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Raster graphics, while good at achieving realistic and cost-effective image 
generation, lacks useful (e.g. high-level) and fast (e.g. almost real-time) interac­
tion facilities. One may try to speed up the entire classical image generation 
pipeline using much processing power but this would clearly lessen the advan­
tages of raster workstations as popular, relatively inexpensive devices. This paper 
continues our work in restructuring the functional model (first formulated by 
Ingrid Carlbom) for high-performance architectures. Central to our approach is a 
visible concern about the underlying data structures used to represent the 
geometric objects. This originates from the conviction that only through careful 
design of appropriate graphics data structures and algorithms one can profitably 
map software tasks into hardware, specifically VLSI. Here we elaborate on a 
novel object description scheme called "pattern representation" and its 
envisioned usage. Our work is decidedly in contrast with several current 
research efforts in the area of graphics hardware where it is commonplace to 
simply put several processors into a cooperative effort to share the total burden, 
with each processor taking responsibility for part of the work. 

Categories and Subject Descriptors: 
1.3.1 [Computer Graphics]: Hardware Architecture raster display devices; 

1.3.3 [Computer Graphics]: Picture/Image Generation display algorithms; 
1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling 

curve, surface, solid, and object representations 
General Terms: Algorithms, DeSign, Performance 
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1. Introduction 

"... By and large, the designs of commercially available products have been 
motivated primarily by a bottom-up concern with cost-effective hardware 
technology that meets performance constraints and not by a more general 
top-down, "software-first" strategy based on user requirements. A proper 
top-down strategy would not only inc/ude cost-effectiveness and performance, 
but would also take into account programmability and extensibility. The 
preoccupation with hardware is understandable in the light of the concern 
with performance, as measured only by the number of elements processed per 
refresh cycle for a fiickerjree display." [9] 

These words of Foley and van Dam, now about five years old, seem to us an 
excellent evaluation of the situation computer graphics has been facing since its 
beginnings. Commercial systems, being products of various hardware design 
compromises between speed, price, and flexibility, are still mostly designed with 
short-term market incentives in mind. The outcome of this trend has been the 
invasion of the marketplace by a large, nonhomogeneous family of devices incor­
porating (occasionally superficial and even parenthetical) hardware innovations and 
a state of affairs where software issues are deliberately ignored and delegated to the 
users. As an example of the latter, we can observe that only recently manufacturers 
started paying attention to crucial aspects of graphics software such as standardiza­
tion, e.g. ISO's GKS [16]. 

An essential requirement for any graphics system is easy and versatile interac­
tion. In fact, nowadays it is de rigueur to imply "interactive computer graphics" 
when one uses the words "computer graphics." Yet, only vector graphics has suc­
ceeded in making interaction a reality rather than a dream. Raster graphics, as it 
stands today, is not able to fulfill the interaction requirement fully. The underlying 
technical reason for this is the discrepancy between objects that are defined by 
position and shape (e.g. lines and polygons) and their pixel representations. To 
quote van Harmelen [15] "... The use of object definitions is at odds with a raster 
representation, where the objects are defined by a set ofpixels with appropriate color 
values." In a nutshell, the process of changing from object definitions to raster 
representation (that is, scan conversion) destroys whatever high-level structure one 
has in a scene. Since, on the other hand, one generally operates on a semantic level 
of interaction (a user likes to say "move this polygon from here to there," for 
example) pixel representation is not flexible enough for manipulation purposes. 
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Presently, there exist two mainstream approaches in the area of raster graphics 
to make it a more viable alternative for interaction: 

• 	 Pushing the hardware limits to the maximum, viz. running many processors 
per given task in the raster image generation pipeline. 

• 	 Restructuring the functional model first formalized by Carlbom [3,9] for high­
performance architectures, viz. looking at the raster image generation from a 
fresher perspective. (Whitted and Weimer [26], and Levy [19] also offer useful 
lessons on raster architectures.) 

Obviously, there is nothing wrong with the first approach as long as it stays 
cost-effective and exhibits extensible (read "programmable'~) behavior. In fact, there 
are some well-known systems, commercial as well as experimental, which prove the 
power of this approach: Clark's Geometry Engine (which was initially an experi­
mental system) [4] and Fuchs' Pixel-Planes [10], respectively*. The Geometry 
Engine is based upon a custom VLSI chip. The chip is the building block of the 
Engine which consists of a number of chips placed in a pipeline and implements 
the various steps of matrix, clipping, and perspective operations all in the classi­
cal homogeneous coordinates for handling 3-D projective transformations. The 
Pixel-Planes, on the other hand, is a frame buffer composed of custom logic 
enhanced memory chips (also known as a smart frame buffer, or a processor-per­
pixel architecture) that perform several pixel-oriented tasks in parallel. With Pixel­
Planes, it is most suitable to render images in the specific case that the pixel opera­
tions are described by linear arithmetic expressions (nevertheless see the preceding 
footnote). This is due to the fact that in Pixel-Planes the information sent to the 
frame buffer is not the triple (x coordinate, y coordinate, RGB value) but the triple 
(a, b, c); the RGB value at pixel (x, y) is then set to ax + by + c. 

A common characteristic of the first approach above is then to identify and 
isolate a simple (subset of) operation(s) and map it, frequently in a conceptually 
easy manner, to hardware. Since custom VLSI design has become, in the last 
decade or so, as easy as writing software (certainly only for those with the right 
kind of facilities), there is a manifest incentive to do this. We, however, observe a 
major shortcoming with this approach. If there are ultimate limits (as many people 
believe) to what can be done by brute-force hardware speed-ups, one should be 
careful not to assign the problems of computer graphics to hardware designers. 
Software issues should also be painstakingly studied. This consequently brings us to 
the second approach. 

This second approach, the one we subscribe to, is no different from the first 
one in terms of its goal, i.e. obtaining raster graphics systems with fast response 
and interaction. Yet, the methodology is quite different. In this case, one tries to 

However, neither of these systems is extensible. For example, it is planned in Pixel-Planes to have 
new hardware capability to evaluate quadratic expressions directly and to speed up rendering with 
the capability to display simultaneously various primitives at different regions of the screen [!OJ. 
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develop original data structures and devise new architectural organizations, and 
then maps expedient tasks to hardware as much as this is justifiedt . Here, we'll 
review how we are .attempting to do this in our research project at CWI. Accord­
ingly, this paper can also be construed as a position paper. 

1.1. 	 Hardware for Graphics: Some Systems 
To our best knowledge, our way of restructuring the raster image generation 

pipeline has not been considered before in the literature. The aim of this section is 
to look at some other efforts of the first sort mentioned in §1. A longer (but not 
comprehensive) overview can be found in [10]. For brevity, several works are not 
mentioned here; this shouldn't be taken as a sign of their insignificance. We also do 
not dwell on well-publicized systems such as the Geometry Engine, the Pixel­
Planes, and the 8 by 8 Display [23]. 

Guttag, van Aken, and Asal [12] discuss issues that must be taken into 
account in the design of a VLSI 32-bit microprocessor specialized for graphics 
applications. They particularly stress the requirement that such a processor should 
be general enough to perform any graphics operation, in contrast to existing graph­
ics controllers whose command sets are frozen in hardware. 

England [7] offers a graphics system architecture for interactive, application­
specific display functions. A modular architecture with a single common bus struc­
ture, a general-purpose 32-bit micro, a large image memory, and a flexible display 
controller are among the key features of his proposal. England's ideas were imple­
mented first as a research tool, and then as the Ikonas Raster Display System (now 
available as Adage 3000). 

A special issue of IEEE Computer Graphics and Applications gives a good pic­
ture of some other commercial research efforts [24]. Asal et al [1]. describe the 
design of the Texas Instruments 34010 Graphics System Processor which is based 
on a combination of reduced- and complex instruction set architectures. This sys­
tem is a perfect example of the wheel of reincarnation philosophy to be mentioned 
in §1.2; the chip is programmed in C to perform image generation faster than a 
general purpose 32-bit micro. Carinalli and Blair [2] describe National's Advanced 
Graphics Chip Set, and Shires [22] surveys the Intel 82786, a new VLSI graphics 
processor that supports windowing in hardware. In the latter, to control multiple 
windows, the central processor supplies the display processor with a description of 
the parts of various windows that are to be shown on the screen. The display 
processor then fetches the implied pixels. 

T A simple analogy here may be useful. Consider the task of searching a set of items for a specified 
item. One obvious way is to store one item per processor and then broadcast the item we are look­
ing for to the processors. In constant time we know if the search is successful. This is fast but costly 
in that a linear number of processors would be necessary. Another way to address the problem is to 
sort the items and then use binary search to achieve a logarithmic time bound. In doing so, we used 
only one processor and ended up with a reasonably fast time bound. This was possible because we 
"structured" our data, albeit in a very simple way for this trivial example. 
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Research by Gharachorloo and Pottle [11] is concentrated on a real time 
graphics system called Super Buffer. Super Buffer is built around, a systolic raster 
graphics engine which in turn is equipped with an array of identical specialized 
pixel processors. The underlying philosophy of Super Buffer can most characteristi­
cally be summarized as a marriage of the classic Watkins scanline algorithm and 
the processor-per-polygon way of thinking due to Kilgour [17]. The system is 
currently under construction at IBM Thomas 1. Watson Research Center. 

Demetrescu's [6] SLAM (Scan Line Access Memory) consists of a semiconduc­
tor memory augmented with highly parallel but simple processors dedicated to fast 
rasterization. A frame buffer consisting of SLAM chips can paint an arbitrary hor­
izontal segment of pixels in one memory access. SLAM has been fabricated and 
tested. 

1.2. 	 The Wheel of Reincarnation 

The "wheel of reincarnation," first formulated by Ivan Sutherland in the '70's, 
is a philosophical tendency in graphics hardware design. Consider a frame buffer 
holding an image generated from geometric data. If the frame buffer is connected 
to a host processor that paints the picture, the host hardware is somewhat underu­
tilized. It is more advantageous to free the host by giving the frame buffer some 
independence. Sutherland noticed that there is an inclination among designers to 
"off-load" graphical computation from the host to a graphics processor, and then 
repeat this process (i.e. off-load the computation again from the graphics processor 
to a graphics subprocessor, and so on). The process is repetitive since, when 
designers add more and more registers and functions to a display processor, the 
processor becomes a full fledged CPU again. At that stage though, the processor 
has become slow and inefficient so that need arises for a small, fast display proces­
sor, starting the cycle anew. It is possible to observe this cycle today in several 
graphics hardware systems. We think that the wheel of reincarnation may explain 
our design decisions, too. For example, the separation module and the search-and­
administration module described in [18] are good examples of this philosophy. 

2. Pattern Representation 

"... The choice of representation has a Significant impact on the overall 
design of the [raster graphics} system. A system to handle lines and dots is 
likely to be similar to a line-drawing graphics system and indeed can offer 
an identical function set and can use much of the same software. A solid­
area graphiCS system is rather different; internally it must incorporate scan­
conversion software, and it must provide functions that permit the program­
mer to define each solid object'S mask, shading, and priority. A complete 
contrast is provided by systems using raster representation, for here the 
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programmer is concerned with operations on arrays of intensities; the opera­
tions include moving and copying arrays, applying half-toning or enhancing 
algorithms, and so on." [21] 

Patterns are area-oriented picture elements. The representation for patterns is 
such that efficient mapping to the frame buffer of a raster display is possible. 
Ideally, this mapping should be comparable in speed to the vector generators of 
conventional vector displays. A strong point of patterns is their independence from 
the type and resolution of raster hardware. The following description is quite con­
densed; cf. the original paper [13] for details of the representation and several 
examples of the set-theoretic manipulation of pattern domains. 

2.1. Definitions and Semantics 
Definition A pattern primitive (pattern in short) is a pair (Dom, Col) where Dom is a 
domain function and Col is a color function. Dom specifies a bounded planar section 
of a 2-dimensional manifold and conceptually can have a curved boundary 
although the present discussion assumes a polygonal boundary. Col assigns a color 
to each point of Dam. 0 

This division of an area element into two parts means the following. When a 
pattern is visualized, Dam will have to be mapped to COdev (see §3.l for abbrevia­
tions). During this mapping, each raster element bounded by Dom will be painted 
with the e.g. RGB value specified by Col. 

Normally, a system will have a number of standard domain functions like 
TRIANGLE, SQUARE, and POLYGON and a number of elementary color func­
tions like RANDOM, SOLID, and INTERPOLATED. Since we haven't said any­
thing to the contrary, domains may self-intersect and even have disconnected parts. 
Domains are subject to pattern combining operations which are all set-theoretic. 
Assume that we have two patterns Pat I :::: (Dom I, Call) and 
Pal2 = (Dom2, CoI2). If we now take Patl U Pal2 then the result will consist; 
in the general case, of three patterns. (N.B. For brevity, here we assume that Pat I 
and Pa/2 do not interpenetrate although this wouldn't cause any difficulty. In fact, 
in §2.2 this case will be accounted for.) The first pattern is 
Doml (Doml n Dom2) with associated color function Coli. The second pat­
tern is Domz (DomI n Dom2) with color function Colz. Finally, we have 
Dom I n Dom2 with a color function that is up to user's specifications. (If both 
domains are solid then this pattern would have one of the domains' colors; in case 
of transparency the situation would be different.) The following definitions are 
thus useful. 

Definition A mix-attribute specifies how the color functions of two domains should 
be handled (mixed) when they are subjected to set-theoretic operations such as U 
and n. 0 
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Definition Color functions may be either generators or pseudo-rasters. A generator 
is a procedure (usually a one-line statement or formula) yielding a color for each 
point of a domain. A pseudo-raster is a 2-D array of color cells covering a domain. 
Combining patterns may require the rewriting of generators or pseudo-rasters. 0 

A geometric transformation of a pattern can affect both domain and color 
functions. A color transformation obviously affects only the color function. The use 
of this simple property is quite powerful: interactive support of blinking, highlight­
ing, etc. can be done by a simple update of the color function of a domain. After 
a point-location (hit-detection) to find the pattern that is pointed out, an update of 
the color function is done on-the-fly (using, if necessary, a simple special purpose 
function box). 

When representing domains, a useful structure to have in order to facilitate 
comparisons between domains is the bounding-box of the domain. All subsequent 
operations (manipulations) with the domain maintain this box. Furthermore, a 
characteristic function is used to indicate whether an element is a member of the 
pattern. This is a raster-independent function and when one has to finally rasterize 
the pattern, the characteristic function should only be evaluated for those raster 
points. The representation of domains is reminiscent of run-length encoding. The 
coding here is raster-independent. The scanlines in the encoding can be at arbitrary 
y-values; as a result, the number of scanlines used by the representation will be 
minimum. 

2.2. 	 Visibility for Patterns: A Simple View 
This section studies the visibility problem when patterns are the underlying 

representations. The reader is cautioned that this is only an abstract view in that it 
does not exactly correspond to our concrete proposal given in [18]. Nevertheless, 
like Fiume and Fournier [8] we believe in the importance of such abstract analyses. 
Note also that we want an incremental visible surface algorithm which supports 
addition/deletion of objects to/from the scene. A simple scenario goes as follows. 
Imagine a screen holding a picture with hidden surfaces removed. One then points 
with a mouse to particular region of the screen and picks it. There are several alter­
natives to what happens next: 

• 	 The picked region is highlighted. 

• 	 The boundary of the object facet which gave rise to this region is highlighted. 

• 	 Besides this region, all other visible regions which are parts of the facet which 
gave rise to this region are also highlighted. 

It is our understanding that an ideal system would give the user the last feed­
back. Similarly, when an object is deleted by deleting its visible regions from the 
picture, previously invisible object parts may become visible. On the other hand, 
inserting a new object may cause previously visible regions to become invisible. The 
picture must be updated, in (almost) real-time, to reflect these changes. A lazy 
evaluation is always possible. After updating the picture itself, the necessary 
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structural changes that should be incorporated in the medium and high level 
descriptions can be done in the background (cf. §3.2). 

Let us start with a definition of the visibility problem. We have a scene con­
sisting of a set of patterns, {P 1, P 2, ... , Pn }. These patterns normally come 
from the facets of the 3-D objects in the scene. Facets originate from a boundary 
representation (Brep) and are coded as filled areas. While most visible surface algo­
rithms use some form of sorting, we'll take a different approach in the following 
description. Each pattern P; is a domain - color function pair (D;, C;). Assume, 
without loss of generality, that the viewpoint is at + 00 in the z direction and we 
are going to produce a visible surface picture in the xy-plane. 

An important issue mentioned in §2.1 is that of interpenetration. Explaining 
what is a "visible" part of an object would be easier if objects did not inter­
penetrate. However, in reality, visible surface algorithms are required to deal with 
interpenetration. There are two solutions: either a special treatment or a clear, 
more semantic understanding of interpenetration. Since majority of objects do not 
interpenetrate in a normal scene, time spent in handling special cases may be 
justified. We however choose the second alternative and base our visibility notions 
on top of interpenetration. 

Given two patterns P; and Pj' we define D; w Dj (the overlap operation) as 
follows (we'll sometimes denote D; by a and Dj by b): 

a w b = {a, b, ab, ba} 

where 

a= a - band b = b - a 

ab = a n b restricted to a before b 

ba = a n b restricted to b before a 

The property here is that a, b, ab, ba are all disjoint. If D; and Dj coincide par­
tially or completely then it is undefined at the coincident region which facet is visi­
ble. The predicate "before" has the obvious meaning in this setting; all operations 
refer to the projections in the xy-plane and "before" makes them meaningful in 3­
D. 

Now, for visibility, it is seen that 

viseD;, Dj ) = {a U ab, b U ba} 

This is basically the visible picture of these two domains. It is equivalent to 
{a - ba, b - ab}. It is noted that if {b;}(I, n) denotes a sequence of n disjunct 
facets then vis(a, {b;}(l, n) = {vis(ao, bi)}(l, n)' Here we see that, for i running 
from 0 to n - 1, 

ai + 1 = ai - bi + 1a; with ao = a 
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n 
As a result, an a - U biai - 1 where all biai - 1 are mutually disjunct. 

1 

Merging two lists A = {ad(l, n) and B = {bi }(l, m) can be done using parallel 
hardware. If this can be performed fast, then the visible picture for 
{Ph P2, "', Pn } can also be computed and maintained (in the presence of 
additions and deletions of objects) fast. 

3. Advanced Display Architecture 

"... In an ideal world of zero-cost logic and memory, which tasks would we 
choose to implement with special-purpose hardware and which with software 
running on general-purpose hardware? Because interactive graphiCS is so 
performance-sensitive, we would choose to carry out both the output and the 
input transformations (from model to image and from user action to model 
modification) in hardware, provided we could exercise some choices about the 
structure of the model, the interaction dialogue, etc. In essence, we would 
want to implement the standard algorithms of the entire output and input 
pipelines in customizable hardware for maximum performance. Thus we 
would be able to combine jlickerjree display with dynamic updating of an 
application model and its views, More specifically, we would combine the 
best features of a jlickerjree storage display with dynamiC, selective updat­
ing,1f [9] 

Raster systems contain, in general, a frame buffer whose main use is to decou­
ple the refresh and scan conversion processes. Clearly, the information in a frame 
buffer is unstructured. Besides, the resolution of a frame is a function of the reso­
lution of the display. Furthermore, unless a double buffer is used, a change cannot 
become visible at once. On the other hand, a nice property of frame buffers is that 
one can use one of the bit planes for interaction response. 

A structured display file on the other hand is compact, reducing the 
bandwidth requirements of the memory. Information is structured and this facili­
tates the manipulation of the image. Local changes can be performed immediately 
and correlations with accompanying objects can be made direct. 

3.1. 	 CarIl)Om's Model 
Let us start with making the usual distinctions about the coordinate spaces, 

Here also, we'll try to isolate important material in definitions; the reader is warned 
that the definitions shouldn't be taken as formalisms. 
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Definition World coordinates (Co world ) are used by the application models. Nor­
malized device coordinates (co norm ) are used internally by the graphics packages to 
provide device independence. Finally, device coordinates (co aev ) are used to 
display an image, in other words, address the raster screen. 0 

Carlbom, in her dissertation titled System Architecture for High-Performance 
Vector Graphics, provided a common framework for studying the architecture of 
graphics systems [9]. Her work was originally oriented towards performance 
modeling for vector graphics hardware. It is nonetheless easily translatable to the 
raster realm. 

The model, in its simplest version, is a pipeline which takes application com­
mands from the user and produces images on a screen (Figure 1). 

Application J StructuredDisplay.. 
---...- Display File Model ... File Compiler 

Display.. Processmg .. ... 
---"'-1

Unit 

..I Linear Display,.. .. --::. DisplayDisplay File Controller 

Figure 1: earlhom's classical architecture. 

Definition An application data structure contains both graphical and nongraphical 
data. The geometric objects are in Co worid• The structured display file contains only 
graphical data and these are in conorm . The transformed segmented display file con­
tains primitives that can be directly mapped to raster; hence its contents are in 
COdev.D 

The elements of the pipeline are transformed by intermediate "agents." 

Definition The display file compiler inputs the application data structure and out­
puts structured display file. The display processing unit inputs the structured 
display file and outputs the segmented display file. The usual scan conversion and 
refreshing steps are the last two steps of the pipeline. 0 

3.2. Our Model 
We propose three levels of representation for 3-D objects: high, medium, and 

low (Figure 2). 
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Application Display .. High Level .... 
Model File Compiler ~epresentatio 

Primitive 

Builder 


.. 


Hidden ... ( Low LeVel}---JMedium Level .. Surface Representatio~epresentatio Remover 

.. Display ..- Display
Controller 

Figure 2: The proposed modified architecture. 

Definition The high level contains an object representation directly resulting from 
the user's definition, and in his coordinate system. This may be thought of as an 
equivalent of the GKS segment representation. At this level there is no limit on the 
type of the primitives that can be present. Simple primitives include filled areas, 
lines, characters, markers, etc. while complex primitives include things like B­
splines, etc. 0 

Definition The medium level consists of elements representing a domain with one 
color function. (At the high level a domain can have several color functions.) Dis­
junct domains are divided and stored as separate elements. At this level, the areas 
are still overlapping; that is, a visible surface algorithm is necessary before they are 
mapped to the low level. Each filled area is one connected region. If x is a primi­
tive from the high level which gave rise to y at the medium level then, considering 
the mapping f between these elements, the relation I : y -)0 x is a function 
whereas f: x -)0y needn't be a function. 0 

Definition The low level representation is the resulting list of visible areas of the ori­
ginal objects. In the functional model this would be equivalent to the linear 
display file. It consists of the visible areas of the original objects. It contains dis­
junct areas whose color functions have been modified to reflect the effects of tran­
sparency, shading, etc. 0 

It is required that we maintain consistency among the three levels of represen­
tations. For example, in 3-D, to recover hidden elements after a change, going back 
to higher levels is necessitated. This means that, when pointing to an element of the 
low level, there should be a possibility to find the corresponding element in the 
medium level representation. Similarly, an element in the medium level should 
know the corresponding element in the high level representation. Considering the 
representations as objects in the sense of object-oriented languages [25] may clarify 
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the situation. Each object (at any given level) has a set of associated "methods" 
that it responds to. When an action is performed on an object, the object itself may 
initiate a series of actions to keep the data structures intact. Some actions require 
permanent changes in the objects at the high level (e.g. the action of deleting an 
object). Some changes are just illusory (e.g. making an object transparent to see 
what is behind). These may be effectuated by providing each object with the 
appropriate methods. The user need not (and should not) know how these admin­
istrative tasks are carried out. The situation is similar to sending a file to the 
spooler for printing. One is not concerned with what kind of intermediate level 
representations are created to print a file nor is he concerned with the font files to 
be called, bit maps to be operated upon, etc. Similarly, while interacting with a 
graphics system, all a user wants is to see the immediate changes that he wants to 
carry out and is to be guaranteed that all through the interactions the geometry is 
kept correct. 

The methods and their division according to the level they should be carried 
out are given below: 

• 	 Picking, highlighting, and blinking belong to the low level. 

• 	 Visibility (priority), transparency, shading and reflection changes belong to the 
medium leveL This level also includes the geometric transformations scale, 
translate, rotate, and clip. 

• 	 Grouping and viewing control belong to the high leveL Depending on the 
choice, object insertion and deletion may be at this or at the medium level. 

It should be emphasized that it is crucial to maintain consistency in the inter­
mediate representations we're using. Assume that, in case of 3-D, we want to 
recover the previously hidden elements after the deletion of an object. Going back 
to higher levels is necessary. Although several trade-offs suggest themselves, the 
least overhead is probably incurred when one maintains "pointers" to the 
corresponding elements at each level. (This is one example of trading memory with 
computation.) Thus, when pointing to an element from the low level, the 
corresponding element in the medium level can be found. Analogously, elements in 
the medium level have corresponding high level elements. Concrete data structures 
for doing this in the case of hidden surface removal are given in [18]. 

4. Principles of Interaction: Dynamic Feedback 

fl ... In raster graphics machines, the screen iltUlge is generated from the ras­
ter, which is a persistent data structure, and which does not automatically 
change with deletions from the transformed segmented display file. Even if 
deletions from the segmented display file do autoltUltically trigger the scan 
conversion process to peiform deletions from the raster, a problem remains: 
deletions from the raster are peiformed by drawing the object to be deleted in 
the background colour of the screen image. If the deleted object formerly 
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obscured a remaining object, then after deletion the remaining object will 
have background coloured holes in it where it was previously covered by the 
deleted object." [15] 

4.1. 	 Soft Cursors 

A cursor moving across a primitive temporarily adds an icon on top of the 
primitive. When the cursor moves, the original image of the primitive need to be 
restored. A tradeoff suggests itself using, in both cases, a separate raster (other than 
the one holding the image itself). In case of a "small" raster, the position is 
updated under the control of a a location register that is updated by an interrupt 
routine. This rather inflexible method is able to display only small cursor patterns. 
In the case of a "large" raster, one can implement a dragged object, or a rubber 
object [15]. 

VideoScan Raster Refresh 
ProcessorConverter 

Cursor-sized raster 

Figure 3: (Adapted from van Harmelen) A small raster for cursor feedback. 

In other words, until now, there have been two methods for providing 
dynamic feedback. Both methods provide a separate raster which is solely used for 
feedback. This separate raster can be modified without modifying the contents of 
the raster for the current image. The first method (Figure 3) provides a small raster 
containing cursor information. The position of the overlay is held in a position 
register. The position register is changed according to the changes in the position 
of the graphics device, say mouse. In the second method (Figure 4) the feedback 
raster is as big as the screen raster and overlaid in the same location. The reader is 
referred to [IS} for details. 

4.2. 	 Camera Control 

This refers to slight changes in the viewpoint. Shifting a camera could be 
implemented as a small rotation plus a scale plus a small translation. Equivalently, 
one takes the original picture, removes all objects and puts them back at a slightly 
different location. In any case, it should be possible to make use of the coherence. 
Given a pattern representation for a filled area, it is clear that a slightly moved 
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Scan 
Converter 

.. Raster .. Refresh 
Processor 

I-­ rto 

I.;lQQ,QQ Video 
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Figure 4: (Adaptoo from van Harmelen) A screen-sized raster for dynamic feedback. 

version of the pattern would have almost the same pattern representation which 
can be evaluated fast (at least approximately) and shown on the screen. Since users 
are interested in seeing some kind of action taking place in return for their com­
mands interactively, the picture need not be perfect but is registered to be so in the 
upcoming cycles. This should be compared with the ideas of garbage collection in 
programming languages with dynamic data structures. In general, things would go 
fast except for those rare moments when the system may simply go to sleep to take 
care of the effectuated changes - in our case, extending the effects to the higher 
levels to register them permanently. 

4.3. Color Functions 

After a change of the linear display file a pre-evaluation of color functions can 
be done. This pre-evaluation can do such things as calculating the effect of the 
angle of incidence of the light and the plane normal of the domain on the color 
function. This can be a simple effect if just smooth coloring is wanted, but it might 
even be combined with texture. For example, think of a texture pattern imitating a 
brick wall. If the light source is moved, different sides of the bricks can light up. 
These pre-evaluations may be complex, but they only have to be done after a 
change. This is as opposed to the pre-evaluation to be performed for each scanline 
in the classical case. 

5. Sununary and Future Work 

" Computer graphiCS has always been an expensive proposillon and its 
users a demanding, unsatisfied lot the picture never got onto the screen 
fast enough, or later, never moved fast enough once it got to the screen, and 
then, the picture was never sharp enough, never realistic enough." [10] 
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Computer graphics is now commonplace thanks to continuing reductions in 
hardware prices and enhancements in processing capabilities. Especially raster 
graphics profited from these improvements. Combining flexibility with ever­
increasing realism, raster is establishing itself as the true "future" of graphics. 

We find today's raster graphics devices quite impressive for the amount of pro­
cessing power and memory they have and for their innovative techniques in video 
generation, bitmap graphics, geometric transformations, clipping, multiple window 
support, etc. Little however has taken place in regards to the graphics display 
architecture. Especially, recurrent high-level interactions such as those involving 
camera control, color changes, shading, reflections, transparency, highlighting, visi­
bility, object insertion/deletion, picking, etc. are not supported in their entirety by 
current systems. 

In this paper, we gave an overview of our novel object description scheme 
called "pattern representation." In this scheme, only one type of primitive - a 
pattern consisting of a domain function and a color function - is permitted. Pat­
terns have an associated set of operations. This is reminiscent of abstract data 
types (or more properly, the ideas of object-orientation [25]) and provides the much 
needed conceptual simplicity in several interactive graphics tasks. 

A natural outcome of using pattern representation has been a re-examination 
of the classical image generation model [3,9]. Briefly, in our revised model, an 
application as defined by the user contains possibly nongraphical data. It is in con­
tinuous coordinates and there is no limit to the variety of primitives that can be 
present (the "high" level). At the "medium" level, only patterns are allowed. In a 
sense, patterns are preprocessed representations for filled areas and resemble scan­
line representations. At the medium level patterns are still overlapping. At the 
"low" level are the resulting visible regions. Up to this point everything can still be 
kept in the object space. The display controller maps them to the image space. Fig­
ure 5 summarizes this architecture. 

World Visible 
Parts 

Figure 5: A simplified view of three-level representation. 

A lot of work remains to be done. As we are currently doing with the visibility 
[18] problem, our algorithms must be coded and tested to identify bottlenecks and 
to determine their suitability for realization in silicon. OUf study so far gives us 
hope that the methodology summarized in this paper ",ill lead to productive results, 
cf [13, 14]. for details. 

Camera 

Control 


Unstructured 
Parts I---I~ 
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We want to close this paper with a pronouncement on the methodology of 
graphics hardware design. Today, we detect a tendency among designers for map­
ping software tasks to hardware without really thinking about any optimization in 
terms of data structures and algorithms. Probably the best examples of this course 
are the ever-growing family of "ray tracing" systems which basically consist of a 
large number of distributed processors [27], and constructive solid geometry sys­
tems which map CSG trees to hardware as such [20]. Computational complexity 
community has long ago come to know that the laws of parallel computation are 
qualitatively different from that of the sequential computation. (Think of all that 
research in parallel sorting algorithms.) In short, algorithms do not always 
smoothly translate from uni- to multiprocessor architectures. We believe that 
without clarifying the algorithmic improvements, such brute-force mappings into 
hardware will introduce only temporary speed-ups+ and these improvements will be 
nullified, in time, by growing user demands. The real solutions to the hard prob­
lems of graphics will come, in our view, from a direction which worries about the 
intrinsic difficulty of problems from a computational standpoint, cf. Fiume and 
Fournier [8] for an exemplary study of this sort. 
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