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This paper describes the design considerations for a polygon graphics 
geometry processor subsystem. The architecture for a Multiple Application 
Graphics Integrated Circuit (MAGIC II) is outlined, and low, medium and high per­
formance system configurations using MAGIC II are discussed. 

1. Introduction 
Computer graphics research has been prominent in the research activities at 

the University of Sussex for some years, particularly in the area of specialised, dedi­
cated hardware. The current major project, PRISM, is directing significant effort 
towards the design of custom chips for graphics tasks, using VLSI technology. The 
potential offered by VLSI for large, powerful processing and memory devices make 
it ideally suited for the computer graphics application - existing high performance 
graphics systems (such as flight simulator visual systems) rely heavily on large 
volumes of hardware in order to attain the processing speed necessary. 

PRISM (Processors for Real time Image Synthesis and Manipulation) is 
funded under the Alvey programme, and is run collaboratively with GEe Research 
Ltd. at Wembley, and Singer Link Miles at Lancing. 

The aim of the project is to produce a modular, expandable chipset capable of 
performing all the operations necessary to transform three dimensional databases in 
to realistic visual images. The proposed applications for the chipset range from 
small personal computer based systems, through high performance CAD systems, 
to full state-of-the-art flight simulator visual systems. The requirement can hence be 
seen, at the high end, for real time operation, processing a large number of 
polygons to a high degree of visual realism. At the low end, however, system cost is 
an overriding factor and a reduction in hardware, giving reduced performance, 
must be possible. 

http://www.eg.org
http://diglib.eg.org
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The overall system has been notionally divided, in the traditional way, into 3 
subsystems: the database processor, which selects portions of the database for pro­
cessing, the geometry processor which transforms and clips 3D world model objects 
into displayable 2D objects, and the display processor whose function is to perform 
various sorting and visual enhancement algorithms on the data before displaying it. 
This paper is primarily concerned with the geometry processor subsystem, and 
MAGIC II (Multiple Application Graphics Integrated Circuit) the chip designed to 
implement it. 

2. 	 Geometry Algoritlnns 

The operations performed in the geometry subsystem are well defined and 
based on existing algorithms [1], [2]. Some mathematical manipulation has been 
necessary, however, in order to optimise the performance in hardware. 

The algorithms are as follows: 

(l) 	 Back facing surface removal - this is a simple dot product plus offset calcula­
tion to determine the orientation of each surface. 

(2) 	 Parallel projection - a single matrix-vector multiplication and addition. It can 
be reduced to individual dot product plus offset calculations. Screen scaling 
factors are incorporated in the view matrix to eliminate extra calculations later 
on. 

(3) 	 Clipping - this can either be 3D clipping (to a number of planes or a view 
cone) or 2D clipping (to lines representing the screen boundary). 3D clipping 
is the 'generic' algorithm, with 2D forming a special case within this. The 
Sutherland Hodgman method of clipping all objects to each plane/line in turn 
has been adopted, and although this can result in the generation of extraneous 
edges for concave polygons, it is not considered to be a serious problem. The 
clipping operation has been split into two parts, namely calculation of the 
parameter, lamda, for each edge (vertex pair), and the intersection calculation 
using lamda to interpolate between the two vertices. 

(4) 	 Perspective division - the x and y coordinates of each vertex are divided by 
their depth value (or multiplied by their proximity value) and added to the 
coordinates of the screen centre. Screen coordinates are thus generated. 

(5) 	 Calculation of gradients - gradient values for x, y, z or proximity, and intensity 
are needed by the display processor. These are calculated in the normal way 
with two subtractions and a division. 

3. 	 Geometry System Architectures 

The architecture of the geometry system must be viewed at two distinct levels: 
the system level and component level. These are related. 

Firstly, due to the computationally intensive nature of the geometry tasks, 
some degree of parallelism must be employed at a system level in order to achieve 
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adequate performance. In terms of hardware, or, more specifically, VLSI chips, this 
parallelism can be achieved in several ways. 
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Figure 1: SIMD Style Geometry System. 

The most obvious method of implementing a parallel processing scheme is to 
replicate functionality within the system: in the geometry system this means allocat­
ing database objects to a number of chips, each performing the entire geometric 
transformation, figure 1. This can be thought of as 'vertical parallelism', or a 
SIMD (single instruction multiple data) configuration [3], and is the technique used 
in an earlier design, MAGIC I [4]. Although effective for low and medium 
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performance systems, it is envisaged that the complex data and resource allocation 
schemes needed for a large number of chips, and its reliance on a microprogram 
and von Neumann style architecture, make the technique inappropriate for very 
high performance applications such as flight simulation. 

A development of the SIMD idea is that of the array computer comprising a 
2D array of interconnected processing elements, figure 2. While this offers still 
greater performance enhancements over non-parallel systems, the tasks of schedul­
ing and synchronisation are difficult and not really necessary for the task in hand. 
An array configuration may be appropriate for graphics computation using only 
general purpose processing elements - transputers, for example, but performance is 
unlikely to match that of dedicated chips within the same economic bounds. 
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Figure 2: Array of Processors. 

An alternative to vertical parallelism is 'horizontal parallelism', or pipelining. 
This type of system comprises a number chips connected serially; each chip per­
forms only a part of the overall geometry calculation, but a pipeline of such chips 
together performs all the necessary operations. Data flows through the pipeline, 
'stopping' at each stage to be processed; once the pipeline is full, all the geometry 
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operations are perfonned simultaneously but on different database elements, 
figure 3. 

Figure 3: PipeJined Geometry System. 

Although a single pipeline of chips may have a limited performance, it is pos­
sible to employ parallel pipelines (resulting in 2D parallelism) with the problem of 
data allocation techniques being significantly less severe than in the fully vertical 
case, figure 4. Very high performance systems are thus easily attainable. 
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Figure 4: Parallel Pipelined System. 

If each chip in the pipeline described has a fixed functionality, the smallest 
system possible is the single pipeline. This may give rise to a chip count that is 
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prohibitively high for small, PC based applications. It is therefore desirable for the 
chips to be reconfigurable to perform some or all of the operations that occur in 
the pipeline. With appropriate buffering arrangements, this means that the data can 
make several passes through a reduced length pipeline, resulting in lower perfor­
mance. In the extreme case, the geometry system might consist of only one chip 
with a data pass for every algorithm to be performed, figure 5. 
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Figure 5: Reduced Length Pipeline Geometry System. 

This style of system architecture, then, provides a modular, expandable 
approach with systems ranging from a single chip with controller, to highly parallel 
pipelined systems. For this reason, the architecture of MAGIC II has been designed 
with such a scheme in mind. 

4. Architectural Considerations for MAGIC II 
The fundamental principle of pipelined systems is that every stage in a system 

should have the same time delay. This ensures that all stages produce and consume 
data at the same rate, resulting in a continuous, even flow of data from one end to 
the other. If any stage in a pipeline introduces extra delay, this delay will propogate 
to the output and impair the performance of the entire pipeline. 

The algorithms in the geometry system involve varying degrees of complexity 
and hence varying time delays. An instance of MAGIC II configured to perform 
any of the algorithms cannot, therefore, be regarded as the fundamental pipeline 
stage, and internal pipelining is necessary. Such pipelining is extremely well suited 
to the graphics geometry problem due to the repetitious nature of the task and the 
large quantities of data involved; broadly speaking, every vertex (or vertex pair) 
undergoes exactly the same processing. Pipelining is also a favoured technique 
when designing VLSI devices since local and regular connections can be made - the 
large cost in terms of time, power and silicon area of long, complex connections is 
eliminated [5]. Other factors to consider when designing systems using VLSI 
include the need for repetition, simplicity and regularity: it is very much easier to 
use a small number of simple cells which can be replicated many times, than to use 
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a large, complex design to solve the same problem. Pipelining meets this constraint, 
since only a few basic elements, such as arithmetic units and registers, are required. 
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Figure 6: Architecture of MAGIC II. 

In order to ensure optimal performance of MAGIC II for the five geometry 
algorithms, each algorithm has been considered in turn, and a pipeline of arith­
metic and register units designed to implement it. The architectures for each algo­
rithm were verified using the hardware description language and simulation tool, 
ELLA. ELLA provides a high level language which can be used to describe circuits 
at various levels of abstraction, from top-level functional representations down to 
gate level descriptions. The architectural elements of each of the algorithms have 
been combined and 'generalised' into an architecture capable of performing all the 
geometry tasks efficiently, figure 6. Although MAGIC II has been designed to sup­
port five specific algorithms directly in hardware, additions to the basic 'skeleton' 
architecture provide an element of flexibility. More general purpose functionality is 
available, catering for possible future CGI requirements, display processor func­
tions and certain signallimage processing tasks. Modifications to the original algo­
rithms may also be possible. It is noteworthy that the provision of additional func­
tionality does not incur any run time performance degradation, assuming the extra 
algorithms can be implemented directly using the hardware resources available. 
This can be likened to the RISC (Reduced Instruction Set Computer) philosophy 
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[6] where most algorithms can be implemented with very high performance using 
only a small, basic instruction set. If the algorithm is not suitable, however, perfor­
mance may be very low - such cases are assumed to be infrequent for RISC, and a 
similar assumption can be made for MAGIC II within the class of applications 
described. 

5. 	 Operation of MAGIC II 

The architecture of MAGIC II is essentially a pipeline of arithmetic and regis­
ter file elements, with each element connected via several multiplexers to the next. 
The arithmetic elements are an array multiplier/divider and several 
adder / subtractors, and the register files are specially designed units suitable for 
general vector manipulation, figure 6. 

The chip has two input ports and one output port; if a second output port is 
required (this is rarely necessary), this can be provided by an additional instance. of 
MAGIC II in parallel. A bus has been included which effectively bypasses all the 
functional units and register files, the data from which can be 'tapped in' to the 
pipeline at any point. This is typically used to carry the offset, from the second 
input port, in dot-product-plus-offset type calculations. 

Control of MAGIC II falls into two categories: setup type control, which 
configures the pipeline to perform a given task, and run-time control which coordi­
nates 'conditional', data dependent operations. Setup control signals are multi­
plexed onto the data port lines and these are then decoded into a very long instruc­
tion word (about 128 bits) to configure the register structures, arithmetic units and 
interconnections within the pipeline. The pipeline is then switched to run time con­
trol. 

Run time control is effected by a PLA structure which takes flags (from the 
arithmetic units) and data tags as input, and produces control signals (usually for 
data routing) for all elements in the pipeline. Each piece of data in the pipeline has 
an encoded 'tag' associated with it; the tags 'follow' the data through the pipeline 
in parallel tag registers so that the internal controller 'knows' the context of the 
data. For example, the Last vertex in a polygon always has a particular tag so that 
the controller can generate a closing edge using saved first vertex data. 

6. 	 MAGIC II System Configurations 

The MAGIC II processor provides direct support for three different levels of 
pipeline complexity, as typified in the following: 

A minimum geometry system, based on two instances of the MAGIC proces­

sor. 


A fully pipelined system with a single numeric data stream, offering perfor­

mance sufficient for use in flight simulators. 


A pipelined system with three parallel streams of vector elements, gIvmg a 

very high performance for use in future simulators. 
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The first of these systems utilises pipelining only at a numeric processing level (for 
example, a single chip may execute 32 simultaneous divide operations). The second 
pipeline operates at and the third runs at 'vector rate', processing entire vectors at 
each clock. Other systems of intermediate performance are also possible, using 
buffering around partial pipelines. A further option, as described in section 3, is to 
operate a number of parallel pipelines at element rate, offering greater potential for 
increased performance than the vector rate system. 

Host 

Machine 


RAM1 

MAGIC II MAGIC II 

MUX DEMUX 

Figure 7: Minimum MAGIC II geometry system. 

The minimum number of chips required to implement all of the geometry 
operations is two, since each clipping operation requires a parameter calculation 
and an intersection calculation working in paralleL The two processors must each 
be configured for a single geometric operation prior to the data being passed 
through, and buffering is required so that intermediate results are stored after each 
pass. This gives rise to the system shown in figure 7, with two blocks of RAM and 
appropriate multiplexing to allow alternate read and write access to each block. 

Because of the need to reconfigure the MAGIC II processors before each pass, 
control of the minimum system is more complex than for the fully pipelined 
configurations. In addition to performing initialisations, the controller must main­
tain frame synchrony with the host, control the multiplexer and demultiplexer, and 
generate RAM addresses. A standard sequencer such as an AMD 2910 is suitable 
for this, though it is omitted from figure 7 for clarity. 

Figure 8 shows a fully pipelined geometry system comprising element rate 
modules for parallel projection, perspective projection and clipping to a near plane 
and the edges of the screen. A single back facing surface remover interacts with 
the controller to determine which surfaces are subsequently passed through the 
pipeline. A total of sixteen instances of MAGIC II are required. 
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Figure 8: Element rate pipelined geometry system. 

The vector rate pipeline is shown in figure 9, although separate instances of 
MAGIC are not indicated within each module. A bus width of 96 bits is required 
from the database (128 if homogeneous co-ordinates are used, or if intensity values 
are associated with each vertex). The system shown comprises 36 MAGIC II pro­
cessors. 

An estimate of the performance of the minimum system is most easily derived 
from consideration of the fully pipelined systems, so this is deferred to last. An 
average of 4 vertices per polygon are assumed, with a real time frame rate of 60Hz. 
The pipeline is assumed to be clocked at lOOns. Since it is difficult to quantify the 
number of surfaces which are back facing or off-screen in anyone frame, the 
number of polygons processed is discussed in preference to the number displayed. 
Polygons which are off-screen will give rise to empty data slots at the clipping 
stages, while those detected as back facing will yield only a few empty data slots 
between potentially visible surfaces. 

An element rate transformation pipeline is capable of reading a single carte­
sian co-ordinate vertex with associated intensity value every 4 clock periods. This 
corresponds to a rate of 2.5 million vertices per second, or approximately 10,000 
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Figure 9: Vector rate pipelined geometry system. 

polygons processed per frame. The vector rate equivalent runs at four times this 
speed, giving a processing rate of 40,000 polygons per frame. 

The 2-chip equivalent of the above pipelined system has only a single module 
which is reconfigured for each operation. Referring to the element rate pipeline it 
can be seen that the clipping phase will take 5 passes, perspective projection and 
back facing surface removal will each take one pass, as will back facing surface 
removal, and the parallel projection phase will run 3 times slower. The whole pro­
jection therefore runs at about one tenth of the speed of the element rate pipeline, 
corresponding to approximately 1000 polygons per frame. 

7. 	 Conclusion 

An architecture for MAGIC II has been presented, showing how it can be 
used for any of the geometry algorithms typically required in a polygon-based 
graphics system. A general purpose nature within the chip itself has been 
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cultivated, resulting in a very flexible device suitable for many vector/matrix type 
calculations. 

Various system configurations have been discussed, each using multiple 
instances of MAGIC II; performance estimates for the different configurations have 
been included, demonstrating the suitability of MAGIC II for a wide range of 
applications, from personal computers to state-of-the-art flight simulator visual sys­
tems. 
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