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1. Introduction 
Computer graphics and its subsections image processing, image analysis and 

image generation are known to be a wide field for the application of parallel archi­
tectures. While in image processing and analysis the demand for "real time" com­
putation is in the center of discussion, it becomes more and more important in the 
field of image generation, too. Some applications, like sequences of realistic 
appearing images raise highest demands on algorithm and architecture as well. 

We want to tackle the problem of image generation on a raster device. This 
computation can be subdivided into the geometric processing (including transfor­
mations and clipping) and the pixel processing (including scanconversion, visibility 
computations, anti-aliasing, and shading). You can see that in the first phase this is 
an object oriented computation and in the second phase it's a pixel oriented compu­
tation (figure 1). Both in the first and second phase parallel processing is possible. 

The attempts to the parallelization can be classified according to this subdivi­
sion. There are obj~t oriented, pixel oriented (or more generally: image space 
oriented) and hybrid solutions. As a result, the boundary between pixel oriented 
and object oriented processing is often pushed to the periphery, including draw­
backs in the computational speed. 

The general approach to solve the parallelization problem is shown in figure 2. 
Because of the increasing overhead in partitioning the whole problem two times the 
extreme proposals partitioned exclusively object space or exclusively image space. 
This consequently leads to architectures including one processor per object or one 
processor per pixel (e.g. the pixel-planes of Fuchs et. al. [FuPo-81] and [Fuea-85]). 

But both attempts are showing drawbacks: a strict distribution of objects 
results in bottlenecks in the hardware, strictly distributing pixels results in aliasing 
effects. 

http://www.eg.org
http://diglib.eg.org
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Figure 1: Image Generation Pipeline 

An alternative proposal was made by Strasser last year ([Stra-85], [Stra-86], 
and [Wein-8Il). He concentrated only on the pixel processing. Like Weinberg he 
proposes an object processor pipeline, which stores the object information and 
pipelines the pixel information. Figure 3 shows his concept. 

With this proposition the possibility to partition the image generation in such 
a way that a) real-time generation is feasible and b) the architecture can be imple­
mented by VLSI-design is proved. We want to use this architecture as a basis for 
further investigations. 

Though the proposition shows some drawbacks such as the application depen­
dence and some structure dependent delays, we want to show in this paper that the 
integration of subpixel scanconversion without loss of the real time feature is possi­
ble. Application dependence is due to the use of one processor per object. A 
fixation of the number of processors leads directly to a limitation of the complexity 
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Figure 2: General Approach to the Parallelization of Image Generation 

of the scene (e.g. number of objects in the scene). Furthermore the use of planar 
triangulated polygons can be seen as a drawback. But that fact can be overcome by 
changing the functionality of the object processors. 

Tolerance can be shown towards the fact that the pipeline must be loaded 
sequentially with the object information. Parallel proceeding is desirable because 
only a constant time per frame would be necessary. On the other side it has been 
demonstrated that first it isn't possible to do that by todays technology and second 
it is not necessary, because the time constraints can be met without it ! 
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Figure 3: System Architecture 

2. 	 Subpixel Scanconversion 
Further points that were performed insufficiently in the proposed architecture 

are the subpixel scanconversion and the shading of the polygons. These two steps 
are necessary to complete the pipeline presented in figure 1. In this article we will 
concentrate on the subpixel scanconversion. 

Subpixel computations are known as a solution for the well known problem of 
"staircases" which appear on raster displays (see [FiFR-83] for a proposition of 
algorithm and architecture). This method subdivides a pixel into a field of M' X M' 
subpixel on which the same algorithms are applied. Then the field of subpixel 
values is used to determine the pixel value, generally by weigthed filtering. 

So, if the problem of scanconversion is: 

scanning of N objects on a M I X M 2 pixel raster display, 

the problem of subpixel scanconversion is described by: 
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scanning of N' objects on a M'XM' (suh-)pixel raster display (jor every 
pixel). 

The meanings of the symbols are: 

N the number of objects in the scene 

N' the number of objects, which make a contribution to the pixel's color 
value 

M I X M 2 the number of pixels on the raster display 

M' XM' the number of subpixels on the subpixel raster. 

For a typical scene N'«N~5000 objects and M'«M I......,M2~1024 pixels is 
valid. In general N' < 10 and M'';;;; 8 is valid, too. This means a reduction of the 
problem by several orders of magnitude. We will come back to this in a later sec­
tion of this paper. 

Those objects, which contribute to the pixel's color value are determined in the 
object processor pipeline. This part of the architecture has as result a depth-sorted 
list of contributing objects for every pixel which is passed to the subpixel scan­
conversion. 

The task of this unit cannot only be described by the above mentioned reduc­
tion but also in more general terms: 

for every pixel 
for every object in the contribution list 

for every subpixel 
{ 

compute the contribution of the object to the subpixel color value 

In this processing first the sequence of computations can be exchanged as well as 
second in every stage parallel or sequential processing is possible. The different pos­
sibilities of treatment lead to different architectures. Out of the variety of these pos­
sibilities we want to present two in detail. 

However, the number of alternatives is reduced by the architecture given 
above: 
A parallel processing of pixels is not appropriate because the pixels run through the 
object processor pipeline sequentially. 
These points given will not result in a delay of the timing, if we take the chance to 
formulate a timing restriction for the subpixel scanconversion unit: 

Each pixel should be treated by the sub pixel scanconversion unit while the 
next pixel is processed by the object processor pipeline. 
Unfortunately this timing constraint cannot be formulated exactly since the 
object processor pipeline works asynchronously. 
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In practice we add a further processing unit to the object processor pipeline. 
This results only in a marginal increase in computing time per pixel. A short exam­
ple will clarify this: Suppose a number of N processors (equal to the number of 
objects), M\ XM2 pixels on the raster display and an expected time tp of process­
ing per pixel. Then the resulting time to process the whole frame is: 
D j =(M\ XM2 +N)*tp. If we add one processor, as intended, this results in a 
time of D 2 = (M I XM 2 +N + 1)* tp. Typical cases include N = 5000 objects and 
M I XM 2 = 250.000 pixel. This results in a marginal less difference (lower than one 
percent!). 

This is the basis on which we want to present the two architectures, their 
drawbacks and advantages. 

3. 	 The Pipeline Architecture 
As we pointed out, the task of subpixel scanconversion can be seen as a reduc­

tion of the task of scanconversion. In consequence we can transfer the solution of 
the problem, that is the architecture, too. This results in the use of a (simplified) 
object processor pipeline substituted for the black box subpixel scanconversion 
(figure 4). 
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Figure 4: SubpixeJ Scan Pipeline 
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The timing will then be as in the object processor pipeline: 

for every pixel 

( 


1. load the object information from the sorted list into the processors 

2. pipelining of the subpixels through the object processors 

(a) (incremental) computation of the contribution of the object to the subpixel 

(b) shifting of the information to the next processor 

As you can realize, the objects are treated sequentially unlike the subpixels, which 
are treated partially in paralleL The degree of parallelism depends on the number 
of subpixels. If we compare this solution to the "single processor" solution, which 
processes the whole problem sequentially, we will see that it gets worse with 
decreasing number of subpixels and increasing number of objects, respectively. 

Suppose to be: 

o the number of objects in the scene 

tL the load time for an object's information 

tB the processing time per subpixel and object. 

A sequential solution will need: 

t1 0 XM'XM'X(tL +tB) 

time to load and compute the color value for one pixel. On the other hand the pro­
posed pipeline architecture will require: 

12 tpip OXtL +(O+M'XM')XtB 

Above all, there is the condition that a pixel should be sub pixel-scan converted 
before the next pixel leaves the object processor pipeline. Strasser stated the 
expected time between the leaving of two pixels to be 35ns! 

We can recognize that this time constraint can not be satisfied by todays tech­
nology. However, one typically needs 500ns per object for loading the data. With at 
most 10 objects per pixel, this would result in a load time of 5ps. 

If we alternatively look at the whole system as a system that consists of 
geometry processor, object processors and subpixel scanconversion, which is inter­
connected in such a way that it can act as a pipeline too, every stage has to per­
form its task in 20ms. In this case the computation time per pixel results in 

Ip =80ns 

if we suppose the same data as above. This time cannot be reached as well if we 
look at the considerations of this section. 
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4. 	 The Parallel Architecture 

The alternative concept to the discussed one processor per object is the use of 
one processor per subpixel. This means no more pipelining of the subpixels but 
parallel processing of the subpixels while sequentially processing the objects. In 
figure 5 you can see the associated architecture. 
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Figure 5: Parallel Subpixel Scanconversion 

The timing of the processing will be: 

for every pixel 
{ 

1. load the pixel data (which means: increment xy-register) 

2. for every object 
{ 

(a) load the object's information 

(b) if the subpixel is not yet colored, compute the contribution of the object 

Since the pixel data as well as the object information is passed sequentially from 
the object processor pipeline this order of computation fits into the given architec­
ture pretty well. 

The main advantage is the consequence of the fact that one needs just a fixed 
number of processing elements, namely M'XM'. In opposition to that the number 
of processors in the pipeline could not be fixed. As we already mentioned above, a 
fixation of the number results in a limitation of the complexity of the scene. 
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The resulting time needed for the loading and computing of one pixel results 
m: 

13 Ipar OX(IB+tL) 

A comparison of the times t], t 2 and t 3 with a fixed number of objects per pixel is 
shown in figure 6. One can see clearly the differences in quality of the different 
archi lectures. 

time; 

mber of subpixels 

Figure 6: Times needed by the Different Architectures 

But what are the time constraints for this approach? 
If we again suppose the time per pixel to be 35ns and the maximum number to be 
10 objects per pixel this results in 3.5ns for the computation of the subpixel values 
and the pixel value. Even in modem CMOS-technology this is the equivalent to 7 
cycle times. This amount will surely be exceeded by our task. 

If we follow the second philosophy of structuring the image processing as a 
pipeline, the timing condition leads again to Ip SOns. This constraint is more real­
istic as we will show soon. Hence we found an appropriate completion to the archi­
tecture given by Strasser, which performs the task of subpixel scanconversion. 

From figure 5 follows that the pixel color value is a combination of the 
weighted subpixel color values. That means that in the unit "computation of the 
pixel value" a multiplication and addition of the red, green, and blue components 
is performed. Additional filtering can be added (included in the weigthing) without 
increasing the needed time. 
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Figure 7: Computation of the Pixel Color Value 

Details of this part of the architecture can be seen in figure 7. The "addition" 
unit can be implemented using one of the well known fast VLSI-algorithms. Load­
ing the weights had to be done only once for a sequence of frames so it will not 
result in additional time needs. 

A single processing element needs two registers: one for the "geometric" data 
of the actual pixel (x and y) and one, which determines the subpixel data. In addi­
tion we need an increment unit and some other registers to hold the geometry and 
the color of the object (figure 8). 

The objects are treated in the order of the depth-sorted list, which is arranged 
from foreground to background (rising z-values). This leads to the advantage that 
the processing unit can stop calculating in the moment a subpixel color value is 
determined. Determining the contribution can be done by the well known opera­
tion of clipping (the edges of the polygon against the edges of the subpixel). By 
means of Bresenham's algorithm we can decide if an object makes a contribution 
even if it covers only a part of a subpixel. Some further results about the realisa­
tion, the necessary resolution M', and the quality of the results are in preparation. 

Guided by the figures it is evident that the task and its subtasks are easily 
built. Therefore a VLSI-implementation is possible. We are of the opinion that such 
an implementation could hold the timing constraints. So the wish to generate 
images of highest quality in "real time" is not unrealistic. 
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Figure 8: The SubpixeJ Processor 

But we should not forget the mentioned drawbacks and that the functionality 
of shading is not yet implemented. The importance of this processing stage is evi­
dent for planar polygon based models. This and the extension to other priniitives 
could be a starting point for further investigations. 

5. 	 Conclusions 

For the task of subpixel scanconversion in an image generation system some 
solutions were developed. It could be shown that parallel processing fits better to 
the given architecture than pipeline processing. The presented architecture does not 
lead to a restriction in the used model or a limitation of the scene complexity. An 
integration into other systems is possible due to the pipeline character of the image 
generation system. 
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