
Parallel Subpixel Scanconversion

Ute Claussen

Eberhard-Karls Universitat TUbingen

Wilhelm-Schickard-Institut fUr Informatik

Graphisch-Interaktive Systeme

1. Introduction
Computer graphics and its subsections image processing, image analysis and

image generation are known to be a wide field for the application of parallel archi­
tectures. While in image processing and analysis the demand for "real time" com­
putation is in the center of discussion, it becomes more and more important in the
field of image generation, too. Some applications, like sequences of realistic
appearing images raise highest demands on algorithm and architecture as well.

We want to tackle the problem of image generation on a raster device. This
computation can be subdivided into the geometric processing (including transfor­
mations and clipping) and the pixel processing (including scanconversion, visibility
computations, anti-aliasing, and shading). You can see that in the first phase this is
an object oriented computation and in the second phase it's a pixel oriented compu­
tation (figure 1). Both in the first and second phase parallel processing is possible.

The attempts to the parallelization can be classified according to this subdivi­
sion. There are obj~t oriented, pixel oriented (or more generally: image space
oriented) and hybrid solutions. As a result, the boundary between pixel oriented
and object oriented processing is often pushed to the periphery, including draw­
backs in the computational speed.

The general approach to solve the parallelization problem is shown in figure 2.
Because of the increasing overhead in partitioning the whole problem two times the
extreme proposals partitioned exclusively object space or exclusively image space.
This consequently leads to architectures including one processor per object or one
processor per pixel (e.g. the pixel-planes of Fuchs et. al. [FuPo-81] and [Fuea-85]).

But both attempts are showing drawbacks: a strict distribution of objects
results in bottlenecks in the hardware, strictly distributing pixels results in aliasing
effects.

http://www.eg.org
http://diglib.eg.org

156

(model '1
~c

geom. trans!.

geometric pro­

cessing

object - oriented

pixel processing

Figure 1: Image Generation Pipeline

An alternative proposal was made by Strasser last year ([Stra-85], [Stra-86],
and [Wein-8Il). He concentrated only on the pixel processing. Like Weinberg he
proposes an object processor pipeline, which stores the object information and
pipelines the pixel information. Figure 3 shows his concept.

With this proposition the possibility to partition the image generation in such
a way that a) real-time generation is feasible and b) the architecture can be imple­
mented by VLSI-design is proved. We want to use this architecture as a basis for
further investigations.

Though the proposition shows some drawbacks such as the application depen­
dence and some structure dependent delays, we want to show in this paper that the
integration of subpixel scanconversion without loss of the real time feature is possi­
ble. Application dependence is due to the use of one processor per object. A
fixation of the number of processors leads directly to a limitation of the complexity

157

mod e I

frame buffer

Figure 2: General Approach to the Parallelization of Image Generation

of the scene (e.g. number of objects in the scene). Furthermore the use of planar
triangulated polygons can be seen as a drawback. But that fact can be overcome by
changing the functionality of the object processors.

Tolerance can be shown towards the fact that the pipeline must be loaded
sequentially with the object information. Parallel proceeding is desirable because
only a constant time per frame would be necessary. On the other side it has been
demonstrated that first it isn't possible to do that by todays technology and second
it is not necessary, because the time constraints can be met without it !

158

d a t ageometric object processor

processing pipeline

add res s ..h.....-----+--------....
sorted list

o b je ot

conversion
I

Ii Iter

! .. - ...~

'0" - .. I Ivaluesl

Figure 3: System Architecture

2. 	 Subpixel Scanconversion
Further points that were performed insufficiently in the proposed architecture

are the subpixel scanconversion and the shading of the polygons. These two steps
are necessary to complete the pipeline presented in figure 1. In this article we will
concentrate on the subpixel scanconversion.

Subpixel computations are known as a solution for the well known problem of
"staircases" which appear on raster displays (see [FiFR-83] for a proposition of
algorithm and architecture). This method subdivides a pixel into a field of M' X M'
subpixel on which the same algorithms are applied. Then the field of subpixel
values is used to determine the pixel value, generally by weigthed filtering.

So, if the problem of scanconversion is:

scanning of N objects on a M I X M 2 pixel raster display,

the problem of subpixel scanconversion is described by:

159

scanning of N' objects on a M'XM' (suh-)pixel raster display (jor every
pixel).

The meanings of the symbols are:

N the number of objects in the scene

N' the number of objects, which make a contribution to the pixel's color
value

M I X M 2 the number of pixels on the raster display

M' XM' the number of subpixels on the subpixel raster.

For a typical scene N'«N~5000 objects and M'«M I......,M2~1024 pixels is
valid. In general N' < 10 and M'';;;; 8 is valid, too. This means a reduction of the
problem by several orders of magnitude. We will come back to this in a later sec­
tion of this paper.

Those objects, which contribute to the pixel's color value are determined in the
object processor pipeline. This part of the architecture has as result a depth-sorted
list of contributing objects for every pixel which is passed to the subpixel scan­
conversion.

The task of this unit cannot only be described by the above mentioned reduc­
tion but also in more general terms:

for every pixel
for every object in the contribution list

for every subpixel
{

compute the contribution of the object to the subpixel color value

In this processing first the sequence of computations can be exchanged as well as
second in every stage parallel or sequential processing is possible. The different pos­
sibilities of treatment lead to different architectures. Out of the variety of these pos­
sibilities we want to present two in detail.

However, the number of alternatives is reduced by the architecture given
above:
A parallel processing of pixels is not appropriate because the pixels run through the
object processor pipeline sequentially.
These points given will not result in a delay of the timing, if we take the chance to
formulate a timing restriction for the subpixel scanconversion unit:

Each pixel should be treated by the sub pixel scanconversion unit while the
next pixel is processed by the object processor pipeline.
Unfortunately this timing constraint cannot be formulated exactly since the
object processor pipeline works asynchronously.

160

In practice we add a further processing unit to the object processor pipeline.
This results only in a marginal increase in computing time per pixel. A short exam­
ple will clarify this: Suppose a number of N processors (equal to the number of
objects), M\ XM2 pixels on the raster display and an expected time tp of process­
ing per pixel. Then the resulting time to process the whole frame is:
D j =(M\ XM2 +N)*tp. If we add one processor, as intended, this results in a
time of D 2 = (M I XM 2 +N + 1)* tp. Typical cases include N = 5000 objects and
M I XM 2 = 250.000 pixel. This results in a marginal less difference (lower than one
percent!).

This is the basis on which we want to present the two architectures, their
drawbacks and advantages.

3. 	 The Pipeline Architecture
As we pointed out, the task of subpixel scanconversion can be seen as a reduc­

tion of the task of scanconversion. In consequence we can transfer the solution of
the problem, that is the architecture, too. This results in the use of a (simplified)
object processor pipeline substituted for the black box subpixel scanconversion
(figure 4).

subpixel

processor

processor 2

r~~

l-su~+~-····l
____=' 0'"t' "-:;::;::'..,,""

Figure 4: SubpixeJ Scan Pipeline

161

The timing will then be as in the object processor pipeline:

for every pixel

(

1. load the object information from the sorted list into the processors

2. pipelining of the subpixels through the object processors

(a) (incremental) computation of the contribution of the object to the subpixel

(b) shifting of the information to the next processor

As you can realize, the objects are treated sequentially unlike the subpixels, which
are treated partially in paralleL The degree of parallelism depends on the number
of subpixels. If we compare this solution to the "single processor" solution, which
processes the whole problem sequentially, we will see that it gets worse with
decreasing number of subpixels and increasing number of objects, respectively.

Suppose to be:

o the number of objects in the scene

tL the load time for an object's information

tB the processing time per subpixel and object.

A sequential solution will need:

t1 0 XM'XM'X(tL +tB)

time to load and compute the color value for one pixel. On the other hand the pro­
posed pipeline architecture will require:

12 tpip OXtL +(O+M'XM')XtB

Above all, there is the condition that a pixel should be sub pixel-scan converted
before the next pixel leaves the object processor pipeline. Strasser stated the
expected time between the leaving of two pixels to be 35ns!

We can recognize that this time constraint can not be satisfied by todays tech­
nology. However, one typically needs 500ns per object for loading the data. With at
most 10 objects per pixel, this would result in a load time of 5ps.

If we alternatively look at the whole system as a system that consists of
geometry processor, object processors and subpixel scanconversion, which is inter­
connected in such a way that it can act as a pipeline too, every stage has to per­
form its task in 20ms. In this case the computation time per pixel results in

Ip =80ns

if we suppose the same data as above. This time cannot be reached as well if we
look at the considerations of this section.

162

4. 	 The Parallel Architecture

The alternative concept to the discussed one processor per object is the use of
one processor per subpixel. This means no more pipelining of the subpixels but
parallel processing of the subpixels while sequentially processing the objects. In
figure 5 you can see the associated architecture.

d a t a

1 1
subpixel ­ , subpixel­subpixel­

processor 2 processor I,processor 1
M' x M' i

1 	 values 01 subpixel 1
computation 01 the pix e I val u e

val u e 01 pix e I 	 I

J
subpixel­

scanconversion

Figure 5: Parallel Subpixel Scanconversion

The timing of the processing will be:

for every pixel
{

1. load the pixel data (which means: increment xy-register)

2. for every object
{

(a) load the object's information

(b) if the subpixel is not yet colored, compute the contribution of the object

Since the pixel data as well as the object information is passed sequentially from
the object processor pipeline this order of computation fits into the given architec­
ture pretty well.

The main advantage is the consequence of the fact that one needs just a fixed
number of processing elements, namely M'XM'. In opposition to that the number
of processors in the pipeline could not be fixed. As we already mentioned above, a
fixation of the number results in a limitation of the complexity of the scene.

163

The resulting time needed for the loading and computing of one pixel results
m:

13 Ipar OX(IB+tL)

A comparison of the times t], t 2 and t 3 with a fixed number of objects per pixel is
shown in figure 6. One can see clearly the differences in quality of the different
archi lectures.

time;

mber of subpixels

Figure 6: Times needed by the Different Architectures

But what are the time constraints for this approach?
If we again suppose the time per pixel to be 35ns and the maximum number to be
10 objects per pixel this results in 3.5ns for the computation of the subpixel values
and the pixel value. Even in modem CMOS-technology this is the equivalent to 7
cycle times. This amount will surely be exceeded by our task.

If we follow the second philosophy of structuring the image processing as a
pipeline, the timing condition leads again to Ip SOns. This constraint is more real­
istic as we will show soon. Hence we found an appropriate completion to the archi­
tecture given by Strasser, which performs the task of subpixel scanconversion.

From figure 5 follows that the pixel color value is a combination of the
weighted subpixel color values. That means that in the unit "computation of the
pixel value" a multiplication and addition of the red, green, and blue components
is performed. Additional filtering can be added (included in the weigthing) without
increasing the needed time.

164

b I u e ­

addition of subpixel values

pixel value

Figure 7: Computation of the Pixel Color Value

Details of this part of the architecture can be seen in figure 7. The "addition"
unit can be implemented using one of the well known fast VLSI-algorithms. Load­
ing the weights had to be done only once for a sequence of frames so it will not
result in additional time needs.

A single processing element needs two registers: one for the "geometric" data
of the actual pixel (x and y) and one, which determines the subpixel data. In addi­
tion we need an increment unit and some other registers to hold the geometry and
the color of the object (figure 8).

The objects are treated in the order of the depth-sorted list, which is arranged
from foreground to background (rising z-values). This leads to the advantage that
the processing unit can stop calculating in the moment a subpixel color value is
determined. Determining the contribution can be done by the well known opera­
tion of clipping (the edges of the polygon against the edges of the subpixel). By
means of Bresenham's algorithm we can decide if an object makes a contribution
even if it covers only a part of a subpixel. Some further results about the realisa­
tion, the necessary resolution M', and the quality of the results are in preparation.

Guided by the figures it is evident that the task and its subtasks are easily
built. Therefore a VLSI-implementation is possible. We are of the opinion that such
an implementation could hold the timing constraints. So the wish to generate
images of highest quality in "real time" is not unrealistic.

165

input ,r:01or V~.. lues

geometry

increment

output

clipping

Figure 8: The SubpixeJ Processor

But we should not forget the mentioned drawbacks and that the functionality
of shading is not yet implemented. The importance of this processing stage is evi­
dent for planar polygon based models. This and the extension to other priniitives
could be a starting point for further investigations.

5. 	 Conclusions

For the task of subpixel scanconversion in an image generation system some
solutions were developed. It could be shown that parallel processing fits better to
the given architecture than pipeline processing. The presented architecture does not
lead to a restriction in the used model or a limitation of the scene complexity. An
integration into other systems is possible due to the pipeline character of the image
generation system.

166

6. References

[CD-8I] D. Cohen, S. Demetrescu:" A VLSI Approach to Computer Image
Generation," Technical Report, Information Sciences Institute, Univer­
sity of Southern California (1981)

[Crow-77] F. Crow: "The Aliasing Problem in Computer-Generated Shaded
Images," Comm. of the ACM 2011, November (1977)

[FiFR-83] E. Fiume, A. Fournier, L. Rudolph: "A Parallel Scan Conversion Algo­
rithm with Anti-Aliasing for a General-Purpose Ultracomputer," ACM
Computer Graphics 173, pp. 141-150 (l98~)

[Fuea-85] H. Fuchs et. al. : "Fast spheres, shadows, textures, transparencies, and
image enhancements in Pixel-Planes," Computer Graphics 19 3 pp. 111­
-120 (1985)

[FuPo-81] H. Fuchs, J. Poulton: "Pixel Planes: a VLSI-oriented design for a raster
graphics engine," VLSI-Design, Third quarter (1981)

[Stra-85] W. Strasser: "A VLSI-oriented, highly parallel architecture for fast
image generation of realistic scenes" in: K. Waldschmidt and B.
Myhrhaug (eds.): Microcomputers, usage and deSign, Proceedings of the
EUROMICRO'85, North-Holland (1985)

[Stra-86] W. Strasser: "A VLSI-oriented architecture for parallel processing
image generation," in: Reijns, Barton (ed.): Highly parallel computers
Elsevier Science Publications B.V. (North-Holland) (1987)

[Wein-8I] 	 R. Weinberg: "Parallel processing Image Synthesis and Anti-aliasing,"
ACM Computer GraphiCS 15 3, pp. 55--62 (1981)

