
A Two-Dimensional Frame Buffer Processor 

Arie Kaufman 

Department of Computer science 

State University of New York at Stony Brook 


Stony Brook, NY 11794-4400, USA 


The two-dimensional Frame Buffer Processor (FBP) is part of a proposed 
raster graphics computer architecture. It is a hardware-oriented organisation of a 
variation of a bitblt engine with a much richer repertoire. In addition, the FBP 
gives support to window management, transformations, and assists in some 
image operations ordinarily performed in software. The introduction of the FBP 
as a co-processor to geometry and video processors would increase efficiency 
and speed of graphics systems and bitmap workstations. A special skewed 
frame-buffer organisation, which allows parallel memory access, further improves 
system performance. 

1. Introduction 
Recently a considerable attention has been given to bitblt operations and bitblt 

engines/workstations [2,7, II, 14-16]. Bitblt, also termed RasterOps [12], is a rela­
tively simple combining operation between two usually rectangular bitmaps. More 
complicated operations of transforming bitmaps can be surprisingly time­
consuming (c.f. [1, 10, 17]). Guibas and Stolfi [5] have presented an abstract alge­
braic system for raster operations in which bUblt is just one such fundamental 
operation. The Image Prism [10] is a hardware solution for some of these complex 
operations, the 90° rotation and mirroring. This paper argues for a comprehensive 
solution and presents the Frame Buffer Processor (FBP), which is an extended bitblt 
engine with a much richer repertoire. 

The overall system architecture is depicted in Figure 1. In this architecture the 
new processor, FBP, has been appended to a conventional computer graphics raster 
system. This system includes two classical processors: a Geometry Processor (GP) 
and a Video Processor (VP), all accessing the Frame Buffer (FB). The GP, execut­
ing its GDL, performs various operations on geometric primitives including 
geometric transformations, clipping, projection, hidden surface removal, and shad­
ing, followed by scan conversion to the FB. The VP scans the FB to refresh the 
monitor and may also perform, by executing its VDL, some basic operations like 
table look up, zooming, and cursor manipulation. 

http://www.eg.org
http://diglib.eg.org
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Figure 1: General Overview of System Architecture. 

In an effort to speed up such a raster system, direct manipulation of pixel-map 
data is relegated to the FBP. The FBP, working as a co-processor of the GP and 
VP, releases the GP to concentrate on its classical geometric tasks and the VP to 
concentrate on its time bound video scan, while the FBP handles all the pixel-map 
operations and manipulations. Furthermore, the FBP performs some operations 
that are traditionally done by the GP (e.g., transformations) and by the VP (e.g., 
cursor handling). 

The FBP operates directly on the images stored in the FB. The primitives of 
the FBP are cellular rectangular subareas of three types: windows, cursors, and 
icons. These primitives are defined and manipulated (transformed, rotated, copied, 
loaded, etc.) by the FBP, according to the instructions provided in the Frame 
Buffer Display List (FBDL). Since each FBP primitive is assigned a unique prior­
ity, this processor allows the implementation of overlapping primitives in two-and­
a-half dimensions, supporting window management. The FBP also acts as a chan­
nel for 2D scanned data and as an interface for 2D input devices. 

A skewed symmetric FB organisation permits the simultaneous storage and 
retrieval of all the pixels of a full row I column or parts thereof. The parallel access 
speeds-up several memory bound operations of the FBP. Furthermore, the VP 
exploits this organisation for parallel scanline retrieval, and the GP exploits it for 
parallel storage of runs of pixels. 

The FBP external specifications, its primitives, tables, registers, repertoire, and 
modes, are described in Section 2, while the internal architecture is briefly outlined 
in Section 3. Section 4 presents the parallel FB access. The significant algorithms 
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employed by the FB, Clipping and Priority, Transformations, Orientation and 
Zooming, and Pixel and Cursor operations, are introduced in Sections 5-8. The 
chapter concludes with brief implementation notes. 

2. FBP External Specifications 

2.1. 	 FBP Primitives 

The FBP handles three types of primitives: windows, icons, and cursors. A win­
dow is comprised of a set of pixels, representing a rectangular subarea of the FB. It 
is defined by five values specifying its origin (Xo, Yo) in FBP pixel coordinates, the 
length of each side (Dx, Dy), and its priority which signifies its relative position in 
between other primitives. 

Icons are similar to windows, but are usually smaller, hold constant data, and 
are subject to simpler transformations. An icon can be bound to a window or it 
may float independently. If an icon is bound, any instruction that affects the win­
dow affects also the icon. If an icon is floating, it behaves like a window. An icon 
is defined by six parameters: origin, size and priority are defined in the same way 
as for a window, while the additional parameter identifies the bounding window in 
case the icon is bounded. The primary reason for introducing icons in addition to 
windows is to provide rapid and better support for window management and 
master / cell library graphics systems. 

A cursor is a small user-defined square window. It usually represents feedback 
from a locator device and is used to locate and pick primitives from the FB. It is 
defined by three values specifying its center (X0, Yo) in FBP coordinates, and its 
size. Typical sizes are 82 and 162. A cursor is physically stored in the FB, and the 
pixel information covered by a cursor is saved within the processor for later res­
toration when the cursor moves. Traditionally, 2-D cursor handling has been per­
formed by the VP. Cursor handling by the FBP alleviates the high load already 
assumed by the VP. Since a cursor might be hidden from the user behind other 
primitives, it is assigned the highest priority so it is always shown on the screen 
floating in front of all other primitives as if the cursor is in the third dimension. 

2.2. 	 FBP Tables 

The FBP supports five indexed tables, the Window, Icon. Cursor, Priority, and 
Device Tables, which are all designed as an integral part of the FBP. The Window 
Table (WT), indexed by window identifiers, is used by the processor to handle all 
operations concerning windows. Each entry holds the window attributes and 
several flags. 

The Icon Table (IT), indexed by the icon identifier, is used by the processor to 
handle all operations concerning icons. If an icon is bound to a window, a field in 
the table holds the identifier of that window. 
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The Cursor Table (CT), indexed by the cursor identifier, is used by the 
processor to handle the cursors. In addition to the cursor attributes, each entry 
holds the loaded cursor pattern or the pixel data it obscures when it resides within 
the FB. 

The Priority Table (PT) keeps track of sorted priorities of windows and icons. 
A PT entry is created every time a new window or icon is defined. The PT is used 
to speed up the clipping and priority algorithm (see Section 5.1) by allowing the 
FBP to rapidly determine the current priority order among the primitives. 

The Device Table (DT) is used by the FBP to interface to the graphical input 
devices (e.g., joystick locator devices). It contains bookkeeping information about 
the device and the cursor(s) attached to it for feedback purposes. 

2.3. 	 FBP Registers 

Internal registers of the FBP can be read, set, or reset, and all subsequent 
operations are consequently affected. The registers that govern the configuration of 
the FBP are alterable only during the initial passive mode (see Section 2.5). All the 
other registers or fields thereof are alterable also during the active mode of the FB. 

The FBP registers are divided into four main groups: Address, Mode and 
Status, System, and Input Registers. Address Registers include general purpose 
address registers, a Stack Pointer (SP), which points to the top of a conventional 
stack, and a Program Counter (PC) which points to the next executable instruction 
in the FBDL, which resides in main memory. 

Mode and Status Registers are divided into two subgroups. The first subgroup 
specifies the environment of the system, including the FBP origin (Origin), 
colour/translucency mode (Colour Mode), width of components in three colour 
system mode (Colour Field), and-which colour planes in the FB are enabled 
(Depth Plane). In addition, there is a Status register, which indicates which Mode 
registers (see the following paragraph) are currently enabled. 

The second subgroup includes the Mode registers. Each Mode register is 
enabled by a specific bit in the Status register. This subgroup includes registers 
which control zooming (Zoom), boolean operations on pixels and cursors 
(Pixel Ops and Cursor Ops), masks for texture and filtering (Texture Mask and 
Filter)' Background and Foreground colour, and window orientation (Orient), i.e., 
rotation by 0, 90, 180, or 270 degrees about the window origin. Any operation per­
formed on the primitives that write pixel information into the FB, e.g., copy, is 
directly affected by these registers. For example, if the x field of the Zoom register, 
ZoomX, indicates a zoom of factor 2, any pixel written to the FB is automatically 
duplicated horizontally. If the Orient register specifies that the FB origin is its top 
right comer all windows written into the FB will be oriented accordingly, i.e .. 
rotated by 1800 

• 

System Registers define the FBP configuration. They include the State register, 
which defines the Working Mode of the FBP (see section 2.5), and the lnit register 
which determines the configuration of the system (two fields for FB size in X and 
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Y, and three fields for the maximum number of windows, icons, and locator dev­
ices), and is alterable only during the initial Passive mode. 

Three additional system registers are used for handling errors and traps. The 
Trap Enable register has a one bit field for each type of error. When an error 
occurs, the Trap Enable register is used to determine if this error should cause a 
trap (change Working Mode to Suspended). The Error register also has a one bit 
field for each type of error. It is used by the jumperr instruction to jump to an 
appropriate error handling routine based upon the kind of error. The Stop register 
is used to pass the error category back to the CPU. It is only set if an error is 
detected (a bit is set in the Error register) and trapping is enabled (the correspond­
ing bit is set in the Trap_Enable register). 

Input Registers define the 2D input environment, assisting in the user-FBP 
interaction. Up to four locator devices and one scanner may be defined in the 
current implementation. The Input Enable register indicates which input devices 
are currently enabled. There are four Devicei registers (O';;;;i ';;;;3) each contains rela­
tive position information. The Device Status register has two fields for each of the 
locator devices. One field indicates whether a certain device is ready to pass data to 
the FBP, and the other whether the data has been read by the FBP. 

Two additional input registers are used with the scanner. The Scanner Status 
register contains two fields. One indicates whether the scanner is ready to pass data 
to the FBP, and the other indicates whether the data has been read by the FBP. 
The Scanner Buf register holds the data being passed by the scanner to the FBP. 
The data is acolour value defined by the active Colour Mode and Colour Code. 
These registers together with the scan into window command provide a mechanism 
to input raw pixel data from 2-D scanners directly into the FB. 

2.4. 	 FBP Repertoire 

The FBP3 instruction set includes operations on windows, cursors, and icons, 
and general instructions. All primitives can be created (define), removed (delete), 
cleared (erase), read from FB (read), written into FB (write), translated (translate), 
copied (copy), and swapped with another primitive (swap). Windows can also be 
filtered for noise reduction. Unlike icons and cursors, windows are scaleable 
(scalew) using non-integral factors. Windows can be further rotated and spun 
(repeatedly) through any angle about either the x or the y axes. Icons and cursors 
can be rotated only through angles which are multiples of 90°. 

Windows and icons, which are assigned priorities, are also subject to a change 
of priority command which may affect future placements of primitives in the FB. 
Icons have an exclusive instruction for bounding/unbounding of icons to/from 
windows. An exclusive instruction for cursors is for loading a cursor pattern from 
main memory (e.g., from FBDL, from stack) to the CT. The large sets of opera­
tions for handling windows, icons and cursors and the underlying FBP registers 
provide an extremely flexible environment for manipulating the FB images. 



98 

The general instructions of the FBP include register manipulation, (set, setf ­
set field, get, getf, reset), program flow control (jump, jumperr, call, return), stack 
control (push, pop), mode control (active, halt) and input device control (scan, 
attach device, disattach). 

2.5. 	 FBP Modes 

The FBP has three working modes: Passive, Active, and Suspended. The Pas­
sive Mode is the initialisation mode. The FBP powers up in this mode and enters 
Passive mode whenever the State register is set to O. In this mode, the FBP loads 
initial values (either default or user supplied) into the fields Fbx Size, Fby Size, 
Origin, Max Window No, Colour Field and Colour Code. These registers-may 
only be changed in the Passive Mode. The user may use the reset instruction to 
assign the default values to these registers and to the Trap Enable register. Other 
registers of the FBP can be initialised either in the Passive-Mode or in the Active 
Mode. To switch to the Active Mode the activate instruction has to be invoked, 
which also sets the State register to 1. 

The Active Mode is the mode in which the FBP operations are executed. The 
FBP performs the FBDL instructions one by one, using the PC to fetch them. 
There are three possible addressing modes for the instruction data: direct mode in 
which the data follows the instruction; indirect mode in which the address of the 
data follows the instruction in the FBDL; and Stack Mode in which the data can 
be found in the stack. 

When the FBP encounters an error while executing the FBDL, it sets the 
proper bit in the error register and checks the Trap Enable register. If the error 
causes a trap, the FBP enters the Suspended Mode by setting the State register to 
2. Otherwise, if traps are disabled the user may handle the error using the jumperr 
Gump on error) instruction. To return to the Passive Mode the user ought to use 
the halt instruction, which sets the State register to 0. 

In the Suspended Mode the CPU reads the Stop register which indicates which 
error has caused the trap. Thereafter the CPU can return to either the Active Mode 
or the Passive Mode by setting the State register to 1 or 0, respectively. 

3. 	 Internal Architecture 

The FBP processor is designed as a pipeline architecture, composed of three 
units in sequence: the Instruction Unit, the Execution Unit, and Frame Buffer 
Management Unit. The Instruction and Decoding Unit is responsible for fetching 
the instructions stored in the FBDL, decoding them and passing them to the Exe­
cution Unit. It is composed of the following subunits: Fetch & Memory Manage­
ment Subunit, Decoding Subunit, Data Address Calculation Subunit, and the 
Init & Error Subunit. 

The Execution Unit is responsible for the execution of the instruction. It is 
composed of the following subunits: Control Subunit, Input Subunit, Geometry 



99 

Subunit, Clipping & Priority Subunit, Raster Subunit, and the Table Subunit. The 
microprogrammed Control Subunit holds a number of algorithms, described in Sec­
tion 5, to be executed by the Execution Unit. 

The Frame Buffer Management Unit handles the interface to the Frame Buffer 
Bus, which provides a communication mean to the FB. It handles the address(es) 
and the data, either a single pixel or a run of pixels, to be stored/retrieved to/from 
the FB. This unit is internally linked back to the Fetch & Memory Management 
Unit for instructions like readw where the FB data is transferred to the main 
memory. It is also linked internally to the Geometry Subunit and other units that 
require data from the FB. 

4. 	 Parallel FB Access 

Assume a FB of n2 pixels. It is constructed in such a way as to enable a 
simultaneous access to a full beam (row or column) of n pixels. The physical 
memory is divided into n modules, each of which has exactly n pixels, each with its 
own independent access and its own independent addressing unit, so that no two 
pixels of a beam reside in the same module. Therefore, all the pixels of a beam can 
be fetched/ stored simultaneously in one memory cycle. This division, however, 
should occur for all rows and all columns. 
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Figure 2: Parallel Memory Organisation for an 8x8 Frame Buffer. The 2·D Frame 
Buffer (a) is organized as 8 distict modules (b). 
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These restrictions have suggested a modular memory construction which con­
sists of diagonal parallel sections of the FB having a 45 degree angle with the axes 
(see Figure 2). The diagonal sections are sequentially numbered and grouped 
modulo n into n modules indexed 0 through n 1. This skewed organisation is for­
malised as follows. A pixel with raster coordinates (x,y) is being mapped onto the 
k-th module (O~k~n -1) by: 

k 	 (x +y) mod n (1) 

Since one coordinate is always constant along any beam, the second coordinate 
guarantees that one and only one pixel from the beam resides in anyone of the 
modules. The internal mapping j within the memory module is given by: 

j = y 	 (2) 

Thus the k-th memory module can be regarded as a I-D projection of all the diago­
nal sections in that module (those that are indexed k) onto the y axis. An exten­
sion of this skewed organisation to a 3-D cubic frame buffer has also been 
devised [8]. 

For a FB of 1024X 1024 resolution there are 1024 memory modules, each one 
contains 1024 pixels. The time needed to retrieve a full beam of 1024 pixels is a 
single cycle time. Scanning the whole FB in beam by beam (scan-line mode) by the 
VP will take only about 30 msecs for a memory with 30 nsecs access time. The 
parallel write can be exploited by the GP in line scan-conversion algorithms, where 
a run length scan-conversion algorithm [3] can write runs of pixels simultaneously 
into the FB instead of one pixel at a time. The same applies to polygon scan­
conversion in which the pixels comprising the runs between edge intersections are 
painted simultaneously. Last but not least, this parallel organisation is heavily used 
by the FBP to perform operations on the entire beam or part thereof, as in transla­
tion, 90° rotation and mirroring, erasing with a constant colour, etc. 

5. 	 Clipping and Priority Algorithm 
The FBP supports several simultaneous windows and icons, each is assigned a 

unique priority, which is specified at time of definition. If collision occurs, tem­
poral priority is governing. When a window or an icon, w, with two opposite 
corners (Xmin, Ymin ), (Xmax , Y max), is written into the FB, by copying it from out­
side or by moving information within the FB, the priority and clipping algorithm is 
employed in order to determine which portions of ware not obscured by any of the 
other windows. The algorithm is a scan-line algorithm [4] adjusted for fast 
processor-level implementation. For each scan-line, Yscan, from minimum 
Y, Y min' to maximum Y, Y max, of w, the visible segments are written into the FB 
using the parallel FB access mechanism. This is intrinsic1y different from the algo­
rithm proposed by Pike [13] at the window manager level, in which the window in 
question is recursively subdivided into subrectangles and all the suhrectangles have 
to be accounted for. Here, on the other hand, only the visible segments have to he 
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handled by the FBP, the invisible sections are handled by the application. 

The algorithm employs a temporary table, In terTable, which lists all the win­
dows and icons having a priority higher than wand intersecting w, sorted by their 
minimum Yand minimum X. The algorithm in pseudo-C code follows: 

For (Yscan = Ymin ; Yscan ",; Ymax; Yscan + + ) 

{ 


Remove fom InterTab primitives below Yscan 
Sort by X all primitives in InterTable which intersect the Yscan line 
While (LeftBound ",; Xmax) 
{ 

RightBound= Right X of leftmost primitive (called "left primitive") 

LejtBound= Left X of next leftmost primitive (" right primitive!!) 

While (LejtBound ",; RightBound and InterTab not empty) 

{ 


Get next right primitives and update LejtBound 

If (left and right primitives are adjacent in sorted list) 


Then { Set run from RightBound to LejtBound along 
Yscan line to the pixel value of w; 
Get next left and right primitives from list} 

Else 	 Get the next left primitive and update 
RightBound if the right edge of the new left 
primitive is to right of RightBound 

Restore saved cursors 

Note that the algorithm has been described assuming that the ZoornX, ZoomY, and 
Orient registers are set at their default values, I, 1, and 0°, respectively. However, 
other values assigned to these registers may drastically affect the way it executes, 
since the sequence by which w is clipped is not the order of the input data. Conse­
quently, the directions the algorithm progresses depend on the Orient register, and 
the pixels or rows of pixels have to be replicated according to the ZoornX and 
Zoom Y registers before writing runs of pixels between RightBound and LeftBound. 

6. 	 Geometric Transfonnations 
Special care has been taken to provide simple and fast geometric transforma­

tions especially for the large window operands. All transformations, carried out by 
the FBP, including translation, scaling (using non-integral factors), and rotation 
(through any angle), are performed using incremental transformation techniques, in 
which each pixel is transformed, based on the new position assumed by its immedi­
ate previous neighbour, with a maximum of 2 additionslincrements. The algo­
rithms are based on inter- and intra-sean-line coherency. In other words, after cal­
culating the new location for one pixel, its neighbours relate to it as they did in the 
old location. 
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The geometric algorithms also resolve possible overlapping between the source 
and the destination primitives. This is necessary since there is no scratch FB 
memory available to temporarily hold old pixel information while performing the 
transformation. 

6.1. 	 Translation 
The translate function moves a primitive (window, icon, or cursor) relative to 

its current position by (Tx, Tv). The equations which describe the translation 
transformation are: . 

X== 	X + Tx Y' Y + Ty (3) 

An incremental algorithm specifys the position of the next pixel to be translated 
(X + 1, Y) in terms of its predecessor's new position (X', Y'): 

(X+l)+r:~ == X+Tx+l == X'+l 	 (4) 

Y+Ty Y' 

The coordinate of the next pixel in the destination primitive can thus be deter­
mined by only incrementing the appropriate coordinate of the last pixel without 
performing addition on every pixeL The same also applies to a vertical step in Y. 
The algorithm may be summarised in pseudo-C as follows (old coordinates refer to 
the original primitive and new coordinates refer to the translated primitive): 

Initialise X and Y 

X'= X + Tx 

Y'= Y + Ty 

startX = X 

while (Y =1= Ymax) 
{ 


while (X =1= Xmax) 

{ 


If «X', Y') is visible) 
Put pixel value of eX, y) at (X', y') 

Increment! Decrement X 
Increment!Decrement X' 

} 
X = startX 

Increment/Decrement Y 

Increment/Decrement Y' 


One problem which arises is that if the translated primitive is partially overlapping 
with the original primitive, then some of the original pixels might be overwritten by 
the copied pixels before the original pixels are translated, which could distort the 
destination primitive. The above algorithm therefore has to be modified in a way 
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that no pixels will be overwritten before they are translated. This requires the algo­
rithm to test for a possible overlap, and if exists to classify it as either a south, 
north, east, or west overlap, in which case start copying from north, south, west, 
and east, respectively. This is reflected in the algorithm by 
incrementing/decrementing X, Y, X', and Y'. 

6.2. 	 Scaling 
The equations which describe the scaling transformation algorithm for win­

dows about (Xmin, Ymin) are given in Equation (5). The shifting to and from the 
origin are accounted for in the FB addressing of the source and the destination. 

X'= x Sx Y'= Y Sy 	 (5) 

Icons and cursors are not scaleable. The factors S x and Sy are not necessarily 
integers, and the scaling algorithm for windows requires thus two non-integer mul­
tiplications and two roundings for each pixel, which can result in heavy computa­
tions for large windows. The complexity of the computations can be significantly 
reduced by using an incremental algorithm based upon: 

(6)(X+l)Sx 

(Y + 1) Sy = Y ~Y + Sy Y'+ Sy 

The coordinates of the next translated pixel can thus be obtained by simply adding 
the respective scaling factor to the X or Y coordinate of the predecessor pixel and 
rounding the results to integer coordinates. Precautions must be taken if Sx and Sf 
are both greater than 1. In this case, applying the above transformation to a primi­
tive may produce holes in the scaled primitive. We can eliminate this problem by 
back scaling, i.e., reversing the incremental transformation process. To do this we 
transform two opposite corners of the source primitive, which yields two opposite 
corners in the destination primitive. We then step through the destination primitive. 
At each point in the destination primitive, we reverse-transform the coordinates to 
determine the pixel value for that point. This can be done by multiplying the desti­
nation primitive'S coordinate by (l/Sx. lISy )' A more efficient way to do this is to 
step through the source primitive in parallel with the stepping through the destina­
tion primitive. The increments to be used in stepping through the source primitive 
are (Xiner/ Sx, Yiner/ Sy), where Xincr and Yiner are the X and Y increments (lor 
-1) used in stepping through the destination primitive. 

As with the translation algorithm, precautions must be taken to avoid 
overwriting pixels in the source primitive before they have been scaled. This is 
accomplished by properly choosing the corner of the primitive to be used as a start­
ing point for the transformation based on the values of Sx and ~v' 

Assume that (XI, Y I ), (X2, Y2) and (XI', YI'), (X2', Y2') are the lower left 
and upper right coordinates of the source and destination primitives, respectively; 
(Xs, Ys) and (X£, YE ) are the starting and ending corners in the destination 
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primitive and (X. Y) is the starting corner of the source primitive (the reverse­
transformation of (Xs. Ys». Then: 

l. If (Sx<l) and (Sy<l), then 
(Xs. Ys)=(X]', Ylt) (X£, Y£)=(X2', Y2') 

(X, Y) =(X] , Y j) Xiner =1 Yiner} 

2. If (Sx < 1) and (Sy > 1), then 
(Xs,Ys)=(Xj', Y2') (X£, (X2', YI ') 

(X,Y)=(X],Y] +Dy) Xiner 1 Yiner 

3. If (Sx > 1) and (Sy< 1), then 
(Xs, YS)=(X2', Yj ') (X£, Y£)=(X]', Y2') 
(X, Y)=(XI +Dx , YI) Xiner -} Yiner= 1 

4. If (Sx> 1) and (Sy> I), then 
(Xs, Ys)=(X/, Y2') (X£, YE ) 


(X, Y) (XI +Dx , Yj +Dy) Yiner 


Once the above variables are determined, the algorithm progresses as follows: 

X' x.~; Y' = Ys 

SXincr Xincr / Sx; SYincr Yincr ISv 

while (Y ~ YE ) ~ 


{ 

Round Y 

while (X ~ XE ) 


{ 
Round X 

If new primitive is visible at (X', Y') 


Put pixel value from (X, Y) at (X'. yl) 
Increment X by SXincr 
Increment XI by Xincr 

} 
Increment Y by SYincr 

Increment Y' by Yincr 


6.3. Rotation 

The equations for rotating a window are as follows: 

X' - X cosO Y sinO (7) 

Y' Y sinO + Y cosO (8) 

where 0 is an arbitrary counterclockwise angle about (Xmin' Y min). Like for the 
scaling, the shifting to and from the origin are accounted for in the FB addressing 
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of the source and the destination. In raster rotation every pixel of the primitive has 
to be rotated, however, an incremental algorithm can be derived, determining the 
new position for a pixel avoiding any multiplication: 

Xx + I' (X + 1) cosO Y sinO - (X' + cosO ) (9) 

Yx +- I' (X T I) sinO + Y cosO (Y' + sinO) (10) 

.4). +- I'= X cosO - (Y +1) sinO = (X' sinO ) (11) 

Yy I' X sinO + (Y +1) cosO ( Y' + cosO) (12) 

The values of cosO and sinO are calculated only once, so after transforming the first 
pixel, subsequent transformations require only 2 additions and two roundings. By 
adding 0.5 to the initial coordinates, roundings can be reduced to truncation, which 
is done automatically in fixed point arithmetic. Note that Equations 9 and 10, and 
Equations 11 and 12, are performed in parallel within the FBP. 

Like in scaling back rotation, from destination to source [6], is employed to 
eradicate holes which could be produced from the forward rotation of a window. 
To accomplish this task the four corners of the original window are rotated to 
locate the destination window. Once calculated, the minimum coordinates are back 
rotated by the rotation equation, Equations 7 and 8, by replacing 0 by -0. From 
this point on, an incremental algorithm is used to back scan the entire window. The 
constant increments for all pixels are merely sinO and cosO. Determining the coor­
dinates of the next pixel when the current ones (X, Y) are known, is a simple 
matter of applying one of two sets of equations on the current pixel. Equations 13 
and 14 give the coordinates of the point (X.d I, Yx +- d back-rotated from 
(X' + 1, Y'), while Equations 15 and 16 give the point (Xy +- I, ~y + d back-rotated 
from (X', Y' +1): 

Xx + 1 (X' + 1) cosO + Y'sinO X + cosO (13) 

Yx + 1 (X' + 1) sinO + Y'cosO = Y sinO (14) 

Xy +- 1 X'cosO + (Y' + 1) sinO = X + sinO (15) 

Yy+J - X'sinO + (yl+ 1) cosO = Y + cosO (16) 

Note that either set employs only two fixed-point additions that can be performed 
in parallel. Note also that the destination window can be clipped first, then only 
the visible parts need to be back-rotated. 

In the rotation operation, we also take precautions that a pixel would not be 
overwritten until it is rotated. If the rotation angle is between 90° and 270°, and 
the destination and source primitives do not overlap, then the scan sequence is 
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irrelevant. However, if the rotation angle is less than 90°, we should scan by 
columns from left to right, while if the rotation angle is greater than 270°, we can 
scan by rows from bottom to top. 

Rotations of 90°, 180°, and 270° are special cases, and can be directly 
transformed employing the following equations: 

90°: X' Xo-Y Y'=Yo+X 


180°: X'=Xo-X Y'=Yo Y 


270°: X'=Xo+Y Y'=Yo X 


7. 	 Orientation and Zooming 

The Orient register of the FBP automatically affects the orientation of a win­
dow being written into the FB. Let (Xo, Yo) be the lower left corner of the win­
dow, and Dx and Dy be the horizontal an vertical sides of the window, then the 
equations that describe the effect of the Orient register are as follows: 

If Orient =0, then no effect on the window. 

If Orient = 1, then the window rotates by 90°, and the equations are: 
Xo'= Xo - Dx Yo' Yo 
D/= Dy Dy' Dx 

If Orient =2, then the window rotates by 180°, and the equations are: 
Xo'= Xo - Dx Y o'= Yo Dy 
D/= Dx Dy'= Dy 

If Orient = 3, then the window rotates by 270°, and the equations are: 
Xo' Xo Yo'= Yo - D, 
D/ Dy Dy' Dx 

The Zoom register, having two fields ZoomX and ZoomY, automatically affects the 
pixel replication of all the windows written into the FB. The ZoomX field specifys 
the pixel replication of each pixel in the X direction, while the Zoom Y field specifys 
the replication of each row of pixels in the Y direction. 

8. 	 Pixel- and Cursor-Ops 

This algorithm is performed before writing data into the FB. It is governed by 
two registers: the Pixel Ops register which applies to windows and icons, and the 
Cursor Ops register which applies to cursors. There is a total of 16 pixel-wise 
boolean operations which operate on a source pixel (S) and/or a destination pixel 
(D) and place the result in D. These operations are accepted when the processor is 
working either in the Gray Scale or in the Binary mode. In the Binary mode, the 
Background colour represents a 0 and a Foreground colour represents a 1. The 
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boolean operations are summarised in Table L The four bits of the index of the 
boolean function given in the register are exactly the mask utilised by the FBP to 
perform the function. 

Boolean Function Index 0=08=0 0=08=1 0=18=0 0=1 8=1 

Background 0 0 0 0 0 
o and 8 1 0 0 0 1 

o and (not S) 2 0 0 1 0 

0 3 0 0 1 1 

(not D) and 8 4 0 0 0 

S 5 0 0 1 

o xor S 6 0 0 

o or 8 7 0 1 1 1 

D nor S 8 0 0 0 
not (0 xor S) 9 0 0 
not S 10 0 0 

D or (not S) 11 0 1 1 

not 0 12 0 0 

(not D) or S 13 0 
D nand S 14 0 

Foreground
----­

15 1 

Table 1: PixeJ- and Cursor-Ops. 

9. Implementation Notes 
The FBP has been designed, developed and simulated at both the Ben-Gurion 

University of the Negev and the State University of New York at Stony Brook. The 
simulations have been written in C on a VAX-780 and SUN workstations running 
Unix. At the Ben-Gurion University a RAMTEK-9400 has been used as the out­
put device. This simulation implements most of the FBP instructions, but using 
only the direct addressing mode [18]. 

A more complete simulation has been implemented at the University at Stony 
Brook on a SUN workstation using the Sun Core graphics package. The input to 
FBP is a FBDL which lists the instructions to be executed by the FBP, and the 
output is shown on the SUN colour monitor. Echo of command execution can be 
shown on the monitor. Care has been taken to make the FBP system easy to tran­
sport to other machines keeping device-dependent routines separate from device­
independent ones. This version of the FBP has been used in prototyping the 2-D 
component of a 3-D voxel-based workstation, the CUBE workstation [9]. 

In both implementations a Window Manager has been programmed in 
software on top of the FBP simulation. It employs a major part of the FBP 
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repertoire. The data structures of the window manager system holding all obscured 
portions have been handled by the window manager in a way similar to [13]. These 
implementations have proven the feasibility of the FBP approach especially in a 
rather complex and critical application of a window manager. 
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