
VLSI Drawing Processor Utilizing Multiple Parallel

Scan-Line Processors

Damian Denault, Eric Ryherd, John Torborg,

Robert Tosi, Ross Werner

Raster Technologies, Inc.

Two Robbins Road

Westford, Mass. USA 01886

In a typical graphics system, a single drawing processor is used to perform
pixel level drawing operations, one pixel at a time. A VLSI based drawing proces­
sor and image memory controller is presented which takes advantage of scan-line
partitioning of many graphics operations. A four processor implementation is
described which operates on four scan-lines in parallel to achieve near real-time
shading performance for complex objects.
Drawing processor commands are provided for pOints, vectors, triangles, rectan­
gles, block pixel moves, and image transfers. Vectors and triangles can be
drawn with shading and depth buffering. The chips also incorporate integral vec­
tor and area pattern registers, and support translucency.
The drawing processor chips directly interface to the image memory RAMs
without any external buffers, registers, caches, or control logic, allowing a high
performance system to be configured simply and cost effectively. These chips
are implemented in the GX4000 high performance workstation graphics system
which is capable of rendering close to 200,000 shaded and depth-buffered
100 pixel polygons per second and over 34,000 shaded and depth-buffered
1000 pixel polygons per second.

CR Catagories and Subject Descriptors:
B.2.1 [Arithmetic and Logic Structures]: Design Styles Parallel;

B.2.1 [Arithmetic and Logic Structures]: Design Styles - Pipeline;

C.1.2 [Processor Architectures]: Multiprocessors Parallel processors;

1.3.1 [Computer Graphics]: Hardware Architecture - Raster display devices;

1.3.3 [Computer Graphics]: Picture/Image Generation Display Algorithms.

Additional Key Words & Phrases:
interpolation, scan conversion, shading, image synthesis, graphics VLSI,

frame buffer control.

http://www.eg.org
http://diglib.eg.org

168

1. Introduction

The requirement for high performance rendering hardware has long been real­
ized by graphics researchers. Only recently have commercially available graphics
systems provided the necessary performance for interactive 3D modelling of real
world objects and models. Even these systems, however, have difficulty providing
adequate performance for realistic rendering of complex objects.

Shading and depth buffering [Sutherland, 1974] of polygonal approximations
has become a popular technique for realistic rendering of solid objects and surfaces
because of the adaptability of hardware solutions. Linear interpolation across the
surface of each polygon can be used to approximate the surface position and color
[Gouraud shading, Gouraud 1971]. The color information for polygon vertices can
be determined from parametric information such as stress or temperature, or can be
calculated from surface orientation and light sources.

Several graphics systems have been developed which incorporate these tech­
niques in special purpose hardware. All commercially available systems employ a
single drawing processor architecture which calculates a single pixel at a time. The
fastest of these systems can calculate a new pixel value every 50 nanoseconds
resulting in a peak performance of 20 million pixels per second. [Swanson, 1986]
Although this sounds very fast, actual system performance figures when rendering
small triangles (less than 100 pixels) are typically less than 5,000 triangles per
second for shading only and even less for shading and depth buffering. For com­
plex models of 5000 to 20,000 triangles, this is barely adequate performance for
interactivity.

Several architectures have been proposed which utilize multiprocessing to
achieve higher rendering speeds [Fuchs 1977, Fuchs 1981, Fuchs 1986, Parke 1980,
Niimi 1984], most of which have employed depth buffering. One such approach
proposed by Fuchs [Fuchs 1977] and discussed by Parke [Parke 1980] provides a
broadcast controller which distributes polygonal patches to multiple image proces­
sors.

Fuchs proposed that each image processor render only certain pixels as deter­
mined by a preset interlace pattern. For example, a two processor system may be
configured with an interlace pattern which depends on row position so that one
processor renders all pixels on even scan-lines and the other renders odd scan-line
pixels. In Fuchs's model, each processor receives all polygons but only renders
those pixels which are assigned to it based on the interlace pattern. This forces all
processors to redundantly perform polygon scan conversion and differential calcula­
tions, thus adding overhead and reducing performance.

Except for smart memory approaches [Gupta 1981, Fuchs 1986], little atten­
tion has been paid to the drawing processorlimage memory interface. A superfast
rendering engine is worthless if the image memory update bandwidth cannot sup­
port the drawing rate. Many high performance renderer architectures have not
been designed with a specific image memory organization in mind. Hence, they

169

have had to resort to high speed and/or low density memory components or com­
plex memory control structures (such as pixel caches) which try to exploit some of
the coherence in many graphics algorithms. These approaches often result in sys­
tems which do not meet the original performance expectations, are not cost
effective, or are complex and unreliable.

2. 	 GX4000 Image Memory Unit Architecture

A GX4000 Image Memory Unit contains a bus interface, Drawing Processor,
image memory RAM, and video output section. The GX4000 Drawing Processor
uses a multiple processor architecture with a unique combination of pipelining and
parallelism that exploits the scan-line partitioning of many graphics algorithms
while avoiding the complexity and inefficiencies of the approaches described earlier.
The Drawing Processor is composed of five VLSI processors (One Master Con­
troller IC and four Scanline Processor ICs). These chips perform the necessary
address and data calculations to decompose the commands into individual pixels
and write them into the image memory. A block diagram of the Image Memory
Unit and Drawing Processor is shown in Figure 1.

ARITHMETIC

PROCESSORS

DEPTH

BUFFER ...----------<~

CONTROL

SLPIC

SLPIC

TO

VIDEO

OUTPUT

Figure 1: Image Memory Unit Architecture with Drawing Processor

The Scan-line Processor (SLPIC) and Master Controller (MCIC) are each
implemented as single VLSI devices. The number of SLPICs chosen was deter­
mined by the memory configuration used and the system cost goals. Other

170

configurations can be used for higher or lower cost configurations or for other
memory organizations. The SLPICs interface directly with the video RAMs used
for the frame buffer with no external logic. This allows a complete Drawing Pro­
cessor to be configured with surprisingly few components.

ARITHMETIC

PROCESSORS

EPTH

JFFER

~

~

....
o

COlNTROL

~

I"

r-

I"

~

I"

~

RED

IMAGE MEMORY

UNIT

GREEN

IMAGE MEMORY

UNIT

BLUE

IMAGE MEMORY

UNIT

DEPTH BUFFER

MEMORY

UNIT

--.. RED VIDEO

GREEN VIDEO

BLUE VIDEO

B

Figure 2: Full color system with depth buffer.

Each Image Memory Unit supports a double buffered 1280 x 1024 x 8 bit
frame buffer. A similar module, the Z-buffer Memory Unit, contains a
1280 x 1024 x 16 bit depth buffer. Up to three Image Memory Units and one Z­
buffer Memory Unit may be combined in the GX4000 Graphics System to provide
red, green, and blue image banks with depth (Z) buffering. This configuration is
shown in Figure 2. In a fully configured system, 16 SLPICs are operating con­
currently performing 320 million interpolation operations per second. Since the
depth buffer interpolation and comparisons and color interpolations are all per­
formed in parallel, the GX4000 Image and Z-Buffer Memory Units can render
close to 200,000 shaded and depth buffered 100 pixel area triangles per second.
Vector drawing performance is over 350,000 one centimeter vectors per second.

171

2.1. 	 Command Processing

Input to the Drawing Processor is a series of high level graphics commands.
The MCIC accepts drawing commands from the GX4000 graphics arithmetic pro­
cessors (which perform transformations, lighting models, tesselation, and other high
level graphics functions). The MCIC handles command setup and controls the
multiple SLPICs. It also performs Y address calculations for all commands other
than vector draw.

The SLPICs perform the inner loop calculations for vector draw, scan-line
shading and depth buffering, rectangle fill, and pixel block move. The SLPICs also
control the image memory RAMs including all cycle timing, refresh control, and
video display refresh.

When the Image and Z-Buffer Memory units are performing depth buffered
rendering functions, the MCICs on the Z-Buffer and Image Memory modules are
all performing the same setup operations at the same time, and loading the SLPICs
with the same X and Y scan-line information. Each MCIC also sends the proper
color or depth information to the SLPICs it controls. The SLPICs on the Z-Buffer
module interpolate the depth value and perform the depth comparisons while the
SLPICs on the Image Memory modules are interpolating the color data for the
same pixels. The SLPICs on the Z-Buffer module inhibit the write to image
memory by the corresponding SLPICs on the image memory modules depending
on the result of the depth comparisons.

3. 	 Drawing Processor Command Set

The Drawing Processor receives and replies to commands over a synchronous
message oriented bus. Each message contains a complete Drawing Processor com­
mand. Most commands include a control word which controls patterning, shad­
ing, and depth buffering. The command set is described below.

3.1. 	 Register Read/Write

This command allows the Drawing Processor internal registers to be loaded or
read back. These registers control drawing and display functions. The register set
includes:

Bank Select Foreground Value 0 - 5 Background Value
Writemask Vector Pattern 0 and I Image Screen Origin
Pixel Function Pattern Prescale 0 and I Overlay Screen Origin
Pixclp Area Pattern (8 x 8) Depth Buffer Function
Zoom Factor Read Mask Look-up Tables

172

3.2. 	 Vector

The GX4000 Drawing Processor renders arbitrary vectors expressed as two
endpoints. The X and Y endpoint addresses are specified in a 12.4 format allowing
subpixel addressing accuracy. Vectors can also be optionally depth buffered and
the drawing color can be optionally interpolated for depth queueing. The execu­
tion of this command will be discussed in detail later in this paper.

3.3. 	 Triangle

Shaded and depth buffered triangles are handled directly by the drawing pro­
cessor. Edge and scan-line differentials are supplied with the command informa­
tion because these can more easily be calculated by the graphics arithmetic proces­
sors. This also reduces the complexity of the drawing processor VLSI chips. Sub­
pixel addressing is used for all addressing calculations for this command to insure
that the triangles are rendered with no holes and no overlapping pixels. The execu­
tion of this command will also be discussed in detail later in this paper.

3.4. 	 Scan-Line

This command is provided as a subset of the triangle command to handle the
cases where the triangular representation would have only one or two lines in it.
This results in lower processing and data transfer overhead. All other triangle
shading and depth buffer functions are provided.

3.5. 	 Rectangle

The rectangle command fills the rectangle specified by the upper left and lower
right corner points.

3.6. 	 Point Read/Write

This command reads or writes a single pixel to or from the specified location.

3.7. 	 Image Read/Write

This command allows a pixel array to be written to or read from a rectangular
region specified by the upper left and lower right corner addresses.

3.8. 	 Block Move

The block move command is used to move a rectangular region of pixels from
one location to another. The source region is specified by two diagonally adjacent
corner addresses. The first address specifies the start point of the move and the
second address specifies the end. The destination location is specified with a single
address which must correspond to the same corner as the start point of the source
region. Because data can not be rapidly moved between scan-line processors, the
difference between the source and destination region Y addresses must be an

173

integer multiple of four pixels. Other cases are handled by using the image read
and write commands.

4. Master Controller.IC Implementation

The master controller Ie is implemented with a 1.5 micron gate array using
8700 gates. Figure 3 shows a block diagram of the master controller Ie.

OATA

IMU BUS
INTERFACE

IMUBUS
INTERFACE

AND STATE

CONTROLLER

CONTROL

EDGE

INTERPOLATOR I

y

ADDRESS

COUNTER

'-----r---,.---'''''~

SLPIC CONTROLLER

BRESENHAM

SETUP

UNIT

SLPIC

DATA

BUS

Figure 3: Memory Controller IC block diagram.

4.1. 	 State Controller

The state controller is a synchronous state machine which controls reading and
writing of IMU BUS commands, loading of all registers, and processing of all com­
mands. The state controller directly controls command transfers to and from the
IMU BUS interface. Handshaking signals are provided by the SLPIC interface
controller to control transfers to and from the scan-line processors.

The state controller performs conditional operations based on status signals
from the Y address counter and the Bresenham setup unit. This allows the state
controller to execute a different state flow when the Y address reaches a triangle
vertex or the end of the triangle, or when the Bresenham U and V parameters must
be swapped.

http:Controller.IC

174

4.2. 	 SLPIC Interface Controller

The SLPIC interface controller incorporates a two word fifo to allow max­
imum rate synchronous transfers of command and pixel data to the SLPICs. This
logic also controls data transfers to and from the look-up tables and other external
control hardware.

4.3. 	 Y Address Counter

The Y address counter consists of a counter, a comparitor, and two holding
registers. The registers store the intermediate and bottom vertices of the triangle
being processed. This logic informs the state controller when the Y counter is
equal to the appropriate vertex so that a different state flow can be executed.

4.4. 	 Triangle Edge Interpolator

This logic includes two interpolators for calculating the new X addresses for
each scan line for each step in Y. One of the two interpolators has an additional
set of holding registers to store the third triangle edge parameters.

Each interpolator is wide enough to maintain 11 16th pixel accuracy across the
entire triangle. Special rounding logic is provided to round the left edge X address
up to the nearest whole pixel. The error term (up to 15!16ths of a pixel) is
transferred to the SLPIC to allow more accurate color and depth calculations.

4.5. 	 Bresenham Setup Unit

The Bresenham setup unit is used primarily for calculating the parameters for
the vector drawing algorithm performed by the SLPICs. The basic algorithm per­
formed is the Bresenham line drawing algorithm [Bresenham, 1965].

This logic is also used as a counter to control pixel data read and write
transfers and rectangle fill commands.

5. Scan-Line Processor Implementation

The scan-line processor IC is implemented using a 1.5 micron channel-less
array with 15,000 gates. Figure 4 shows a block diagram of the SLPIC.

5.1. 	 State Controller

The state controller contains the state sequencers for all SLPIC commands and
generates the control signals to the rest of the chip to route the data and perform
the desired operations. It also controls register read/write operations and video
display cycles.

175

DATADATA

BUS

TO MCIC

Z-BUFFER

DATA

Z-BUFFER

CONTROL

i
1 CONTROL

MEMORY

VECTOR

1
ADDRESS ADDRESS

.....1 CONTROLLER
GENERATOR ~ GENERATOR

STATE

CONTROLLER

CONTROL !

I
IMAGE

MEMORYI I
SIGNALS

! ~ + l
DATA

ALU INTERPOLATOR+­
REGISTER

J 	 DATA

Figure 4: Scan-Line Processor Ie block diagram.

5.2. 	 Address Generator
The address generator has two pairs of X and Y up/down counters which are

used for source and destination addresses. The X counters can count by five pixels
each clock cycle for horizontal vectors or rectangle fills to allow five pixels to be
written at once. The least significant two bits of the Y counter are used to deter­
mine if the pixel address should be handled by the particular SLPIC.

The SLPIC incorporates an 8 x 8 area pattern register which is indexed into
by the LSBs of the X and Y address. This results in the area pattern being repli­
cated, or tiled, across the screen starting from the upper left comer. The pattern
register can be used to select between the foreground/background register or select
between writing or inhibiting the pixel.

The address generator also generates addresses for display cycles to allow pan­
ning and zooming. Two pairs of counters are provided to allow independent con­
trol of the image memory bank and the overlay bank.

S.3. 	 Vector Generator
The vector generator is used to control the clocking of the address counters in

the address generator block when performing vector draw operations. This block
contains the error accumulator used to implement the Bresenham vector generation
algorithm. A sixteen bit data path is implemented to allow 1/16th pixel accuracy
to be maintained in vector calculations. The address generator also contains an
iteration counter to keep track of the number of pixels remaining to be drawn.

176

Two 16 bit vector patterns are provided to allow stipple patterns. The pattern
can select between the foreground/background register, or inhibit pixel writing.
Each register has a prescaler which can be set to rotate the vector pattern one bit
position for every 1, 2, or 4 pixels in a vector. When vector patterns are enabled, an
option is provided to force writing of the first and last 3 pixels in a vector, overrid­
ing the vector pattern.

5.4. 	 Arithmetic Logic Unit

The ALU contains the logic for performing ,pixel function and depth buffer
function calculations. The 8-bit ALU performs arithmetic (Src+ Dest, Src-Dest,
Dest-Src) operations, or per-bit logical operations using a 4 bit mask. The arith­
metic operations may be clipped to 8 bits on overflow conditions by setting a flag.
Conditional write operation (write only if the source is non-zero) may also be
selected. A 16-bit magnitude comparitor is provided to perform depth buffer com­
pansons.

One of the five foreground value registers can be selected for vector and hor­
izontal vector commands. The select register can be used either as the value to
write to memory or as the Pixel ALU input value.

5.5. 	 Interpolator

The interpolator block calculates a new value for each pixel in an interpolated
scan line or vector by adding a slope to the previous value. The calculations are
32 bits wide in a 17.15 two's complement format, where the msb is the sign bit, the
next 16 bits are the integer portion, and the low 15 bits are fractional information
for increased precision. There are three data paths in the interpolator: one for
interpolating a new value down the left edge of a triangle; a shift-and-add multi­
plier path to calculatl! the value difference between the edge and the first pixel to
be written (using fractional addressing information from the MCIC); and an add­
accumulate path for calculating pixel values across a scan line or along a vector.

5.6. 	 Data Registers

This block contains five l6-bit latches which are used for block move opera­
tions. These latches allow an entire five pixel block to be read into the scan-line
processors, and then written out into a new memory location. This allows substan­
tially higher performance than if single pixel reads and writes were performed. A
data path from the data registers to the Pixel AL U is provided so that a pixel func­
tion can be applied to block moves.

177

5.7. 	 Memory Control

The memory control block handles all memory timing and control signals.
Memory cycles are included for reads, writes, read-modify-writes, dynamic RAM
refresh cycles, and video DRAM shift register loads. The memory timing generator
will always try to perform page mode cycles to minimize the memory cycle times.

6. 	 Vector Drawing

The GX4000 drawing processor can evaluate and draw vectors expressed as a
pair of endpoints. The vector setup and the Bresenham vector generation algo­
rithm are all performed in hardware for maximum performance. Interpolated and
depth buffered vectors can also be handled.

6.1. 	 Vector Setup

The vector setup is performed by the Master Controller Ie. The MCIC
accepts vectors from the graphics arithmetic processors as a pair of endpoints and
calculates the terms necessary to perform the Bresenham algorithm. The setup
parameters are passed to the scan-line processor chips, which contain the vector
generators (see below).

6.2. 	 Vector Generation

Each scan-line process<;>r chip contains a Bresenham vector generator. All
chips are passed the same setup vector, and write only the portions of the vector
that are on the set of every fourth horizontal line handled by each chip. The vector
generators operate at the full clock rate (20 Mhz) for pixels which are not handled
by the particular scan-line processor, and only slow down to memory rates when a
pixel is to be drawn. This allows the four scan-line processor chips to process each
vector in parallel for higher performance. Horizontal vectors are special cased to
allow multiple pixels to be written each clock cycle. The Drawing Processor can
render over 350,000 one centimeter vectors per second.

7. 	 Triangle Drawing

The triangle rendering algorithm requires that some preliminary calculations
be performed by the GX4000 graphics arithmetic processor(s) to calculate edge and
scan-line differentials. This is done to reduce the complexity and processing time
of the drawing processor. Since these calculations involve several divide operations,
significant time would be spent in performing these operations in the VLSI chips.

178

The following parameters are necessary to describe a shaded, depth buffered
triangular patch to the Drawing Processor:

X1 dX1/dY
X2 dX2/dY
X3 dX3/dY
Ytop Yvertex Ybottom
Z1 dZ1/dEdge Z2 dZ2/dEdge dZ/dX
R1 dR1/dEdge R2 dR2/dEdge dR/dX
G1 dG1/dEdge G2 dG2/dEdge dG/dX
B1 dB1/dEdge B2 dB2/dEdge dB/dX

Figure 5 shows the relationships of these parameters for the two general cases
of triangles. The term "F" has been used to represent the R, G, B, and Z values
and differentials.

This information is used by the MCIC and SLPICs to calculate and draw each
scan-line. The Xl and X2 terms are the left and right X positions on the scan-line
given by Ytop. The dXl/dY and dX2/dY terms are the slopes of the first two
sides of the triangle. The X positions on subsequent scan-lines are calculated by
adding the slopes to the current X values. This is done so that it takes only one
cycle to find the next X values, instead of possibly several cycles if a Bresenham
walk was used.

LEFT FACING RIGHT FACING

X1 1•X1

p-X2
dX2

dX1 dX1 X3
F2,X3

dF1
dX3 F2 and dF2

dX3 not used
dF2

Figure 5: Triangle parameter definitions.

Xl and dXl/dY are defined to be the edge that has the longest span in Y
(Edge!). Similarly, X2 and dX2/dY define Edge2. Two X terms are necessary to
account for the special case of a triangle with a horizontal top edge, and the case
where the true vertex of the triangle falls on a sub-pixel boundary so that the first
scan-line that is actually drawn contains more than one pixel.

179

There are two triangle modes: left facing triangles, and right facing triangles.
A left facing triangle will have Edgel on the right side of the triangle, and a right
facing triangle will have Edge I on the left side. This is specified by the opcode
passed to the master controller. If dX2/dY is more positive than dXlIdY, then
Edge I is the left edge, and vice versa. This information is needed since the scan­
lines are always drawn with the X address increasing.

The MCIC is only concerned with the address information. However, it must
properly initialize the SLPICs since each processor handles a different scan-line.
(For this discussion, the symbol F will be used to represent R, G, B, or Z, as the
processing is the same.) Since the scan-lines that make up a patch are always
drawn with the X address increasing, Fl and dFlIdEdge define the starting values
on the left edge of the triangle. For a left facing triangle, F2 and dF21dEdge are
used along with X3 and dX3/dY when Y becomes equal to Yvertex. For right fac­
ing triangles, the F2 and dF2/dY terms are ignored, only X3 and dX3/dY are
needed. Also, since triangles are by definition planar, the dFIdX terms are con­
stant.

The value of F across a scan-line is calculated in the SLPICs by adding
dFI dX to F for each pixel. The initial value of F on subsequent scan-lines is calcu­
lated by adding dF/dEdge to the current initial value of F. Since the calculations
for F are done in the SLPICs and each chip handles every fourth scan-line, they
have to be initialized with different values of F. The MCIC will load all four
SLPICs simultaneously with the initial values of F, dF/dEdge, dF/dX, and Y. The
SLPICs will look at the two least significant bits of the Y address and run their
interpolators zero, one, two, or three times as appropriate so that they each have
the proper initial values of F for the first scan-line they will draw. The SLPICs will
then shift the value of dFI dEdge left two bits so that they will interpolate to every
fourth line.

For each scanline in the triangle, the MCIC will generate a pair of X coordi­
nates by running the two edge interpolators. The interpolators are in 12.15 format,
using a 12.4 starting value and a 12.4.11 differential value. The.4 part of the start­
ing and differential value is a subpixel address, and the extra 11 bits in the
differential are a fractional component that allows subpixel accuracy to be main­
tained even over edges the full width of the screen. Once calculated, the two
X coordinates need to be rounded so that only pixels inside the patch will be
drawn: the left X coordinate is rounded up to the nearest whole pixel, and the
right X coordinate is rounded down to the nearest whole pixel. The MCIC passes
the rounded left and right X addresses, and the subpixel (4 bit fractional) part of
the difference between the rounded and unrounded left X coordinate (referred to as
Xerr) and the Y coordinate to the SLPIC whose line number matches the two least
significant bits of the Y address. Once the MCIC has completed passing the scan­
line data to the appropriate SLPIC, it calculates the data for the next scanline and
passes it to the next SLPIC. This allows all four SLPICs to be writing pixels into
image memory in parallel.

180

The Xerr term is used by the SLPICs to adjust the starting value of F by cal­
culating Xerr * dF/dX and adding it to F. This is to ensure that the value of F that
is written at the starting pixel is the true value and not the value calculated at the
edge, since the rounded X coordinate may be as much as 15116s of a pixel away
from the edge. This will prevent the holes and jagged edges present at adjacent tri­
angles and intersections in some depth buffered images on previous systems.

Each SLPIC draws the scan-line by interpolating F for each pixel by adding
dF/dX to a temporary copy of F. When the scan-line is complete, each SLPIC cal­
culates the next starting value of F by adding dFI dEdge, which represents the slope
of F along the left edge, to F.

8. 	 Perfonnance
At the time that this paper was written, the VLSI drawing processor was fabri­

cated and working in prototype systems. Complete benchmarking has not been
done although preliminary testing indicates that the simulated performance goals
have been met. Detailed simulation software has been developed to allow accurate
system analysis. A wireframe and shaded patch representation of an automobile
(shown in Figure 6 and 7) have been run through this simulator to show the perfor­
mance of the chip set. The simulated performance is shown below:

8.1. 	 Wireframe Perfonnance
Wire Frame Database of Chrysler Laser (courtesy of Chrysler Corporation).

Number of Vectors: 99,236

Average Vector Length: 4.77

Total Pixels Drawn: 473,217

Execution Time: 104.2 milliseconds

8.2. Shading Perfonnance

Shaded Patch Database of Chrysler Laser (courtesy of Chrysler Corporation).

Number of Triangles:

Left Facing Triangles:

Right Facing Triangles:

Total Scan-lines:

Total Pixels Rendered:

Average Triangle Size:

Rendering Time:

64,696

22,970

41,726

296,388

802,185

12.4 pixels

237.7 milliseconds

181

Figure 6: Wireframe image (database courtesy Chrysler Corporation)

Figure 7: Shaded image (database courtesy Chrysler Corporation)

182

9. 	 Acknowledgements
Thanks to the entire GX4000 design team for their participation in the

development of the graphics system which employs these chips. Special thanks to
Fred Oliver for his assistance in the algorithm development, to Chan Verbeck for
the development of the simulator used to test the algorithms before implementing
in VLSI, and to Dave Y ouatt for generating the color images, and to Greg Bartlett
for creating the figures.

10. References

Bresenham, J.; "Algorithm for Computer Control of a Digital Plotter," IBM Sys­

tem Journal 4,1 (1965),25.

Fuchs, H.; "Distributing a Visible Surface Algorithm Over Multiple Processors,"
Proceedings (ACM) (1977)

Fuchs, H. and Poulton, J.; "Pixel-Planes: A VLSI-Oriented Design for a Raster
Graphics Engine," VLSI Design 3 (1981), 20.

Fuchs, H., Goldfeather, J., Hultquist, J.; "Fast Constructive Solid Geometry
Display in the Pixel-Powers Graphics System," Computer GraphiCS (ACM) 20,4
(1986), 107.

Gouraud, H.; "Continuous Shading of Curved Surfaces," IEEE Transactions on
Computers C-20,6 (1971), 623

Niimi, H., Imai, Y., Murakami, M., Tomita, S., and Hagiwara, H.; "A Parallel Pro­
cessor System for Three-Dimensional Color Graphics," Computer Graphics
(ACM) 18,3 (1984),67.

Parke, F.I.; "Simulations and Expected Performance Analysis of Multi Processor
Z-Buffer System," ACM Computer Graphics 14,3 (1980), 48

Sutherland, I.E., Sproull, RF., Schumaker, RA.; "A Characterization of Ten
Hidden-Surface Algorithms," Computing Surveys 6,1, (1974), 293

Swanson, RW., Thayer, LJ.; "A Fast Shaded-Polygon Renderer," Computer
Graphics (ACM) 20,4 (1986),95

