
A Multiple Application Graphics Integrated Circuit

MAGIC II

H.R Finch, M. Agate, A.A. Garel, P.F. Lister, RL Grimsdale.

School of Engineering and Applied Sciences

University of Sussex

Fa/mer

Brighton

East Sussex BNt 9QT

United Kingdom

This paper describes the design considerations for a polygon graphics
geometry processor subsystem. The architecture for a Multiple Application
Graphics Integrated Circuit (MAGIC II) is outlined, and low, medium and high per­
formance system configurations using MAGIC II are discussed.

1. Introduction
Computer graphics research has been prominent in the research activities at

the University of Sussex for some years, particularly in the area of specialised, dedi­
cated hardware. The current major project, PRISM, is directing significant effort
towards the design of custom chips for graphics tasks, using VLSI technology. The
potential offered by VLSI for large, powerful processing and memory devices make
it ideally suited for the computer graphics application - existing high performance
graphics systems (such as flight simulator visual systems) rely heavily on large
volumes of hardware in order to attain the processing speed necessary.

PRISM (Processors for Real time Image Synthesis and Manipulation) is
funded under the Alvey programme, and is run collaboratively with GEe Research
Ltd. at Wembley, and Singer Link Miles at Lancing.

The aim of the project is to produce a modular, expandable chipset capable of
performing all the operations necessary to transform three dimensional databases in
to realistic visual images. The proposed applications for the chipset range from
small personal computer based systems, through high performance CAD systems,
to full state-of-the-art flight simulator visual systems. The requirement can hence be
seen, at the high end, for real time operation, processing a large number of
polygons to a high degree of visual realism. At the low end, however, system cost is
an overriding factor and a reduction in hardware, giving reduced performance,
must be possible.

http://www.eg.org
http://diglib.eg.org

82

The overall system has been notionally divided, in the traditional way, into 3
subsystems: the database processor, which selects portions of the database for pro­
cessing, the geometry processor which transforms and clips 3D world model objects
into displayable 2D objects, and the display processor whose function is to perform
various sorting and visual enhancement algorithms on the data before displaying it.
This paper is primarily concerned with the geometry processor subsystem, and
MAGIC II (Multiple Application Graphics Integrated Circuit) the chip designed to
implement it.

2. 	 Geometry Algoritlnns

The operations performed in the geometry subsystem are well defined and
based on existing algorithms [1], [2]. Some mathematical manipulation has been
necessary, however, in order to optimise the performance in hardware.

The algorithms are as follows:

(l) 	 Back facing surface removal - this is a simple dot product plus offset calcula­
tion to determine the orientation of each surface.

(2) 	 Parallel projection - a single matrix-vector multiplication and addition. It can
be reduced to individual dot product plus offset calculations. Screen scaling
factors are incorporated in the view matrix to eliminate extra calculations later
on.

(3) 	 Clipping - this can either be 3D clipping (to a number of planes or a view
cone) or 2D clipping (to lines representing the screen boundary). 3D clipping
is the 'generic' algorithm, with 2D forming a special case within this. The
Sutherland Hodgman method of clipping all objects to each plane/line in turn
has been adopted, and although this can result in the generation of extraneous
edges for concave polygons, it is not considered to be a serious problem. The
clipping operation has been split into two parts, namely calculation of the
parameter, lamda, for each edge (vertex pair), and the intersection calculation
using lamda to interpolate between the two vertices.

(4) 	 Perspective division - the x and y coordinates of each vertex are divided by
their depth value (or multiplied by their proximity value) and added to the
coordinates of the screen centre. Screen coordinates are thus generated.

(5) 	 Calculation of gradients - gradient values for x, y, z or proximity, and intensity
are needed by the display processor. These are calculated in the normal way
with two subtractions and a division.

3. 	 Geometry System Architectures

The architecture of the geometry system must be viewed at two distinct levels:
the system level and component level. These are related.

Firstly, due to the computationally intensive nature of the geometry tasks,
some degree of parallelism must be employed at a system level in order to achieve

83

adequate performance. In terms of hardware, or, more specifically, VLSI chips, this
parallelism can be achieved in several ways.

Data- f-tIo~
base Database Processor

Partial

Database

Partial
lbtaI:xl

Trans­
formed
Data

Display System

Partial
DatoOO

Trans­
formed
Data

rans­
formed
Data

Figure 1: SIMD Style Geometry System.

The most obvious method of implementing a parallel processing scheme is to
replicate functionality within the system: in the geometry system this means allocat­
ing database objects to a number of chips, each performing the entire geometric
transformation, figure 1. This can be thought of as 'vertical parallelism', or a
SIMD (single instruction multiple data) configuration [3], and is the technique used
in an earlier design, MAGIC I [4]. Although effective for low and medium

84

performance systems, it is envisaged that the complex data and resource allocation
schemes needed for a large number of chips, and its reliance on a microprogram
and von Neumann style architecture, make the technique inappropriate for very
high performance applications such as flight simulation.

A development of the SIMD idea is that of the array computer comprising a
2D array of interconnected processing elements, figure 2. While this offers still
greater performance enhancements over non-parallel systems, the tasks of schedul­
ing and synchronisation are difficult and not really necessary for the task in hand.
An array configuration may be appropriate for graphics computation using only
general purpose processing elements - transputers, for example, but performance is
unlikely to match that of dedicated chips within the same economic bounds.

---@J

I
I

I

I

I

I

I

I

I
 I
I

I I

I I

I

~- ---------[fuE1 ~
Figure 2: Array of Processors.

An alternative to vertical parallelism is 'horizontal parallelism', or pipelining.
This type of system comprises a number chips connected serially; each chip per­
forms only a part of the overall geometry calculation, but a pipeline of such chips
together performs all the necessary operations. Data flows through the pipeline,
'stopping' at each stage to be processed; once the pipeline is full, all the geometry

85

operations are perfonned simultaneously but on different database elements,
figure 3.

Figure 3: PipeJined Geometry System.

Although a single pipeline of chips may have a limited performance, it is pos­
sible to employ parallel pipelines (resulting in 2D parallelism) with the problem of
data allocation techniques being significantly less severe than in the fully vertical
case, figure 4. Very high performance systems are thus easily attainable.

OP
1

OP
2

OP
11.

OP
n.

OP
11.

1-----1

Figure 4: Parallel Pipelined System.

If each chip in the pipeline described has a fixed functionality, the smallest
system possible is the single pipeline. This may give rise to a chip count that is

86

prohibitively high for small, PC based applications. It is therefore desirable for the
chips to be reconfigurable to perform some or all of the operations that occur in
the pipeline. With appropriate buffering arrangements, this means that the data can
make several passes through a reduced length pipeline, resulting in lower perfor­
mance. In the extreme case, the geometry system might consist of only one chip
with a data pass for every algorithm to be performed, figure 5.

EJ RAM

DB
PRO(

1

Figure 5: Reduced Length Pipeline Geometry System.

This style of system architecture, then, provides a modular, expandable
approach with systems ranging from a single chip with controller, to highly parallel
pipelined systems. For this reason, the architecture of MAGIC II has been designed
with such a scheme in mind.

4. Architectural Considerations for MAGIC II
The fundamental principle of pipelined systems is that every stage in a system

should have the same time delay. This ensures that all stages produce and consume
data at the same rate, resulting in a continuous, even flow of data from one end to
the other. If any stage in a pipeline introduces extra delay, this delay will propogate
to the output and impair the performance of the entire pipeline.

The algorithms in the geometry system involve varying degrees of complexity
and hence varying time delays. An instance of MAGIC II configured to perform
any of the algorithms cannot, therefore, be regarded as the fundamental pipeline
stage, and internal pipelining is necessary. Such pipelining is extremely well suited
to the graphics geometry problem due to the repetitious nature of the task and the
large quantities of data involved; broadly speaking, every vertex (or vertex pair)
undergoes exactly the same processing. Pipelining is also a favoured technique
when designing VLSI devices since local and regular connections can be made - the
large cost in terms of time, power and silicon area of long, complex connections is
eliminated [5]. Other factors to consider when designing systems using VLSI
include the need for repetition, simplicity and regularity: it is very much easier to
use a small number of simple cells which can be replicated many times, than to use

87

a large, complex design to solve the same problem. Pipelining meets this constraint,
since only a few basic elements, such as arithmetic units and registers, are required.

Set up loIord
I II un -I

Input 1

c::>-t,
Outpu

Tags

~ 32

Tog,

Holdoct

Clod<

Instruction decode

1 1 1- u --I

Registers RI

~B~
,---

FIFO

q-

~
---j

=------i

t:n ~
r-~

!o-
:j}

~--;;;-R2

""31r-~f--

Clock t=t--divider

R3
{} FIFO :{}- FIFO

:1
t-~H

[J~
~-

Tags/Hags

PLA run time (ontrol

R4

~II'II ':

III I Itl I ~

I

~'"
~

Figure 6: Architecture of MAGIC II.

In order to ensure optimal performance of MAGIC II for the five geometry
algorithms, each algorithm has been considered in turn, and a pipeline of arith­
metic and register units designed to implement it. The architectures for each algo­
rithm were verified using the hardware description language and simulation tool,
ELLA. ELLA provides a high level language which can be used to describe circuits
at various levels of abstraction, from top-level functional representations down to
gate level descriptions. The architectural elements of each of the algorithms have
been combined and 'generalised' into an architecture capable of performing all the
geometry tasks efficiently, figure 6. Although MAGIC II has been designed to sup­
port five specific algorithms directly in hardware, additions to the basic 'skeleton'
architecture provide an element of flexibility. More general purpose functionality is
available, catering for possible future CGI requirements, display processor func­
tions and certain signallimage processing tasks. Modifications to the original algo­
rithms may also be possible. It is noteworthy that the provision of additional func­
tionality does not incur any run time performance degradation, assuming the extra
algorithms can be implemented directly using the hardware resources available.
This can be likened to the RISC (Reduced Instruction Set Computer) philosophy

88

[6] where most algorithms can be implemented with very high performance using
only a small, basic instruction set. If the algorithm is not suitable, however, perfor­
mance may be very low - such cases are assumed to be infrequent for RISC, and a
similar assumption can be made for MAGIC II within the class of applications
described.

5. 	 Operation of MAGIC II

The architecture of MAGIC II is essentially a pipeline of arithmetic and regis­
ter file elements, with each element connected via several multiplexers to the next.
The arithmetic elements are an array multiplier/divider and several
adder / subtractors, and the register files are specially designed units suitable for
general vector manipulation, figure 6.

The chip has two input ports and one output port; if a second output port is
required (this is rarely necessary), this can be provided by an additional instance. of
MAGIC II in parallel. A bus has been included which effectively bypasses all the
functional units and register files, the data from which can be 'tapped in' to the
pipeline at any point. This is typically used to carry the offset, from the second
input port, in dot-product-plus-offset type calculations.

Control of MAGIC II falls into two categories: setup type control, which
configures the pipeline to perform a given task, and run-time control which coordi­
nates 'conditional', data dependent operations. Setup control signals are multi­
plexed onto the data port lines and these are then decoded into a very long instruc­
tion word (about 128 bits) to configure the register structures, arithmetic units and
interconnections within the pipeline. The pipeline is then switched to run time con­
trol.

Run time control is effected by a PLA structure which takes flags (from the
arithmetic units) and data tags as input, and produces control signals (usually for
data routing) for all elements in the pipeline. Each piece of data in the pipeline has
an encoded 'tag' associated with it; the tags 'follow' the data through the pipeline
in parallel tag registers so that the internal controller 'knows' the context of the
data. For example, the Last vertex in a polygon always has a particular tag so that
the controller can generate a closing edge using saved first vertex data.

6. 	 MAGIC II System Configurations

The MAGIC II processor provides direct support for three different levels of
pipeline complexity, as typified in the following:

A minimum geometry system, based on two instances of the MAGIC proces­

sor.

A fully pipelined system with a single numeric data stream, offering perfor­

mance sufficient for use in flight simulators.

A pipelined system with three parallel streams of vector elements, gIvmg a

very high performance for use in future simulators.

89

The first of these systems utilises pipelining only at a numeric processing level (for
example, a single chip may execute 32 simultaneous divide operations). The second
pipeline operates at and the third runs at 'vector rate', processing entire vectors at
each clock. Other systems of intermediate performance are also possible, using
buffering around partial pipelines. A further option, as described in section 3, is to
operate a number of parallel pipelines at element rate, offering greater potential for
increased performance than the vector rate system.

Host

Machine

RAM1

MAGIC II MAGIC II

MUX DEMUX

Figure 7: Minimum MAGIC II geometry system.

The minimum number of chips required to implement all of the geometry
operations is two, since each clipping operation requires a parameter calculation
and an intersection calculation working in paralleL The two processors must each
be configured for a single geometric operation prior to the data being passed
through, and buffering is required so that intermediate results are stored after each
pass. This gives rise to the system shown in figure 7, with two blocks of RAM and
appropriate multiplexing to allow alternate read and write access to each block.

Because of the need to reconfigure the MAGIC II processors before each pass,
control of the minimum system is more complex than for the fully pipelined
configurations. In addition to performing initialisations, the controller must main­
tain frame synchrony with the host, control the multiplexer and demultiplexer, and
generate RAM addresses. A standard sequencer such as an AMD 2910 is suitable
for this, though it is omitted from figure 7 for clarity.

Figure 8 shows a fully pipelined geometry system comprising element rate
modules for parallel projection, perspective projection and clipping to a near plane
and the edges of the screen. A single back facing surface remover interacts with
the controller to determine which surfaces are subsequently passed through the
pipeline. A total of sixteen instances of MAGIC II are required.

90

Parallel Project Module

Back facing surface
removal

Clip bottom Clip top (I ip left (I ip right

To
Display
System

Figure 8: Element rate pipelined geometry system.

The vector rate pipeline is shown in figure 9, although separate instances of
MAGIC are not indicated within each module. A bus width of 96 bits is required
from the database (128 if homogeneous co-ordinates are used, or if intensity values
are associated with each vertex). The system shown comprises 36 MAGIC II pro­
cessors.

An estimate of the performance of the minimum system is most easily derived
from consideration of the fully pipelined systems, so this is deferred to last. An
average of 4 vertices per polygon are assumed, with a real time frame rate of 60Hz.
The pipeline is assumed to be clocked at lOOns. Since it is difficult to quantify the
number of surfaces which are back facing or off-screen in anyone frame, the
number of polygons processed is discussed in preference to the number displayed.
Polygons which are off-screen will give rise to empty data slots at the clipping
stages, while those detected as back facing will yield only a few empty data slots
between potentially visible surfaces.

An element rate transformation pipeline is capable of reading a single carte­
sian co-ordinate vertex with associated intensity value every 4 clock periods. This
corresponds to a rate of 2.5 million vertices per second, or approximately 10,000

91

Controller

IYI I I

oJHost
Back faci~
surface re oval

Parallel project module Near plane clip Perspe~~
project

L
L...----.

"'Iio
f-- Display
f-- System

Clip bottom Clip top Clip left Clip right

Figure 9: Vector rate pipelined geometry system.

polygons processed per frame. The vector rate equivalent runs at four times this
speed, giving a processing rate of 40,000 polygons per frame.

The 2-chip equivalent of the above pipelined system has only a single module
which is reconfigured for each operation. Referring to the element rate pipeline it
can be seen that the clipping phase will take 5 passes, perspective projection and
back facing surface removal will each take one pass, as will back facing surface
removal, and the parallel projection phase will run 3 times slower. The whole pro­
jection therefore runs at about one tenth of the speed of the element rate pipeline,
corresponding to approximately 1000 polygons per frame.

7. 	 Conclusion

An architecture for MAGIC II has been presented, showing how it can be
used for any of the geometry algorithms typically required in a polygon-based
graphics system. A general purpose nature within the chip itself has been

92

cultivated, resulting in a very flexible device suitable for many vector/matrix type
calculations.

Various system configurations have been discussed, each using multiple
instances of MAGIC II; performance estimates for the different configurations have
been included, demonstrating the suitability of MAGIC II for a wide range of
applications, from personal computers to state-of-the-art flight simulator visual sys­
tems.

8. References

[1] 	 Newman, W.M. and R.F. Sproull "Principles of Interactive Computer Graph­
ics", McGraw Hill (1979)

[2] 	 Foley, J.D. and A Van Dam "Fundamentals of Interactive Computer Graph­
ics", Addison Wesley (1982)

[3] 	 Levin, D. "Theory and Design of Digital Computer Systems", Nelson (1980)

[4] 	 Agate, M., H.R. Finch, AA Garel, P.F. Lister, R.L. Grimsdale "A Multiple
Application Graphics Integrated Circuit - MAGIC", Eurographics '86, Elsevier
Science Publishers B.V., The Netherlands (1986)

[5] 	 Foster, MJ. and H.T. Kung "The Design of Special Purpose VLSI Chips",
IEEE Computer, Jan. (1980)

[6] 	 Katevenis, M.G.H. "Reduced Instruction Set Computer Architectures for
VLSI", MIT Press (1985)

