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Rational B-spline surfaces make it possible to merge the concepts of 
freeform surfaces and that of surfaces described by rational polynomials espe­
cially conic sections. For ray tracing it is crucial to determine the intersection 
between ray and object. Therefore an algorithm is developed that is suitable for a 
VLSI implementation. Some alternatives for the implementation of this algorithm 
are presented and discussed. The paper concludes with a discussion of some 
problems and possible further developments. 

1. Introduction 

During the last years ray tracing has proved to be an excellent way for gen­
erating high quality images [8,9,11,14]. Ray tracing facilitates the modeling of 
effects like reflection, refraction and cast shadows. The drawback of this method is 
the huge amount of computations necessary. Although many efforts have been 
made to speed up ray tracing it remains relatively slow. 

This becomes even more true, if not only the objects of the CSG world are 
allowed to be in the scene [5]. Usually freeform surfaces are a better way to get an 
appropriate description of real objects. Today these are mostly Bezier or B-spline 
surfaces. These methods approximate or interpolate given control points to achieve 
a closed surface with certain continuity at all points of the surface. It has turned 
out, however, that certain, oftenly used solids cannot be described exactly with the 
means of B-spline surfaces. (Bezier surfaces are a special case of B-spline surfaces.) 
Especially conic sections can only be approximated by B-splines. Surfaces that can 
be described by rational polynomials do not show this restriction [2,4,6,7, 12, 13]. 
Therefore it would be desirable to be able to process such surfaces with ray tracing. 

Since ray tracing freeform surfaces costs much computing time it seems to be 
reasonable to provide hardware support for at least some crucial parts of the ray 
tracing process. Because a ray tracer spends most of the time seeking the intersec­
tion of a ray with an object it seems to be most promising to implement this step in 
hardware. 

http://www.eg.org
http://diglib.eg.org
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2. 	 Rational B-splines 
This section will give briefly the definition of a rational B-spline surface. Then 

some of its properties win be stated and discussed. 

A rational B-spline surface is obtained, if instead of 3D coordinates 
(pX,pY,PZ) for a point Pits 4D homogeneous coordinates (px,pY,pz,pW) are used. 
The transformations from 3D coordinates into homogeneous coordinates and vice 
versa are well known : 

P (px,pY,pz,pW) = pW(pX,PY,PZ,I) = pW(P,I) 

where 
x )l Z 

px L. pY = L. pz = L 
w' w' W 

p P P 
A rational B-Spline surface q(u, v) (in homogeneous coordinates) is given by 

the equation (in vector notation !) : 
m n 

q(u,v) = ~ ~PVNi,k(U)'N),l(v) (1) 
i =00) =0 

with Pi,) being the control points in homogeneous space and Ni,k (Nj,/) the basic 
B-splines of degree k (I) as defined in [1], 

The 3D-coordinates of this surface are obtained by division by the w-

component of q: 

~Q(u,v) 
qW(u, v) 

m 11 

~ ~Pi,rNi,k(U}Nj,l(v) 
i =oL =00 
m 11 

~ ~ pf,rNi,k(U }Nj,/(v) 
i =OJ =00 

m 11 


~ ~pf,r(Pi,j' l}Ni ,kCu)·Nj,/(v)

i=oL=o 

m 11 

~ ~pf,rNi,k(U)'Nj,/(v) 
i =0 OJ =0 

As can be seen from equation (1) rational B-spline surfaces are defined as 4D 
B-spline surfaces in homogeneous coordinates. Therefore all properties of 3D B­
splines that are defined in terms of single coordinates hold for the rational B-spline 
scheme too. Some important properties of rational B-spline surfaces are listed 
below [7, 12, 13]: 
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(PI) The locality of B-splines is preserved for rational B-splines, i.e. a point on the 
surface is influenced by no more than k·/ control points. 

(P2) Rational B-spline surfaces are piecewise defined rational surfaces. They are 
therefore suited for the representation of all rational surfaces. 

(P3) The w-component prj of a control point Pi,} is a direct weight for Pi,}. 

(P4) All points on the surface q(u, v) lie within the convex hull of the control points 

Pi.}' 

(P5) All methods that operate separately on each coordinate x,y,z of a 3D B-spline 
surface can be easily extended to rational B-spline surfaces (= 4D B-spline 
surface). 

3. 	 Ray tracing of rational B-spline surfaces 
Image generation with ray tracing can be decomposed into two main steps. 

The first step tests all objects in the scene (or a subset of these objects) against the 
ray. The second steps performs a choice among all objects hit by the ray. That 
object which is intersected first by the ray is chosen. The value of that pixel the ray 
is sent through is determined by the properties of the chosen object (Figure I). 
These properties include color, transparency, translucence, reflectance, glossiness 
and texture. 

P I X e I 

V lew­

poi n t See n e 
Screen 

Figure 1: Principle of ray tracing 

It has been found that the second step is less important with regard to the 
computation time [11]. This means that a ray tracer spends most of the time calcu­
lating the intersection of the ray with objects. For the class of objects dealt with in 
this paper, namely freeform surfaces, especially rational B-spline surfaces, there are 
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two basic approaches to determine the intersection. The first one calculates the 
exact intersection by solving a system of equations. This method is restricted to a 
small class of surfaces. Therefore it is beyond the scope of this paper and won't be 
discussed any further [5]. 

,.
spline curve ray 

/' 

original 

control point 

polygon 

Figure 2: Determining the intersection by recursive subdivision 

The second approach tries to get an approximation of the intersection by 
recursive subdivision of the surface in subpatches [8,14]. Only those subpatches 
are treated further that may be intersected by the ray. A possible criterion for 
further processing a subpatch could be the bounding box of the defining control 
points. Since the bounding box is a superset of the convex hull of the control point 
net (see property P4 of the rational B-spline surface), it is guaranteed that every ray 
that intersects the surface intersects the bounding box too. Figure 2 illustrates this 
fact with a curve. (To maintain clearness the control points of the subcurves are 
not drawn.) 
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function get intersection1 (patch,no subdivisions) : boolean; 
begin - ­

ok := false; 
if no subdivisions > 0 

then 
begin 

no subdivisions := no subdivisions - 1 

subpatch[1 . .4] := subpatches _of (patch) ; 
for i:=1 to 4 do 

intersection[i] := intersect_with (bounding_ box(subpatch[i])) ; 

sort_ subpatches; {i-th subpatch is the i-th hit by the ray } 

for i:=1 to 4 do 
begin 

if intersection[i] then 
ok := get intersection1 (subpatch[i],no subdivisions) ; 
if ok then -goto RETURN ; -

end; 
end 

else 
ok := true; 

RETURN: 
get_intersection1 := ok ; 

end; 
original patch 

get _I n t e r sec t Ion 1 

sub pat c h ['. 4 I 

get _I n Ie r sec t jon 1 get_lntersectlonlget_lntersectlon1 gel_lntersectlon1 

5 U b pat c h [1 .. 4 J sub pat c h [1 .. 4 I sub p a I c h [1 .. 4 1 subpatch 11.,4J 

Figure 3: Recursive version of the subdivision algorithm 
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It can be seen from Figure 2 that it may happen that the ray hits more than 
one bounding box. If this happens all subpatches concerned have to be subdivided 
further. If even in the end of the subdivision process there are multiple intersections 
only the first (nearest) intersection is regarded. This restriction makes sense for the 
generation of high quality pictures. If only the first intersection is of interest it 
would be efficient to process the subpatches in the order they are intersected by the 
ray. This requires sorting the patches. 

It is very easy and straight forward to implement the, intersection processor in 
a recursive manner. Such an algorithm can be easily mapped onto an architecture 
employing a multiprocessor tree. Figure 3 shows the algorithm and the correspond­
ing architecture. 

Since a multiprocessor tree approach would require much communication 
between the nodes this does not seem to be the best choice. Another possibility for 
the intersection algorithm is an iterative approach. Such an approach gives rise to 
another problem: How to deal with temporary subpatches that cannot be processed 
immediately? They have to be stored on a stack. But pushing a subpatch onto a 
stack means to push the defining control points. This is a considerable amount of 
data. A way out of this problem may be the following: Instead of storing the con­
trol points of the subpatch, only the way one had obtained the subpatch is stored. 
This means only the path from the original surface is stored. This data could be 
stored in a few bytes. Unfortunately this path has to be followed again when the 
patch is popped from the stack. This is a time consuming step. A combination of 
both methods is most promising. Instead of storing only either control points or 
pathes we use both methods. In general only the path that generated a subpatch is 
stored. But after a certain number of subdivisions the control points are saved, 
Thus all following subdivisions can be defined relative to these control points. As 
far as I know this approach has been published first by Pulleyblank and Kapenga 
[8]. They called it subdivision in stages. Figure 4 shows the algorithm. 

The two intersection algorithms discussed are only extremes of a spectrum of 
solutions that varies from massively parallel to serial alternatives. The iterative, 
serial solution is a quite simple solution. The recursive and parallel alternative is a 
bad tradeoff between speed and used resources because rarely all nodes of the tree 
contribute to the result. This means in most cases many nodes (processing ele­
ments) are idle. Therefore further research has to be done to find an architecture 
that eliminates these drawbacks. I will restrict myself to the iterative approach (sub­
division in stages) throughout the rest of the paper. 
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function get intersection2 (patch,no subdivisions,path length) : boolean; 

begin - ­

if no subdivisions > 0 then 
begin 


pi := path length; 

push cp (patch) ; { --> control point stack} 


repeat 

pi pl-1; 

if pl=O then 


begin 

pi path length ; 

push cp (patch) ; 


end; 

subpatch[1..4] := subpatches of (patch) ; 
fori:=1 t04do ­

intersection[i] := intersect_with (bounding_box(subpatch[i])) : 

sort_ subpatches ; 

for i:=1 to 4 do 
if intersection[i] then 

push path (subpatch[i],no subdivisions, pi) ; 
- { --> path stack } 

ready := true; 
if not empty(path stack) then 

begin 
pop path (patch,no subdivisions,pl) ; 
ready (no subdivisions=O) ; 
if ready then get intersection2 true ; 

end ; ­

until ready ; 

end; 


end; 


Figure 4: Algorithm for subdivision-in-stages 

4. Subdivision algorithm 

Because of the property P5 of the rational B-spline surface, subdivision algo­
rithms developed for normal B-spline surfaces can be used also for rational B-spline 
surfaces. A well known method for the subdivision of B-spline curves is the OSLO­
algorithm of Cohen et. aL [3]. This algorithm starts from an old knot vector, old 
control points, and a new knot vector that is a superset of the old one. It generates 
the corresponding new control points. The algorithm is listed in Figure 5. 
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Given: 

Pi, i 0 ... n : old control points 

7'i, i 0 ... n +k : old knot vektor 

ti,t O· .. q : new knot vector (q ;;;. n +k) 

k : order of the B-splines) 

It generates the new control points dj ,j = 0 ... q ~ k, as follows: 

d p[k)
J Il,j 

p[l] p.
[,j [ 

p[r.+ I) (tj H -r -7'i)pl~) +(1'i Hr - ti H -r)p\,l),j 

[,j 1'i +k -r ~7'i 


7'1l ~ tj < 7'1l+1 

Figure 5: The OSLO-algorithm 

The OSLO-algorithm is a very powerful method. But it shows some problems 
with regard to an implementation in VLSI. First, it needs 0 (k 2) storage elements. 
Second, the division occuring in the computation of pt/IJ is very unpleasant. Both 
drawbacks can be overcome by a suitable modification. Since each iteration pl~/ 1] 

needs only the previous iteration step r, it is possible to compute and store all Pi.) 

in one field of length k. According to [10] the division step can be eliminated by 
additional multiplications. The modified OSLO-algorithm is shown in Figure 6. 
This form does not contain divisions in the inner loops. There is only one final 
division step (*). If several subdivision steps have to be carried out in succession, 
the final division can be postponed until after the last of these subdivisions. This is 
possible if the III are not initialized to one but to the value of the III from the pre­
vious subdivision (as indicated in the figure). Although the additional multiplica­
tions seem to slow down the subdivision process, this form is favourable for a VLSI 
implementation. Since the silicon area for the divider is saved, more area can be 
consumed to implement more and/or faster multipliers. Hence the modified 
OSLO-algorithm may be faster than the original one. Another aspect of the 
modified OSLO-algorithm is that it can be easily parallelized. The Ri and fi can be 
computed in parallel. Therefore further speed up is inherent to this algorithm. 
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for i : = JL - k + I to JL do 

begin 


Rj : 

if first or single subdivision 
Ji: from preceding subdivision 

end; 

for r : = 1 to k I do 

for i: JL downto JL - k +I +r do 


begin 

Tl:=(~+k-r-TjfJi 1; 

T2:= \TiH-r-!JH-r}Ji; 

Ri : Tl·Ri +T2·Ri 1; 

Ji: (Tj +k -r -TifJi I·Ji; 
end: 

Figure 6: The modified OSLO-algorithm. «*) : see text) 

5. A proposal for an architecture 

Figure 7 shows the architecture of an intersection processor for ray tracing 
rational B-spline patches. The registers that can be accessed by the host, store 
parameters and control points of the patch. Two stacks serve as temporary memory 
for subpatches that have to be processed further. They contain control points or the 
path how a patch has been constructed. They are necessary for the subdivision in 
stages. The heart of the system is the actual intersection unit. This block is com­
posed of a subdivision block, blocks that compute the bounding box of a subpatch, 
and blocks that determine the intersection between a ray and a box. 

The central block of the intersection unit is the subdivision unit. It is com­
posed of three bisecting units (Figure 8). 

The bisecting units itself are implementations of the modified OSLO­
algorithm. Its implementation gives rise to some problems that stem from the 
many multiplications. Depending on the restrictions with respect to speed and chip 
area there are different optimums in degree of parallelism. Two levels where a 
parallelization may take place have to be distinguished. The first level is the 
modified OSLO-algorithm as a whole. Here a tradeoff between speed and chip area 
means to decide how many Rj and Ji are computed simultaneously. Figure 9 shows 
a completely parallel solution. 
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Figure 7: Overview of the intersection processor 

Since all Ri and Ii of one iteration are calculated at once in the k computa­
tional units Ci , k steps are necessary to compute a new control point. If it is too 
expensive to provide k computational units it is possible to use fewer Cj. The 
extreme case is only one computational unit (Figure 10). On average there are 
(k +1) /2 steps necessary to compute the Rj and k Therefore k (k +1) / 2 steps are 
required to determine a new control point. 
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Figure 8: Subdivision unit 

Until now it was assumed that the Ri and ji can be determined in one step. 
This is true if an architecture like that one in Figure 11 is used. This demands the 
realization of 6 multipliers and 2 adders/subtractors. The time spent for the calcu­
lation of the Ri and ji equals the propagation time of two multipliers and one 
adder. 
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fj 
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Figure 9: Massively parallel realization of the subdivision algorithm (The blocks Cj im­
plement the computations of the R j and it.) 

Computational unit 
serial parallel 

Sub­ ser. M: 2 M: 6 
• divi- A: 2 A: 2 

sion- S: 2k(k + I) S: 1I2k(k + 1) 
algo­

i rithm i M'S: 4k{k +1) 1M. S : 3k(k+l) 
!M: 2k M: 6kI par. 

A: A: 2k 
is: S: k! !Z I

L 8k 2 6k 2II M·S: M'S: 
'------­

Table 1: Comparison of different approaches for the implementation of the bisecting 
unit (The four entries in each field are : number of multipliers (M), number of 
adders/subtractors (A), number of steps for the calculation of a new control point (S), 
product of M and S (M . S) ) 
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Figure 10: Serial realization of the subdivision algorithm 

If such a solution wastes too much chip area, an implementation with less 
multipliers has to be considerd. In this case slower operation has to be taken into 
account. Figure 12 demonstrates one possibility. 

The computation of the R j and Ji takes two steps each. Hence in total four 
steps are necessary. 

Table 1 summarizes the different realizations discussed above. If the total 
costs of the subdivision unit are defined as the product of the multipliers and the 
required steps one gets an estimation for the quality of each solution. It can be seen 
easily that the alternative with one parallelly implemented computational unit is 
best. This results in a bisecting unit that is built like the structure in Figure 10 with 
computational units from Figure ] 1. 
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Figure 11: Parallel implementation of the computational units 

Table 2 compares the computational units that are required for the OSLO­
algorithm with those for the modified OSLO-algorithm. As expected each alterna­
tive of the modified OSLO-algorithm shows advantages compared to the original 
OSLO-algorithm. Either it is only a little bit slower but needs less silicon or it 
needs more chip area but is faster. 

araliel se 

Multipliers 2 2 
Adders / sub tractors 2 2 
Dividers I 
Time estimation ID + 1M 4M 2M 

Table 2: Comparison of the computational units for the OSLO-algorithm and its 
modification 
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In­[__I...... 
Figure 12: Serial implementation of the computational units 

6. 	 Some unsolved problems and a prospect 
There are still some questions beyond the scope of this paper that have to be 

answered before a VLSI implementation may become reality. 

First there are some architectural aspects. As already discussed in chapter 3 it 
is possible to distribute the intersect-and-subdivide algorithm on multiple process­
ing elements. A structure that pays attention to the fact that usually not all sub­
patches are hit by the ray could be an attractive aim of further reasearch. To 
achieve an efficient use of the two stacks that are required by the subdivision in 
stages it is mandatory to develop good caching schemes to allow fast swapping of 
subpatches to and from the chip. 

Another class of questions deals with limitations of the chip with regard to the 
order of the B-splines and the number of control points. More detailed investiga­
tions have to be done especially in the field of surfaces that can be generated by the 
rational B-spline scheme. Some results indicate that k :s;;; 5 and a control point net 
of 5 by 5 are sufficient. 

If these question have been answered satisfactory such a chip will ease the use 
of normal and rational B-splines in geometric modelling systems. Since a great class 
of objects can be represented exactly by rational B-spline surfaces, including conic 
sections, spheres etc., this could be a way for a general and uniform discription of 
scenes. Hardware like this that assists rendering these objects will enable the fast 
generation of high quality pictures. 
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7. 	 Conclusions 

Starting from the desire to be able to use rational B-spline surfaces for the 
generation of high quality pictures, methods have been developed that allow the 
integration of rational B-spline surfaces into a ray tracer. The central part of all 
ray tracing algorithms is a fast algorithm for determining the intersection of object 
and ray. To achieve this for rational B-splines a subdivide-and-intersect algorithm 
has been presented. The crucial part of this algorithm is the subdivision algorithm. 
A modification of the OSLO-algorithm given in [10] has been employed. These 
algorithms have been discussed with regard to a VLSI implementation and various 
alternatives with different degrees of parallelism have been suggested. Using a qual­
ity criterion that contains the number of multipliers used and the computation 
time, one alternative has been chosen. In the end some unsolved problems have 
been mentioned for further research. 
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