
A Two-Dimensional Frame Buffer Processor

Arie Kaufman

Department of Computer science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400, USA

The two-dimensional Frame Buffer Processor (FBP) is part of a proposed
raster graphics computer architecture. It is a hardware-oriented organisation of a
variation of a bitblt engine with a much richer repertoire. In addition, the FBP
gives support to window management, transformations, and assists in some
image operations ordinarily performed in software. The introduction of the FBP
as a co-processor to geometry and video processors would increase efficiency
and speed of graphics systems and bitmap workstations. A special skewed
frame-buffer organisation, which allows parallel memory access, further improves
system performance.

1. Introduction
Recently a considerable attention has been given to bitblt operations and bitblt

engines/workstations [2,7, II, 14-16]. Bitblt, also termed RasterOps [12], is a rela­
tively simple combining operation between two usually rectangular bitmaps. More
complicated operations of transforming bitmaps can be surprisingly time­
consuming (c.f. [1, 10, 17]). Guibas and Stolfi [5] have presented an abstract alge­
braic system for raster operations in which bUblt is just one such fundamental
operation. The Image Prism [10] is a hardware solution for some of these complex
operations, the 90° rotation and mirroring. This paper argues for a comprehensive
solution and presents the Frame Buffer Processor (FBP), which is an extended bitblt
engine with a much richer repertoire.

The overall system architecture is depicted in Figure 1. In this architecture the
new processor, FBP, has been appended to a conventional computer graphics raster
system. This system includes two classical processors: a Geometry Processor (GP)
and a Video Processor (VP), all accessing the Frame Buffer (FB). The GP, execut­
ing its GDL, performs various operations on geometric primitives including
geometric transformations, clipping, projection, hidden surface removal, and shad­
ing, followed by scan conversion to the FB. The VP scans the FB to refresh the
monitor and may also perform, by executing its VDL, some basic operations like
table look up, zooming, and cursor manipulation.

http://www.eg.org
http://diglib.eg.org

94

r - -'- ..,

: GOL:
t I
L ___ ..J

r- -,

: VOL:
t I
1...._ _-I

r -'- -..,

:FBOL:
t I
L__ .J

Figure 1: General Overview of System Architecture.

In an effort to speed up such a raster system, direct manipulation of pixel-map
data is relegated to the FBP. The FBP, working as a co-processor of the GP and
VP, releases the GP to concentrate on its classical geometric tasks and the VP to
concentrate on its time bound video scan, while the FBP handles all the pixel-map
operations and manipulations. Furthermore, the FBP performs some operations
that are traditionally done by the GP (e.g., transformations) and by the VP (e.g.,
cursor handling).

The FBP operates directly on the images stored in the FB. The primitives of
the FBP are cellular rectangular subareas of three types: windows, cursors, and
icons. These primitives are defined and manipulated (transformed, rotated, copied,
loaded, etc.) by the FBP, according to the instructions provided in the Frame
Buffer Display List (FBDL). Since each FBP primitive is assigned a unique prior­
ity, this processor allows the implementation of overlapping primitives in two-and­
a-half dimensions, supporting window management. The FBP also acts as a chan­
nel for 2D scanned data and as an interface for 2D input devices.

A skewed symmetric FB organisation permits the simultaneous storage and
retrieval of all the pixels of a full row I column or parts thereof. The parallel access
speeds-up several memory bound operations of the FBP. Furthermore, the VP
exploits this organisation for parallel scanline retrieval, and the GP exploits it for
parallel storage of runs of pixels.

The FBP external specifications, its primitives, tables, registers, repertoire, and
modes, are described in Section 2, while the internal architecture is briefly outlined
in Section 3. Section 4 presents the parallel FB access. The significant algorithms

95

employed by the FB, Clipping and Priority, Transformations, Orientation and
Zooming, and Pixel and Cursor operations, are introduced in Sections 5-8. The
chapter concludes with brief implementation notes.

2. FBP External Specifications

2.1. 	 FBP Primitives

The FBP handles three types of primitives: windows, icons, and cursors. A win­
dow is comprised of a set of pixels, representing a rectangular subarea of the FB. It
is defined by five values specifying its origin (Xo, Yo) in FBP pixel coordinates, the
length of each side (Dx, Dy), and its priority which signifies its relative position in
between other primitives.

Icons are similar to windows, but are usually smaller, hold constant data, and
are subject to simpler transformations. An icon can be bound to a window or it
may float independently. If an icon is bound, any instruction that affects the win­
dow affects also the icon. If an icon is floating, it behaves like a window. An icon
is defined by six parameters: origin, size and priority are defined in the same way
as for a window, while the additional parameter identifies the bounding window in
case the icon is bounded. The primary reason for introducing icons in addition to
windows is to provide rapid and better support for window management and
master / cell library graphics systems.

A cursor is a small user-defined square window. It usually represents feedback
from a locator device and is used to locate and pick primitives from the FB. It is
defined by three values specifying its center (X0, Yo) in FBP coordinates, and its
size. Typical sizes are 82 and 162. A cursor is physically stored in the FB, and the
pixel information covered by a cursor is saved within the processor for later res­
toration when the cursor moves. Traditionally, 2-D cursor handling has been per­
formed by the VP. Cursor handling by the FBP alleviates the high load already
assumed by the VP. Since a cursor might be hidden from the user behind other
primitives, it is assigned the highest priority so it is always shown on the screen
floating in front of all other primitives as if the cursor is in the third dimension.

2.2. 	 FBP Tables

The FBP supports five indexed tables, the Window, Icon. Cursor, Priority, and
Device Tables, which are all designed as an integral part of the FBP. The Window
Table (WT), indexed by window identifiers, is used by the processor to handle all
operations concerning windows. Each entry holds the window attributes and
several flags.

The Icon Table (IT), indexed by the icon identifier, is used by the processor to
handle all operations concerning icons. If an icon is bound to a window, a field in
the table holds the identifier of that window.

96

The Cursor Table (CT), indexed by the cursor identifier, is used by the
processor to handle the cursors. In addition to the cursor attributes, each entry
holds the loaded cursor pattern or the pixel data it obscures when it resides within
the FB.

The Priority Table (PT) keeps track of sorted priorities of windows and icons.
A PT entry is created every time a new window or icon is defined. The PT is used
to speed up the clipping and priority algorithm (see Section 5.1) by allowing the
FBP to rapidly determine the current priority order among the primitives.

The Device Table (DT) is used by the FBP to interface to the graphical input
devices (e.g., joystick locator devices). It contains bookkeeping information about
the device and the cursor(s) attached to it for feedback purposes.

2.3. 	 FBP Registers

Internal registers of the FBP can be read, set, or reset, and all subsequent
operations are consequently affected. The registers that govern the configuration of
the FBP are alterable only during the initial passive mode (see Section 2.5). All the
other registers or fields thereof are alterable also during the active mode of the FB.

The FBP registers are divided into four main groups: Address, Mode and
Status, System, and Input Registers. Address Registers include general purpose
address registers, a Stack Pointer (SP), which points to the top of a conventional
stack, and a Program Counter (PC) which points to the next executable instruction
in the FBDL, which resides in main memory.

Mode and Status Registers are divided into two subgroups. The first subgroup
specifies the environment of the system, including the FBP origin (Origin),
colour/translucency mode (Colour Mode), width of components in three colour
system mode (Colour Field), and-which colour planes in the FB are enabled
(Depth Plane). In addition, there is a Status register, which indicates which Mode
registers (see the following paragraph) are currently enabled.

The second subgroup includes the Mode registers. Each Mode register is
enabled by a specific bit in the Status register. This subgroup includes registers
which control zooming (Zoom), boolean operations on pixels and cursors
(Pixel Ops and Cursor Ops), masks for texture and filtering (Texture Mask and
Filter)' Background and Foreground colour, and window orientation (Orient), i.e.,
rotation by 0, 90, 180, or 270 degrees about the window origin. Any operation per­
formed on the primitives that write pixel information into the FB, e.g., copy, is
directly affected by these registers. For example, if the x field of the Zoom register,
ZoomX, indicates a zoom of factor 2, any pixel written to the FB is automatically
duplicated horizontally. If the Orient register specifies that the FB origin is its top
right comer all windows written into the FB will be oriented accordingly, i.e ..
rotated by 1800

•

System Registers define the FBP configuration. They include the State register,
which defines the Working Mode of the FBP (see section 2.5), and the lnit register
which determines the configuration of the system (two fields for FB size in X and

97

Y, and three fields for the maximum number of windows, icons, and locator dev­
ices), and is alterable only during the initial Passive mode.

Three additional system registers are used for handling errors and traps. The
Trap Enable register has a one bit field for each type of error. When an error
occurs, the Trap Enable register is used to determine if this error should cause a
trap (change Working Mode to Suspended). The Error register also has a one bit
field for each type of error. It is used by the jumperr instruction to jump to an
appropriate error handling routine based upon the kind of error. The Stop register
is used to pass the error category back to the CPU. It is only set if an error is
detected (a bit is set in the Error register) and trapping is enabled (the correspond­
ing bit is set in the Trap_Enable register).

Input Registers define the 2D input environment, assisting in the user-FBP
interaction. Up to four locator devices and one scanner may be defined in the
current implementation. The Input Enable register indicates which input devices
are currently enabled. There are four Devicei registers (O';;;;i ';;;;3) each contains rela­
tive position information. The Device Status register has two fields for each of the
locator devices. One field indicates whether a certain device is ready to pass data to
the FBP, and the other whether the data has been read by the FBP.

Two additional input registers are used with the scanner. The Scanner Status
register contains two fields. One indicates whether the scanner is ready to pass data
to the FBP, and the other indicates whether the data has been read by the FBP.
The Scanner Buf register holds the data being passed by the scanner to the FBP.
The data is acolour value defined by the active Colour Mode and Colour Code.
These registers together with the scan into window command provide a mechanism
to input raw pixel data from 2-D scanners directly into the FB.

2.4. 	 FBP Repertoire

The FBP3 instruction set includes operations on windows, cursors, and icons,
and general instructions. All primitives can be created (define), removed (delete),
cleared (erase), read from FB (read), written into FB (write), translated (translate),
copied (copy), and swapped with another primitive (swap). Windows can also be
filtered for noise reduction. Unlike icons and cursors, windows are scaleable
(scalew) using non-integral factors. Windows can be further rotated and spun
(repeatedly) through any angle about either the x or the y axes. Icons and cursors
can be rotated only through angles which are multiples of 90°.

Windows and icons, which are assigned priorities, are also subject to a change
of priority command which may affect future placements of primitives in the FB.
Icons have an exclusive instruction for bounding/unbounding of icons to/from
windows. An exclusive instruction for cursors is for loading a cursor pattern from
main memory (e.g., from FBDL, from stack) to the CT. The large sets of opera­
tions for handling windows, icons and cursors and the underlying FBP registers
provide an extremely flexible environment for manipulating the FB images.

98

The general instructions of the FBP include register manipulation, (set, setf ­
set field, get, getf, reset), program flow control (jump, jumperr, call, return), stack
control (push, pop), mode control (active, halt) and input device control (scan,
attach device, disattach).

2.5. 	 FBP Modes

The FBP has three working modes: Passive, Active, and Suspended. The Pas­
sive Mode is the initialisation mode. The FBP powers up in this mode and enters
Passive mode whenever the State register is set to O. In this mode, the FBP loads
initial values (either default or user supplied) into the fields Fbx Size, Fby Size,
Origin, Max Window No, Colour Field and Colour Code. These registers-may
only be changed in the Passive Mode. The user may use the reset instruction to
assign the default values to these registers and to the Trap Enable register. Other
registers of the FBP can be initialised either in the Passive-Mode or in the Active
Mode. To switch to the Active Mode the activate instruction has to be invoked,
which also sets the State register to 1.

The Active Mode is the mode in which the FBP operations are executed. The
FBP performs the FBDL instructions one by one, using the PC to fetch them.
There are three possible addressing modes for the instruction data: direct mode in
which the data follows the instruction; indirect mode in which the address of the
data follows the instruction in the FBDL; and Stack Mode in which the data can
be found in the stack.

When the FBP encounters an error while executing the FBDL, it sets the
proper bit in the error register and checks the Trap Enable register. If the error
causes a trap, the FBP enters the Suspended Mode by setting the State register to
2. Otherwise, if traps are disabled the user may handle the error using the jumperr
Gump on error) instruction. To return to the Passive Mode the user ought to use
the halt instruction, which sets the State register to 0.

In the Suspended Mode the CPU reads the Stop register which indicates which
error has caused the trap. Thereafter the CPU can return to either the Active Mode
or the Passive Mode by setting the State register to 1 or 0, respectively.

3. 	 Internal Architecture

The FBP processor is designed as a pipeline architecture, composed of three
units in sequence: the Instruction Unit, the Execution Unit, and Frame Buffer
Management Unit. The Instruction and Decoding Unit is responsible for fetching
the instructions stored in the FBDL, decoding them and passing them to the Exe­
cution Unit. It is composed of the following subunits: Fetch & Memory Manage­
ment Subunit, Decoding Subunit, Data Address Calculation Subunit, and the
Init & Error Subunit.

The Execution Unit is responsible for the execution of the instruction. It is
composed of the following subunits: Control Subunit, Input Subunit, Geometry

99

Subunit, Clipping & Priority Subunit, Raster Subunit, and the Table Subunit. The
microprogrammed Control Subunit holds a number of algorithms, described in Sec­
tion 5, to be executed by the Execution Unit.

The Frame Buffer Management Unit handles the interface to the Frame Buffer
Bus, which provides a communication mean to the FB. It handles the address(es)
and the data, either a single pixel or a run of pixels, to be stored/retrieved to/from
the FB. This unit is internally linked back to the Fetch & Memory Management
Unit for instructions like readw where the FB data is transferred to the main
memory. It is also linked internally to the Geometry Subunit and other units that
require data from the FB.

4. 	 Parallel FB Access

Assume a FB of n2 pixels. It is constructed in such a way as to enable a
simultaneous access to a full beam (row or column) of n pixels. The physical
memory is divided into n modules, each of which has exactly n pixels, each with its
own independent access and its own independent addressing unit, so that no two
pixels of a beam reside in the same module. Therefore, all the pixels of a beam can
be fetched/ stored simultaneously in one memory cycle. This division, however,
should occur for all rows and all columns.

y

r
6

5

4

3

2

o
--+x

Figure 2: Parallel Memory Organisation for an 8x8 Frame Buffer. The 2·D Frame
Buffer (a) is organized as 8 distict modules (b).

01234567

(a)

o 1 2 3 4 5 6 7

(b)

100

These restrictions have suggested a modular memory construction which con­
sists of diagonal parallel sections of the FB having a 45 degree angle with the axes
(see Figure 2). The diagonal sections are sequentially numbered and grouped
modulo n into n modules indexed 0 through n 1. This skewed organisation is for­
malised as follows. A pixel with raster coordinates (x,y) is being mapped onto the
k-th module (O~k~n -1) by:

k 	 (x +y) mod n (1)

Since one coordinate is always constant along any beam, the second coordinate
guarantees that one and only one pixel from the beam resides in anyone of the
modules. The internal mapping j within the memory module is given by:

j = y 	 (2)

Thus the k-th memory module can be regarded as a I-D projection of all the diago­
nal sections in that module (those that are indexed k) onto the y axis. An exten­
sion of this skewed organisation to a 3-D cubic frame buffer has also been
devised [8].

For a FB of 1024X 1024 resolution there are 1024 memory modules, each one
contains 1024 pixels. The time needed to retrieve a full beam of 1024 pixels is a
single cycle time. Scanning the whole FB in beam by beam (scan-line mode) by the
VP will take only about 30 msecs for a memory with 30 nsecs access time. The
parallel write can be exploited by the GP in line scan-conversion algorithms, where
a run length scan-conversion algorithm [3] can write runs of pixels simultaneously
into the FB instead of one pixel at a time. The same applies to polygon scan­
conversion in which the pixels comprising the runs between edge intersections are
painted simultaneously. Last but not least, this parallel organisation is heavily used
by the FBP to perform operations on the entire beam or part thereof, as in transla­
tion, 90° rotation and mirroring, erasing with a constant colour, etc.

5. 	 Clipping and Priority Algorithm
The FBP supports several simultaneous windows and icons, each is assigned a

unique priority, which is specified at time of definition. If collision occurs, tem­
poral priority is governing. When a window or an icon, w, with two opposite
corners (Xmin, Ymin), (Xmax , Y max), is written into the FB, by copying it from out­
side or by moving information within the FB, the priority and clipping algorithm is
employed in order to determine which portions of ware not obscured by any of the
other windows. The algorithm is a scan-line algorithm [4] adjusted for fast
processor-level implementation. For each scan-line, Yscan, from minimum
Y, Y min' to maximum Y, Y max, of w, the visible segments are written into the FB
using the parallel FB access mechanism. This is intrinsic1y different from the algo­
rithm proposed by Pike [13] at the window manager level, in which the window in
question is recursively subdivided into subrectangles and all the suhrectangles have
to be accounted for. Here, on the other hand, only the visible segments have to he

101

handled by the FBP, the invisible sections are handled by the application.

The algorithm employs a temporary table, In terTable, which lists all the win­
dows and icons having a priority higher than wand intersecting w, sorted by their
minimum Yand minimum X. The algorithm in pseudo-C code follows:

For (Yscan = Ymin ; Yscan ",; Ymax; Yscan + +)

{

Remove fom InterTab primitives below Yscan
Sort by X all primitives in InterTable which intersect the Yscan line
While (LeftBound ",; Xmax)
{

RightBound= Right X of leftmost primitive (called "left primitive")

LejtBound= Left X of next leftmost primitive (" right primitive!!)

While (LejtBound ",; RightBound and InterTab not empty)

{

Get next right primitives and update LejtBound

If (left and right primitives are adjacent in sorted list)

Then { Set run from RightBound to LejtBound along
Yscan line to the pixel value of w;
Get next left and right primitives from list}

Else 	 Get the next left primitive and update
RightBound if the right edge of the new left
primitive is to right of RightBound

Restore saved cursors

Note that the algorithm has been described assuming that the ZoornX, ZoomY, and
Orient registers are set at their default values, I, 1, and 0°, respectively. However,
other values assigned to these registers may drastically affect the way it executes,
since the sequence by which w is clipped is not the order of the input data. Conse­
quently, the directions the algorithm progresses depend on the Orient register, and
the pixels or rows of pixels have to be replicated according to the ZoornX and
Zoom Y registers before writing runs of pixels between RightBound and LeftBound.

6. 	 Geometric Transfonnations
Special care has been taken to provide simple and fast geometric transforma­

tions especially for the large window operands. All transformations, carried out by
the FBP, including translation, scaling (using non-integral factors), and rotation
(through any angle), are performed using incremental transformation techniques, in
which each pixel is transformed, based on the new position assumed by its immedi­
ate previous neighbour, with a maximum of 2 additionslincrements. The algo­
rithms are based on inter- and intra-sean-line coherency. In other words, after cal­
culating the new location for one pixel, its neighbours relate to it as they did in the
old location.

102

The geometric algorithms also resolve possible overlapping between the source
and the destination primitives. This is necessary since there is no scratch FB
memory available to temporarily hold old pixel information while performing the
transformation.

6.1. 	 Translation
The translate function moves a primitive (window, icon, or cursor) relative to

its current position by (Tx, Tv). The equations which describe the translation
transformation are: .

X== 	X + Tx Y' Y + Ty (3)

An incremental algorithm specifys the position of the next pixel to be translated
(X + 1, Y) in terms of its predecessor's new position (X', Y'):

(X+l)+r:~ == X+Tx+l == X'+l 	 (4)

Y+Ty Y'

The coordinate of the next pixel in the destination primitive can thus be deter­
mined by only incrementing the appropriate coordinate of the last pixel without
performing addition on every pixeL The same also applies to a vertical step in Y.
The algorithm may be summarised in pseudo-C as follows (old coordinates refer to
the original primitive and new coordinates refer to the translated primitive):

Initialise X and Y

X'= X + Tx

Y'= Y + Ty

startX = X

while (Y =1= Ymax)
{

while (X =1= Xmax)

{

If «X', Y') is visible)
Put pixel value of eX, y) at (X', y')

Increment! Decrement X
Increment!Decrement X'

}
X = startX

Increment/Decrement Y

Increment/Decrement Y'

One problem which arises is that if the translated primitive is partially overlapping
with the original primitive, then some of the original pixels might be overwritten by
the copied pixels before the original pixels are translated, which could distort the
destination primitive. The above algorithm therefore has to be modified in a way

103

that no pixels will be overwritten before they are translated. This requires the algo­
rithm to test for a possible overlap, and if exists to classify it as either a south,
north, east, or west overlap, in which case start copying from north, south, west,
and east, respectively. This is reflected in the algorithm by
incrementing/decrementing X, Y, X', and Y'.

6.2. 	 Scaling
The equations which describe the scaling transformation algorithm for win­

dows about (Xmin, Ymin) are given in Equation (5). The shifting to and from the
origin are accounted for in the FB addressing of the source and the destination.

X'= x Sx Y'= Y Sy 	 (5)

Icons and cursors are not scaleable. The factors S x and Sy are not necessarily
integers, and the scaling algorithm for windows requires thus two non-integer mul­
tiplications and two roundings for each pixel, which can result in heavy computa­
tions for large windows. The complexity of the computations can be significantly
reduced by using an incremental algorithm based upon:

(6)(X+l)Sx

(Y + 1) Sy = Y ~Y + Sy Y'+ Sy

The coordinates of the next translated pixel can thus be obtained by simply adding
the respective scaling factor to the X or Y coordinate of the predecessor pixel and
rounding the results to integer coordinates. Precautions must be taken if Sx and Sf
are both greater than 1. In this case, applying the above transformation to a primi­
tive may produce holes in the scaled primitive. We can eliminate this problem by
back scaling, i.e., reversing the incremental transformation process. To do this we
transform two opposite corners of the source primitive, which yields two opposite
corners in the destination primitive. We then step through the destination primitive.
At each point in the destination primitive, we reverse-transform the coordinates to
determine the pixel value for that point. This can be done by multiplying the desti­
nation primitive'S coordinate by (l/Sx. lISy)' A more efficient way to do this is to
step through the source primitive in parallel with the stepping through the destina­
tion primitive. The increments to be used in stepping through the source primitive
are (Xiner/ Sx, Yiner/ Sy), where Xincr and Yiner are the X and Y increments (lor
-1) used in stepping through the destination primitive.

As with the translation algorithm, precautions must be taken to avoid
overwriting pixels in the source primitive before they have been scaled. This is
accomplished by properly choosing the corner of the primitive to be used as a start­
ing point for the transformation based on the values of Sx and ~v'

Assume that (XI, Y I), (X2, Y2) and (XI', YI'), (X2', Y2') are the lower left
and upper right coordinates of the source and destination primitives, respectively;
(Xs, Ys) and (X£, YE) are the starting and ending corners in the destination

104

primitive and (X. Y) is the starting corner of the source primitive (the reverse­
transformation of (Xs. Ys». Then:

l. If (Sx<l) and (Sy<l), then
(Xs. Ys)=(X]', Ylt) (X£, Y£)=(X2', Y2')

(X, Y) =(X] , Y j) Xiner =1 Yiner}

2. If (Sx < 1) and (Sy > 1), then
(Xs,Ys)=(Xj', Y2') (X£, (X2', YI ')

(X,Y)=(X],Y] +Dy) Xiner 1 Yiner

3. If (Sx > 1) and (Sy< 1), then
(Xs, YS)=(X2', Yj ') (X£, Y£)=(X]', Y2')
(X, Y)=(XI +Dx , YI) Xiner -} Yiner= 1

4. If (Sx> 1) and (Sy> I), then
(Xs, Ys)=(X/, Y2') (X£, YE)

(X, Y) (XI +Dx , Yj +Dy) Yiner

Once the above variables are determined, the algorithm progresses as follows:

X' x.~; Y' = Ys

SXincr Xincr / Sx; SYincr Yincr ISv

while (Y ~ YE) ~

{

Round Y

while (X ~ XE)

{
Round X

If new primitive is visible at (X', Y')

Put pixel value from (X, Y) at (X'. yl)
Increment X by SXincr
Increment XI by Xincr

}
Increment Y by SYincr

Increment Y' by Yincr

6.3. Rotation

The equations for rotating a window are as follows:

X' - X cosO Y sinO (7)

Y' Y sinO + Y cosO (8)

where 0 is an arbitrary counterclockwise angle about (Xmin' Y min). Like for the
scaling, the shifting to and from the origin are accounted for in the FB addressing

105

of the source and the destination. In raster rotation every pixel of the primitive has
to be rotated, however, an incremental algorithm can be derived, determining the
new position for a pixel avoiding any multiplication:

Xx + I' (X + 1) cosO Y sinO - (X' + cosO) (9)

Yx +- I' (X T I) sinO + Y cosO (Y' + sinO) (10)

.4). +- I'= X cosO - (Y +1) sinO = (X' sinO) (11)

Yy I' X sinO + (Y +1) cosO (Y' + cosO) (12)

The values of cosO and sinO are calculated only once, so after transforming the first
pixel, subsequent transformations require only 2 additions and two roundings. By
adding 0.5 to the initial coordinates, roundings can be reduced to truncation, which
is done automatically in fixed point arithmetic. Note that Equations 9 and 10, and
Equations 11 and 12, are performed in parallel within the FBP.

Like in scaling back rotation, from destination to source [6], is employed to
eradicate holes which could be produced from the forward rotation of a window.
To accomplish this task the four corners of the original window are rotated to
locate the destination window. Once calculated, the minimum coordinates are back
rotated by the rotation equation, Equations 7 and 8, by replacing 0 by -0. From
this point on, an incremental algorithm is used to back scan the entire window. The
constant increments for all pixels are merely sinO and cosO. Determining the coor­
dinates of the next pixel when the current ones (X, Y) are known, is a simple
matter of applying one of two sets of equations on the current pixel. Equations 13
and 14 give the coordinates of the point (X.d I, Yx +- d back-rotated from
(X' + 1, Y'), while Equations 15 and 16 give the point (Xy +- I, ~y + d back-rotated
from (X', Y' +1):

Xx + 1 (X' + 1) cosO + Y'sinO X + cosO (13)

Yx + 1 (X' + 1) sinO + Y'cosO = Y sinO (14)

Xy +- 1 X'cosO + (Y' + 1) sinO = X + sinO (15)

Yy+J - X'sinO + (yl+ 1) cosO = Y + cosO (16)

Note that either set employs only two fixed-point additions that can be performed
in parallel. Note also that the destination window can be clipped first, then only
the visible parts need to be back-rotated.

In the rotation operation, we also take precautions that a pixel would not be
overwritten until it is rotated. If the rotation angle is between 90° and 270°, and
the destination and source primitives do not overlap, then the scan sequence is

106

irrelevant. However, if the rotation angle is less than 90°, we should scan by
columns from left to right, while if the rotation angle is greater than 270°, we can
scan by rows from bottom to top.

Rotations of 90°, 180°, and 270° are special cases, and can be directly
transformed employing the following equations:

90°: X' Xo-Y Y'=Yo+X

180°: X'=Xo-X Y'=Yo Y

270°: X'=Xo+Y Y'=Yo X

7. 	 Orientation and Zooming

The Orient register of the FBP automatically affects the orientation of a win­
dow being written into the FB. Let (Xo, Yo) be the lower left corner of the win­
dow, and Dx and Dy be the horizontal an vertical sides of the window, then the
equations that describe the effect of the Orient register are as follows:

If Orient =0, then no effect on the window.

If Orient = 1, then the window rotates by 90°, and the equations are:
Xo'= Xo - Dx Yo' Yo
D/= Dy Dy' Dx

If Orient =2, then the window rotates by 180°, and the equations are:
Xo'= Xo - Dx Y o'= Yo Dy
D/= Dx Dy'= Dy

If Orient = 3, then the window rotates by 270°, and the equations are:
Xo' Xo Yo'= Yo - D,
D/ Dy Dy' Dx

The Zoom register, having two fields ZoomX and ZoomY, automatically affects the
pixel replication of all the windows written into the FB. The ZoomX field specifys
the pixel replication of each pixel in the X direction, while the Zoom Y field specifys
the replication of each row of pixels in the Y direction.

8. 	 Pixel- and Cursor-Ops

This algorithm is performed before writing data into the FB. It is governed by
two registers: the Pixel Ops register which applies to windows and icons, and the
Cursor Ops register which applies to cursors. There is a total of 16 pixel-wise
boolean operations which operate on a source pixel (S) and/or a destination pixel
(D) and place the result in D. These operations are accepted when the processor is
working either in the Gray Scale or in the Binary mode. In the Binary mode, the
Background colour represents a 0 and a Foreground colour represents a 1. The

107

boolean operations are summarised in Table L The four bits of the index of the
boolean function given in the register are exactly the mask utilised by the FBP to
perform the function.

Boolean Function Index 0=08=0 0=08=1 0=18=0 0=1 8=1

Background 0 0 0 0 0
o and 8 1 0 0 0 1

o and (not S) 2 0 0 1 0

0 3 0 0 1 1

(not D) and 8 4 0 0 0

S 5 0 0 1

o xor S 6 0 0

o or 8 7 0 1 1 1

D nor S 8 0 0 0
not (0 xor S) 9 0 0
not S 10 0 0

D or (not S) 11 0 1 1

not 0 12 0 0

(not D) or S 13 0
D nand S 14 0

Foreground
----­

15 1

Table 1: PixeJ- and Cursor-Ops.

9. Implementation Notes
The FBP has been designed, developed and simulated at both the Ben-Gurion

University of the Negev and the State University of New York at Stony Brook. The
simulations have been written in C on a VAX-780 and SUN workstations running
Unix. At the Ben-Gurion University a RAMTEK-9400 has been used as the out­
put device. This simulation implements most of the FBP instructions, but using
only the direct addressing mode [18].

A more complete simulation has been implemented at the University at Stony
Brook on a SUN workstation using the Sun Core graphics package. The input to
FBP is a FBDL which lists the instructions to be executed by the FBP, and the
output is shown on the SUN colour monitor. Echo of command execution can be
shown on the monitor. Care has been taken to make the FBP system easy to tran­
sport to other machines keeping device-dependent routines separate from device­
independent ones. This version of the FBP has been used in prototyping the 2-D
component of a 3-D voxel-based workstation, the CUBE workstation [9].

In both implementations a Window Manager has been programmed in
software on top of the FBP simulation. It employs a major part of the FBP

108

repertoire. The data structures of the window manager system holding all obscured
portions have been handled by the window manager in a way similar to [13]. These
implementations have proven the feasibility of the FBP approach especially in a
rather complex and critical application of a window manager.

Acknowledgement
This work was supported by the National Science Foundation under grant

DCR-86-03603. I wish to thank the many dedicated individuals who have worked
on the FBP project, especially Dario S. Zutel, who has contributed the first design
and implementation of the FBP on the RAMTEK system.

References

1. 	 H.R. Arabnia and M.A. Oliver, "Arbitrary rotation of Raster Images with
SIMD Machine Architecture," Computer Graphics Forum 6, pp. 3-12 (1987).

2. 	 A. Bechtolheim and F. Baskett, "High-Performance Raster Graphics for
Microcomputer Systems," Computer Graphics 14(3), pp. 43-47 (July 1980).

3. 	 1.E. Bresenham, "Run Length Slice Algorithm for Incremental Lines," pp.
59-104 in Fundamental Algorithms for Computer Graphics, ed. R.A. Earnshaw,
Springer-Verlag, Berlin (1985).

4. 	 J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley (1982).

5. 	 L. 1. Guibas and 1. A. Stolfi, "A Language for Bitmap Manipulation," ACM
Trans. on Graphics 1(3), pp. 191-214 (July 1982).

6. 	 R. D. Hersch, "Raster Rotation of Bilevel Bitmap Images," Proceedings
EUROGRAPHICS '85, Nice, France, pp. 295-308 (September 1985).

7. 	 D. H. H. Ingalls, "The Smaltalk Graphics Kernel," Byte 6(8), pp. 168-194
(August 1981).

8. 	 A. Kaufman, "Memory Organization for a Cubic Frame Buffer," Proceedings
EUROGRAPHICS '86, Lisbon, Portugal, pp. 93-100 (August 1986).

9. 	 A. Kaufman, "Towards a 3-D Graphics Workstation," in Advances in Graph­
ics Hardware I, ed. W. Strasser, Springer-Verlag, Berlin (1987).

10. 	 C. Korenfeld, "The Image Prism: A Device for Rotating and Mirroring Bit­
map Images," IEEE Computer Graphics & Application 7(5), pp. 21-30 (May
1987).

11. 	 H. M. Levy, "VAXstation: A General-Purpose Raster Graphics Architec­
ture," pp. 70-83 in A CM Transactions on Graphics (January 1984).

12. 	 W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graph­
ics, McGraw-hill, (2nd Ed.), New York (1979).

13. R. Pike, "Graphics in Overlapping Bitmap Layers," ACM Transactions on
Graphics 2(2), pp. 135-160 (1983).

109

14. 	 R. Pike, L. Guibas, and D.H.H. Ingalls, "Bitmap Graphics," Course Notes
ACM SIGGRAPH'84 (July 1984).

15. 	 R. Pike, "The Blit: A Multiplexed Graphics Terminal," AT&T Bell Labs
Technical Report 63(8), pp. 1607-1631 (October 1984).

16. 	 R. Pike, B. Locanth, and J. Reiser, "Hardware/Software Tradeoffs for Bitmap
Graphics on the Blit," Software-Practice & Experience 15(2), pp. 131-151
(February 1985).

17. 	 R. F. Sproull, I. E. Sutherland, A. Thompson, and C. Minter, "The 8 by 8
Display," ACM Transactions on Graphics 2(1), pp. 1-31 (January 1983).

18. 	 D. S. Zutel, "A Frame Buffer Processor," MSc Thesis, Ben-Gurion Univer­
sity, Beer-Sheeva (June 1985).

