multipher_position = state_ptr—>multiplier;

/% find m_s_bit position to oplimise multiply time *
while ((!{mul_tlo‘ier position & M S BIT_MASK)) && shifted < 32) {
multiplier position < < = 1:
shifted++;

}
m s bit_postion — 32-shifted,
7% do (32x32=584)brt multiply *7
siate_ptr-=resultlsw = 0;
state pir->resultmsw = O
for (N bits = 0; no_bits < m s bit position; no_bits++) {
" bit_position = shifi_ponter << no_bits;
bit_multiplier = state ptr->>multiplier 8 oit_position;
it (bit_multiptier) {
7 7% do least significart long word */
carry test = state ptr->resultlsw-+(state ptr->mutiphcand < <ino_bis);
/% it carry_test <o both operands then carry condition ©/
if {carry test < state ptr->resultlsw) &&
(T:arry_test < state ptr-=>multiphcand < < no_bish |
state_pir->>resultmsw+ +;
}
state_ptr->resultlsw = carry test;
7% do most significart long word 7/
state_ptr->=result.msw + = stale_ptr->muitipkcand > > (32 - no_bits),
}
}
/% set result_Hag */
state_ptr->resull flag = TRUE;
state pir-=muluplicand flag = FALSE;
state ptr->muttiphiar flag = FALSE:
return; -

15

void output_result()

{
short bit;
unsigned iong bit_pointer, lsw_bit, msw_bit;
gsim_pit_string_t oumut_v!w, output_isw, putput_ Msw;

/7 output result ¥/

bit pointer = 1;

for (ot = O; bit < 32, it 4 |
isw bit = {(state ptr->»=resull.isw) & (bit painter < < bit)) >> bit;
msw Bit = ((state pir->resultmsw) & {bit-pointer < < bit)) >>
outpEtAva[bns} = as;m_con_state[lswmbit][QSlM STRONG],

output viwlbit + 32} = geim_con_state{msw bit][QSM_STRONG]

(}:ssm_dﬂve_deiay outpu{&gsum instance ptr->>multiplier O result, output viw),
% set vand flag 7/ N - - -
state pir->valid_flag = TRUE;

return,

4.4, Results

The waveforms for simulation of the multiplier example are given in Figures 5 to 8. These
show inputs and outputs from the multiplier with an arbitrary time scale. The main
objectives of this example are to show the simplicity with which a BLLM can be written -
it requires only basic knowledge of C, the flexibility available — simulation of a faster
multiplier can be achieved by reordering the function calls with in the clock routines, and
how timing of the program is independent of the simulation timing. Output can be
scheduled for any time the user requires.

Many other options could have been included in the simulation, including extensive error
checking with message reporting, using multiple instances of the multiplier on one sheet to
demonstrate the independence of each block, or even creating further blocks within the
multiplier block to perform the simulation at a lower level, without resorting to a gate-
level model.

5. Conclusion

The work carried out with graphics VLSI design using the strategy presented and
Behavioural Language Modelling at Sussex has been found to give us a consistent
environment in which to work and a more complete method for partitioning, simulating
and evaluating stages of a design. We have found this to be practical when a relatively
straightforward design is to be evaluated or the level of internal detail is kept minimal.
The results obtained can be used to collate statistical information about function usage,
pin usage, etc., to detect, for example, bottlenecks in a design. For complex designs, the
effort of software writing and debugging a BLM can be considerable, although if this route
is chosen from the outset of a design, integration of stages can minimise this.

This work has been undertaken as part of a collaborative project with GEC Hirst
Research Centre and Singer Link-Miles, funded by the Alvey Directorate. The
contribution of all members of this consortium is acknowledged.

16

1 ¥ | 1 1 I | 1 L 1] 1] 3 elack (Q)
' L J | [L T L+ 1T 1« | 1 & [elock (1)
Lt hd T + + * Y reset
+ * + + + + * hold
4 * + + - | valid
EXRXRXLX + * B Jelaelisheld - + + > nultiplicend
TRALXLE > + *> FEGEBAGT + * Y nultiplier
FXXXXRXXXTLXRN
AX * * + + « | lresultl
20.68 40,88 B66.08 85.88 168.68 120.08 140.68
Figure 5: Simulation Trace 0 - 150.
L d [¥ 1 1 1 i 1 1 {] [: 4 1 clock (B2
[+ | 1+ 1 s T 1 ¢] 1 + 1 «] 1 &] alock U1}
» * * * * 3 + resatl
* * * * + * * hold
+ l + +* * + l__#_J—Q__Uofid
T pOUUFTET * * + * JUBYEEEY Y nultiplicend
| slellel el JOSUOBEE + Y 3 POCEBEOE T lmul tiplier
IOBTARGOLOIeET ¢ * + + PODGGODDORD IFEEYE Iy resul L
‘Be.sa 186. 68 280,08 228.00 240.00 260.08 280. 00 346.80
Figure 6: Simulation Trace 151 - 300.
1 1 [3 1 L 1 H 1 + | 1 1 1 clock (8}
» e | | L | e bt] | | . ¢ J {eloektn
- * + * + 3 * reset
+ + * L3 » + . hold
+ * { * ' * * -* » l_ualid
PUEOBEED + FOFBEFSS * * + 3 multiplicond
pavosar 5 - > FAFEIEEE 0 . multiplier
t Bt * + * + resull
I 320,08 34e.80 358.60 38¢.08 4n0.08 4y2e.88 4y0.00
Figure 7: Simulation Trace 301 - 450.
' DR 2 W e T S RN 2ann NOURIY Sy WU ey | clock (83
L] | | I | [| 1L+ T _Jelock (13
* + +* + + * * ressl
v * - 3 - 3 - hold
s [* + + | + + valld
FFFFFFTT + + + - + * rultiplicend
BEFBEwr e FrFFFFFT - 3 + 3 * nultiplier
FOFTERDINNESTED o + 0 E AAARA FELL! 0 result
}sa.aa 480, en 580,08 526.00 540.90 560. 60 580.00 £00.88

Figure 8: Simulation Trace 451 - 800.

17

6. References

1.

1.

12.

Asal, M., Short, G., Preston, T., Simpson, R., Roskell, D., and Guttag, K., “The
Texas Instruments 34010 Graphics System Processor”, JEEE CG&A, October 1986.
Nickel, R., (Silicon Graphics, Inc.) “The IRIS Workstation”, JEEE CG&A, August
1984.

Clark, JH., “The Geometry Engine: A VLSI Geometry System for Graphics”,
Computer Graphics, July 1982.

Ikedo, T., (Seillac Co., Ltd) “High Speed techniques for a 3-D Color Graphics
Terminal”, IEEE CG&A, May 1984,

Smith, D., “The Integration of Graphics and Imaging Systems”, VLSI Systems
Design, February 1988.

Jamieson, L.H., “Characterising Parallel Algorithms”, The Characteristics of Parallel
Algorithms, The MIT Press, 1987.

Rogers, D.F., “Procedural Elements for Computer Graphics”, McGraw-Hill, 1985.
Robison, A.D., “Illinois Functional Programming: A Tutorial”, BYTE, February
1987.

Pountain, D., May, D., “A Tutorial Introduction to OCCAM Programming”, BSP
Professional Books, March 1988.

Organick, E.I, Carter, T.M., Maloney, M.P.,, Davis, A., Hayes, AB. Klass, D.,
Lindstrom, G., Nelson, B.E., and Smith, K.F., “Transforming an Ada Program Unit
to Silicon and Verifying Its Behavior in an Ada Environment: A FIRST
EXPERIMENT™, IEEE Software, January 1984,

David, N., (Xerox Corporation) “Using Silicon Compilation in a Commercial Product
Development Project”, COMPCON 86 IEEE Computer Sociefy {Order Number 692).
Lloyd, L., “Systems Design using BLM’s”, British Mentor Graphics User Group,
12-13 July 1988.

