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In a typical graphics system, a single drawing processor is used to perform 
pixel level drawing operations, one pixel at a time. A VLSI based drawing proces­
sor and image memory controller is presented which takes advantage of scan-line 
partitioning of many graphics operations. A four processor implementation is 
described which operates on four scan-lines in parallel to achieve near real-time 
shading performance for complex objects. 
Drawing processor commands are provided for pOints, vectors, triangles, rectan­
gles, block pixel moves, and image transfers. Vectors and triangles can be 
drawn with shading and depth buffering. The chips also incorporate integral vec­
tor and area pattern registers, and support translucency. 
The drawing processor chips directly interface to the image memory RAMs 
without any external buffers, registers, caches, or control logic, allowing a high 
performance system to be configured simply and cost effectively. These chips 
are implemented in the GX4000 high performance workstation graphics system 
which is capable of rendering close to 200,000 shaded and depth-buffered 
100 pixel polygons per second and over 34,000 shaded and depth-buffered 
1000 pixel polygons per second. 

CR Catagories and Subject Descriptors: 
B.2.1 [Arithmetic and Logic Structures]: Design Styles Parallel; 

B.2.1 [Arithmetic and Logic Structures]: Design Styles - Pipeline; 
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1.3.1 [Computer Graphics]: Hardware Architecture - Raster display devices; 

1.3.3 [Computer Graphics]: Picture/Image Generation Display Algorithms. 

Additional Key Words & Phrases: 
interpolation, scan conversion, shading, image synthesis, graphics VLSI, 

frame buffer control. 

http://www.eg.org
http://diglib.eg.org


168 

1. Introduction 

The requirement for high performance rendering hardware has long been real­
ized by graphics researchers. Only recently have commercially available graphics 
systems provided the necessary performance for interactive 3D modelling of real 
world objects and models. Even these systems, however, have difficulty providing 
adequate performance for realistic rendering of complex objects. 

Shading and depth buffering [Sutherland, 1974] of polygonal approximations 
has become a popular technique for realistic rendering of solid objects and surfaces 
because of the adaptability of hardware solutions. Linear interpolation across the 
surface of each polygon can be used to approximate the surface position and color 
[Gouraud shading, Gouraud 1971]. The color information for polygon vertices can 
be determined from parametric information such as stress or temperature, or can be 
calculated from surface orientation and light sources. 

Several graphics systems have been developed which incorporate these tech­
niques in special purpose hardware. All commercially available systems employ a 
single drawing processor architecture which calculates a single pixel at a time. The 
fastest of these systems can calculate a new pixel value every 50 nanoseconds 
resulting in a peak performance of 20 million pixels per second. [Swanson, 1986] 
Although this sounds very fast, actual system performance figures when rendering 
small triangles (less than 100 pixels) are typically less than 5,000 triangles per 
second for shading only and even less for shading and depth buffering. For com­
plex models of 5000 to 20,000 triangles, this is barely adequate performance for 
interactivity. 

Several architectures have been proposed which utilize multiprocessing to 
achieve higher rendering speeds [Fuchs 1977, Fuchs 1981, Fuchs 1986, Parke 1980, 
Niimi 1984], most of which have employed depth buffering. One such approach 
proposed by Fuchs [Fuchs 1977] and discussed by Parke [Parke 1980] provides a 
broadcast controller which distributes polygonal patches to multiple image proces­
sors. 

Fuchs proposed that each image processor render only certain pixels as deter­
mined by a preset interlace pattern. For example, a two processor system may be 
configured with an interlace pattern which depends on row position so that one 
processor renders all pixels on even scan-lines and the other renders odd scan-line 
pixels. In Fuchs's model, each processor receives all polygons but only renders 
those pixels which are assigned to it based on the interlace pattern. This forces all 
processors to redundantly perform polygon scan conversion and differential calcula­
tions, thus adding overhead and reducing performance. 

Except for smart memory approaches [Gupta 1981, Fuchs 1986], little atten­
tion has been paid to the drawing processorlimage memory interface. A superfast 
rendering engine is worthless if the image memory update bandwidth cannot sup­
port the drawing rate. Many high performance renderer architectures have not 
been designed with a specific image memory organization in mind. Hence, they 
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have had to resort to high speed and/or low density memory components or com­
plex memory control structures (such as pixel caches) which try to exploit some of 
the coherence in many graphics algorithms. These approaches often result in sys­
tems which do not meet the original performance expectations, are not cost 
effective, or are complex and unreliable. 

2. 	 GX4000 Image Memory Unit Architecture 

A GX4000 Image Memory Unit contains a bus interface, Drawing Processor, 
image memory RAM, and video output section. The GX4000 Drawing Processor 
uses a multiple processor architecture with a unique combination of pipelining and 
parallelism that exploits the scan-line partitioning of many graphics algorithms 
while avoiding the complexity and inefficiencies of the approaches described earlier. 
The Drawing Processor is composed of five VLSI processors (One Master Con­
troller IC and four Scanline Processor ICs). These chips perform the necessary 
address and data calculations to decompose the commands into individual pixels 
and write them into the image memory. A block diagram of the Image Memory 
Unit and Drawing Processor is shown in Figure 1. 
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Figure 1: Image Memory Unit Architecture with Drawing Processor 

The Scan-line Processor (SLPIC) and Master Controller (MCIC) are each 
implemented as single VLSI devices. The number of SLPICs chosen was deter­
mined by the memory configuration used and the system cost goals. Other 
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configurations can be used for higher or lower cost configurations or for other 
memory organizations. The SLPICs interface directly with the video RAMs used 
for the frame buffer with no external logic. This allows a complete Drawing Pro­
cessor to be configured with surprisingly few components. 
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Figure 2: Full color system with depth buffer. 

Each Image Memory Unit supports a double buffered 1280 x 1024 x 8 bit 
frame buffer. A similar module, the Z-buffer Memory Unit, contains a 
1280 x 1024 x 16 bit depth buffer. Up to three Image Memory Units and one Z­
buffer Memory Unit may be combined in the GX4000 Graphics System to provide 
red, green, and blue image banks with depth (Z) buffering. This configuration is 
shown in Figure 2. In a fully configured system, 16 SLPICs are operating con­
currently performing 320 million interpolation operations per second. Since the 
depth buffer interpolation and comparisons and color interpolations are all per­
formed in parallel, the GX4000 Image and Z-Buffer Memory Units can render 
close to 200,000 shaded and depth buffered 100 pixel area triangles per second. 
Vector drawing performance is over 350,000 one centimeter vectors per second. 
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2.1. 	 Command Processing 

Input to the Drawing Processor is a series of high level graphics commands. 
The MCIC accepts drawing commands from the GX4000 graphics arithmetic pro­
cessors (which perform transformations, lighting models, tesselation, and other high 
level graphics functions). The MCIC handles command setup and controls the 
multiple SLPICs. It also performs Y address calculations for all commands other 
than vector draw. 

The SLPICs perform the inner loop calculations for vector draw, scan-line 
shading and depth buffering, rectangle fill, and pixel block move. The SLPICs also 
control the image memory RAMs including all cycle timing, refresh control, and 
video display refresh. 

When the Image and Z-Buffer Memory units are performing depth buffered 
rendering functions, the MCICs on the Z-Buffer and Image Memory modules are 
all performing the same setup operations at the same time, and loading the SLPICs 
with the same X and Y scan-line information. Each MCIC also sends the proper 
color or depth information to the SLPICs it controls. The SLPICs on the Z-Buffer 
module interpolate the depth value and perform the depth comparisons while the 
SLPICs on the Image Memory modules are interpolating the color data for the 
same pixels. The SLPICs on the Z-Buffer module inhibit the write to image 
memory by the corresponding SLPICs on the image memory modules depending 
on the result of the depth comparisons. 

3. 	 Drawing Processor Command Set 

The Drawing Processor receives and replies to commands over a synchronous 
message oriented bus. Each message contains a complete Drawing Processor com­
mand. Most commands include a control word which controls patterning, shad­
ing, and depth buffering. The command set is described below. 

3.1. 	 Register Read/Write 

This command allows the Drawing Processor internal registers to be loaded or 
read back. These registers control drawing and display functions. The register set 
includes: 

Bank Select Foreground Value 0 - 5 Background Value 
Writemask Vector Pattern 0 and I Image Screen Origin 
Pixel Function Pattern Prescale 0 and I Overlay Screen Origin 
Pixclp Area Pattern (8 x 8) Depth Buffer Function 
Zoom Factor Read Mask Look-up Tables 
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3.2. 	 Vector 

The GX4000 Drawing Processor renders arbitrary vectors expressed as two 
endpoints. The X and Y endpoint addresses are specified in a 12.4 format allowing 
subpixel addressing accuracy. Vectors can also be optionally depth buffered and 
the drawing color can be optionally interpolated for depth queueing. The execu­
tion of this command will be discussed in detail later in this paper. 

3.3. 	 Triangle 

Shaded and depth buffered triangles are handled directly by the drawing pro­
cessor. Edge and scan-line differentials are supplied with the command informa­
tion because these can more easily be calculated by the graphics arithmetic proces­
sors. This also reduces the complexity of the drawing processor VLSI chips. Sub­
pixel addressing is used for all addressing calculations for this command to insure 
that the triangles are rendered with no holes and no overlapping pixels. The execu­
tion of this command will also be discussed in detail later in this paper. 

3.4. 	 Scan-Line 

This command is provided as a subset of the triangle command to handle the 
cases where the triangular representation would have only one or two lines in it. 
This results in lower processing and data transfer overhead. All other triangle 
shading and depth buffer functions are provided. 

3.5. 	 Rectangle 

The rectangle command fills the rectangle specified by the upper left and lower 
right corner points. 

3.6. 	 Point Read/Write 

This command reads or writes a single pixel to or from the specified location. 

3.7. 	 Image Read/Write 

This command allows a pixel array to be written to or read from a rectangular 
region specified by the upper left and lower right corner addresses. 

3.8. 	 Block Move 

The block move command is used to move a rectangular region of pixels from 
one location to another. The source region is specified by two diagonally adjacent 
corner addresses. The first address specifies the start point of the move and the 
second address specifies the end. The destination location is specified with a single 
address which must correspond to the same corner as the start point of the source 
region. Because data can not be rapidly moved between scan-line processors, the 
difference between the source and destination region Y addresses must be an 
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integer multiple of four pixels. Other cases are handled by using the image read 
and write commands. 

4. Master Controller.IC Implementation 

The master controller Ie is implemented with a 1.5 micron gate array using 
8700 gates. Figure 3 shows a block diagram of the master controller Ie. 

OATA 

IMU BUS 
INTERFACE 

IMUBUS 
INTERFACE 

AND STATE 

CONTROLLER 

CONTROL 

EDGE 

INTERPOLATOR I 

y 

ADDRESS 

COUNTER 

'-----r---,.---'''''~ 

SLPIC CONTROLLER 

BRESENHAM 

SETUP 

UNIT 

SLPIC 

DATA 

BUS 

Figure 3: Memory Controller IC block diagram. 

4.1. 	 State Controller 

The state controller is a synchronous state machine which controls reading and 
writing of IMU BUS commands, loading of all registers, and processing of all com­
mands. The state controller directly controls command transfers to and from the 
IMU BUS interface. Handshaking signals are provided by the SLPIC interface 
controller to control transfers to and from the scan-line processors. 

The state controller performs conditional operations based on status signals 
from the Y address counter and the Bresenham setup unit. This allows the state 
controller to execute a different state flow when the Y address reaches a triangle 
vertex or the end of the triangle, or when the Bresenham U and V parameters must 
be swapped. 

http:Controller.IC
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4.2. 	 SLPIC Interface Controller 

The SLPIC interface controller incorporates a two word fifo to allow max­
imum rate synchronous transfers of command and pixel data to the SLPICs. This 
logic also controls data transfers to and from the look-up tables and other external 
control hardware. 

4.3. 	 Y Address Counter 

The Y address counter consists of a counter, a comparitor, and two holding 
registers. The registers store the intermediate and bottom vertices of the triangle 
being processed. This logic informs the state controller when the Y counter is 
equal to the appropriate vertex so that a different state flow can be executed. 

4.4. 	 Triangle Edge Interpolator 

This logic includes two interpolators for calculating the new X addresses for 
each scan line for each step in Y. One of the two interpolators has an additional 
set of holding registers to store the third triangle edge parameters. 

Each interpolator is wide enough to maintain 11 16th pixel accuracy across the 
entire triangle. Special rounding logic is provided to round the left edge X address 
up to the nearest whole pixel. The error term (up to 15!16ths of a pixel) is 
transferred to the SLPIC to allow more accurate color and depth calculations. 

4.5. 	 Bresenham Setup Unit 

The Bresenham setup unit is used primarily for calculating the parameters for 
the vector drawing algorithm performed by the SLPICs. The basic algorithm per­
formed is the Bresenham line drawing algorithm [Bresenham, 1965]. 

This logic is also used as a counter to control pixel data read and write 
transfers and rectangle fill commands. 

5. Scan-Line Processor Implementation 

The scan-line processor IC is implemented using a 1.5 micron channel-less 
array with 15,000 gates. Figure 4 shows a block diagram of the SLPIC. 

5.1. 	 State Controller 

The state controller contains the state sequencers for all SLPIC commands and 
generates the control signals to the rest of the chip to route the data and perform 
the desired operations. It also controls register read/write operations and video 
display cycles. 
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Figure 4: Scan-Line Processor Ie block diagram. 

5.2. 	 Address Generator 
The address generator has two pairs of X and Y up/down counters which are 

used for source and destination addresses. The X counters can count by five pixels 
each clock cycle for horizontal vectors or rectangle fills to allow five pixels to be 
written at once. The least significant two bits of the Y counter are used to deter­
mine if the pixel address should be handled by the particular SLPIC. 

The SLPIC incorporates an 8 x 8 area pattern register which is indexed into 
by the LSBs of the X and Y address. This results in the area pattern being repli­
cated, or tiled, across the screen starting from the upper left comer. The pattern 
register can be used to select between the foreground/background register or select 
between writing or inhibiting the pixel. 

The address generator also generates addresses for display cycles to allow pan­
ning and zooming. Two pairs of counters are provided to allow independent con­
trol of the image memory bank and the overlay bank. 

S.3. 	 Vector Generator 
The vector generator is used to control the clocking of the address counters in 

the address generator block when performing vector draw operations. This block 
contains the error accumulator used to implement the Bresenham vector generation 
algorithm. A sixteen bit data path is implemented to allow 1/16th pixel accuracy 
to be maintained in vector calculations. The address generator also contains an 
iteration counter to keep track of the number of pixels remaining to be drawn. 
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Two 16 bit vector patterns are provided to allow stipple patterns. The pattern 
can select between the foreground/background register, or inhibit pixel writing. 
Each register has a prescaler which can be set to rotate the vector pattern one bit 
position for every 1, 2, or 4 pixels in a vector. When vector patterns are enabled, an 
option is provided to force writing of the first and last 3 pixels in a vector, overrid­
ing the vector pattern. 

5.4. 	 Arithmetic Logic Unit 

The ALU contains the logic for performing ,pixel function and depth buffer 
function calculations. The 8-bit ALU performs arithmetic (Src+ Dest, Src-Dest, 
Dest-Src) operations, or per-bit logical operations using a 4 bit mask. The arith­
metic operations may be clipped to 8 bits on overflow conditions by setting a flag. 
Conditional write operation (write only if the source is non-zero) may also be 
selected. A 16-bit magnitude comparitor is provided to perform depth buffer com­
pansons. 

One of the five foreground value registers can be selected for vector and hor­
izontal vector commands. The select register can be used either as the value to 
write to memory or as the Pixel ALU input value. 

5.5. 	 Interpolator 

The interpolator block calculates a new value for each pixel in an interpolated 
scan line or vector by adding a slope to the previous value. The calculations are 
32 bits wide in a 17.15 two's complement format, where the msb is the sign bit, the 
next 16 bits are the integer portion, and the low 15 bits are fractional information 
for increased precision. There are three data paths in the interpolator: one for 
interpolating a new value down the left edge of a triangle; a shift-and-add multi­
plier path to calculatl! the value difference between the edge and the first pixel to 
be written (using fractional addressing information from the MCIC); and an add­
accumulate path for calculating pixel values across a scan line or along a vector. 

5.6. 	 Data Registers 

This block contains five l6-bit latches which are used for block move opera­
tions. These latches allow an entire five pixel block to be read into the scan-line 
processors, and then written out into a new memory location. This allows substan­
tially higher performance than if single pixel reads and writes were performed. A 
data path from the data registers to the Pixel AL U is provided so that a pixel func­
tion can be applied to block moves. 
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5.7. 	 Memory Control 

The memory control block handles all memory timing and control signals. 
Memory cycles are included for reads, writes, read-modify-writes, dynamic RAM 
refresh cycles, and video DRAM shift register loads. The memory timing generator 
will always try to perform page mode cycles to minimize the memory cycle times. 

6. 	 Vector Drawing 

The GX4000 drawing processor can evaluate and draw vectors expressed as a 
pair of endpoints. The vector setup and the Bresenham vector generation algo­
rithm are all performed in hardware for maximum performance. Interpolated and 
depth buffered vectors can also be handled. 

6.1. 	 Vector Setup 

The vector setup is performed by the Master Controller Ie. The MCIC 
accepts vectors from the graphics arithmetic processors as a pair of endpoints and 
calculates the terms necessary to perform the Bresenham algorithm. The setup 
parameters are passed to the scan-line processor chips, which contain the vector 
generators (see below). 

6.2. 	 Vector Generation 

Each scan-line process<;>r chip contains a Bresenham vector generator. All 
chips are passed the same setup vector, and write only the portions of the vector 
that are on the set of every fourth horizontal line handled by each chip. The vector 
generators operate at the full clock rate (20 Mhz) for pixels which are not handled 
by the particular scan-line processor, and only slow down to memory rates when a 
pixel is to be drawn. This allows the four scan-line processor chips to process each 
vector in parallel for higher performance. Horizontal vectors are special cased to 
allow multiple pixels to be written each clock cycle. The Drawing Processor can 
render over 350,000 one centimeter vectors per second. 

7. 	 Triangle Drawing 

The triangle rendering algorithm requires that some preliminary calculations 
be performed by the GX4000 graphics arithmetic processor(s) to calculate edge and 
scan-line differentials. This is done to reduce the complexity and processing time 
of the drawing processor. Since these calculations involve several divide operations, 
significant time would be spent in performing these operations in the VLSI chips. 
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The following parameters are necessary to describe a shaded, depth buffered 
triangular patch to the Drawing Processor: 

X1 dX1/dY 
X2 dX2/dY 
X3 dX3/dY 
Ytop Yvertex Ybottom 
Z1 dZ1/dEdge Z2 dZ2/dEdge dZ/dX 
R1 dR1/dEdge R2 dR2/dEdge dR/dX 
G1 dG1/dEdge G2 dG2/dEdge dG/dX 
B1 dB1/dEdge B2 dB2/dEdge dB/dX 

Figure 5 shows the relationships of these parameters for the two general cases 
of triangles. The term "F" has been used to represent the R, G, B, and Z values 
and differentials. 

This information is used by the MCIC and SLPICs to calculate and draw each 
scan-line. The Xl and X2 terms are the left and right X positions on the scan-line 
given by Ytop. The dXl/dY and dX2/dY terms are the slopes of the first two 
sides of the triangle. The X positions on subsequent scan-lines are calculated by 
adding the slopes to the current X values. This is done so that it takes only one 
cycle to find the next X values, instead of possibly several cycles if a Bresenham 
walk was used. 

LEFT FACING RIGHT FACING 

X1 1•X1 

p-X2 
dX2 

dX1 dX1 X3 
F2,X3 

dF1 
dX3 F2 and dF2 

dX3 not used 
dF2 

Figure 5: Triangle parameter definitions. 

Xl and dXl/dY are defined to be the edge that has the longest span in Y 
(Edge!). Similarly, X2 and dX2/dY define Edge2. Two X terms are necessary to 
account for the special case of a triangle with a horizontal top edge, and the case 
where the true vertex of the triangle falls on a sub-pixel boundary so that the first 
scan-line that is actually drawn contains more than one pixel. 
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There are two triangle modes: left facing triangles, and right facing triangles. 
A left facing triangle will have Edgel on the right side of the triangle, and a right 
facing triangle will have Edge I on the left side. This is specified by the opcode 
passed to the master controller. If dX2/dY is more positive than dXlIdY, then 
Edge I is the left edge, and vice versa. This information is needed since the scan­
lines are always drawn with the X address increasing. 

The MCIC is only concerned with the address information. However, it must 
properly initialize the SLPICs since each processor handles a different scan-line. 
(For this discussion, the symbol F will be used to represent R, G, B, or Z, as the 
processing is the same.) Since the scan-lines that make up a patch are always 
drawn with the X address increasing, Fl and dFlIdEdge define the starting values 
on the left edge of the triangle. For a left facing triangle, F2 and dF21dEdge are 
used along with X3 and dX3/dY when Y becomes equal to Yvertex. For right fac­
ing triangles, the F2 and dF2/dY terms are ignored, only X3 and dX3/dY are 
needed. Also, since triangles are by definition planar, the dFIdX terms are con­
stant. 

The value of F across a scan-line is calculated in the SLPICs by adding 
dFI dX to F for each pixel. The initial value of F on subsequent scan-lines is calcu­
lated by adding dF/dEdge to the current initial value of F. Since the calculations 
for F are done in the SLPICs and each chip handles every fourth scan-line, they 
have to be initialized with different values of F. The MCIC will load all four 
SLPICs simultaneously with the initial values of F, dF/dEdge, dF/dX, and Y. The 
SLPICs will look at the two least significant bits of the Y address and run their 
interpolators zero, one, two, or three times as appropriate so that they each have 
the proper initial values of F for the first scan-line they will draw. The SLPICs will 
then shift the value of dFI dEdge left two bits so that they will interpolate to every 
fourth line. 

For each scanline in the triangle, the MCIC will generate a pair of X coordi­
nates by running the two edge interpolators. The interpolators are in 12.15 format, 
using a 12.4 starting value and a 12.4.11 differential value. The.4 part of the start­
ing and differential value is a subpixel address, and the extra 11 bits in the 
differential are a fractional component that allows subpixel accuracy to be main­
tained even over edges the full width of the screen. Once calculated, the two 
X coordinates need to be rounded so that only pixels inside the patch will be 
drawn: the left X coordinate is rounded up to the nearest whole pixel, and the 
right X coordinate is rounded down to the nearest whole pixel. The MCIC passes 
the rounded left and right X addresses, and the subpixel (4 bit fractional) part of 
the difference between the rounded and unrounded left X coordinate (referred to as 
Xerr) and the Y coordinate to the SLPIC whose line number matches the two least 
significant bits of the Y address. Once the MCIC has completed passing the scan­
line data to the appropriate SLPIC, it calculates the data for the next scanline and 
passes it to the next SLPIC. This allows all four SLPICs to be writing pixels into 
image memory in parallel. 
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The Xerr term is used by the SLPICs to adjust the starting value of F by cal­
culating Xerr * dF/dX and adding it to F. This is to ensure that the value of F that 
is written at the starting pixel is the true value and not the value calculated at the 
edge, since the rounded X coordinate may be as much as 15116s of a pixel away 
from the edge. This will prevent the holes and jagged edges present at adjacent tri­
angles and intersections in some depth buffered images on previous systems. 

Each SLPIC draws the scan-line by interpolating F for each pixel by adding 
dF/dX to a temporary copy of F. When the scan-line is complete, each SLPIC cal­
culates the next starting value of F by adding dFI dEdge, which represents the slope 
of F along the left edge, to F. 

8. 	 Perfonnance 
At the time that this paper was written, the VLSI drawing processor was fabri­

cated and working in prototype systems. Complete benchmarking has not been 
done although preliminary testing indicates that the simulated performance goals 
have been met. Detailed simulation software has been developed to allow accurate 
system analysis. A wireframe and shaded patch representation of an automobile 
(shown in Figure 6 and 7) have been run through this simulator to show the perfor­
mance of the chip set. The simulated performance is shown below: 

8.1. 	 Wireframe Perfonnance 
Wire Frame Database of Chrysler Laser (courtesy of Chrysler Corporation). 

Number of Vectors: 99,236 

Average Vector Length: 4.77 

Total Pixels Drawn: 473,217 

Execution Time: 104.2 milliseconds 

8.2. Shading Perfonnance 

Shaded Patch Database of Chrysler Laser (courtesy of Chrysler Corporation). 


Number of Triangles: 


Left Facing Triangles: 


Right Facing Triangles: 


Total Scan-lines: 


Total Pixels Rendered: 


Average Triangle Size: 


Rendering Time: 


64,696 

22,970 

41,726 

296,388 

802,185 

12.4 pixels 

237.7 milliseconds 
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Figure 6: Wireframe image (database courtesy Chrysler Corporation) 

Figure 7: Shaded image (database courtesy Chrysler Corporation) 
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