
Ray Tracing Rational B-Spline Patches in VLSI

Bengt-Olaf Schneider

University of Tubingen

Wilhelm-Schickard-Institut fOr Informatik

Graphisch-Interaktive Systeme

Auf der Morgenstelle 10, C9

7400 hJbingen, FRG

Rational B-spline surfaces make it possible to merge the concepts of
freeform surfaces and that of surfaces described by rational polynomials espe­
cially conic sections. For ray tracing it is crucial to determine the intersection
between ray and object. Therefore an algorithm is developed that is suitable for a
VLSI implementation. Some alternatives for the implementation of this algorithm
are presented and discussed. The paper concludes with a discussion of some
problems and possible further developments.

1. Introduction

During the last years ray tracing has proved to be an excellent way for gen­
erating high quality images [8,9,11,14]. Ray tracing facilitates the modeling of
effects like reflection, refraction and cast shadows. The drawback of this method is
the huge amount of computations necessary. Although many efforts have been
made to speed up ray tracing it remains relatively slow.

This becomes even more true, if not only the objects of the CSG world are
allowed to be in the scene [5]. Usually freeform surfaces are a better way to get an
appropriate description of real objects. Today these are mostly Bezier or B-spline
surfaces. These methods approximate or interpolate given control points to achieve
a closed surface with certain continuity at all points of the surface. It has turned
out, however, that certain, oftenly used solids cannot be described exactly with the
means of B-spline surfaces. (Bezier surfaces are a special case of B-spline surfaces.)
Especially conic sections can only be approximated by B-splines. Surfaces that can
be described by rational polynomials do not show this restriction [2,4,6,7, 12, 13].
Therefore it would be desirable to be able to process such surfaces with ray tracing.

Since ray tracing freeform surfaces costs much computing time it seems to be
reasonable to provide hardware support for at least some crucial parts of the ray
tracing process. Because a ray tracer spends most of the time seeking the intersec­
tion of a ray with an object it seems to be most promising to implement this step in
hardware.

http://www.eg.org
http://diglib.eg.org

48

2. 	 Rational B-splines
This section will give briefly the definition of a rational B-spline surface. Then

some of its properties win be stated and discussed.

A rational B-spline surface is obtained, if instead of 3D coordinates
(pX,pY,PZ) for a point Pits 4D homogeneous coordinates (px,pY,pz,pW) are used.
The transformations from 3D coordinates into homogeneous coordinates and vice
versa are well known :

P (px,pY,pz,pW) = pW(pX,PY,PZ,I) = pW(P,I)

where
x)l Z

px L. pY = L. pz = L
w' w' W

p P P
A rational B-Spline surface q(u, v) (in homogeneous coordinates) is given by

the equation (in vector notation !) :
m n

q(u,v) = ~ ~PVNi,k(U)'N),l(v) (1)
i =00) =0

with Pi,) being the control points in homogeneous space and Ni,k (Nj,/) the basic
B-splines of degree k (I) as defined in [1],

The 3D-coordinates of this surface are obtained by division by the w-

component of q:

~Q(u,v)
qW(u, v)

m 11

~ ~Pi,rNi,k(U}Nj,l(v)
i =oL =00
m 11

~ ~ pf,rNi,k(U }Nj,/(v)
i =OJ =00

m 11

~ ~pf,r(Pi,j' l}Ni ,kCu)·Nj,/(v)

i=oL=o

m 11

~ ~pf,rNi,k(U)'Nj,/(v)
i =0 OJ =0

As can be seen from equation (1) rational B-spline surfaces are defined as 4D
B-spline surfaces in homogeneous coordinates. Therefore all properties of 3D B­
splines that are defined in terms of single coordinates hold for the rational B-spline
scheme too. Some important properties of rational B-spline surfaces are listed
below [7, 12, 13]:

49

(PI) The locality of B-splines is preserved for rational B-splines, i.e. a point on the
surface is influenced by no more than k·/ control points.

(P2) Rational B-spline surfaces are piecewise defined rational surfaces. They are
therefore suited for the representation of all rational surfaces.

(P3) The w-component prj of a control point Pi,} is a direct weight for Pi,}.

(P4) All points on the surface q(u, v) lie within the convex hull of the control points

Pi.}'

(P5) All methods that operate separately on each coordinate x,y,z of a 3D B-spline
surface can be easily extended to rational B-spline surfaces (= 4D B-spline
surface).

3. 	 Ray tracing of rational B-spline surfaces
Image generation with ray tracing can be decomposed into two main steps.

The first step tests all objects in the scene (or a subset of these objects) against the
ray. The second steps performs a choice among all objects hit by the ray. That
object which is intersected first by the ray is chosen. The value of that pixel the ray
is sent through is determined by the properties of the chosen object (Figure I).
These properties include color, transparency, translucence, reflectance, glossiness
and texture.

P I X e I

V lew­

poi n t See n e
Screen

Figure 1: Principle of ray tracing

It has been found that the second step is less important with regard to the
computation time [11]. This means that a ray tracer spends most of the time calcu­
lating the intersection of the ray with objects. For the class of objects dealt with in
this paper, namely freeform surfaces, especially rational B-spline surfaces, there are

50

two basic approaches to determine the intersection. The first one calculates the
exact intersection by solving a system of equations. This method is restricted to a
small class of surfaces. Therefore it is beyond the scope of this paper and won't be
discussed any further [5].

,.
spline curve ray

/'

original

control point

polygon

Figure 2: Determining the intersection by recursive subdivision

The second approach tries to get an approximation of the intersection by
recursive subdivision of the surface in subpatches [8,14]. Only those subpatches
are treated further that may be intersected by the ray. A possible criterion for
further processing a subpatch could be the bounding box of the defining control
points. Since the bounding box is a superset of the convex hull of the control point
net (see property P4 of the rational B-spline surface), it is guaranteed that every ray
that intersects the surface intersects the bounding box too. Figure 2 illustrates this
fact with a curve. (To maintain clearness the control points of the subcurves are
not drawn.)

51

function get intersection1 (patch,no subdivisions) : boolean;
begin - ­

ok := false;
if no subdivisions > 0

then
begin

no subdivisions := no subdivisions - 1

subpatch[1 . .4] := subpatches _of (patch) ;
for i:=1 to 4 do

intersection[i] := intersect_with (bounding_ box(subpatch[i])) ;

sort_ subpatches; {i-th subpatch is the i-th hit by the ray }

for i:=1 to 4 do
begin

if intersection[i] then
ok := get intersection1 (subpatch[i],no subdivisions) ;
if ok then -goto RETURN ; -

end;
end

else
ok := true;

RETURN:
get_intersection1 := ok ;

end;
original patch

get _I n t e r sec t Ion 1

sub pat c h ['. 4 I

get _I n Ie r sec t jon 1 get_lntersectlonlget_lntersectlon1 gel_lntersectlon1

5 U b pat c h [1 .. 4 J sub pat c h [1 .. 4 I sub p a I c h [1 .. 4 1 subpatch 11.,4J

Figure 3: Recursive version of the subdivision algorithm

52

It can be seen from Figure 2 that it may happen that the ray hits more than
one bounding box. If this happens all subpatches concerned have to be subdivided
further. If even in the end of the subdivision process there are multiple intersections
only the first (nearest) intersection is regarded. This restriction makes sense for the
generation of high quality pictures. If only the first intersection is of interest it
would be efficient to process the subpatches in the order they are intersected by the
ray. This requires sorting the patches.

It is very easy and straight forward to implement the, intersection processor in
a recursive manner. Such an algorithm can be easily mapped onto an architecture
employing a multiprocessor tree. Figure 3 shows the algorithm and the correspond­
ing architecture.

Since a multiprocessor tree approach would require much communication
between the nodes this does not seem to be the best choice. Another possibility for
the intersection algorithm is an iterative approach. Such an approach gives rise to
another problem: How to deal with temporary subpatches that cannot be processed
immediately? They have to be stored on a stack. But pushing a subpatch onto a
stack means to push the defining control points. This is a considerable amount of
data. A way out of this problem may be the following: Instead of storing the con­
trol points of the subpatch, only the way one had obtained the subpatch is stored.
This means only the path from the original surface is stored. This data could be
stored in a few bytes. Unfortunately this path has to be followed again when the
patch is popped from the stack. This is a time consuming step. A combination of
both methods is most promising. Instead of storing only either control points or
pathes we use both methods. In general only the path that generated a subpatch is
stored. But after a certain number of subdivisions the control points are saved,
Thus all following subdivisions can be defined relative to these control points. As
far as I know this approach has been published first by Pulleyblank and Kapenga
[8]. They called it subdivision in stages. Figure 4 shows the algorithm.

The two intersection algorithms discussed are only extremes of a spectrum of
solutions that varies from massively parallel to serial alternatives. The iterative,
serial solution is a quite simple solution. The recursive and parallel alternative is a
bad tradeoff between speed and used resources because rarely all nodes of the tree
contribute to the result. This means in most cases many nodes (processing ele­
ments) are idle. Therefore further research has to be done to find an architecture
that eliminates these drawbacks. I will restrict myself to the iterative approach (sub­
division in stages) throughout the rest of the paper.

53

function get intersection2 (patch,no subdivisions,path length) : boolean;

begin - ­

if no subdivisions > 0 then
begin

pi := path length;

push cp (patch) ; { --> control point stack}

repeat

pi pl-1;

if pl=O then

begin

pi path length ;

push cp (patch) ;

end;

subpatch[1..4] := subpatches of (patch) ;
fori:=1 t04do ­

intersection[i] := intersect_with (bounding_box(subpatch[i])) :

sort_ subpatches ;

for i:=1 to 4 do
if intersection[i] then

push path (subpatch[i],no subdivisions, pi) ;
- { --> path stack }

ready := true;
if not empty(path stack) then

begin
pop path (patch,no subdivisions,pl) ;
ready (no subdivisions=O) ;
if ready then get intersection2 true ;

end ; ­

until ready ;

end;

end;

Figure 4: Algorithm for subdivision-in-stages

4. Subdivision algorithm

Because of the property P5 of the rational B-spline surface, subdivision algo­
rithms developed for normal B-spline surfaces can be used also for rational B-spline
surfaces. A well known method for the subdivision of B-spline curves is the OSLO­
algorithm of Cohen et. aL [3]. This algorithm starts from an old knot vector, old
control points, and a new knot vector that is a superset of the old one. It generates
the corresponding new control points. The algorithm is listed in Figure 5.

54

Given:

Pi, i 0 ... n : old control points

7'i, i 0 ... n +k : old knot vektor

ti,t O· .. q : new knot vector (q ;;;. n +k)

k : order of the B-splines)

It generates the new control points dj ,j = 0 ... q ~ k, as follows:

d p[k)
J Il,j

p[l] p.
[,j [

p[r.+ I) (tj H -r -7'i)pl~) +(1'i Hr - ti H -r)p\,l),j

[,j 1'i +k -r ~7'i

7'1l ~ tj < 7'1l+1

Figure 5: The OSLO-algorithm

The OSLO-algorithm is a very powerful method. But it shows some problems
with regard to an implementation in VLSI. First, it needs 0 (k 2) storage elements.
Second, the division occuring in the computation of pt/IJ is very unpleasant. Both
drawbacks can be overcome by a suitable modification. Since each iteration pl~/ 1]

needs only the previous iteration step r, it is possible to compute and store all Pi.)

in one field of length k. According to [10] the division step can be eliminated by
additional multiplications. The modified OSLO-algorithm is shown in Figure 6.
This form does not contain divisions in the inner loops. There is only one final
division step (*). If several subdivision steps have to be carried out in succession,
the final division can be postponed until after the last of these subdivisions. This is
possible if the III are not initialized to one but to the value of the III from the pre­
vious subdivision (as indicated in the figure). Although the additional multiplica­
tions seem to slow down the subdivision process, this form is favourable for a VLSI
implementation. Since the silicon area for the divider is saved, more area can be
consumed to implement more and/or faster multipliers. Hence the modified
OSLO-algorithm may be faster than the original one. Another aspect of the
modified OSLO-algorithm is that it can be easily parallelized. The Ri and fi can be
computed in parallel. Therefore further speed up is inherent to this algorithm.

55

for i : = JL - k + I to JL do

begin

Rj :

if first or single subdivision
Ji: from preceding subdivision

end;

for r : = 1 to k I do

for i: JL downto JL - k +I +r do

begin

Tl:=(~+k-r-TjfJi 1;

T2:= \TiH-r-!JH-r}Ji;

Ri : Tl·Ri +T2·Ri 1;

Ji: (Tj +k -r -TifJi I·Ji;
end:

Figure 6: The modified OSLO-algorithm. «*) : see text)

5. A proposal for an architecture

Figure 7 shows the architecture of an intersection processor for ray tracing
rational B-spline patches. The registers that can be accessed by the host, store
parameters and control points of the patch. Two stacks serve as temporary memory
for subpatches that have to be processed further. They contain control points or the
path how a patch has been constructed. They are necessary for the subdivision in
stages. The heart of the system is the actual intersection unit. This block is com­
posed of a subdivision block, blocks that compute the bounding box of a subpatch,
and blocks that determine the intersection between a ray and a box.

The central block of the intersection unit is the subdivision unit. It is com­
posed of three bisecting units (Figure 8).

The bisecting units itself are implementations of the modified OSLO­
algorithm. Its implementation gives rise to some problems that stem from the
many multiplications. Depending on the restrictions with respect to speed and chip
area there are different optimums in degree of parallelism. Two levels where a
parallelization may take place have to be distinguished. The first level is the
modified OSLO-algorithm as a whole. Here a tradeoff between speed and chip area
means to decide how many Rj and Ji are computed simultaneously. Figure 9 shows
a completely parallel solution.

56

F

s

M

.;

E-;+J
.,

P 1

r;;-;
Registers,

1
I

iU
! .--18

:
Uo",· I r:::=lL,:.:-.J

'.:J 1-+4~7 \' Btl--­
Bou"o r::::-l

~ Box L::.:J

_J
--- ---1 ,

IControl pOints' Pat h s

st

Figure 7: Overview of the intersection processor

Since all Ri and Ii of one iteration are calculated at once in the k computa­
tional units Ci , k steps are necessary to compute a new control point. If it is too
expensive to provide k computational units it is possible to use fewer Cj. The
extreme case is only one computational unit (Figure 10). On average there are
(k +1) /2 steps necessary to compute the Rj and k Therefore k (k +1) / 2 steps are
required to determine a new control point.

57

Figure 8: Subdivision unit

Until now it was assumed that the Ri and ji can be determined in one step.
This is true if an architecture like that one in Figure 11 is used. This demands the
realization of 6 multipliers and 2 adders/subtractors. The time spent for the calcu­
lation of the Ri and ji equals the propagation time of two multipliers and one
adder.

58

k

R j

fj

c

t i 't'j

Figure 9: Massively parallel realization of the subdivision algorithm (The blocks Cj im­
plement the computations of the R j and it.)

Computational unit
serial parallel

Sub­ ser. M: 2 M: 6
• divi- A: 2 A: 2

sion- S: 2k(k + I) S: 1I2k(k + 1)
algo­

i rithm i M'S: 4k{k +1) 1M. S : 3k(k+l)
!M: 2k M: 6kI par.

A: A: 2k
is: S: k! !Z I

L 8k 2 6k 2II M·S: M'S:
'------­

Table 1: Comparison of different approaches for the implementation of the bisecting
unit (The four entries in each field are : number of multipliers (M), number of
adders/subtractors (A), number of steps for the calculation of a new control point (S),
product of M and S (M . S))

- -
- - -

59

I I- ­ -
- -

- ­ -

!

~

.~/

/ /
• '" '"

C

t . t;.
•

Figure 10: Serial realization of the subdivision algorithm

If such a solution wastes too much chip area, an implementation with less
multipliers has to be considerd. In this case slower operation has to be taken into
account. Figure 12 demonstrates one possibility.

The computation of the R j and Ji takes two steps each. Hence in total four
steps are necessary.

Table 1 summarizes the different realizations discussed above. If the total
costs of the subdivision unit are defined as the product of the multipliers and the
required steps one gets an estimation for the quality of each solution. It can be seen
easily that the alternative with one parallelly implemented computational unit is
best. This results in a bisecting unit that is built like the structure in Figure 10 with
computational units from Figure] 1.

60

t,

ry~
1:',+<_,- tJ+k

tJ+k 1:',

M

f, R

Figure 11: Parallel implementation of the computational units

Table 2 compares the computational units that are required for the OSLO­
algorithm with those for the modified OSLO-algorithm. As expected each alterna­
tive of the modified OSLO-algorithm shows advantages compared to the original
OSLO-algorithm. Either it is only a little bit slower but needs less silicon or it
needs more chip area but is faster.

araliel se

Multipliers 2 2
Adders / sub tractors 2 2
Dividers I
Time estimation ID + 1M 4M 2M

Table 2: Comparison of the computational units for the OSLO-algorithm and its
modification

61

In­[__I......
Figure 12: Serial implementation of the computational units

6. 	 Some unsolved problems and a prospect
There are still some questions beyond the scope of this paper that have to be

answered before a VLSI implementation may become reality.

First there are some architectural aspects. As already discussed in chapter 3 it
is possible to distribute the intersect-and-subdivide algorithm on multiple process­
ing elements. A structure that pays attention to the fact that usually not all sub­
patches are hit by the ray could be an attractive aim of further reasearch. To
achieve an efficient use of the two stacks that are required by the subdivision in
stages it is mandatory to develop good caching schemes to allow fast swapping of
subpatches to and from the chip.

Another class of questions deals with limitations of the chip with regard to the
order of the B-splines and the number of control points. More detailed investiga­
tions have to be done especially in the field of surfaces that can be generated by the
rational B-spline scheme. Some results indicate that k :s;;; 5 and a control point net
of 5 by 5 are sufficient.

If these question have been answered satisfactory such a chip will ease the use
of normal and rational B-splines in geometric modelling systems. Since a great class
of objects can be represented exactly by rational B-spline surfaces, including conic
sections, spheres etc., this could be a way for a general and uniform discription of
scenes. Hardware like this that assists rendering these objects will enable the fast
generation of high quality pictures.

62

7. 	 Conclusions

Starting from the desire to be able to use rational B-spline surfaces for the
generation of high quality pictures, methods have been developed that allow the
integration of rational B-spline surfaces into a ray tracer. The central part of all
ray tracing algorithms is a fast algorithm for determining the intersection of object
and ray. To achieve this for rational B-splines a subdivide-and-intersect algorithm
has been presented. The crucial part of this algorithm is the subdivision algorithm.
A modification of the OSLO-algorithm given in [10] has been employed. These
algorithms have been discussed with regard to a VLSI implementation and various
alternatives with different degrees of parallelism have been suggested. Using a qual­
ity criterion that contains the number of multipliers used and the computation
time, one alternative has been chosen. In the end some unsolved problems have
been mentioned for further research.

63

References

1. 	 C. de Boor, "On Calculating with B-Splines.," Journal of Approximation
Theory 6(l)(July 1972).

2. 	 W. Bohm, G. Farin, and J. Kahmann, "A Survey of Curve and Surface
Methods in CAGD," Computer Aided Geometric Design 1, North Holland
(1984).

3. 	 E. Cohen, T. Lyche, and R. Riesenfeld, "Discrete B-Splines and Subdivision
Techniques in Computer-Aided Geometric Design and Computer Graphics,"
Computer Graphics and Image Processing 14 (1980).

4. 	 T. Dokken, A Method for the Display of Conic Sections and Parametric Polyno­
mial Spline Curves, Sentralinstitutt for Industriell Forskning, Oslo, 1983.

5. 	 IT. Kajiya, "Ray Tracing Parametric Patches," Computer Graphics 16(3) (July
1982).

6. 	 K. Klement, "Parametric Rational Curves of Second Degree and Conic Sec­
tions Leading to Rational Bezier-Curves of Second Degree," FB Informatik.
Inst. f. Graphisch Interaktive Systeme, TH Darmstadt.

7. 	 L. Piegl, "A Geometric Investigation of the Rational Bezier Scheme of Com­
puter Aided Design," Computers in Industry 7 (1986).

8. 	 R.W. Pulleyblank and J. Kapenga, "A VLSI Chip for Ray Tracing Bicubic
Patches," in Advances in Graphics Hardware I, ed. W. Strasser, Springer, 1987.

9. 	 S.D. Roth, "Ray Casting for Modelling Solids," Computer Graphics and
Image Processing 18 (1982).

10. 	 H.-P. Seidel and B.-O. Schneider, Towards a Hardware Implementation of B­
spline Algorithms, To appear 1987.

11. 	 M.A.J. Sweeney, "Ray Tracing Free-Form B-Spline Surfaces," IEEE Com­
puter Graphics and Applications (February 1986).

12. 	 W. Tiller, "Rational B-Splines for Curve and Surface Representation," IEEE
Computer Graphics and Applications (September 1983).

13. 	 K.J. Versprille, "Computer-aided design and applications of the rational B­
spline approximation form," PhD. Thesis, Syracuse University (1975).

14. 	 T. Whitted, "An Improved Illumination Model for Shaded Displays," CACM
23(6) (June 1980).

