
An Exact Incremental Hidden Surface Removal

Algorithm

A.A.M. Kuijk, P.J. W. ten Hagen, V. Akman

Department of Interactive Systems

Centre for Mathematics and Computer Science (CWI)

P.Q. Box 4079, 1009 AB Amsterdam

The Netherlands

This paper describes an incremental Hidden Surface Removal Algorithm
(HSRA), developed to be embedded in a new architecture for raster graphics
described in [1,7]. The algorithm can be classified as "exact" since it operates
in object space, rather than image space. It can be classified as "incremental"
because this HSRA is able to support addition, removal and changes on a single
object or a group of objects. Thus a firm basis for powerful interaction and ani­
mation is established. Due to specially designed data structures for both
geometriC objects as well as storage of these objects, the hidden surface removal
calculation on a complete scene will have the same time complexity as existing
algorithms. However, the effort needed for incremental changes is much less than
any other known algorithm. The data structures as well as the algorithm are
designed to exploit parallelism in computation.

Categories and Subject Descriptors:

C.3 [Special-Purpose and Application-based Systems]: - real-time systems

1.3.1 [Computer Graphics]: Hardware Architecture - raster display devices;

1.3.3 [Computer Graphics]: Picture/Image Generation - display algorithms;

1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling ­

curve, surtace, solid, and object representations

1.3.7 [Computer GraphiCS]: Three-Dimensional Graphics and Realism - visible

line/surtace algorithms

Key Words & Phrases: Raster Graphics, Overlap Separation, Representation,

Incremental Operations, VLSI.

http://www.eg.org
http://diglib.eg.org

22

1. Introduction

Although the image quality of raster displays from their introduction on
always surpassed the quality possible with vector displays, their widespread use in
interactive environments only became possible after the introduction of -hardware
implemented- techniques that allow fast incremental operations on the pixel
representation of the image (bitmap operations). Since in this pixel representation
all information abi)ut the origin of the particular pixels is lost, bitmap operations
are not well-suited to support incremental operations needed on 3D raster graphics
workstations. What is needed there is an incremental Hidden Surface Removal
Algorithm (HSRA) that stores its results in a more object-oriented form, so that
incremental operations can he performed more easily. This object-oriented
approach enables a reference from the visible parts of objects in the image to the
objects in the higher level models (up to the application model) they originated
from. Thus flexible interaction can be established [1].

The incremental HSRA is designed to be embedded in a new architecture for
raster graphics workstations [7]. An important aspect of this new architecture is a
specially designed representation for surface elements (domains). Both input and
output primitives of the HSRA are types (in the sense of "abstract data types") of
that specially designed representation. With this representation overlap of two
domains can be calculated efficiently. After the HSR, resulting domains are stored
in the so called Low Level Display File (LDF) [1,7], sorted in a specially designed
data structure.

uCJ

~ ~

(a) (b) (c) (d)

Figure 1: Example of the steps taken upon addition of a new domain: (a) Before addi­
tion there are 2 domains in the LDF -these are drawn solid, the domain to be added is
drawn dotted-. (b) First the overlapping sections are removed. (c) Next the overlapping
sections are added to the LDF as separate domains. (d) Finally, the new domain with
overlapping sectiGns removed is added. As a result there are 5 disjunct domains in the
LDF after the addition.

23

The strategy followed is to add the domains making up the 3D model one by
one, thereby incrementing the number of domains in the LDF. The first step taken
upon addition of a domain is to check for overlap with domains already stored in
the LDF. All those domains of the LDF that exhibit overlap with the domain to be
added are replaced by a domain with that overlapping section removed (see Fig­
ure I). This is independent of the fact whether the overlapping section would be
visible or not. After this, the overlapping sections -removed from the domains
already present in the LDF- are added to the LDF as separate domains. Of
course, the appearance of these overlapping sections (attributes, colouring) is deter­
mined by the domain that is on top. Next, the domain to be added -with all
overlapping sections removed- is added to the LDF. In this way, the domains that
are present in the LDF will always be disjunct. Overlap sections are kept as
separated domains, so that removal of objects can be done in arbitrary order.

It is clear that both an efficient search algorithm to identify all the domains
(stored in the LDF) that overlap and an efficient algorithm to generate the domains
with overlapping parts removed are needed. An economical identification of possi­
ble overlapping domains can be done by making use of the bounding box informa­
tion contained in the domain representation which will be described in § 2. Thus
the first step is to identify all the domains in the LDF whose bounding box overlap
the bounding box of the domain to be added. This search process will be described
in § 3. The domains reported by this search process will be fed to the separation
function, described in § 4, which checks whether the domains themselves overlap
and outputs non-overlapping, separated domains. The remainder of the algorithm is
administrative work which is described in § 5; the domains resulting from the
separation function have to be relocated or inserted into the data structure of the
LDF and pointers to higher level representations have to be updated. A hardware
implementation of the algorithm is discussed in § 6.

2. 	 Domain Representation

Before we discuss the functions needed, it is useful to explain some basic ideas
of the domain representation itself.

A domain is the geometric entity of an object in 3D space, and is not raster­
ized. It is one of the two components of a pattern as described in [5,6]. The other
component of a pattern -the colour function- assigns a colour to each point of
the domain. Since most of the operations involved in HSR calculations are pure
sorting operations [9] it will not be surprising that the domain representation which
is designed for efficient HSR, contains the geometrical data in a presorted form,
free of all sorts of pathological cases normally encountered.

The representation envisaged consists of a header and a number of scanlines
and scanpoints (see Figure 2). In the header, global information about the domain,
such as bounding box, plane equation and information about scanlines, scanpoints
(location and number of) and administrative information are stored. Scanlines are
lines at those y-values of the domain where, while sweeping over a polygon in y­

24

Header

Bounding box:
xl, yl, xu, yu

-- r------ -- t,------
vPlane Equation: # of·points

z ~ ax+~y+r

ScanIines:
a/lines
pointer

Scanpoints: , x
a/points . , , .. , .. , ' edge info
pointer ---1-­

Administration

Figure 2: The domain representation contains geometrical data, sorted to enable more
efficient algorithms.

direction -like in the scanline algorithm described in [3]- the active edge list
would have to be updated (Figure 3). Each scanline has a number of scanpoints
which contain information with which the topology of the area between this and
the next scanline is unambiguously fixed. At present, a scanpoint contains the x­
value where an edge crosses the scanline and the slope of this edge. A future
enhancement could be that a scanpoint contains more information about the edge,
such as the curvature or appearance control attributes.

2

3V\lTnn,"?"u",] -- -- - - - -:5

Vertex representation Domain representation

Figure 3: Traditional vertex representation versus domain representation. Note that
there is no scanline at the "double bridge" between vertices 5,6 and 10, I L On the other
hand, there is a scanline at the crossing of the edges between vertices 2,3 and 4,5.

25

By conversion from traditional boundary representation (a list of vertices) to
our domain representation on the one hand all sorts of superfluous information will
be removed, but on the other hand information can be added to avoid pathological
cases (see Figure 3). With this representation, flat regions in continuous 3D space
can be represented without loss of information and without limitations on domain
complexity (i.e. connected or disconnected, convex or concave, with holes or
islands).

We implemented an algorithm to generate a dqmain representation from a
traditional polygon representation, based on the sweepline technique. It can be
seen as a modified version of the scanline algorithm presented in [3]. Modifications
were needed to make the algorithm operate in continuous coordinates, to generate
scanlines only at strategic y-values and to remove superfluous information (such as
double edges, vertex on a straight edge). Thus the following algorithm emerged t :

make edgelist sorted on Ybol else on Xbol else on slope

initializeY on lowestYbol encountered during sort

while 3 edges in sorted list do {

move edges with Ybol Y from sorted list into active list sorted on:

Xcurrent

else on slope

else remove redundancy
generate scanline (Y) I" based on active list" I

remove edges with Ylop = Y from active list

y-next = minimum (Ybol of edges in sorted list. YIOp of edges in active list)

update Xcurrent of edges in active list

while 3 disordered xcurrent in active list do {

y-cross = minimum (Y-crossings)

generate scanline (Y-cross)

exchange edges crossing at y-cross in active list

Y y-next

The domain representation will cause the following frequently occuring, time­
critical operations in the image generation process to be handled more efficiently:

• 	 Overlap calculation of two domains. This can be done on a slice by slice basis,
thereby reducing the time needed from O(n'm) to O(n +m) for domains hav­
ing nand m scanlines (c::::vertices) respectively.

• 	 Clipping. This can be seen as a special sort of overlap calculation and can be
perform end in O(n) time. Clipping in y-direction is a trivial operation. Simply

t N,R The algorithm presented here scans from bottom to top.

26

all scanlines below or above the clipping boundary can be removed from the
representation. Only the two scanlines on the clipping boundaries may have
to be changed or added. The scanline that may have to be added on the low
clip boundary, can be generated easily; only the information of the scanline
just under the clip boundary is needed. The terminating scanline to be added
on the top clip boundary is empty. Clipping in x-direction is simplified as
well, due to the ordering of the scanpoints.

• 	 A point-in-domain test. This test will be an O(n) process; it requires looking
for the scanline that describes the slice the point is in.

• 	 Scan conversion. It will be clear that this representation is extremely well-
suited for the scan-conversion process.

Note that these improvements in time bounds hold for sequential algorithms. A
further reduction of these time bounds can be obtained by paralellising the algo­
rithms. They can be parallelised easily due to the fact that the domain representa­
tion enables sub-algorithms that work on slices independently.

3. 	 Searching for Overlapping Bounding Boxes

As mentioned in the introduction, it is needed to find among a set of n rectan­
gle bounding boxes, the subset of bounding boxes that overlap the bounding box of
a domain to be inserted. This subset of overlapping bounding boxes indicate possi­
ble overlapping domains.

Optimal algorithms to report from a set of n rectangles all overlapping pairs
are well-known from computational geometry [2,8,10] and need O(n logn + k)
time and O(n) storage worst case, k being the number of overlaps found. These
optimal algorithms however, cannot be used here since we are not interested in

*pairs of overlapping bounding boxes in the LDF itself . These algorithms
-already difficult to implement due to the sophisticated data structures used­
also do not lend themselves to be converted to an algorithm reporting the subset of
n rectangles overlapping one query rectangle in O(logn + k) time. Therefore we
tried to find a suitable solution (that is, optimal under normal conditions and easy
implementable in VLSI) operating in better than O(n) time expected case. We
think that the following data structure and algorithm will be such a suitable solu­
tion.

• Bounding boxes of domains stored in the LDF may overlap, but the domains themselves are
definitely disjunct.

27

40

D
3'-/

iJ a 2'-/

1~

a

8'-/
~70 ­

6'-/

5'-/ »lJ

_ c.=lb___-'

x-y plane buckets lists

Figure 4: The data structure in which the domains resulting from the HSR are stored. It
is designed to avoid unnecessary visiting of domains outside a range of y-values when
searching for bounding boxes overlapping a query rectangle. In this example (a search
with query rectangle x) buckets 1-4 and accordingly, domains a, b and d will be visited.

The data structure envisaged (Figure 4) consists of a number of buckets, each
containing a sorted list of domains. Thus the domains can be stored, sorted on two
criteria: 1) The bottom y-value of the domain (rhot) determines the bucket where a
domain is to be stored; 2) The top y-value (rtop) determines the location of the
domain in the linked list of decreasing Ytor The intention of this data structure is
to be able to quickly address only those domains that have an overlap in y­
direction with the query rectangle:j: .

The following algorithm will report all domains having a bounding box over­
lapping the bounding box of a query domain:

seems that for the scan conversion hardware it is better to interchange x and y. For the HSRA
such a change is irrelevant.

28

bucket = 1

while bucket range < query-domain.ylOp do {

domain = first-domain /" in list of bucket * /
while domainYtop > query-domainYbot do {

if overlap in x-direction t do (

report domain

domain = next in list /" if no next. break inner while loop" /

bucket = bucket + 1

It is obvious that the data structure proposed needs O(n) space, since all domains
are stored just once. The time complexity of the algorithm will be O(n), in the
worst case all n (already stored) domains have to be checked for overlap.

More interesting however, is the asymptotical behaviour in the expected case.
For this, let us assume that we have the total y-space (normalised on I) covered by
m buckets. The average height of the n domains is hy (n is big and hy is small) and
we assume that the domains are evenly distributed in the y-space. Then the average

length of the lists in the buckets will be .!!:.....
m

Consider a query rectangle of average height hy and having Ybot in the range
covered by bucket k, not too close to the y-space limits. In order to check all candi­
date domains with Ybot ?: Ybot of the query rectangle, all items in buckets k to
k + m' hy have to be visited, resulting in an average number of n' hy items to visit.
Similarly, checking all candidate domains having a Ybot < the Ybot of the query rec­
tangle, on the average takes visiting n- hy items. Thus the average number of steps
to take in total is 2n' hy- Since this is equal to the average number of domains in a
slice of height 2hy , we obtained an optimal reduction of the search space in y­
direction. Unfortunately it is not as simple to obtain a similar reduction of the
search space in x-direction simultaneously.

Because it is impossible to continue increasing n, without reducing the average
size of the domains (note: they are disjunct), we observe that hy (the average height
of the domains) will be inversely proportional to Vn. As a result, the search algo­
rithm will have an asymptotical behaviour of O(Vn), a result that is acceptable in
our situation. The above reasoning shows that the behaviour of the algorithm is pri­
marily dependent on the average height of the domains, apparently not on the

t To avoid reporting non-overlapping rectangles while scanning the last bucket for which
bucket range < query-domainYlop. also overlap in y-direction has to be checked. This is because
each bucket contains a range of Ybol-values. so that in this last bucket it could be that domainYbol >
query-domainy,op .

29

number of buckets. However, in the above analysis the influence of the bucket
width on the number of steps has not been taken into account. Unfortunately, this
influence is such that an optimal number of buckets is dependent on the particular
domain arrangement, so that an adaptive number of buckets would be desirable.
This would imply a restructuring whenever we are too far from optimal. This is a
variant of the adaptive grid solution as described in [4].

To be able to compare this result with the optimal algorithms mentioned, we
estimate the total time spent by the search algorithm when n domains are added
one by one, each addition initiating a search for overlap. Then the average number
of steps in total will be 2(1 + 2 + ... + (n - l»)'hy = (n 2 - n}hy *.

Again assuming hy to be invers~ proportional to Vn, the total time spent by
the search algorithm will be O(n Yn) in the expected case. We conclude that in
worst-case situations, our solution may not be optimal, but is easy to implement
and it is relatively cheap to perform insert and delete operations on the data struc­
ture. On the other hand, optimal algorithms are rather difficult to implement and
have less flexible data structures.

4. Overlap Separation

When adding a new domain to the LDF, all overlaps with domains already
stored in the LDF have to be separated from it. This operation is performed by the
separation function. This separation function has two input and four output
domains (some of which may be NULL) as shown in Figure 5. One of the input
domains (Area 1) is the new domain. The other input domain (Area 2) is a domain
from the set of domains reported by the search algorithm. Output of the separa­
tion function are the four domains Difl, Dif2 and Olpl, Olp2. Olpl and Olp2
together form the complete overlap of the two input domains, Olp 1 is the part of
the overlap where Area 1 is nearest to the viewer and Olp 2 is the part of the over­
lap where Area 2 is nearest to the viewer. Dif 1 and Dif 2 are the remaining non­
overlapping parts of the two input domains Area 1 and Area 2 respectively.

Output domains Olp 1, Olp2 and Dif2 will replace Area 2 in the LDF, while
Dif I (the reduced input domain) will be input domain Area 1 for the next separa­
tion process with as second input domain Area 2, the next domain from the set
reported by the search algorithm. This process will be repeated until all domains
from the set reported by the search algorithm have been handled, each time possi­
bly causing a reduction of the new domain. Finally, this multiple-reduced new
domain can be stored in the LDF (see also Figure 8).

Note that an input as well as an output domain of the separation function

• In case overlaps are reported, domains are split up, so that due to the increased number of

domains in the LDF this result would have to be corrected with a factor (1 + .!), k being the
n

number of overlaps reported. This results in (n + kHn - l}hy steps to take, However, assuming k
to be O(n), this correction factor will be O(1),

30

may consist of disconnected areas and -depending on overlap- some output
domains may turn out to be empty. Due to the domain representation, the separa­
tion function is insensitive to object complexity (e.g. polygons with holes, self­
crossing boundaries).

I""".

~-----

Areal + Area2 = mfl

['>.'\'\'\'\'\'.1 I

Figure 5: The principle of the separation function -the basic function of the incremen­
tal HSRA. Two input domains Area 1 and Area 2 result in four output domains. Two
output domains Dif 1 and Dif2 are copies of the input domains with overlap removed.
Output domains Olp 1 and Olp2 are those parts of the overlap for which Area I and
Area2 respectively are nearest to the viewpoint.

S. 	 Administrative Aspects

Domains resulting from the separation function will have to be inserted into
the LDF. Their location in the LDF data structure is fully determined by their
geometric properties. Therefore in principle it is always possible to use knowledge
of these geometric properties when looking for a domain in the LDF data structure.
However, this may not be the most economical way to look for domains. Input
domains for the HSRA are stored in the Medium Display File (MDF) (1], not
sorted upon their geometric properties. So, in order to be able to find in the MDF
the so-called "parent" domain that a "child" domain in the LDF originated from,
an administration of the relations of the domains from these two levels of display
files has to be maintained.

This is done as follows. Each parent domain from the MDF is augmented with
a list of pointers to all child domains in the LDF that emerged from it:j:, marked
with one of the following labels: original, hiding or hidden (Figure 6). A parent can

list of pointers could in principle be of size O(n 2), but in practice (i.e. CAD applications) it
will be of a limited size. It can always be forced to be of limited size because for interaction sup­
port it does not always make sense to maintain a full overlap administration.

31

MDF: A: (a, original);
(ab, hidden)

A C
B: 	 (ab, hiding);

(b, original);
(bc, hidden)

B
C: (bc, hiding);

(c, original)

Figure 6: Administration information of domains stored in the MDF. Each domain has
a list of its children in the LDF and marked whether these are original, hiding or hidden.
Domains A and B share child ab and domains B and C share child bc.

have only one child marked original. This child represents that part (or whole) of
the parent domain that is not overlapped by and is not overlapping any of the
other MDF domains. Children representing that part of the parent that is not
overlapped by any other MDF domain, but overlap at least one domain are
marked hiding. Children representing that part of the parent that is overlapped by
at least one MDF domain are marked hidden.

LDF:

a e

ab Ibe

b

a: (A)

ab: (B, A)

b: (B)

bc: (C, B)

c: (C)

Figure 7: Administration information of domains stored in the LDF. Each domain has
a list of its parent domains in the MDF, sorted on visibility.

Each child domain in the LDF in tum is augmented with a list of pointers to
the parent domains in the MDF it originated from (Figure 7), ordered by visibility
(i.e. distance to the viewer).

Figure 6 and Figure 7 show the situation for three overlapping domains. Of
these three domains, A is overlapped by B, which in tum is overlapped by C.

Adding or removing domains will be initiated in the MDF. Consequently,
upon these changes, an update of the domains stored in the LDF as well as an
update of the administration has to be done.

32

5.1. 	 Adding a Domain

With the discussion of the separation function in § 4 we explained how a
parent domain that is added to the MDF will generate the disjunct child domains
to be installed in the LDF. Here we show how to update the administration of rela­
tions as needed after such a separation process.

if Area 1 from MDF do { /" first separation process, no children yet" /

Dif l.parent-list = (Area 1)

Olp l.parent-list = (Area 1, Area 2.parent-list)

Olp 2.parent-list = merge of Area 1 and Area 2.parent-list

Area l.child-list = (Dif 1, original); (Olp 1, hiding); (Olp 2, hidden)

else do { /* Area 1 is reduced before => is not parent" /

Dif l.parent-list = (Area l.parent-list)

Olp l.parent-list = (parent-of Area 1, Area 2.parent-list)

Olp 2.parent-list = merge of parent-ofArea 1 and Area 2.parent-list

replace parent-ofArea l.child-list item (X, original)

by (Dif 1, original); (Olp 1, hiding); (Olp 2, hidden)

Dif 2.parent-list = Area 2.parent-list

'V parents-ofA rea 2 do {

replace child-list item (Area 2, x)

by (Dif2, x); (Olp 1, hidden); (Olp2, x)

5.2. 	 Removing a Domain

One aspect of the claimed incremental behaviour of this HSRA is that it does
not only support addition of domains, but it supports removal of domains as well.
Due to the splitting of domains into parts that are original and parts that hide oth­
ers and the administration of relations between the parent domains from the MFD
and the child domains from the LDF, removal of domains can be done without
having to fear for an avalanche of domains to be recomputed. Since up to now the
main attention has been focussed on addition of domains, we will first address
some aspects of removing domains.

When removing a domain from the MDF, its child domain marked original

has to be removed from the LDF and the administration concerning all children
left has to be updated. Although this would cover the necessary steps to produce a
correct image, it is clear that in this way a lot of unnecessary split-up domains in
the LDF will arise from subsequent removal operations. After a removal operation,

33

child domains having an identical list of parent domains, can be "glued" together.
These glue operations are the inverse of the separation operations to be performed
upon addition of the domain just removed. Their computational complexity how­
ever, is much less. By making use of the knowledge that domains to be glued will
"fit", such glue operations can be optimized.

Upon removal of Domain, the following steps to update the administration
have to be taken.

'V children in Domain.chiLd-list do {

if child. marking == original do {

remove child from LDF

if child.marking == hiding do {
remove Domain from child.parent-list·
if one parent left do {

change parent's marking of this child to original

else {
change first parent's marking of this child to hiding

if child.marking == hidden do {

remove Domain from child.parent-list*
if one parent left do {

change parent's marking of this child to original

6. Hardware Aspects: ParaUelism

Now that we have discussed the different functions needed for the HSRA, we
can raise the question: How to implement this most effectively? For this it is useful
to have a look at the functional model shown in Figure 8. From this model we can
see that the most time critical part of the HSRA will be the separation function.
This function will be used repeatedly and has to perform the most computationally
intensive task: the separation of two overlapping domains into disjunct non­
overlapping domains. It is clear that this function is an obvious candidate for a

• Since for this child, Domain is the first parent in the list and thus determines its appearance, remo­
val of Domain causes a change in the appearance of child (this will now be determined by the next
~arent in the list).

Here Domain is not the first parent in the list, so removal of Domain will not change the appear­
ance of child (assuming that we are not dealing with transparent objects).

34

Domain to be added

IE Domains to be inserted " " "[

parallelised approach. The model also shows that the search and administration
module cannot simultaneously have access to the LDF. so these functions can be
performed by one processor.

. ..: Optional
.... ..,..: Buffer

Low Level

Display

File

Figure 8: Functional model of adding a domain. The switches (Sw) create a loop as long
as the Search Module reports overlapping domains.

The design of the domain representation, as discussed before, is aimed at an
effective support of parallelism in computation in general. This effective support is
in particular true for computation of the overlap sections as performed by the
separation function. Since each scanline in the representation contains all the infor­
mation of the slice above it, the overlap sections for all scanlines can be computed
individually for each slice of the domain. Thus a parallel computation of overlap.
followed by a merging process is possible. This is parallelism on a low level and
will speed up the execution time of the separation process. We will not discuss this
level of parallelism in detail but concentrate on parallelism on a higher leveL

The HSRA prescribes that each domain from the LDF having overlap should
cause a reduction of the domain to be added. This reduction so far was described
as being done by sequential separation operations, thereby causing an execution
time O(k) in measure of the average time (Tsep) a separation operation needs, k
being the number of overlapping domains. These separation operations however,
can also be performed in parallel if a module is added that sums all the overlap
sections and removes this sum from the original. Such a reduction adder can realise
a time bound O(logk). Note that this is in terms of the average time one summa­
tion operation takes (Tadd). Since a summation operation is less complex than a
separation operation, this average summation time is smaller than the average

35

separation time. As a result by parallelising the separation module the total execu­
tion time of the separations can be reduced from 7'sep' k to 7'sep +7'add' logk.

Multi Ie reduced ori . nal

Display
File

Domain to be added

Low Level

Figure 9: Parallelising the Separation Module. This requires an additional module
(Reduction Adder) that sums the necessary reductions of the original, as found by all in­
dividual Separation Modules.

It is not economical to have more separation modules than number of overlap­
ping domains. On the other hand, the number of overlapping domains reported by
the search module is variable. When it is decided to have a fixed number of
modules, it has to be possible to use the multiple reduced original domain again for
further separation processes. This to be able to handle "overflow" caused by excep­
tional overlap situations. This overflow route is no different from the loop we had
before in the functional model of Figure 8. The resulting parallelised version of the
functional model is shown in Figure 9. If the number of separation modules is n,
the total execution time of the separation processes obtained will be

r~1(T,'P h"" logn).

36

W

In this parallelised version we see that one search and administration module
has to serve several separation modules. This can be improved by also parallelising
the search algorithm. This is very well supported by the data structure of the LDF.
For this no additional modules are needed, simply assigning one or more buckets
of this structure to individual search and administration modules will suffice (see
Figure 10). If more buckets are assigned to one search and administration module,
for reasons of load balancing, neighbouring buckets should be assigned to alternat­
ing modules.

Domain to be added ~~ I :.IRe.ducllon
I I Adder

Figure 10: ParalleJising both the Separation Module and the Search and Administration
Module. The data structure of the LDF can easily be subdivided, each section being
served by its individual Search and Administration Module.

Currently an implementation of the HSRA is in progress on a sequential
machine. In the near future, we will implement a coarse grain parallel version of
the HSRA (all modules on separate general purpose hardware). Later on, a fine
grain parallel implementation of some of the modules (in particular the separation
module) will be made on general purpose fine grain parallel hardware and perhaps
on custom hardware.

37

References

1. 	 V. Akman, P.J.W. ten Hagen, and AAM. Kuijk, "A Vector-like Architecture
for Raster Graphics," these proceedings (1988).

2. 	 J.L. Bentley and D. Wood, "An Optimal Worst Case Algorithm for Report­
ing Intersections of Rectangles," IEEE Transactions on Computers C29(7)
(1980).

3. 	 J. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, Mass. (1982).

4. 	 W.R. Franklin and V. Akman, "Adaptive Grid for Polyhedral Visibility in
Object Space: An Implementation," RUU-CS-86-4, University of Utrecht,
The Netherlands (1986).

5. 	 PJ.W. ten Hagen and T. Trienekens, "Pattern Representation," Report CS­
R8602, Center for Mathematics and Computer Science, Amsterdam (Jan.
1986).

6. 	 P.J.W. ten Hagen, M.M. de Ruiter, and CG. Trienekens, "Raster Graphics
Facilities (RGF)," preliminary report, Center for Mathematics and Com­
puter Science, Amsterdam (1986).

7. 	 P.J.W. ten Hagen, AAM. Kuijk, and T. Trienekens, "Display Architecture
for VLSI-based Graphics Workstations," in Advances in Computer Graphics
Hardware I, ed. W. StraBer, Springer-Verlag (1987).

8. 	 H.G. Mairson and J. Stolfi, "Reporting and Counting Intersections Between
Two Sets of Line Segments," in Theoretical Foundations of Computer Graphics
and CAD, ed. R.A. Earnshaw, Springer.Verlag, Heidelberg (1988).

9. 	 I.E. Sutherland, R.F. Sproull, and R.A Schumacker, "A Characterization of
Ten Hidden-Surface Algorithms," Computing Surveys 6(1) (1974).

10. 	 D. Wood, "An Isothetic View of Computational Geometry," in Computational
Geometry, ed. G.T. Toussaint, Elsevier Science Publishers B.V.(North­
Holland) (1985).

