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ABSTRACT 

A VLSI chip for ray tracing bicubic patches in Bezier form is 
explored. The purpose of the chip is to calculate the intersection 
point of a ray with the bicubic patch to a specified level of 
accuracy, returning the location of the intersection on the patch and 
on the ray. This is done by computing the intersection of the ray 
with a bounding volume of the patch and repeatedly subdividing the 
patch until the bounding volume of subpatches hit by the ray is 
smaller than the accuracy requirement. There are two operating modes, 
one in which only the nearest intersection is found and another in 
which all intersections are found. This algorithm correctly handles 
rays tangentially intersecting a planar patch and ray intersections 
at a silhouette edge of the patch. Estimates indicate that such a 
chip could be implemented in 2 micron NMOS and could compute 
patch/ray intersections at the rate of one every 15 microseconds for 
patches that are prescaled and specified to 12 bits fixed point for 
each of the x, y and z components. A version capable of handling 24 
bit patches could compute patch/ray intersections at the rate of one 
every 140 microseconds. Images drawn using a software version of the 
algorithm are presented and discussed. 

INTRODUCTION 

Ray tracing is a powerful technique used to create very realistic 
images (Whitted, 1980) and to compute properties of solids, such as 
volume and moments, in solid modeling systems (Roth, 1982). 
Frequently modeling systems are restricted to objects described by 
polygons or quadratic surfaces and objects that are compositions of 
them. Curved surfaces can be described efficiently by bicubic patches 
(Foley and Van Dam, 1982), which specify points on the surface with 
a function that is cubic in each of it's two parameters, u and v. 
These patches are determined by a collection of sixteen (three 
dimensional) control points. Because these patches can be pieced 
together while maintaining second order continuity at the 
boundaries, they are very useful for modeling smooth surfaces. 

Bicubic patches are frequently displayed by decomposing them into 
polygons before further processing or by directly computing ray/patch 
intersections. Methods for computing these intersections based on 
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root finding (Kajiya, 1982 and Toth, 1985) have numerical stability 
problems and result in excessive computation times for typical images 
which may require a hundred million ray/patch intersections. 
Subdivision techniques for bicubic patches have been used widely for 
display purposes (Catmull, 1974; Lane, Carpenter and Whitted, 1980; 
and Clark, 1979) and for processing before beginning a Newton-Raphson
search (Toth, 1985 and Sweeney and Bartels, 1986). Whitted (1980) 
and Lane and Risenfeld (1980) have also used subdivision for direct 
calculation of ray/patch intersections in software. So far, the long 
delays due to the computational burden of the ray/patch intersec
tions have restricted the usefulness of bicubic patches in computer
graphics and solid modeling systems. 

Subdivision of Bezier surfaces is well suited for VLSI implementa
tion because it requires only additions and divisions by two when 
restricted appropriately. Thus it has been selected to compute 
ray/patch intersections in what follows. The goal is to reduce the 
time required for ray/patch intersections to a value that would make 
it much more attractive to use patches in an interactive environment 
and to accomplish this with relatively simple hardware. 

ALGORITHM 

The algorithm relies on the following facts. Bezier curves are 
easily subdivided into halves (Lane and Risenfeld, 1980 and Lane, 
Carpenter and Whitted, 1980), requiring only additions and divisions 
by two of the control points. This basic operation is used 
repeatedly to subdivide a bicubic patch into quadrants (Lane and 
Risenfeld, 1980). The control points can be used to form the convex 
hull of the control points, a volume which completely contains the 
patch. A much simpler but looser bounding volume can be found by
taking the maximum and minimum of the x, y and z components of the 
control points to form a rectangular bounding box that is aligned 
with the coordinate axes and it is this method that is actually used 
in this algorithm. The intersection of a ray with each of these 
bounding planes is computed and the results examined to determine if 
the ray intersects the bounding volume. 

with these basic ideas in mind, the algorithm can be stated as 
follows: 

To find the intersection of a patch with the ray, the patch is broken 
into four subpatches, each of whose bounding boxes are computed and 
tested for an intersection with the ray. If the ray hits the 
bounding box of a subpatch and the termination conditions are not 
met, i.e. the patch is not smaller than a specified accuracy
requirement and the maximum level of subdivision has not been 
reached, the subpatch is placed on a stack to be processed further. 

This process proceeds in a depth first search for the subpatches 
whose bounding boxes intersect the ray and which meet the accuracy or 
maximum SUbdivision criteria. These result patches specify the 
intersection points. The (u,v) coordinates of the intersection point 
on the original patch and the parameter t, which specifies the 
intersection point on the ray, are returned as results. 

A conceptual block diagram of the process is shown in Fig. 1. 
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Roughly one bit of accuracy is obtained for each level of subdivision 
and the computation is carried out with more bits than the maximum 
level of subdivision. 

It is possible that more than one result patch is found for a single 
intersection. This is the case when the ray intersection is close to 
the boundary between subpatches or when the ray is parallel to and 
contained in a planar portion of the patch. 

Two approaches may be taken to deal with this situation. The fastest 
and simplest approach is to report only the result patch nearest to 
the ray origin, i.e. the one with the smallest t, as the answer: If 
more than one fits this criterion, an arbitrary patch may be 
selected, or all result patches that are nearest can be reported, 
leaving it to the host to either average these results or compute the 
bounding box which contains all of the results. 

A second approach is to report all result subpatches leaving it to 
the host to group contiguous results together to form intersections, 
and to summarize the resulting intersections by either averaging the 
results or computing the bounding volume of the results. 

If only the nearest intersection is to be found, faster operation may
be obtained by discarding all subpatches that are hit by the ray 
beyond the bounding volume of the current nearest result patch, and 
sorting, nearest to the origin first, those that remain before 
placing them on the test stack. The nearest result patch is 
updated when a closer one is found. Searching for the nearest 
intersection is well suited to displaying patches but forgoes the 
possibility of computing all the intersections of a ray and a patch 
as would be necessary when computing volumes or computing the portion
of a rayon a surface. 

In order to effectively use a restricted number of bits, the patch 
control points are assumed to be presented to the chip in a 
coordinate system whose origin is at the minimum bounding box corner. 
This makes all control points positive numbers. They are also 
assumed to be scaled so that the largest control point component is 
less than one and greater than or equal to one half. The ray origin 
is also presented in this coordinate system and it has been moved to 
the point where it intersects the bounding box of the original patch. 
The ray direction vector is normalized to one. 

The Bezier form of the bicubic patch was chosen because the control 
points form a tighter bounding volume than do the B-spline control 
points. This is not a limitation because patches can be easily 
converted between the Bezier, B-spline and Hermite forms (Foley and 
Van Dam, 1982). 

VLSI IMPLEMENTATION ISSUES 

A bit serial implementation was chosen because of the large number of 
additions that are required. A parallel computation in X, y and z 
was chosen because it operates three times as fast as a serial 
version and there appears to be space enough on the chip to allow it. 

A key component of the system is the block that accepts four control 



128 

points of a Bezier curve and performs the required averaging to 
produce the control points of the the two halves of the subdivided 
curve. The block diagram for a circuit that accomplishes this for one 
component of the control points, x, y or z, is shown in Fig. 2. 

The algorithm requires the saving of subpatches whose bounding boxes 
are hit by the ray and therefore require further subdivision. If 
the control points of these intermediate patches are to be saved a 
very large control point memory is required. It is possible, however, 
to regenerate these intermediate patches from the original while 
saving only the path to the subpatch from the original. This path is 
simply the local (u,v) coordinates (binary fixed point) of the lower 
left corner of the subpatch on the original patch. As will become 
apparent as the chip organization is explained, a hybrid of these two 
approaches, is most attractive. 

An intermediate patch may be reproduced for further testing from the 
original control points by multiple use of a circuit that 
subdivides a patch and selects one of the resulting quadrants or is 
bypassed completely. A block diagram of such a circuit is shown in 
Fig. 3. These circuits can be used in a chain to reproduce any 
intermediate patch. The resulting patch can then be fed to a 
subdivide circuit that produces the control points of all of its 
quadrants, which are in turn, fed to four identical networks that 
test if the ray hits that subpatch. Each of these networks computes
the bounding box of its input patch, the intersection points of the 
ray with the planes of the bounding box, checks the results for an 
intersection of the ray and the bounding box, and tests if the 
accuracy criteria are met. The ray hit and accuracy met information 
for each quadrant of the test patch is used to decide whether any of 
these subpatches should be saved for further testing. The paths to 
the patches that require further testing, together with the depth to 
which they have been divided, are pushed onto a stack for further 
testing. 

If all test patches are produced directly from the original patch as 
just described, then a subdivide chain that can divide to the 
maximum depth in a single pass is required. The required maximum 
subdivision depth is approximately the number of bits of accuracy 
required so that the chain needs to be very long unless the accuracy 
required is small. This, of course, requires sizable chip area but 
also time. The reason is that each subdivide and select circuit has a 
cascade of six additions, that may produce six carries, which when 
operating bit serially requires six additional clock cycles for every 
subdivision stage in the chain. These clock cycles appear as buffer 
bits between successive patches to be subdivided. 

The problem can be alleviated by not always generating a test patch 
directly from the original patch in one pass but saving the control 
points at selected intermediate points and then generating the test 
patch from the saved points. This process we call subdivision in 
stages. In order to accomplish this, the control point memory is 
organized as a stack to allow for the storage of intermediate control 
point arrays and the length of the subdivide chain is Ds=(D-l)/N+l 
where D is the maximum depth to which a patch must be subdivided and 
N is the number of subdivision stages. If a patch has been divided 
an additional Ds levels from the last set of stored control points 
and it required further testing, the control points of its immediate 
parent could be pushed onto the control point stack and the path from 
the these stored control points to it saved. Further refinement 
would proceed by subdividing these intermediate control points. 
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With this organization the time penalty is paid only for the 
additional levels of subdivision from the stored control points.
Another benefit is that the test stack memory required is smaller 
because only the path from the saved control points need be kept on 
the test stack. Additional patCh memory is required for each stage 
but there is a net savings in area for the proper choice of the 
number of stages. 

The time lost because of the need to provide buffer bits between 
successive patch subdivisions can be eliminated as far as the rest 
of the chip is concerned by duplicating the subdivide chain. Thus 
when buffer bits are being clocked into one subdivide chain, a new 
computation can begin in a duplicate chain and a steady stream of 
subdivided patches may be presented to the circuitry that computes 
bounding boxes. 

The system can achieve high throughput by pipelining, but the depth 
first search requires the result of a computation before a decision 
on which way to proceed can be made. Efficient utilization of the 
pipe can be maintained by having several patches on the chip and 
working on them in rotation. If the time to initiate a computation 
on each of the patches is greater than the delay, there will be no 
decrease in throughput. Additional memory for the control points and 
test stack for each of the patch intersection computations being 
carried out on the chip is required. 

If the chip is seeking only nearest intersections, and if the current 
patch is a result , i.e. if it is a hit that satisfies the accuracy 
or maximum subdivision criteria, then a comparison of the newest t 
value(s) for entering the bounding volume, t in, is made with the t 
in for the current nearest result patch and the current nearest t in 
is updated. Only hits that are closer than the nearest result are 
reported as hits in this mode of operation. 

The chip, as described so far, carries out intersection calculations 
for a single ray against a patch, but it can also test the patch
against a list of rays if the compute intersection, test for hit and 
compare to nearest circuits are replicated for each ray. This is a 
useful addition for primary rays which are highly coherent and for 
multiple rays used to perform antialiasing. 

The overall block diagram of the system described is shown in Fig. 4. 

COMMUNICATION WITH THE HOST 

The I/O bandwidth requirements for this chip are very small. If L is 
the number of bits for each component, x, y or z, then roughly L 
squared serial clock cycles are required to find an intersection and 
48*L bits to specify a new patch, 6*L bits for a new ray and 3*L 
bits to report a result. If it is assumed that patches are kept on 
board the chip and rays are fed in and intersections returned, and it 
is assumed that the I/O clock runs at one half the serial clock rate, 
then 2 pins can handle the required bandwidth for L=12 and 1 pin is 
required for L=24. If a new patch is required in the same time, 8 
additional pins are required to handle the bandwidth for L=12 and 4 
additional pins are needed for L=24. These numbers are very 
reasonable, so there is no cause for concern that lack of I/O
bandwidth will reduce the effectiveness of the chip. 
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CHIP SIZE AND PERFORMANCE ESTIMATES 

To get a feeling for how realistic it is to implement the circuit in 
VLSI and to get an idea of its performance, the area and speed were 
estimated for implementation by a 2 micron NMOS process. The 
following areas were assumed for the required circuits: 

Circuit Area 
square microns 

full adder 900 
half adder 450 
dynamic shift register bit 300 
static shift register bit 375 
2:1 multiplexer 225 

A serial clock rate of 20 megahertz was assumed and a whole chip was 
taken to be 36 square millimeters (0.056 square inches). No attempt 
was made to make a detailed estimate of the area required for data 
routing and control, although the serial data format simplifies 
routing and the control is thought to be relatively simple. Instead 
it was assumed that roughly half the chip would be required for 
routing, I/O and control. 

Rough estimates for the rate at which ray/patch intersections are 
calculated are provided by multiplying the average time to subdivide 
a patch once by the ratio of the total number of times the patch 
must be subdivided to the number of patch intersections found, an 
experimentally determined number. 

TWo examples are presented, one that corresponds to a level of 
accuracy relevant for display purposes, and the other a higher 
accuracy computation that might be required in a solids modeling 
context. 

Example I 

Accuracy suitable for display purposes 

L 
D 

12 
9 

bits per control point component 
subdivisions maximum 

N 
Ds 
S 

2 
5 
3 

stages of subdivision 
subdivisions per stage maximum 
subdivision chains 

P 
R 

11 
4 

simUltaneous patch/ray computations 
rays tested against each patch 

The average time required to compute a patch/ray intersection is 
estimated to be 15 microseconds. Forty two percent of a 36 square 
millimeter chip is required to perform these calculations. In this 
example, the chip is capable of simultaneously searching for the 
intersections of the patch with four different rays which could 
possibly improve the intersection calculation rate to one every 3.7 
microseconds. 
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Example II 

Higher accuracy 

L 
D 

24 
21 

bits per control point component 
subdivisions maximum 

N 
Ds 

3 
8 

stages of subdivision 
subdivisions per stage maximum 

S 1 subdivision chains 
P 
R 

6 
1 

simultaneous patch/ray computations 
ray tested against each patch 

The average time required to compute a patch/ray intersection is 
estimated to be 140 microseconds. Fifty percent of a 36 square
millimeter chip is required. 

IMAGES 

Identical perspective views of a single bicubic patch drawn with a 
software version of the algorithm described in section 2 are shown in 
Fig. 5 to 10. The maximum subdivision level is varied as a parameter 
and the accuracy requirement is set so that the maximum subdivision 
level terminates the subdivision process. The pixel intensity is a 
linear function of the dot product between the surface normal at the 
intersection point and the ray. An eight bit color lookup table was 
used. 

A 400 by 400 image was generated that essentially spans the viewing 
window so that roughly one four hundredth ( 2 to the power -8.5 ) of 
the patch projects to one pixel. This means that adjacent rays can be 
distinguished with roughly 9 levels of sUbdivision. This is only 
approximately true because the patch is subdivided uniformly in its 
parameter space not in real space. The more uniformly spaced the 
Bezier control points the better the approximation. 

The impairments for images with 9 or more levels of subdivision are 
imperceptible, even on the blowups, except for aliasing errors 
(jaggies) as can be seen in Fig. 5 and 6. At 7 levels of 
subdivision, small anomalies are visible in Fig. 7 and Fig. 8, where 
a slight lighter, darker, lighter, darker, etc. pattern appears 
parallel to the silhouette edge which is clearly not bicubic behavior 
but computational inaccuracy. Another impairment is that the color 
changes no longer appear continuous causing the slightly noticeable 
banded appearance in Fig. 7. This is due to the fact that the 
minimum size bounding boxes, when projected onto the viewing plane, 
are significantly larger than individual pixels. An additional 
inaccuracy due to the same cause is that the straight line edge of 
the patch in the foreground appears discontinuous where the 
silhouette edge of the ridge meets the edge of the patch. 

As the maximum subdivision level becomes smaller the impairments 
increase until at 3 levels of subdivision the large bounding boxes 
shown in Fig. 10 are very clearly distinguishable. 
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EXTENSIONS 

The normal to the surface at the ray intersection point is usually 
required in computer graphics applications for shading calculations. 
This information is easily obtained from the control points of the 
result patch calculated by the proposed chip. This follows from the 
fact that the four corner control points in the Bezier form are 
actually on the patch. The simplest way to extract a normal is to 
assume that result patches are approximately planar, subtract corner 
control points to form vectors in the plane, and take the cross 
product of the resulting vectors. 

The control points of the result patch must be known to roughly twice 
the accuracy required for the intersection alone in order to 
calculate the normal to the same accuracy as the intersection. 
Because the VLSI implementation of the subdivide and select chain 
subdivides patches exactly, it can be easily adapted to produce the 
corner point difference vectors to the required accuracy with a very 
modest increase in time. It might be possible to include the cross 
product calculations on the chip as well. The tradeoffs involved in 
doing this are the subject of a further investigation. 

CONCLUSIONS 

The subdivision approach to computing patch/ray intersections is 
suitable for VLSI implementation. It appears to fit comfortably on a 
single chip, its performance is not limited by the need for high I/O 
bandwidth and estimates of its performance are attractive. A software 
version of the algorithm is being used to generate images in order to 
gain insights for the proper choice of the chip parameters. Current 
work is directed towards finding the most effective way to use this 
chip to implement a powerful graphics or solid/surface modeling 
environment. This work is focused on making as much use of of these 
chips in a parallel configuration as possible. 
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Figure 7 

Figure 8 
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