
AVLSI Chip for Ray Tracing Bicubic Patches

R W. Pulleyblank* and J. Kapenga**

*Hewlett-Packard Laboratories, 1501 Page Mill Road, PaloAlto, CA, 94304, USA
**Westem Michigan University, Department ofComputer Science, Kalamazoo, MI, USA

ABSTRACT

A VLSI chip for ray tracing bicubic patches in Bezier form is
explored. The purpose of the chip is to calculate the intersection
point of a ray with the bicubic patch to a specified level of
accuracy, returning the location of the intersection on the patch and
on the ray. This is done by computing the intersection of the ray
with a bounding volume of the patch and repeatedly subdividing the
patch until the bounding volume of subpatches hit by the ray is
smaller than the accuracy requirement. There are two operating modes,
one in which only the nearest intersection is found and another in
which all intersections are found. This algorithm correctly handles
rays tangentially intersecting a planar patch and ray intersections
at a silhouette edge of the patch. Estimates indicate that such a
chip could be implemented in 2 micron NMOS and could compute
patch/ray intersections at the rate of one every 15 microseconds for
patches that are prescaled and specified to 12 bits fixed point for
each of the x, y and z components. A version capable of handling 24
bit patches could compute patch/ray intersections at the rate of one
every 140 microseconds. Images drawn using a software version of the
algorithm are presented and discussed.

INTRODUCTION

Ray tracing is a powerful technique used to create very realistic
images (Whitted, 1980) and to compute properties of solids, such as
volume and moments, in solid modeling systems (Roth, 1982).
Frequently modeling systems are restricted to objects described by
polygons or quadratic surfaces and objects that are compositions of
them. Curved surfaces can be described efficiently by bicubic patches
(Foley and Van Dam, 1982), which specify points on the surface with
a function that is cubic in each of it's two parameters, u and v.
These patches are determined by a collection of sixteen (three
dimensional) control points. Because these patches can be pieced
together while maintaining second order continuity at the
boundaries, they are very useful for modeling smooth surfaces.

Bicubic patches are frequently displayed by decomposing them into
polygons before further processing or by directly computing ray/patch
intersections. Methods for computing these intersections based on

http://www.eg.org
http://diglib.eg.org

126

root finding (Kajiya, 1982 and Toth, 1985) have numerical stability
problems and result in excessive computation times for typical images
which may require a hundred million ray/patch intersections.
Subdivision techniques for bicubic patches have been used widely for
display purposes (Catmull, 1974; Lane, Carpenter and Whitted, 1980;
and Clark, 1979) and for processing before beginning a Newton-Raphson
search (Toth, 1985 and Sweeney and Bartels, 1986). Whitted (1980)
and Lane and Risenfeld (1980) have also used subdivision for direct
calculation of ray/patch intersections in software. So far, the long
delays due to the computational burden of the ray/patch intersec
tions have restricted the usefulness of bicubic patches in computer
graphics and solid modeling systems.

Subdivision of Bezier surfaces is well suited for VLSI implementa
tion because it requires only additions and divisions by two when
restricted appropriately. Thus it has been selected to compute
ray/patch intersections in what follows. The goal is to reduce the
time required for ray/patch intersections to a value that would make
it much more attractive to use patches in an interactive environment
and to accomplish this with relatively simple hardware.

ALGORITHM

The algorithm relies on the following facts. Bezier curves are
easily subdivided into halves (Lane and Risenfeld, 1980 and Lane,
Carpenter and Whitted, 1980), requiring only additions and divisions
by two of the control points. This basic operation is used
repeatedly to subdivide a bicubic patch into quadrants (Lane and
Risenfeld, 1980). The control points can be used to form the convex
hull of the control points, a volume which completely contains the
patch. A much simpler but looser bounding volume can be found by
taking the maximum and minimum of the x, y and z components of the
control points to form a rectangular bounding box that is aligned
with the coordinate axes and it is this method that is actually used
in this algorithm. The intersection of a ray with each of these
bounding planes is computed and the results examined to determine if
the ray intersects the bounding volume.

with these basic ideas in mind, the algorithm can be stated as
follows:

To find the intersection of a patch with the ray, the patch is broken
into four subpatches, each of whose bounding boxes are computed and
tested for an intersection with the ray. If the ray hits the
bounding box of a subpatch and the termination conditions are not
met, i.e. the patch is not smaller than a specified accuracy
requirement and the maximum level of subdivision has not been
reached, the subpatch is placed on a stack to be processed further.

This process proceeds in a depth first search for the subpatches
whose bounding boxes intersect the ray and which meet the accuracy or
maximum SUbdivision criteria. These result patches specify the
intersection points. The (u,v) coordinates of the intersection point
on the original patch and the parameter t, which specifies the
intersection point on the ray, are returned as results.

A conceptual block diagram of the process is shown in Fig. 1.

127

Roughly one bit of accuracy is obtained for each level of subdivision
and the computation is carried out with more bits than the maximum
level of subdivision.

It is possible that more than one result patch is found for a single
intersection. This is the case when the ray intersection is close to
the boundary between subpatches or when the ray is parallel to and
contained in a planar portion of the patch.

Two approaches may be taken to deal with this situation. The fastest
and simplest approach is to report only the result patch nearest to
the ray origin, i.e. the one with the smallest t, as the answer: If
more than one fits this criterion, an arbitrary patch may be
selected, or all result patches that are nearest can be reported,
leaving it to the host to either average these results or compute the
bounding box which contains all of the results.

A second approach is to report all result subpatches leaving it to
the host to group contiguous results together to form intersections,
and to summarize the resulting intersections by either averaging the
results or computing the bounding volume of the results.

If only the nearest intersection is to be found, faster operation may
be obtained by discarding all subpatches that are hit by the ray
beyond the bounding volume of the current nearest result patch, and
sorting, nearest to the origin first, those that remain before
placing them on the test stack. The nearest result patch is
updated when a closer one is found. Searching for the nearest
intersection is well suited to displaying patches but forgoes the
possibility of computing all the intersections of a ray and a patch
as would be necessary when computing volumes or computing the portion
of a rayon a surface.

In order to effectively use a restricted number of bits, the patch
control points are assumed to be presented to the chip in a
coordinate system whose origin is at the minimum bounding box corner.
This makes all control points positive numbers. They are also
assumed to be scaled so that the largest control point component is
less than one and greater than or equal to one half. The ray origin
is also presented in this coordinate system and it has been moved to
the point where it intersects the bounding box of the original patch.
The ray direction vector is normalized to one.

The Bezier form of the bicubic patch was chosen because the control
points form a tighter bounding volume than do the B-spline control
points. This is not a limitation because patches can be easily
converted between the Bezier, B-spline and Hermite forms (Foley and
Van Dam, 1982).

VLSI IMPLEMENTATION ISSUES

A bit serial implementation was chosen because of the large number of
additions that are required. A parallel computation in X, y and z
was chosen because it operates three times as fast as a serial
version and there appears to be space enough on the chip to allow it.

A key component of the system is the block that accepts four control

128

points of a Bezier curve and performs the required averaging to
produce the control points of the the two halves of the subdivided
curve. The block diagram for a circuit that accomplishes this for one
component of the control points, x, y or z, is shown in Fig. 2.

The algorithm requires the saving of subpatches whose bounding boxes
are hit by the ray and therefore require further subdivision. If
the control points of these intermediate patches are to be saved a
very large control point memory is required. It is possible, however,
to regenerate these intermediate patches from the original while
saving only the path to the subpatch from the original. This path is
simply the local (u,v) coordinates (binary fixed point) of the lower
left corner of the subpatch on the original patch. As will become
apparent as the chip organization is explained, a hybrid of these two
approaches, is most attractive.

An intermediate patch may be reproduced for further testing from the
original control points by multiple use of a circuit that
subdivides a patch and selects one of the resulting quadrants or is
bypassed completely. A block diagram of such a circuit is shown in
Fig. 3. These circuits can be used in a chain to reproduce any
intermediate patch. The resulting patch can then be fed to a
subdivide circuit that produces the control points of all of its
quadrants, which are in turn, fed to four identical networks that
test if the ray hits that subpatch. Each of these networks computes
the bounding box of its input patch, the intersection points of the
ray with the planes of the bounding box, checks the results for an
intersection of the ray and the bounding box, and tests if the
accuracy criteria are met. The ray hit and accuracy met information
for each quadrant of the test patch is used to decide whether any of
these subpatches should be saved for further testing. The paths to
the patches that require further testing, together with the depth to
which they have been divided, are pushed onto a stack for further
testing.

If all test patches are produced directly from the original patch as
just described, then a subdivide chain that can divide to the
maximum depth in a single pass is required. The required maximum
subdivision depth is approximately the number of bits of accuracy
required so that the chain needs to be very long unless the accuracy
required is small. This, of course, requires sizable chip area but
also time. The reason is that each subdivide and select circuit has a
cascade of six additions, that may produce six carries, which when
operating bit serially requires six additional clock cycles for every
subdivision stage in the chain. These clock cycles appear as buffer
bits between successive patches to be subdivided.

The problem can be alleviated by not always generating a test patch
directly from the original patch in one pass but saving the control
points at selected intermediate points and then generating the test
patch from the saved points. This process we call subdivision in
stages. In order to accomplish this, the control point memory is
organized as a stack to allow for the storage of intermediate control
point arrays and the length of the subdivide chain is Ds=(D-l)/N+l
where D is the maximum depth to which a patch must be subdivided and
N is the number of subdivision stages. If a patch has been divided
an additional Ds levels from the last set of stored control points
and it required further testing, the control points of its immediate
parent could be pushed onto the control point stack and the path from
the these stored control points to it saved. Further refinement
would proceed by subdividing these intermediate control points.

129

With this organization the time penalty is paid only for the
additional levels of subdivision from the stored control points.
Another benefit is that the test stack memory required is smaller
because only the path from the saved control points need be kept on
the test stack. Additional patCh memory is required for each stage
but there is a net savings in area for the proper choice of the
number of stages.

The time lost because of the need to provide buffer bits between
successive patch subdivisions can be eliminated as far as the rest
of the chip is concerned by duplicating the subdivide chain. Thus
when buffer bits are being clocked into one subdivide chain, a new
computation can begin in a duplicate chain and a steady stream of
subdivided patches may be presented to the circuitry that computes
bounding boxes.

The system can achieve high throughput by pipelining, but the depth
first search requires the result of a computation before a decision
on which way to proceed can be made. Efficient utilization of the
pipe can be maintained by having several patches on the chip and
working on them in rotation. If the time to initiate a computation
on each of the patches is greater than the delay, there will be no
decrease in throughput. Additional memory for the control points and
test stack for each of the patch intersection computations being
carried out on the chip is required.

If the chip is seeking only nearest intersections, and if the current
patch is a result , i.e. if it is a hit that satisfies the accuracy
or maximum subdivision criteria, then a comparison of the newest t
value(s) for entering the bounding volume, t in, is made with the t
in for the current nearest result patch and the current nearest t in
is updated. Only hits that are closer than the nearest result are
reported as hits in this mode of operation.

The chip, as described so far, carries out intersection calculations
for a single ray against a patch, but it can also test the patch
against a list of rays if the compute intersection, test for hit and
compare to nearest circuits are replicated for each ray. This is a
useful addition for primary rays which are highly coherent and for
multiple rays used to perform antialiasing.

The overall block diagram of the system described is shown in Fig. 4.

COMMUNICATION WITH THE HOST

The I/O bandwidth requirements for this chip are very small. If L is
the number of bits for each component, x, y or z, then roughly L
squared serial clock cycles are required to find an intersection and
48*L bits to specify a new patch, 6*L bits for a new ray and 3*L
bits to report a result. If it is assumed that patches are kept on
board the chip and rays are fed in and intersections returned, and it
is assumed that the I/O clock runs at one half the serial clock rate,
then 2 pins can handle the required bandwidth for L=12 and 1 pin is
required for L=24. If a new patch is required in the same time, 8
additional pins are required to handle the bandwidth for L=12 and 4
additional pins are needed for L=24. These numbers are very
reasonable, so there is no cause for concern that lack of I/O
bandwidth will reduce the effectiveness of the chip.

130

CHIP SIZE AND PERFORMANCE ESTIMATES

To get a feeling for how realistic it is to implement the circuit in
VLSI and to get an idea of its performance, the area and speed were
estimated for implementation by a 2 micron NMOS process. The
following areas were assumed for the required circuits:

Circuit Area
square microns

full adder 900
half adder 450
dynamic shift register bit 300
static shift register bit 375
2:1 multiplexer 225

A serial clock rate of 20 megahertz was assumed and a whole chip was
taken to be 36 square millimeters (0.056 square inches). No attempt
was made to make a detailed estimate of the area required for data
routing and control, although the serial data format simplifies
routing and the control is thought to be relatively simple. Instead
it was assumed that roughly half the chip would be required for
routing, I/O and control.

Rough estimates for the rate at which ray/patch intersections are
calculated are provided by multiplying the average time to subdivide
a patch once by the ratio of the total number of times the patch
must be subdivided to the number of patch intersections found, an
experimentally determined number.

TWo examples are presented, one that corresponds to a level of
accuracy relevant for display purposes, and the other a higher
accuracy computation that might be required in a solids modeling
context.

Example I

Accuracy suitable for display purposes

L
D

12
9

bits per control point component
subdivisions maximum

N
Ds
S

2
5
3

stages of subdivision
subdivisions per stage maximum
subdivision chains

P
R

11
4

simUltaneous patch/ray computations
rays tested against each patch

The average time required to compute a patch/ray intersection is
estimated to be 15 microseconds. Forty two percent of a 36 square
millimeter chip is required to perform these calculations. In this
example, the chip is capable of simultaneously searching for the
intersections of the patch with four different rays which could
possibly improve the intersection calculation rate to one every 3.7
microseconds.

131

Example II

Higher accuracy

L
D

24
21

bits per control point component
subdivisions maximum

N
Ds

3
8

stages of subdivision
subdivisions per stage maximum

S 1 subdivision chains
P
R

6
1

simultaneous patch/ray computations
ray tested against each patch

The average time required to compute a patch/ray intersection is
estimated to be 140 microseconds. Fifty percent of a 36 square
millimeter chip is required.

IMAGES

Identical perspective views of a single bicubic patch drawn with a
software version of the algorithm described in section 2 are shown in
Fig. 5 to 10. The maximum subdivision level is varied as a parameter
and the accuracy requirement is set so that the maximum subdivision
level terminates the subdivision process. The pixel intensity is a
linear function of the dot product between the surface normal at the
intersection point and the ray. An eight bit color lookup table was
used.

A 400 by 400 image was generated that essentially spans the viewing
window so that roughly one four hundredth (2 to the power -8.5) of
the patch projects to one pixel. This means that adjacent rays can be
distinguished with roughly 9 levels of sUbdivision. This is only
approximately true because the patch is subdivided uniformly in its
parameter space not in real space. The more uniformly spaced the
Bezier control points the better the approximation.

The impairments for images with 9 or more levels of subdivision are
imperceptible, even on the blowups, except for aliasing errors
(jaggies) as can be seen in Fig. 5 and 6. At 7 levels of
subdivision, small anomalies are visible in Fig. 7 and Fig. 8, where
a slight lighter, darker, lighter, darker, etc. pattern appears
parallel to the silhouette edge which is clearly not bicubic behavior
but computational inaccuracy. Another impairment is that the color
changes no longer appear continuous causing the slightly noticeable
banded appearance in Fig. 7. This is due to the fact that the
minimum size bounding boxes, when projected onto the viewing plane,
are significantly larger than individual pixels. An additional
inaccuracy due to the same cause is that the straight line edge of
the patch in the foreground appears discontinuous where the
silhouette edge of the ridge meets the edge of the patch.

As the maximum subdivision level becomes smaller the impairments
increase until at 3 levels of subdivision the large bounding boxes
shown in Fig. 10 are very clearly distinguishable.

132

EXTENSIONS

The normal to the surface at the ray intersection point is usually
required in computer graphics applications for shading calculations.
This information is easily obtained from the control points of the
result patch calculated by the proposed chip. This follows from the
fact that the four corner control points in the Bezier form are
actually on the patch. The simplest way to extract a normal is to
assume that result patches are approximately planar, subtract corner
control points to form vectors in the plane, and take the cross
product of the resulting vectors.

The control points of the result patch must be known to roughly twice
the accuracy required for the intersection alone in order to
calculate the normal to the same accuracy as the intersection.
Because the VLSI implementation of the subdivide and select chain
subdivides patches exactly, it can be easily adapted to produce the
corner point difference vectors to the required accuracy with a very
modest increase in time. It might be possible to include the cross
product calculations on the chip as well. The tradeoffs involved in
doing this are the subject of a further investigation.

CONCLUSIONS

The subdivision approach to computing patch/ray intersections is
suitable for VLSI implementation. It appears to fit comfortably on a
single chip, its performance is not limited by the need for high I/O
bandwidth and estimates of its performance are attractive. A software
version of the algorithm is being used to generate images in order to
gain insights for the proper choice of the chip parameters. Current
work is directed towards finding the most effective way to use this
chip to implement a powerful graphics or solid/surface modeling
environment. This work is focused on making as much use of of these
chips in a parallel configuration as possible.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support for this work
provided by a grant from STW (The Netherlands) under the Megabit
program through the Network Theory section of the Delft university of
Technology. HP Labs support for a sabbatical leave for the first
author is greatly appreciated as are the many useful discussions with
Ed Deprettere and Rein Nouta on VLSI implementation issues and the
system described herein.

133

REFERENCES

Catmull EE (1974) A sUbdivision algorithm for computer display of
curved surfaces. university of Utah Ph.D. dissertation in computer
Science.

Clark JA (1980) A fast algorithm for rendering parametric surfaces.

Foley JD, Van Dam A (1982) Fundamentals of interactive computer
graphics. Addison-Wesley, 514-536.

Kajiya JT (1982) Ray tracing parametric patches. Computer Graphics
16.3: 245-254.

Lane JM, Carpenter LC, Whitted T, Blinn JF (1980) Scan line methods
for displaying parametrically defined surfaces. Communications of
the ACM 23.1: 468-479.

Lane JM, Risenfeld RF (1980) A theoretical development for the
computer generation and display of piecewise polynomial surfaces.
IEEE Transactions on Pattern Analysis and Machine Intelligence
2.1: 35-46.

Roth, SD (1982) Ray casting for modeling solids. Computer Graphics
and Image Processing 18: 109-144.

Sweeney MAJ, Bartels RH (1986) Ray tracing free-form B-spline
surfaces. IEEE Computer Graphics and Applications 6.2: 41-49.

Toth DL (1985) On ray tracing parametric surfaces. Computer Graphics
19.3: 171-179.

Whitted T (1980) An improved illumination model for shaded display.
Graphics and Image Processing 23.6: 343-349.

134

Compute Compute Compute Compute
Bounding Box Bounding Box Bounding Box Bounding Box

~ ~
Compute Compute Compute Compute

Intersections Intersections Intersections Intersections

i ~
Test Test Test Test

for Hit for Hit for Hit for Hit

~ ~
Compara to Compare to Compare to Compara to

Nearest Nearest Nearest Nearest

t t
Sort Test Patches: Update Nearest

Test Patch

Stack

Subdivide Patch

into Quadrants

/ / \ ~

t •
rResults

Figure 1

Conceptual Block Diagram

135

p,

R, S2 S3 S4

G 1 bit Serial Adder

~ Delay of i clock cycles

Figure 2

Bit Serial Circuit for Subdivision of Bezier Curve

136

Input: 16 control points

.. ~ . " ..

Output:
Control points of
selected quadrant or
the Input control
points •

.. '

Figure 3

Subdivide and Select Block (one component)

--- --

--- --

137

Patch
Control Point " ""

Stack 1

Patch

Control Point

Stack P

:
I
~ •Subdivide & Subdivide &

Select
"" "

Select

t t-48

+ t
Subdivide & Subdivide &

" "" Select Select

I cjr-48 • •, ,
Subdivide S Subdivide

into Quadrants "" " into Quadrants

~ t-48 }-9

Select Subdivide Chain

f-48
4--<

Compute Compute Compute Compute
Bounding Bounding Bounding Bounding

Box Box Box Box

D-6
r--- - -j

.<6 ---!ini-r-- I
I

~ --!!nJ-r-- I

--!!nJ-r-- I
I

fini r-- I
j----- ----------1---------- ----------,b---------

Compute Compute Compute Compute
Intersect Intersect Intersect Intersect

t-6

Test for Test for Test for Test for
Hit Hit Hit Hit I

t-2 •Compare to Compare to Compare to Compare to
Nearest Nearest Nearest Nearest, t-2

Sort Test Patches I Update Nearest tin [results:
j 4x(u.v.t)

48

48

Test Test
Path

Select "" "Stack Stack

P1

1

I

I

I

I

I

I

I

I

I

+

I I

I I

I Repeated for every ray I
l _____________________________________~---------------__J

Figure 4

System Block Diagram

139

Figure 7

Figure 8

6 9mB!:I

OvL

