
A Multi-Processor Workstation 

with a Logic-Enhanced Distributed Frame Buffer 


Frederik W. Jansen 

Department of Industrial Design 

Delft University of Technology 


The Netherlands 


A graphics workstation should offer both a wide variety of 20 and 3D real­
time display functions as well as a programmable parallel-processing capacity for 
large processing tasks. A system concept is proposed that meets these require­
ments by offering a multi-processor configuration with general-purpose pro­
grammable processors, enhanced with specific logic that can perform for each 
node a large number of simple pixel operations in parallel. 

1. Introduction. 
Developments in graphics accelerators and logic-enhanced frame buffer sys­

tems have shown an increased performance in real-time display [Clark, 1982], 
[Fuchs et aI., 1985]. However, this performance has only be achieved for a rather 
limited class of object representations and shading techniques. For interactive 
display and design of 3D objects, both a real-time display and a high-quality 
rendering mode are desired. Recently, several multi-processor architectures have 
been published that offer an improved functionality at nearly real-time [Niimi et 
aI., 1984], [Torborg, 1987], [Denault et aI., 1987] or a full-functionality and pro­
grammability at moderate speed [Sutherland, 1986], [Potmesil et al., 1987]. Most 
desirable, however, would be an hybrid architecture that combines the full flexibil­
ity of a multi-processor configuration, built with general-purpose processors, and 
the real-time performance of the logic-enhanced frame-buffer systems. 

For the design of a graphics workstation, a good understanding of both the 
software and the hardware is important to achieve a good tuning between the 
software functionality and the hardware support. However, it is often difficult to 
obtain a good understanding of both the software and the hardware world, and to 
find an optimum for both. It is the intention of this contribution to provide a 
frame work for discussion and an outline for further developments. The paper 
starts with an investigation of the performance requirements for a 3D CAD works­
tation and a review of recent hardware developments. On basis of this analysis, an 

http://www.eg.org
http://diglib.eg.org


230 

outline of a hardware architecture is proposed. In section 2, an overview is given of 
2D drawing and bitmap manipulation, 3D projective display, and 3D ray tracing 
and rendering functions. A number of functional modules are defined to perform 
these graphical functions. In section 3, the current developments in graphics 
hardware are reviewed. From this analysis a concept is derived that is described in 
section 4. 

2. 	 Requirements for a 3D-CAD workstation. 

The performance of a CAD workstation is largely dependent on the hardware 
support for interactive graphics and visualisation of 3D objects. For our discussion 
we disgard the first subject (the functionality of a modem user-interface. as known 
from the present generation of workstations is assumed) and concentrate on the 
display functions. 

Graphics drawing functions can be divided in 2D drawing and 3D display 
functions. The 2D drawing functions comprise character and vector generation. 
polygon-fill, and bitmap manipulations known as bitblt operations. These bitblt 
operations are used to perform image transformations and general bitmap manipu­
lations which support the multi-window and mouse functions of a modem user­
interface. These techniques are well-known and improvements on existing systems 
are only to be expected with respect to the information per pixel (24 bits and 
more), etc. 

For 3D display, there are basically two modes: projective display and ray trac­
ing. Projective methods are based on the drawing analogue: surface contours are 
projected on the image plane and the interior area is set to the calculated shading 
intensity of the object. Ray tracing is based on the camera analogue: for every 
point of the image plane the light is quantified that is reflected by the scene. Ray 
tracing effectively models optical effects, such as mirroring reflections, cast shadows 
and transparency with refraction. 

Besides the differences in technique there is also a difference in the kind of 
processing required for these two display modes. Basic to the ray tracing activity is 
the intersection calculation. For solids described with higher-order or procedural­
defined surfaces, the intersection is complex and involves a large number of 
floating-point calculations. Otherwise, if the model is defined with polygons or 
linear halfspaces, the intersection calculation is simple but the search for the right 
candidates, to avoid numerous intersection tests, is expensive. Further, the calcula­
tions needed for a realistic reflection model of the surfaces are of similar complex­
ity. This is in particular true for reflection models that also take into account the 
indirect diffuse reflection (radiosity models). Finally, for realistic high-quality 
rendering, often additional features are desired such as the ability to map textures 
(graphics, text, surface texture) on the surfaces, requiring filter operations for scal­
ing and anti-aliasing. For all these options, a large and programmable processing 
power capacity is needed. 



231 

Projective display at the other hand is a sequence of rather simple 
computations (transformation, clipping, scan-conversion) that can be performed to 
the object data in one pass. In particular, the depth-buffer (z-buffer) algorithm 
lends itself well for pipe-lining because the depth sort can be performed by simple 
depth-comparison tests at the end of the "viewing pipe-line". The depth-buffer 
algorithm is therefore used in most VLSI-based systems. 

An important object representation in solid modeling is Constructive Solid 
Geometry (CSG). With CSG, objects are defined as Boolean combinations of ele­
mentary volumes, such as block, sphere, cylinder and cone. For several years it has 
been assumed that the CSG classification needed for the correct display of CSG­
defined objects would require some kind of sorting. Recently it has been shown 
that only repeated depth-buffer tests are needed in combination with some simple 
logical operations; these operations can very well be performed in a pipe-lined pro­
cessing approach [Thomas, 1983], [Goldfeather and Fuchs, 1986], [Jansen, 1986]. 

display management 

20 algorithms 
3D algoritms 
image processing 
simulation 
animation 
texture mapping 

1 ~ 
high quality rendering 

projective display intersection 

20 graphics scan conversion iE--­ shading 

vector generation IE-­ depth sort 

character generation CSG classification 

bitblt 

frame buffer 

Figure 1: Conceptual scheme. 

More optional are facilities for image processing. In current CAD systems 
image processing techniques are not so widely used. This may change, however, in 
the near future, as the integration of artificial intelligence, computer vision and 
CAD/CAM proceeds (sketch recognition, etc.). Another interesting area is simula­
tion and animation. The real-time simulation of complex movements involves an 



232 

immense amount of computations to generate the flow of display commands. In 
some modem graphics micro's there are special animation chips to generate the 
instructions for the display processor fast enough. 

These functions can be organised in four modules: display management, high­
quality rendering, projective display and 2D graphics (figure 1). 

The display management functions involve three kinds of tasks: 

the set-up and coordination of 2D and 3D graphics algorithms performed in the 
other modules, 

the preprocessing for animation and simulation sequences (scenario manage­
ment), 

additional processing tasks, such as preprocessing for texture mapping. 

The display management tasks (except for the additional processing) have to be 
performed in real-time but are relatively simple, i.e. these tasks are stored in pro­
grams that are straightforward to execute. The second module, the high-quality 
rendering, involves a large amount of computation. These functions do not have to 
be performed in real-time; general-purpose parallel-processing capabilities are 
sufficient here. The 2D graphics and 3D projective functions have to be performed 
in real-time. They can be decomposed in a general pre-processing part that can be 
done by the display manager, and a large number of relatively simple operations at 
the individual pixels (line-pixel intersections, depth calculations, depth comparis­
ons). To obtain the desired performance, some speed-up is needed here in the form 
of parallellism or dedicated hardware. Some form of functional coherence (the use 
of functions of one module by the other modules) may be advantageous. 

3. 	 Hardware developments. 

During the 1970s several special hardware implementations of the projective 
viewing pipe-line have been made for flight simulators, etc., but only with the 
VLSI-based implementations, these hardware solutions appeared to be cost effective 
[Clark, 1982]. Several thousands of polygons can be displayed per second with a 
viewing pipe-line of "geometric engines". Further performance increases are found 
by using several pipe-lines in parallel. However, to avoid memory cDntention the 
frame buffer has to be distributed over the different pipe-lines or processors. The 
extreme of this strategy, one processor per pixel, has been realised with the Pixel­
planes system [Fuchs et al., 1985]. The performance of this system is impressive 
and fairly complex scenes can be rendered in real-time. Further, the system allows 
the display of CSG models, anti-aliasing and cast shadows. Although the current 
version is only for polygon modeling, rendering of 9uadratic surfaces and higher 
surfaces is also feasible [Goldfeather and Fuchs, 1986]. Nevertheless, the system is 
still limited with respect to ray tracing, more complex shading and general texture 
mapping. A smaller number of more flexible processors seems therefore to be a 
more desirable solution. 



233 

Recently, several multi-processor systems with a distributed frame buffer have 
been proposed. The different systems can be characterised by the method the 
frame buffer is distributed over the processor nodes. There are two main memory 
organisation modes: image subdivision and memory interleaving. The image subdi­
vision mode assigns every processor to a segment of the screen (see figure 2). 

I 

, 

I 

a. block mode b. line mode 

Figure 2: Image subdivision. 

There are two types of subdivision: block mode (square image segments, 
figure 2a) and line mode (rectangular image segments, figure 2b). Block mode 
guarantees optimal area coherence; line mode guarantees optimal scan-line coher­
ence. The latter is advantageous for the most efficient projective display algorithm 
in software for single processor systems, the scan-line algorithm. The scan-line algo­
rithm displays objects of a few thousand polygons in a few minutes. With a multi­
processor system, the performance can be improved with a factor of 4-10, but this 
approach fails for a larger number of processors. To guarantee an even load distri­
bution, a load sharing mechanism has to be introduced, resulting in additional 
overheads. With a growing number of processors, the communication overhead 
tends to outweigh the savings in processing time. In the end, the brute-force 
depth-buffer algorithm is as fast [Sato et al., 1985]. For the same reason, also the 
block mode is not attractive. 

In [Fuchs and Johnson, 1979] and [Parke, 1981], an interleaved memory organ­
isation is proposed. Here the image is subdivided into a number of small blocks 
and the pixels within a block are equally divided over the processors. The blocks 
can be processed sequentially or in parallel; however, the processing within each 
block is always done in parallel. The processing is thus evenly distributed over the 
processors, even when the processing load for each block differs. The interleaved 
(or interlaced) memory organisation can be realised in two modes, the dot-mode 
(figure 3a), where each processor stores one pixel of a N-by-N pixel square (for 
N*N processors), and the line mode (figure 3b), where each processor stores one 
scan-line out of N lines (for N processors). For a moderate number of processors 
(16-64), the interleaved-memory organisation guarantees that the load will be evenly 
distributed over the processors (for a larger number of processors this will be less 



234 

effective). It is difficult to estimate which scheme, the dot or line mode, is prefer­
able. The line mode maintains the possibility to exploit line coherence; the dot 
mode guarantees a better load distribution. 

a. dot mode b. line mode 

Figure 3: Interleaving memory organisation 

In [Niimi et al., 1984], a two-level hierarchical multi-processor system based on 
the line mode is proposed. The system is composed of several scan-line processors 
(eg. 8), each of which in turn control several pixel processors (eg. 8 for each scan­
line processor). The scan-line processors do the preprocessing for a scan-line and 
the pixel processors manipulate the data within their own pixel territory. 

Another line-mode system architecture is proposed in [Torborg, 1987] and 
[Denault et al., 1987]. The system consists of custom-designed programmable 
scan-line processors that provide a combination of 2D vector and character genera­
tors and 3D triangle shading and depth-buffer routines. Four processors can be 
combined to render a R, G, B and a Z component for a depth-buffer display algo­
rithm in parallel. The standard configuration consists of four of these sets in an 
interlaced pattern. The system is designed for the functionality of PHIGS + but 
the same functionality could be programmed for other graphics systems. 

Although these scan-line systems are programmable to a certain extent, the 
scan-line processors are particularly designed for the projective display of faceted 
models. For a more general functionality, a multi-processor system with general­
purpose 32-bits processors is needed. In [Sutherland, 1986], a multi-processor 
architecture is proposed based on the interleaved-memory concept. A similar sys­
tem has been recently announced [Potmesil et al., 1987]. These systems offer the 
combination of high-processing power and programming flexibility. In [Jansen and 
Sutherland, 1987], a CSG depth-buffer algorithm has been described for such a sys­
tem. An experimental simulation of this algorithm shows that a large number of 
fairly simple depth comparisons have to be performed. Although the systems are 
very powerful, it turns out that the large number of relatively simple operations can 
not be performed in real-time. The sophisticated processors are too slow to achieve 



235 

real-time performances. Also the 20 vector drawing functions and bitmap manipu­
lations are relatively slow. This indicates that there is a need for a combination of 
general:purpose processing power and logic enhancements to the frame-buffer to 
obtain real-time performances for projective display and 20 graphics. 

4. 	 A logic-enhanced distributed frame buffer. 

The central idea of this scheme is to make a separation between the general 
"display management" functions and the billions of simple pixel processing mani­
pulations that are needed for real-time performances (figure 4). 

processor nodes (display management) 

2D and 3D algorithms 
animation and simulation 
high quality rendering 
additional processing 

pixel processors 

expression evaluation 
depth comparisons 
logical comparisons 

Figure 4: Separation between display management and pixel operations. 

The 20 and 30 projective functions (vector generation, scan-conversion, etc.) can 
be decomposed in a general pre-processing part that can be done by the display 
manager, and a large number of relatively simple operations at the individual pixels 
(line-pixel intersections, depth calculations, depth comparisons). The same applies 
for the depth-buffer and eSG classification tests. The result is a large number (but 
of a relative limited set) of simple pixel operations. To obtain the desired perfor­
mance some speed-up is needed here, which can be obtained by processing pixels in 
parallel. It is not necessary to do calculations for all pixels in parallel such as in 
Pixel-planes but some form of parallellism and hardware support is needed. 

So far the scheme is in line with earlier developments [Niimi, 1984], [Torborg, 
1987]. The approach described here differs from these in that the separation 
between higher and lower graphics commands is put on a lower level and more 
parallellism is achieved at the pixel level with a larger number of relatively simpler 
pixel processors. One reason for this approach is the large number of local depth 
comparisons needed for the eSG classification. For that part, this approach is 
comparable with the Pixel-planes concept. 



236 

Secondly, a halfspace modeling scheme in combination with a depth-buffer 
projective algorithm is chosen instead of a scan-line oriented polygon or triangle 
modeling scheme, because the halfspace approach offers a suitable basis for all 
types of surface representations, including quadratic halfspaces [Goldfeather and 
Fuchs, 1986] and bicubic patches, 

Thirdly, a multi-processor built with standard processors is chosen to maintain 
the programming flexibility for new algorithms and additional processing tasks. If 
more processor power is desired, general purpose parallel processing power (larger 
array's, extra array's, extra pipe-lines) can be added without a change of functional 
concepts. New processor developments are also easier to incorporate without 
change of the system. 

The proposed hardware concept is a multi-processor system with interleaved 
memory organisation. Each node of the processor array is a general purpose 32­
bits processor. Added to each node is an array of 4*4 or 8*8 pixel processors. The 
pixel processors perform elementary operations for vector and character generation, 
evaluation of linear and quadratic expressions. Each pixel processor contains addi­
tional memory for pixel coordinates and offsets, depth buffers and intermediate 
results. The pixel processors can perform depth comparisons, logical computations 
and bitwise operations. However, the algorithms are executed by the display 
manager in the processor node and all the pixel processors perform the same 
instructions in paralleL It is not the intention of this paper to specify these opera­
tions in detail, but they are derived from the standard 2D raster algorithms [Foley 
and van Dam, 1982] and 3D projective (depth-buffer) algorithms [Thomas, 1983], 
[Goldfeather and Fuchs, 1986], [Jansen, 1987a], [Jansen, 1987b]. More sophisti­
cated algorithms such as ray tracing are completely performed in the processor 
nodes. 

The system configuration may vary depending on the number of processor 
nodes and the number of pixel processors for each processor node. A system could 
for instance include 16 processors with 64 pixel processors each. For a 1024* 1024 
display, each pixel processor then manages a number of 1024 pixels. The hardware 
configuration can be used in a flexible way. Computations can be done "global", 
i.e. for all pixels in the image or "local", i.e. only for an image segment. This allows 
the use of image subdivision which may result in a reduction of the rendering load 
by a pruning of the rendering data [Jansen and Sutherland, 1987]. With 16 proces­
sors and 64 pixel processors at each node, an image segment of 32*32 pixels can be 
rendered in paralleL For a 1024* 1024 image, 1024 of these sub segments have to be 
rendered sequentially. 

At this point, several hardware design decisions have to be made concerning 
the node architecture, i.e. the design and hardware implementation of the pixel pro­
cessors and whether the display memory should be divided over the pixel proces­
sors or not. Only after such a detailed hardware design, the concept can be verified 
with respect to costs and performances. 



237 

5. 	 Conclusions. 
A functional specification is given for a CAD workstation including high per­

formance 2D and 3D graphics facilities. Recent developments in graphics 
hardware are shortly reviewed and a direction is indicated for further improvements 
on both real-time performance and functional flexibility. The presented approach 
makes a separation between the general processing in the processor node and the 
execution of a limited set of simple pixel operations in parallel by additional logic 
(pixel processors). 

6. References. 

Clark, J. (1982), "The geometric engine: a VLSI geometry system for graphics," 
Computer GraphiCS 16(3): 127-133, Siggraph82. 

Denault, D., Ryherd, E., Torborg, J., Tosi, R., Werner, R. (1987), "VLSI drawing 
processor utilizing multiple parallel scan-line processors," Advances in Graphics 
Hardware II, (this volume) Eurographic Seminars. 

Foley, J.D., van Dam, A. (1982), "Fundamentals of Interactive Computer Graph­
ics," Addison-Wesley Publishing Company. 

Fuchs, H. and Johnson, B. (1979), "An expandable multi-processor architecture for 
video graphics," Proc. 6th ACM-IEEE Symposium on Computer Architecture, 
58-67. 

Fuchs, R, Goldfeather, J., Hultquist, J.P., Spach, S., Austin, J.D., Brooks Jr., F.P., 
Eyles, J.G., Poulton, J. (1985), "Fast spheres, shadows, textures, transparen­
cies, and image enhancements in Pixel-planes," Computer Graphics 19(3): 111­
120, Siggraph85. 

Goldfeather, J., Hultquist, J.P.M, Fuchs, H. (1986), "Fast constructive solid 
geometry in the Pixel-powers graphics system," Computer Graphics 20(4): 107­
116, Siggraph86. 

Jansen, F.W. (1986), "A pixel-parallel hidden surface algorithm for constructive 
solid geometry," Proceedings Eurographics'86, Elseviers Science Publ., 29-40. 

Jansen, F.W. (l987a), "CSG hidden surface algorithms for VLSI hardware sys­
tems," Advances on GraphiCS Hardware I, W. Strasser (ed.), Eurographics Sem­
inars, Springer-Verlag. 

Jansen, F.W. (l987b), "Solid modelling with faceted primitives," PhD thesis, Delft 
University of Technology. 

Jansen, F.W., Sutherland, R.I. (1987), "Display of solid models with a multi­
processor system," Proc. Eurographics'87, Elsevier Science Pub!., 377-387. 

Niimi, H., Imai,Y., Murakai, M., Tomita, S., Hagiwara, H. (1984), "A parallel pro­
cessor system for three-dimensional graphics," Computer Graphics 18(3):67-76, 
Siggraph84. 



238 

Parke, F.L (1980), "Simulation and expected performance analysis of multiple 
processor z-buffer systems," Computer Graphics 14(4):48-56, Siggraph80. 

Potmesil, M. et aI. (1987), "Leaflet for AT&T Pixel machine." See also Electronics, 
July 23, p. 54-56. 

Rossignac, lR. and Requicha, A.A.G. (1986), "Depth-buffering display techniques 
for constructive solid geometry," IEEE Computer Graphics and Applications 
6(9):29-39. 

Sato, R., Ishii, M., Sato, K., Ikesaka, M., Ishihata, H., Kakimoto, M., Hirota, K., 
Inoue, K. (1985), "Fast image generation of constructive solid geometry using 
a cellular array processor," Computer GraphiCS 19(3):95-102, Siggraph85. 

Sutherland, R.l (1986), "A multi-processor architecture for high-quality interactive 
displays," Proc. Eurographics'86, Elseviers Science Publ., 265-277. 

Torborg, J.G. (1987), "A parallel processor architecture for graphics arithmetic 
operations," Computer Graphics 21(4):197-204, Siggraph87. 

Thomas, A.L. (1983), "Geometric modeling and display primitives towards special­
ised hardware," Computer GraphiCS 17(3):299-310, Siggraph83. 


