
Comparison of Two Floatin~Point Arithmetic Units

for a Precomputer in a Graphics System for

Real Time Simulation

Reinhard Moller

Bergische Universittlt

Gesamthochschu/e Wuppertal

Fachbereich Efektrotechnik

This paper compares two realized concepts of floating point units in a visual
system for a traffic simulator. The hardware structure of a Transformation Proces­
sor is described, with which a set of 1x4 vectors can be floating point multiplied
by a 4x4 matrix autonomously in real time. It will be shown, that the speed of
graphics computations can be advanced enormously by using specially designed
parallel graphics hardware but also requires the elimination of some design con­
straints given by the available building blocks in VLSI design today.

1. 	 Introduction

In the past four years at the Institute for Automation Techniques of the Fach­
bereich Elektrotechnik of the BUGH Wuppertal a visual system for a traffic simula­
tor has been developed, which is marked by the successful usage of standardized
(MOS) electronic components [3, 4]. It is a low cost system, which garants the real­
time response for a simulator. In this visual system a lot of microprocessors are
working parallel, transforming the picture data base to be visualized. Most of the
transformation calculations have to be done as 32-Bit floating point operations, so
special concepts for rapid processing of the graphic data in hard- and software were
developed, which allow the normally time consuming floating point operations.

The Precomputer used for the transformation calculations is described, two
specially for this task developed floating point arithmetic units are shown and their
performance will be compared.

2. Description of the Precomputer

2.1. 	 Tasks of the Precomputer

The visual system for the traffic simulator shows the transformed picture data
in real time. This is reached with a modular concept of parallel working transform­
ers, each of them processing one object to be visualized.

http://www.eg.org
http://diglib.eg.org

112

A transformer consists of a Precomputer and one or more elementary genera­
tors. One object can be processed by more than one transformer, which are organ­
ized in a so called "Module".

The Precomputer does the following tasks:

- reception and storage of the object describing data,

- reception and storage of the static data (Data, which are constant over a longer
time period),

- reception of the dynamic data (Data, which vary with every frame cycle),

- calculation of the visualisation transformations, basing on the received data,

- calculation of the visual parts of the object to be visualized,

- sorting of the outputlists to the visualisation generators,

- transferring of the processed data to the generators.

With the example of a Precomputer for the visualization of a car this shall be
demonstrated:

The describing data of the car, that are the points Pi of a wire frame carmodel,
will be stored in the Precomputer at the beginning of the simulation. Now the
Precomputer is activated for the simulation, that means, it is ready for receiv­
ing the dynamic data and the transformer is runnable. The first received data
while simulation are the position data (matrix Tow) of the car model, with
which the car is localized in the simulation world. The dynamic data consist of
the observers orientation coordinates and angles, forming a 4x4 matrix TWB.

With the multiplication of the orientation matrix by the position matrix the
general transformation matrix TOB is created, by which now all object points
Pi must be multiplied. The results will be perspective projected into screen
coordinates.

The sorting and output operations following should not be discussed in more detail.

2.2. 	 Hardware Concept of the Precomputer

The Precomputer consists of five parts, as shown in figure 1. The CPU receives
(controlled by hardware interrupt) data from a 16-bit parallel port (CIO). Then it
stores and processes these data in its main memory and afterwards it transfers the
results to the 16-bit parallel outputport (flO).

An other link for data communications exists with the serial communications
controller (SCC). With it the operating system functions of the Precomputer can be
controlled and the data link between the Precomputer and a host computer is pos­
sible.

113

Output
FPU

16 bit

Input Host
see

(V24)16 bit

Figure t: Components of the Precomputer.

One of the most important components of the Precomputer is the floating
point unit (FPU). The Precomputer in the described visual system mostly has to
compute the transformation equations, and for that it must do exactly calculations
on floating point numbers. The computing power of the Precomputer can be meas­
ured by the amount of points, which can be transformed in a given time, that
means, how many new 4x1 vectors can be obtained through multiplication of a
given set of 4x I vectors by a 4x4 matrix. This led to the Multi FPU Solution, which
is described in the following paragraph.

2.2.1. 	 Multi FPU Concept
The floating point unit, which is realized until now, consists of four equal pro­

cessors. The multiplication of a 4xl vector PI by a 4x4 matrix M can be done with
12 steps:

114

Starting point: p1 = p[* M

FPU1 FPU2 FPU3 FPU4

/1 := mIl /1 : m12 /1: m13 /1: ml4
h: m21 h: m22 h: m23 h := m24
/3: m31 /3: m32 /3 := m33 /3 := m34
/4 : m41 /4 := m42 /4 := m43 /4 := m44

/1 := !I*XI /1 := /l*XI /1 := /J*XI /1: /t*XI
h:= h*YI h: h*YI h: h*Yt h: h*YI
/3: /3*ZI /3: /3*z, /3: /3*ZI /3:= /3*Z]
/4 : /4*hl /4 := /4*hl /4 := /4*h, /4 := /4*h]

/1 := /1 +h /1 := /1 +h /1 := /1 +h /1 := /I+h
/1 := /1+/3 /1 :=/,+/3 /1 := /1+/3 /1 :=/1+/3
/1 := /1 +/4 /1 := /1 +/4 /1 := /1 +/4 /1: /1 +/4

X2:= /1 Y2 : /1 Z2: /1 h2 := /1

The Ii are contents of the FPU registers, Xi, YI, zi, hi are the components of the
vectors Pi and mij the components of the transformation matrix M.

The advantage in time while processing the transformation calculations is
significantly (normally 16 multiplications and 12 additions = 28 operations are
necessary) and will be increased by freeing the CPU for other tasks during the time
the FPU is calculating: It is possible to produce real parallel processing with
efficient programming, that means, the CPU does operations, that do not require
the FPU, while the floating point units process an arithmetic statement of the CPU
[7].

2.2.2. 	 Bit Slice Concept
The idea to save time by processing equal operations with parallel hardware

was realized with the Multi FPU Concept by the help of standard MOS processors.
But alternatively a solution with bit slice processors was developed. The question
was, how such a concept, compared with the Multi FPU solution could be econom­
ically or technically advantageous.

115

3. Concept of a 4x4 Transformation Processor

3.1. 	 Tasks for a Transformation Processor

The here proposed Bit Slice Processor shall replace the floating point units
described before. It was designed for the most complex task, that means, for the
4x4 transformation. Until now all operations of the Precomputer have been realized
by MOS components because the traditionally bipolar bitslice technology was well
known to be uneconomic and expensive. For the development of the Transforma­
tion Processor a new direction was chosen because new electronic components were
available on the market, which on one side offer a wide range of complexly func­
tional blocks and on the other side are produced in the advantageously CMOS
technology. Former bitslice components mostly used 4 bit slices, which caused a
high expenditure in wiring a complex system. The used components consist of
16 bit slices and so they minimize the necessary logic for the desired 32 bit
Transformation Processor.

The Transformation Processor (TP) should b~ used for the following tasks,
controlled by the CPU:

- 4x4 transformation of one or a set of vectors,

- arithmetic operations, i.e. addition, subtraction, multiplication, division,

- logic operations,

- transport operations, i.e. internal register loading and data communication

between TP and cpu.

3.2. 	 Components of the Transformation Processor

The Transformation Processor (TP) consists of the following components
(figure 2): Precomputer Interface; Operation Control memory; Microcode Memory;
Sequencer; Data Address generator; data/Coefficient memory; a floating point
multiplier; a floating point adder; Timing & controllogic.

The Precomputer Interface is used for the communication between CPU and
Transformation Processor. It consists of two ports, a FIFO port for incoming
results to the Precomputer and a latched output port to the TP. The TP can be told
by special control words, which kind of operations should be done. Operations can
be data transfer to microcode memory, data/Coefficient memory or operation con­
trol memory.

The Sequencer controls the data flow of the TP and decodes incoming opera­
tion codes by using the operation control memory to switch into the opcode related
program portion of the microcode memory. The conditions of arithmetic operations
are also used for address calculations.

The data to be processed by the Transformation Processor are stored in the
data/Coefficient memory, which is controlled by the Data Address Generator. The
memory is splitted for time optimal data transfer to the arithmetic units. It is

116

!

-

uc- Bus
Condi-

ti 8ns
K- Bus

L- Bus

A- Bus

8- Bus

1 Precomp.- !
Sequencer I Microcode Memory

Operation

Control Interface -'=........ ,.- u
Memory

Q
0 I F I F 0 I

Lalch 61 -'

1 '--

L-J

~
~

T ,k'761 l ~v

I DotoIE ,-----J Address
E

1---l A· B

rmL~~ ~~ Generator
+

IA B
Control- ICoeff.- I Dota-

~¥
Lines Memory Memory

Ur·it

I

Figure 2: Components of the Transformation Processor

possible to send both a matrix coefficient and a component of a point vector paral­
lel to the floating point units. The Data Address Generator obtains control infor­
mations from the L-Bus and the microcode bus (JLC-Bus). These data must be hold
for a time period, which is done on the K-Bus.

The Floating point Multiplier and the Floating point Adder are connected via
two buses (A-Bus, B-Bus), which are connected to a main L-Bus via bidirectional
buffers. Data transfer can be done so in every direction from each port of the mul­
tiplier to each port of the adder, and the 4x4 transformation can be optimal calcu­
lated with minimum expense. An example of an optimal transformation is shown
with the nested operation and transfercycles in figure 3.

With the Control Logic the Transformation Processor is able to be used as a
"device under development" with all degrees of freedom. It is possible to drive the
TP with the normal clock frequency of 10 MHz or in either single step or single
clock mode, so that every operation of the TP is controllable.

117

10 11 12 13 H 15 16 17 18 19 20 21 22

A-.gA (MIJIt/pI_)

Mu_
A'a

Plp.llne
Contflnt.

x (x)

\41

(x)

.. 2

W 1

(x)

.. 3

W.

M4

M3

M!5

W.

M6

W.

M7

M5

r

M8

W7

(.J')

ht9

M8

(r) (z) h (h) (h) (h)

M10 "'11 t.l12 "13 "14 MH5

M9 .,0 Mll ""2 M13 W104

M16

ttl15 "16

Muttlpllw ., M, .,, ;;14 .. ,5 M 16W3 M. • 7 M • hi 10 M11 M 13""­ • • ,RogAl) "" 1 2 3 0 1 2 3 0 1 2 3 0 3
(""""') ., •• W •,. •• ." .,. •u. "7 w. .'0 "'13 "14 11115 "Hi

R~ao 83 0 1 2 3 0 1 3 0 1 3 ..--+
<""""') ., •• .3 M' •• ••• A • •• M A7

~ \

\
P••• P... P••• P••"

A + • M • W4 Al A2 AS AS A8 .7 A8 x' y' z' h'
..,." \., ••

" .. A8

W. M3 Al A2 A' A' A8 A7 A8 x' y' r' h'." •• •• ., .2 113 II. Al A. A. A5 A6 A7 A8 x' y' r' h'""

r m'2r Imff ml3 m'.l
• mlN m2:1 m2<-, """" mtl2 m<a __m&1 m.U J,-, ".."

Figure 3: Operation and Transfercycles in the TP

4. Perfonnance Comparison: Bitslice / Multi FPU Concept

The following explanations are basing on:

- an operation frequency of 10 MHz for all components (that means T = lOOns),

- a mean Z8000 memory transfer cycle of C : = 3T,

- a mean Z8000 periphery transfer cycle of D : = lOT,

- the operation time t, expressed in number of cycles T,

- the Multi FPU Arithmetic Unit consists of 4 FPUs.

The following tests have been executed:

4.1. Elementary Calculations

Here the Multi FPU Concept is not advantageous, because only two operands
are to be combined. The operation to do is

c:= a op b with op E {+,-,*,/}

that means, in every case three steps for the calculation are necessary.

With one FPU the operation time is t = SOT + lIe + tR' The calculation
time tR of the FPU lies between 20T (measured mean value) and 70T (value
extracted from the data sheet), so that a total calculation time of t 103...lS3T is
gIVen.

118

The bitslice concept requires IT = 92T + 24T for the transfer of operand and
opcode to, and for the transfer of the solution from the bitslice system. An addi­
tional calculation time of 2T for the selected operation must be considered:
t = 1I8T.

For both concepts an additional calculation time of 18T is to be considered, if
a floating point division is desired.

4.2. Processing of the 4x4 Transformation
With a Multi FPU solution and the 112-Step-Scheme", as in 2.2.1 described,

the following time values are given:

a) Transfer of the transformation matrix. The registers of the four FPUs are
loaded (t I = 63T + 16C).

b) Four multiplication steps are processed, while the components of the point vec­
tor, which is to be transformed, are transferred. For the multiplication a mean
time value of 20T was measured (value from data sheet: 44T), so that the whole
execution time is 12 = 48T + 80...l76T + 40C.

c) Three steps of addition are executed: 13 = 33T + 90...2lOT + 6C.

d) The transformed point vector is transferred to the main memory of the Precom­
puter (t4 = 26T + 14C).

The total estimated time for the 4x4 transformation is ttl + t 2 + t 3 + t4,

that means t = 568...784T.

It should be noted, that the CPU can do operations in parallel while the FPUs
are calculating. If this is not observed, i.e. with programming some FPU operations
immediately following another, the CPU performs wait states during the calculation
times of the FPUs.

For the 4x4 transformation of a 4x1 point vector with the help of a Transfor­
mation Processor the following operations are necessary:

a) Transfer of the transformation matrix. For this task 16 floating point numbers
and the transfer operation statement (each 32 bit) are to be transferred from the
CPU main memory to the Coefficient Memory of the TP (t I = 32T + 34D).

b) Multiplication. It can be seen in figure 3, that 22T clock cycles are necessary for
processing the matrix multiplication. This is the result of nested multiply and
add operations and the usage of the pipeline structure of the floating point pro­
cessors in the TP.

The transfer of the MULTIPLY statement (2D), the point to be transformed (SD)
and the transformed point (SD) result in: t2 = 57T + ISD + 22T.

The total time for a 4x4 transformation is given with t = t I + t 2 as
t = 631T.

119

4.3. 	 CalcuJation of a Cubic Spline Transformation

With the calculation of cubic spline functions the Multi FPU Concept approx­
imates the speed of the Bit Slice Concept. In [3] a procedure using the Multi FPU
Concept was proposed, which does all operations on one vector at one time.

The recursive part of the procedure:

p(k -1) + D lk-l

D lk-I + D2k - 1

D2k-l + D3

can be done with the Multi FPU Concept in three steps. The time for calculating
these three steps in the Multi FPU arithmetic unit is approximately t = 33T + 6C
+ tR clock cycles. Either using the mean measured calculation time (30T per addi­
tion) or the calculation time in the data sheet of the FPU (70T) the total calcula­
tion time of the FPUs is given as t = 14 l...26 IT.

A recursion in the Bit Slice arithmetic unit (BSAU) is processed after t = 20T
clock cycles (equal to tR in this case) because nested statements allow multiply and
add operations, together with transfer operations every one clock cycle. The special
construction of this arithmetic unit allows another advance in speed: It is possible
to store all points which are calculated (normally 200 point vectors) in an inter­
mediate memory of the BSAU until the recursion ends. A block transfer of all
points to the CPU takes place after all calculations. With that the BSAU concept
works five times faster than the Multi FPU Concept because the last one needs
transfer operations to the CPU between every two recursions.

5. 	 Conclusion

Two concepts of high speed floating point arithmetic units have been pro­
posed. Their advantages and disadvantages could have been noticed in the com­
parison of the calculation speeds for some typical tasks of the computer graphics.
As it was shown, the parallelising of arithmetic units gives a large advance in speed.
The economical expense for the usage of the Multi FPU Concept is much more less
than for the realized Bit Slice Concept: The costs of an arithmetic unit consisting of
four FPU Chips amount about DM 1.600,--, basing on their price today, compared
with the price of DM 5.000,-- for the realized Bit Slice Arithmetic Unit (including a
large amount of high speed memory components).

It could be seen in section 4, that the advance in speed with the proposed con­
cept of the Transformation Processor ranges from 5 times for the Spline approxi­
mation (worst case) to a minimum of approximately one time in all other cases.
This is a result of the large amount of time, used for transfer of variables and
operation codes in the BSAU concept. In the Multi FPU Concept the "extended
processing instructions (EPI)" capability of the CPU was used. With it the access to
the main memory of the Z8OO0 CPU is about three times faster than for an 110
transfer but restricted to a maximum amount of 16 words per transfer instruction.

120

An application of the EPI facility to the BSAU Concept would accelerate the
speed of the Transformation Processor to the rate expected after the mentioned
cubic-spline-test, but alternatively it is planned for the near future to extend the
Transformation Processor to a complete Graphics Precomputer.

Some concluding remarks on the equalities between the two concepts and their
advantage for Computer Graphics should be mentioned at this point: In both con­
cepts a SIMD/MIMD architecture of parallel working hardware components was
chosen, multiprocessor systems with implemented pipeline/dataflow mechanisms
where possible. This architecture seems to be sufficient for the speed requirements
of Computer Graphics hardware in realtime applications, but it could be extended
to the use of systolic arrays of processing elements (PEs) for some applications.

The data manipulation overhead in a multiprocessor system like the Transfor­
mation Processor could be minimized by concentrating of all PEs for a graphics
task on one special VLSI chip. Graphics tasks could be 4x4 transformation, clip­
ping, curve/surface generation, texture processing, filtering in time and space and
other calculation intensive tasks.

Considering the design of graphics VLSI circuits some real limitations should
be mentioned:

- The maximum parallelism in graphics hardware is restricted to the existence of
parallelism in graphics algorithms,

- The design of integrated circuits for the mentioned tasks is mostly restricted by
the number of available gates on a chip, the number of I/O pins, internal busing
capabilities and the availability of special function blocks (i.e. microcontrollers,
floating point ALU/multipliers/dividers and memory structures).

6. Acknowledgements

The author thanks Analog Devices GmbH for their kindly support of the
development of the 4x4 Transformation Processor. Also he thanks cando Ing. K.
Pelzer and cando Ing. C. Knappstein for their work on the device in hard- and
software.

121

7. References

[1] 	 Clark, 1.H. "The Geometry Engine: A VLSI Geometry System for
Graphics".",fIACM Computer Graphics. 163, Juli (1982)

[2] 	 Foley, 1. and Van Dam, A. "Fundamentals of Interactive Computer Graph­
ics", Addison-Wesley Systems Programming Series. Addison-Wesley Publishing
Company (1982)

[3] 	 Moller, R. "Entwicklung von Hard- und Softwarekomponenten fUr das Sicht­
system eines Verkehrssimulators". Dissertation im Fachbereich Elektrotechnik
der BUGH Wuppertal, Dezember (1986)

[4] 	 Moller, R. "A Visual System for a Traffic Simulator". W. Strasser (ed.):
Advances in Graphics Hardware 1. Springer (1987)

[5] 	 Newman, W., M. and Sproull, R. F. "Principles of interactive Computer
Graphics." ed. H.S.Stone, McGraw-Hill Computer Science Series. Tokyo:
McGraw- Hill, 2nd ed. (1972)

[6] 	 N.N. Word-Slice™ and Roating Point Components Seminar. Analog Devices
Digital Signal Processing Division, Norwood, MA., Fall (1985)

[7] 	 Skiba, T. "Implementation von Floating-Point-Prozessoren in das
Mikrorechnerkonzept eines Sichtsimulators." Studienarbeit am Lehrstuhl I fUr
Automatisierungstechnik im Fachbereich Elektrotechnik der BUGH Wupper­
tal, Februar (1986)

