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In any discussion of graphics hardware there appear to be two basic 
positions which can be adopted. The first is that of the technol­
ogist, who is primarily concerned with what it is possible to make 
and how to make it. The second is that of the system designer who 
is more interested in what it would be desirable to make. To be a 
designer it is necessary to have a view of the future ••• or at 
least a view of a plausible future! This is only possible with a 
reasonably sound idea of what the technologists might be persuaded 
to provide. I suspect that most of the "images of the future" which 
have guided or moulded current proposals have been around for some 
time. In spite of this it is a good preliminary exercise to set 
out a brief statement of the main ideas Which lie behind current 
developments, before homing in on specific hardware proposals. 

Perhaps the most important idea which has emerged with the devel­
opment of graphics hardware is the provision of a common base for 
all electronic images. This was made possible by the development 
of the digital frame store (Newell, Newell, Sancha, 1972), which 
depended on the evolution of memory integrated-circuits. The 
second important idea is the ability to interact with synthesised 
images in real-time. The third important idea is the development 
of higher level languages for interacting with objects in displays. 
Fourthly, the least exploited idea to date is the capability of 
automatically extracting higher-level object information from found 
images, such as those received from the TV camera. Underlying all 
these ideas is the unifying concept of improving the man-machine and 
world-machine interfaces to improve communication which, it is 
hoped, will allow machines to operate at a higher or more intell­
igent level. 

A different set of ideas, linked with the development of display 
hardware, seems to be emerging from work on array processors 
developed for image analysis work. These ideas are concerned with 
a graphical counterpart to a program listing in the sense that 
program code can be read meaningfully as text on one hand, but can 
also be employed as instruction codes, on the other. Diagrams, 
charts and graphs, in a similar way, can be understood as images but 
can also act as instructions to an array of processors considered as 
a display. There is at least the possibility that display gener­
ating hardware could be designed to have very powerful general, 
parallel processing capabilities. This would provide an inter­
esting twist to the "wheel of reincarnation" I 

The initial idea behind the specific hardware proposals outlined 
below was that in a computer environment drawings would be replaced 
by mathematical models for design and analysis work. This meant 
that the highest level of modelling language that was compatible 
with the interactive capabilities needed for design work could be 

http://www.eg.org
http://diglib.eg.org


95 

sought to replace the line based systems that had evolved from a 
draughtsman's methodology. At present this appears to be provided 
by a Boolean-expression modelling system (Thomas, 1986), though in 
the future there is no reason why more complex modelling structures 
should not take over. The advantage that the Boolean model has is 
that it provides a system with a built in hierarchy, useful for 
developing efficient algorithms to take advantage of scene coher­
ence. It also provides a natural way of representing object­
interference or volume overlap, which often needs to be located as 
an unwanted consequence of editing operations. These are both 
capabilities which will have to be included in future systems even 
if they provide higher level modelling facilities. 

The second idea controlling the way in which the hardware described 
below evolved was the need to generate real-time, moving, synthetic­
images. This was important for simUlation and teaching systems. 
It was useful in CAD work even if not always demanded by current 
practice, and in the long run appeared essential if better man 
machine communication was to be achieved. 

Real-Time Boolean Expression Modelling System 

The first real-time raster based systems were developed by 
Schumacker (Rougelot, 1969) and Watkins in 1969 and 1970 
respectively. 

Watkins' algorithm was a solution to real-time display generation 
which in principle was hard to improve. There were four steps to 
producing a moving synthetic image. 

1. Transformation Processing. 
2. Divide and Conquer Scan-Line, Scene Coherence Processing. 
3. Pixel Rendering or Value Interpolation. 
4. Illumination Calculations. 

What did seem open for improvement was the object modelling stage of 
the process. 

Two main approaches to modelling emerged from a study of this part 
of the system (Thomas, 1976). The first was based on a set of 
homogeneous vertex coordinates, (x,y,z,w), the second on a set of 
facet plane equation coefficients, (a,b,c,d). The vertex based 
approach consisted of different ways of setting up triangulated 
networks. A characteristic of this model was that shape changes 
could be most simply achieved by transforming vertex coordinates: 
edges and facets depending on interpolation to complete the model. 
One way of implementing this system was to represent a set of 
tetrahedra as 4 x 4 graph matrices and then employ a series of 
operations to glue the tetrahedra together by adding together the 
appropriate matrices. A variation on this approach was based on a 
hierarchy of convex hulls. 

The second main method grew out of a study of overlap operations. 
The facets of the target volume were represented by a set of plane 
half-spaces. These unbounded planes partitioned the object space 
into a collection of convex blocks: the required volume being 
defined by writing down the Boolean expression which selected the 
appropriate collection of convex blocks. This expression model was 
relatively easy to convert automatically into a graph-matrix or 
convex hull model when required, and vice versa. Shape 
modification following the second approach was achieved by 
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transforming the surface plane equations. However both point and 
surface based models were capable of being transformed using the 
same matrix multiplication hardware. 
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Fig. 1 Alternative Volume Models 
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T C. d • ( ! E+f) • D; 

the lower case names representing plane half-spaces, and the capital 
letter names representing the other objects: 

C a.b; 

E e.r. (1+m+! (k+j)+n+s); 

D t.u.v; 

Then the first step is to substitute for the object names to get: 

T a.b.d. (I (e.r. (1+m+1 (k+j)+n+s»+f) .t.u.v; 
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Fig. 2 Boolean Expression Model Standard Form 

The next step is to apply De Morgan's theorem to all complemented 
sub-expressions to give: 

T = a. b. d. ( I e+ I r + ( 11. 1m. (k+j) • In. Is) +f) • t. u. v: 

and the final step is to collect all the free plane half-spaces at 
each level into convex groups that can be renamed in the way shown 
in Fig. 2. 

T = a.b.d.t.u.v.(!e+lr+f+(11.1m.ln.ls.{k+j»); 

A B c D l») 

This process is implemented using the tree structures which result 
from parsing the input expressions defining the various objects, in 
the way illustrated in Fig. 3. 

Figure 2 illustrates the input models which result from parsing the 
volumes labelled T, C, E and 0 in Fig. 3, in the trees numbered 1, 
2, 3, 4. The first step in processing these trees was to link 
incomplete references to the relevant sub-trees. In this case the 
result is a single expanded tree for T. Applying De Morgan's 
theorem consists of switching all the operator nodes in the comple­
mented sub-trees and complementing all the half-space references. 
This makes it possible to represent the expression by a Knuth tree 
where each deeper level corresponds to alternating union and inter­
section operators. The final step is to collect all the free 
half-space references together at each level in the Knuth tree at 
the beginning of each row. Renaming these units allows the 
schematic representation using convex elements shown in Fig. 2. 
This diagram corresponds to the tree labelled 6 in Fig. 3, which 
would be implemented in the form of the tree labelled 5. The 
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convex units in this example are (a.b.d.t.u.v), (!e+!r+f), 
(11. 1m. In. Is) and (k+j). Renaming these convex units results in an 
object defined as A. (B+(C.(D»} or A(B(C(D») where the first level 
is known. 
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Fig. 3 Boolean Expressions as Tree Structures 
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Once the convex components have been set up in this way it is poss­
ible to carry out a further series of operations on these trees 
which correspond to the algebraic manipulation of the original 
expression described below. The purpose of these operations is to 
generate a Boundary model from the simple expression form used for 
input. This process was initially developed to control the 
conversion of the expression model into its corresponding graph­
matrix form. 

Take as an example the triangular object (A.B.C). It is a natural 
step to define the boundary of this object -- expressed as @(A.B.C) 
-- as made up from the three sides of the triangle. The first 
side of the triangle will be the boundary of the half-space A 
denoted by @A where it lies inside (B.C), in other words @A.B.C. 
Similarly the second and third sides will be @B.A.C and @C.A.B 
respectively, giving in total: 

@(A.B.C) @A.B.C + @B.A.C + @C.A.B 

This idea can be extended by considering the triangle to be a hole 
rather than a solid. In which case the expansion becomes: 

@A.B.C + @B.C.A + @C.A.B 

From this example two swapping rules can be extracted: 
@(A. B)... @A.B + @B.A @(A+B) ... @A.B + @B.A 

If these swapping rules or productions are applied to the previous 
example, the results will be the set of boundary segments shown in 
Fig. 4 as Bl, B2, B3 and B4 where these elements are defined as 
follows: 

@(A.(B+(C.(D»»'" @A.(B+(C.(D») + @(B+(C.(D»).A 

@(B+(C.(D»).A'" @B.A.(C.(D» + @(C.(D».A.B 

@(C. (D)) .A.B ... @C.A.B. (D) + @D.A.B.C 

Renaming: 

Bl @A. (B+(C. (D)» B2 @B. (A. (C+ (0) » 

B3 @C. (A.B. (D» B4 @D. (A.B.C) 

Fig. 4 Boolean Expression Boundary Operator 
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An alternative expansion can be obtained by using a different 
swapping rule for the '+' operator. 

@(A+B) + @A + @B 

Applying this rule to the previous example gives: 

@ (A. (B+ (C. (0»» + @A. (B+ (C. (0») + @(B+(C. (D» ) .A 

@(B+ (C. (D») .A + @B.A + @(C. (D) 1 .A 

@(C. (D».A + @C.A. (D) + @D.A.C 

Renaming: 

BI @A. (B+(C. (D») B2 @B. (Al 

B3 = @C. (A. (D» B4 @D. (A.C) 

Fig. 5 Alternative Boundary Expansion 

The alternative expansion makes use of the fact that pieces of 
surface which lie inside the solid interior of an object will not be 
seen. It was developed to handle the problem of hanging faces. 
This form of boundary expansion allows sheet like objects with no 
thickness to be handled by a display algorithm on one hand and 
applying a different interpretation, it also allows regularised set 
operations to be implemented in the display process on the other. 

The Display of Boolean Expression Models 

Consider a convex solid defined as the intersection of a set of 
plane surfaced half-spaces. From any viewing point this set will 
be partitioned into two sets: those facing towards the viewing 
position and those facing away from it. The front surface of the 
convex object can be defined by selecting the front plane which lies 
furthest away from the viewing position along a given viewing ray. 
Conversely the back surface of the same object will be given by 
selecting the back plane which lies closest to the viewing position 
along any viewing ray. These two surfaces however are infinite in 
extent, defined in this way, whereas the original object is not. 
The final step is to select that section of the front surface which 
lies in front of the back surface, as the visible surface of the 
convex object. Given a set of convex objects then the nearest one 
to the eye will be the visible object in a particular viewing 
direction. 
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Viewing Ray Distances 

The distance to a plane surface from a pixel position R can be 
evaluated in the way shown in Fig. 6. The distances to two 
surfaces AA and BB are shown in the diagram as the lengths NR and 
MR. 
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A 

Fig. 6 Viewing Ray Distances 

MR CR NR LR Similar trianglesME PE NE KE 

MR.PE = CR. (MR+RE) NR.KE LR. (NR+RE) 

RE.CR RE.LRNRMR =(PE-CR) (KE-LR) 

Since RE will be a constant for any pixel position these relation­
ships can be renamed to give the ratios 

> 

where kl and k2 are the perpendicular distances from the plane to 
the raster point and the eye respectively. These distances can be 
obtained by calculating the dot product of the coefficients of the 
plane's equation with the coordinates of the positions of Rand E. 

Because it was the order in which surfaces cut a viewing ray which 
was important, the ratios: 

> 
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could be replaced by: 

kl 	 kl 
A 	 B>2k	 ~ 
A 	 B 

These ratios have the advantage that their values lie in the range 
o to 1, as well as preserving the order of surface intersections 

with a viewing ray. If this ratio is expanded to give 


1 IIIkl a.x + b.y + C.z + d.w z 	 (1 )222 2~ a.x + b.y + c.z + d.w 

where Z is the new distance value, then a new display space is 
defined, and the transformation from the object space to this new 
space can be summarised by rearranging (1) to give: 

(a, b, c, d) 	 : 1, 0, -x2, 0 j lxll o 

: 0, 1, _y2, 0 : lyl; 

:0,0, -z2, zll I Z : 

10, 0, -1, 1: 11 1 


This matrix defines the perspective transformation for the plane (a, 
b, c, d). The advantage of using this form is that this matrix can 
be concatenated with rotation and translation matrices in the same 
way that is done in point processing systems. The importance of 
this is that point, line, area and volume objects can all be trans­
formed using the same hardware, more or less in the same way. 
Pipelining this operation, by first passing a scene description 
through a matrix multiplier to transform it, then passing it through 
a hidden area removal and illumination processor, gives a system 
which is capable of producing a real-time moving display if the 
second stage can be made fast enough. 

If a plane (a, b, c, d) in the object space gives a new plane in the 
display space (A, B, c, DJ, then the depth value Z can be calculated 
at any pixel position (X,Y) by the equation: 

Z (A.X + B.Y 	+ O)/(-C) 

This distance is perpendicular to the display screen in the display 
space, and can be used to represent the plane in visibility tests at 
the given pixel position. An alternative distance which is 
important in several algorithms is the distance K from the pixel 
position to the plane, taken perpendicular to the plane itself. 

K (A.X + B.Y 	+ OJ 

Working with a raster display it is possible to simplify the 
calculations of K and Z for each pixel, by calculating an initial 
depth value at one pixel position, and then calculating the size of 
the increments needed to modify this value, moving in regularly 
spaced steps over the display surface. 

If the display transformation is set up so that the display space 
has its origin at the origin of the object space with the x and y 
axes corresponding to the X and Y axes and the direction of viewing 
being along the z axis, then the following values can be calculated: 
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Z D/(-C) 

t.Zx A.t.X/(-C) 

t.Zy B.H/(-C) 

where t.x and t.Y are the pixel spacing dimensions, or the screen 
width increments -- depending on the next stage. Where C + 0 then 
there is a problem. This situation corresponds to the plane 
surface getting closer and closer to being perpendicular to the 
display screen. The perpendicular and near perpendicular plane 
can be processed in a different way, by using the value of K rather 
than z. This value and its increments will already be available: 

K D 

t.Kx A.t.X 

t.Ky B. t. Y 

t.Kz C.t.Z 

in other words the intermediate result, before carrying out the 
division operation. The critical situation where the value of K 
replaces the value of Z will occur when either of the pixel level 
increments of Z exceeds 1.0. This corresponds to a surface which 
is not visible at one pixel position but has crossed the display 
screen to give a cross section cut at a neighbouring pixel position. 
Although there are a variety of ways in which this set of operations 
can be carried out, a simple pipelined arrangement has been evolved 
where an approximation method for calculating the division is 
employed to make the test for perpendicularity easy to implement. 

The division by multiplication is carried out in the following way. 
Consider D/C. Normalise C to be a fraction of the form O.xxxx and 
consider it to be the value (l-t.). Both 0 and C are then 
multiplied by (lH) which is (2-(1-6», in other words 2-C. 

D. (lH) 

(1+t.). (l-t.) = ~i 


Cl (1-t. 2 ) which permits the process to be repeated: 

(1+6 2 ) = 2-Cl 

D2 
Cl (1-6 2 ) • (lH2) C2 
Dl 

C2 (1-6 4 ) • 

This process is continued until the error term is below some fixed 
value. At this point 

D -Z
C + 1.0 -Z 

Using this scheme, it has been estimated that 4 or 5 multiplies in 
series will give the required accuracy for the division operation. 
If multiplication time is lOOn sees then 500n sees are required for 
each plane transformation. This will allow 80,000 planes to be 

D 
C 
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transformed in the frame time of 1/25 sec. If the transformation 
time can be reduced to 400n sees then this figure goes up to 100,000 
planes in a frame time. 

Moving Images and Transformations 

The selection of the front and back surfaces of a convex object at a 
particular pixel position can be achieved in one pass through a 
display list -- a list of plane half-spaces linked by intersection 
operators: A.B.C.D.E.F. It is necessary to hold two temporary 
values in registers during this process: the first holding the 
furthest away front surface encountered up to that point, the second 
holding the nearest back surface. In order to carry out this 
process it is necessary to know which are front surfaces and which 
are back surfaces. Clearly this is a classification task which has 
to be carried out after each plane transformation, if a moving scene 
is being generated. 

Consider a plane defined relative to the origin by the value K. 
This distance will be positive where the or1g1n lies inside the 
plane and negative where it lies outside: 

K a.x + b.y + c.z + d 

K d (x=O, y=O, z=O) 

The sign of d can consequently be used to indicate the inside­
outside relationship between a plane and the origin. Backness or 
frontness depends on the intercept of the plane on the Z axis, 
combined with this inside-outside value. From the diagrams in 
Fig. 7 it can be seen that the exclusive OR of the sign bits of K 
and Z defined at the origin gives a simple and fast way of 
maintaining this classification of frontness or backness. 

FRONT" 
SU1<:FACE' 

dol-ve­
'X-VII!. 

Fig. 7 Front or Back Planes 

::z. z 

B.A.c.K 

~K 
SUR:,FAcE" 

SIJl<FP£,.E. 

d-ve. 
z:.-ve. 

If display lists for convex units are pre-ordered so that all front 
surfaces are received for processing before the back surfaces in the 
same convex group, then only one temporary value needs to be stored 
carrying out the display algorithm. However this requires a 
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Fig. 8 Object Space to Image Space Transformation 
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Fig. 9 Display Operations: Convex Units 
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reordering of the elements in the display list after transformation. 
If the length of each convex unit is held with each display list 
then a simple addressing operation can be used to achieve this 
reordering, where outputting the values to the hidden area removal 
processing unit, from the transformation unit. 

Figure 8 summarises the transformation operation implemented in the 
way described above. The result is a display space which can be 
thought of as a cube lying behind the display screen. Objects in 
this display space can be displayed using a simple parallel pro­
jection operation. The display algorithms used for Boolean 
expression models in this context are shown in Fig. 9 for both 
convex solids and convex voids. 

HIDDEN AREA REMOVAL HARDWARE 

Given the ability to calculate depth values using a transformation 
unit similar to that used for point based models, hardware to 
implement the selection operations summarised in Fig. 9 had to be 
developed for hidden area removal. It was clearly possible to 
implement a Watkins' (1970) style scan-line algorithm. An advan­
tage which resulted from having surfaces spanning the whole display 
space was that binary sub-division, instead of being applied to each 
polygon facet section, could in the manner of Warnock's algorithm 
(1969) be applied to the whole display space. Each scan line could 
be sub-divided using a common framework for all surface-surface 
comparisons. 

f-A B-t 
I:;-A 

LEFr MAR4-IN ~ 

Fig. 10 Binary Sub-division of a Raster Line Cross Section Plane 

Consider the two volumes A and B shown in cross section in Fig. 10. 
If the front surfaces and back surfaces of these two volumes are 
determined at the margin positions LM and RM, then their relative 
positions and orientations will indicate in which direction the 
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objects lie. In this case both A and B exist to the right of the 
left margin and to the left of the right margin. When the same 
tests are applied at the centre point, the results show that A lies 
to the left but B lies to the right. A recursive sub-division 
procedure based on these tests will sort objects into order along 
the raster line and considerably reduce the work in finding visible 
sections of objects' surfaces. 

It appeared that if reasonably simple scenes were being processed 
then this approach would be adequate. All that was needed to 
obtain a display was a video-rate interpolator to fill in the pixels 
between the facet edges determined by the sub-division algorithm. 
However where an image complexity was required which might demand 
changes every few pixels, this sub-division process could not be 
carried out fast enough to support real-time without some form of 
parallel hardware implementation. At the time this seemed too 
difficult. What appeared much easier to implement was the simple 
hidden area algorithm of Fig. 9, in an iterative form using 
repeating hardware units, and then to use it in partnership with a 
software sub-division or other scene coherence algorithm. It now 
seems fairly clear that to obtain the speed and complexity desired 
will need both stages, both implemented in hardware, the overall 
system structure being extended to that shown in Fig. 11. 
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I SCENE HIDDEN AR~ I'DATA - BASE 
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I LLUM {I-J ,11..11 oNGrEOM'ETRIC TRANSFoRM-

AnONS AND 'ReAUSM' r--+T.V.MOt>EWNG- {----j 

TRA;J"E'CfORI6S I~Ssro~SYSTEM. 

Fig. 11 Display System Block Diagram 

Parallel Schemes 

There were two stages to the simple iterative implementation of the 
algorithm which were: 

1. Evaluating depth values at each 
half-space in the display list. 

pixel position for each plane 

2. Comparing depth values to select visible surfa
inside-outside or viewing ray priority tests. 

ces, based on 

It was found possible to construct two different parallel schemes. 
In the first, depth generating units from parallel processors were 
combined into a single entity. In the second the comparison and 
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selection units were combined together as a single unit. Each of 
these combined units could be implemented using either pipelined
(systolic) processing or simultaneous (synchronous) processing. 
This gave four general schemes. The two main parallel implement­
ations are shown in Fig. 12. The labelled sUb-systems: A, B, c, 
D, E and F are shown in Figs. 13 to 18. 

IINfrA. WJ UNIT ell> I U'NfT' ElF WJ UNIT B 

A 
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I'~ ~ 
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PI:1"'T1-l COMl"~SON PEf"ll-I COMl"A.R.lsoN 

~eRATIN~ & SEl..ECT1oN ~NE~t.lc::t z.. sELECt10N 


UNITS UNITS UNITS UNITS. 


Fig. 12 Parallel Processing Schemes 

I NCII':.t!'Me:N.1"S DE1"T"H "",-ues 

UNIT"A" 

Fig. 13 Independent Depth Generating Unit 

The independent depth generating unit can be a microprocessor. 
However, the minimum arrangement for modelling a plane surface is 
given in Fig. 13. The minimum unit can be combined in two ways to 
create a stream of depth values for neighbouring pixel positions.
The first is a systolic solution, using a pipeline, the second is a 
synchronous solution, in this case using a binary, quad or oct tree 
of incrementing units in the way shown. The advantage that 
independent units have over the combined units is that they can be 
implemented using general purpose microprocessors: as long as video 
rate output is not required this arrangement appears to provide the 
simplest scheme for exploring the modelling of curved surfaces. 
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40--------40 (L+I) 

Fig. 14 Pipelined Incrementing Unit 

UNIT "F" 

Fig. 15 Synchronous Incrementing Unit 

UNIT rt~" 

Fig. 16 Independent Comparison and Selection Unit 
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The combined depth generating units are shown in Figs. 14 and 15. 

Figure 16 shows an independent comparison and selection unit. 

Figures 17 and 18 show the two combined units. In unit C depth 

values are passed from unit to unit in a pipelined system, in unit D 

values are compared with a broadcast value on a bus. An altern­

ative to D is a tree structure made up from comparison units. In 

the example shown a special bus driver was designed to maintain the 

maximum value on the bus from all the values being driven onto it, 

and to flag the units where this maximum value originated. 


These comparison and selection units were initially designed in two 

stages corresponding to the product level and summation level of a 

simple Boolean expression. 


UNIT~CP 

INPUT 

SUMMP;i1CNPRODtJCr 
j..£\IEl-LEVEL... 

Fig. 17 Pipelined Comparison and Selection Unit 

However, the structure of unit D suggested a way of implementing an 
array processor which would handle multiple level Boolean expression 
models directly. This approach also linked to a way of processing 
quadric surfaces. PROPucrLEVE:!.. SUMMATlON LfNEL-

UN Ii "0·' 

su.scr 

INPUT 

-SusI3US­

Fig. 18 Synchronous Comparison and Selection Unit 

Quadric Surfaces, Convex Objects and Front and Back Pairs 

A quadric surface can cut a viewing ray twice, and if it does it 
will intersect the ray with a front and back surface in much the 
same way that a product phrase made up from plane facets does. 
This means that the surface can be considered to be two variable 
surfaces called F for front and B for back. The hierarchical 
structure of a Boolean model allows a parallel scheme of the kind 
shown in Fig. 19 to be constructed, which is capable of generating 
video rate output. 
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In this arrangement, each of the comparison and selection units 
compares two sets of front and back depth values. Values passing 
from left to right in the array are either passed through or 
replaced by values on the vertical lines, depending on their 
relative location in the Boolean expression hierarchy and their 
relative values. This system generates the set of viewing ray 
spans which define where the viewing ray pierces solid objects for a 
particular line of sight. The final stage in the array represents 
a sorting bus or a sorting pipeline of the form described above, 
which produces the final visible surface. 
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Fig. 19 Comparison and Selection Array Processor 

A general real-time solution to this problem requires a square array 
of n.n comparison and selection units, because the worst case 
expression of the form (A{B(C(D(E(F(G(H(I»»»») requires (n 2 ) 
comparisons. The array processor can be implemented using either 
a synchronous or a systolic sorting process. In the latter case 
the data wave front has to flow diagonally across the array to 
maintain a continuous video refresh-rate output of pixel values. 
The problems arise with this system when the worst case does not 
occur -- many of the comparison and selection units become 
redundant. 

A solution to this problem was provided by the boundary expansion. 
If the first form of the boundary expansion is applied to an 
expression model containing n convex units then a display list of n2 
convex units is created. This modified display list can be pro­
cessed by a linear array of processors designed to handle boundary 
expressions. Such a processor is almost identical to the two 
stage processor already described. The primary data path for 
depth values is the same. Only the control is a little more complex 
having to contain a one bit wide push down stack to hold 



112 

intermediate inside-outside test values. This approach to the 
display problem seemed more versatile because given a pipe of n2 
processors it was possible to process a fully nested expression 
containing n convex units, at one extreme, and a simple expression 
of n2 elements long at the other: both in real-time, both in the 
same processor. There was no complicated mapping task setting up 
an array in an optimal fashion, in order to use all its components 
for simple models. 
The Boundary Expansion and Clipping Volumes 

The boundary expansion of the model shown in Fig. 2 was: 

@(A.(B+(C.(D»» '" @A.[B+(C.(D»J + @B.[A.(C+(i5»J 

+ @C. [A.S. (D) J + @D. [A.S.C] 

Each phrase in the expansion consists of a convex element, nominally 
a surface, followed by a volume definition inside a pair of square 
brackets. The phrase represents the section of the surface which 
lies inside the volume. In the expression shown there are four 
pieces of surface making up the boundary of the total object. The 
visible section of each convex surface can be determined in the same 
way used to display simple convex solids. Since these convex 
boundary pieces can be voids, in other words concave surfaces, this 
process has to be extended in the way summarised in Fig. 9 to 
include convex voids. 

The visible surface at each pixel position will be represented by a 
distance along the viewing ray. It is possible to test this 
distance against the front and back surface distances of the convex 
units making up the clipping volume in the square brackets. The 
inside-outside results of these tests can be combined using the 
Boolean operators in the clipping expression, to determine whether 
the surface point is within the clipping volume and should be 
retained or whether it is outside and should be discarded. If the 
convex surface is processed first and its visible surface distance 
is held in the first stage register of the comparison and selection 
unit, and the half-spaces in the clipping expression are passed 
through the input register of the same unit, then it is possible to 
implement the clipping operation using a one bit wide push-down 
stack to hold intermediate inside-outside results. The operation 
is cartooned in Fig. 20 for the simple object A+B.'.:.':...;.;" Q
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A Prototype Display Processor 

Of the four schemes outlined above the two processors with combined 
pipelined units appeared the easiest to implement in an efficient 
way, using the minimum of hardware. The one being investigated in 
current work is the one with a pipelined, combined depth generating 
unit. In this system depth values are established for a reference 
pixel point for all the plane half-spaces in a scene model. These 
depth values are then passed to the first comparison and selection 
unit, on one hand, and through an incrementing unit to the next 
procesor on the other. In this way the depth values received by 
the second processor represent the planes at the next pix,el 
position, so that the identical process can be repeated by each 
processor in the line, the difference being that the values operated 
on by neighbouring processors are for neighbouring pixel positions. 
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Fig. 21 Incrementing Stage 

Block diagrams of a processor which can be used in a pipeline of 
this kind are given in Figs. 21, 22, and 23. If the arrangement in 
Fig. 21 allows increments to be subtracted as well as added, then 
these units can be made to follow any linear sequence of steps on 
the display screen, as an alternative to following a regular raster 
pattern. In Fig. 22 the results of the comparisons I and J are 
combined with control data to give the select signals P, Q and the 
output enable Signal R. 
Fli:OM DEPTl( <SiE'N1:RA""'~ 01.Irr; 

71 

COMPAI<.E 

l' 
J. At 1 

SELEcr LA-n:.H ,8 

71 

OE"PTI-l VAW£" 


CoMPARE' 


T 

J, p I 
 J. 

sus 
LATt::.H ASELECt" t>~IVER:. 

L T I i 1 
Ol1Tl"'lJT BUS 

Fig. 22 Comparison and Selection Stage 



114 

There are two comparison and selection stages. In the first one 
the visible front surface facet for each convex volume is selected, 
for a pixel position, by retaining the front surface with either the 
maximum depth value for solids or minimum depth value for voids. 
These front 
values or by 
ison stage s

surface values are then clipped 
an explicit clipping expression

elects the minimum visible front 

either 
. The 
surface value 
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Fig. 23 Property Value Selection Unit 

values passed from the first stage. It is necessary to select the 
depth value of the visible surface, but it is also necessary to 
select the name or some property of the visible surface for later 
reference. This is done using a slave selection unit controlled by 
the same signals P, Q and R shown in Fig. 22, this property selec­
tion unit being shown in Fig. 23. Outputs are driven onto a bus. 
Since only one unit contains the end of a display list there is no 
contention on the bus, as the last element in the list triggers the 
output. 

INTEGRATED CIRCUITS 

A prototype system to demonstrate this display system was built 
using eight processors constructed from TTL components. Although the 
prototype display system was successful, the approach was only going 
to be economically practical if the processors could be implemented 
as integrated circuits. To do this it was necessary to reduce the 
number of inter-processor links. Of the four parallel schemes 
outlined above, two permitted this reduction in a reasonably simple 
way: the tree structured incrementing scheme, and the pipelined 
incrementing scheme. The number of bits necessary for the 
comparison and selection stage ruled out both forms of combination 
into a single unit. Both the combined incrementing units could be 
rearranged to process their values serially, while outputs were 
still provided in parallel at the clock rate. The first system to 
be examined from this point of view was the tree structured 
processor. However the eventual desire to implement a scheme where 
increments were also incremented to give curved surfaces seemed 
easier to accomplish with the second arrangement. 

Once the systolic method of processing had been established, there 
were a number of ways in which the internal processing of each unit 
could be arranged. The objective was to reduce the clock cycle 
time to as short a period as the technology and the architecture 
would allow. 



115 

The simplest scheme consists of a one bit wide input stream for 
depth data values, in the way illustrated in Fig. 24. The shift 
registers are shown schematically to be four units long. The only 
drawback of this arrangement was that a pipeline of processors had 
to be over thirty of these units long to hold the depth value for a 
single plane. An alternative solution resulted from increasing 

Fig. 24 Serial 1 Bit Machine 

the width of the incrementing unit. In this case the addition 
(+l and the two comparisons (el require a carry to be included in 
the operation which has to be completed each clock cycle. The 
result is that half the number of processing units are required to 
hold the value of one plane in their incrementing unit latches. 
This means that half the number of pixels have to be processed per 
plane. The limit to this approach is set by the carry chain speed. 

The layout of Fig. 25 suggested an alternative way of arranging the 
processing. If a latch were placed between each of the one bit 

Fig. 25 Serial 2 Bit Machine 
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adders and one bit comparators, to make the operation truly 
systolic, then the delay time of the carry would be saved. The 
difficulty with this approach is illustrated if a map of the data 
passing down the pipeline of this kind of processor is made. Take 
as an example the completely parallel version of the schematic four 
bit system shown in Fig. 26. 

At first sight this arrangement seemed to save components. The 
adding unit shown in Fig. 26 would take four cycles to process one 
value but it would be processing three other values at the same 

II .. I ~ I <> I:: I rA.t>t>INGj- UNIT 

Fig. 26 Systolic Processing 

time. It is possible to place a comparison either directly in 
parallel or one delay period after this addition. However, it is 
not possible to follow this by a selection operation, at least as 
far as a particular depth value is concerned. The whole four bit 
comparison has to be completed before the selection of the plane can 
be decided. It is therefore necessary to include delay elements in 
the data path in the way shown in Fig. 27 where an interesting 
similarity to the unit in Fig. 24 appears. The only differences 
are where carry bits are not looped round within the unit but are 
passed on to a neighbouring unit, and the depth values in each shift 
register are not from the same plane. 

k' • ) 0 I..1T'PlIf" 

Fig. 27 Parallel Systolic Processing 
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Although there are many ways of combining these processors in 
parallel, there seem to be two principles which can be applied to 
produce an optimum Ie. The first results in the use of the scheme 
shown in Fig. 24 rather than that shown in Fig. 27, because this 
partitioning of the system gives a unit which can be packed onto an 
Ie in whatever number that the current technology will allow, 
without increasing the pin count for the IC. The equivalence 
between these two circuits is reflected in the way that both can be 
arranged to give a bit sliced implementation of the pipeline. The 
units from Fig. 24 have to be arranged in the way shown in Figure 
28. By arranging the delays in the incrementing pipeline in the 
appropriate way and passing output to fast shift registers in the 
same way used in frame stores it is possible to reduce the pin 
counts to the same number that a scheme built up from the units in 
Fig. 27 would allow -- without a cumulative increase in carry pins 
as the Ie's processor count is raised. The second principle is that 
doubling the data path for the arithmetic and comparison operations 
halves the necessary pipe length and reduces the ratio of memory 
cells to logic elements in each processor. On the other hand it 
increases the addition time, though not necessarily in a linear way. 

There is consequently a design trade-off to be made depending on the 
nature of the implementation. Where register cells are relatively 
large, a wider data path appears justifiable; where they are 
smaller, less so. The advantage of the structure in Fig. 24, 
developed in 1975 for the tree processor in Fig. 15, was the way 
that shift registers from neighbouring processors could be stacked 
together as a block of memory. 

Figure 29 shows a schematic floor plan for the ultimate IC. 
Because the shift registers are all the same length, the access 
point to an equivalent set of memory registers will be at the same 
place at the same instant in time. This makes it possible to use a 
cycling addressing scheme and a standard block of memory. The 
particular advantage that this has is that a 32 word wide unit can 
be provided, but the number of words cycled through can be software 
selected depending on the required resolution. Although one bit 
wide processing provides the shortest latch to latch delays, hence 
the fastest clock rates, the adoption of multiple pipelines makes 
this less critical for speed, and the arrangement shown in Fig. 29 
will work with one or more bits-wide data-paths depending on the 
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properties of the final design. One factor which it has been 
difficult to assess is how long a pipeline needs to be built to give 
the best system performance. 
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Fig. 29 IC Floor Plan 

Pipeline Control and Priming 

In concept, the simplest way of using this kind of machine in real­
time is to have a pipeline long enough to hold the maximum length 
display list likely to be encountered. In practice the scene is 
subdivided until the display list is the same length as the pipe. 
However, while the primary display algorithms were being explored, 
the simple approach was adopted. If a technology could be found 
which reduced the size of these processors sufficiently, then this 
approach would give a very simple system useful in quite a variety 
of applications. With this objective in mind, first CCD 
technology (1975-6) was investigated, then n-mos (1976-84), and 
finally c-mos. However, it seems that the simple approach is still 
some way off. When it became clear that a complex scene would 
require a large number of integrated circuits, particularly if the 
processor was extended to handle curved surfaces, then it became 
important to consider what facilities were necessary to allow the 
pipeline to be used with a scene subdivision or other scene 
coherence pre-processor. 

Consider a display list of 50 units long, and a pipe of 25 pixel 
processors in length. If the display screen is divided into four 
quadrants and the display list is subdivided to remove elements 
which do not feature in each quadrant, then four new display lists 
will result. If the new display areas require display lists of 20 
elements, 4 elements, 15 elements and 17 elements respectively, then 
the display pipeline will be able to work in real-time. Each list 
can be padded out to give a list 25 units long, which can then be 
cycled through the pipe until the required number of pixel values 
have been generated for each of the display lists. The lists 
being swapped as each section of the display screen is completed in 
sequence. 

Where complex scene models are being processed there may well be a 
need to sub-divide the screen down to the level of a few pixels, for 
part of the image. In this case the display list must be reduced 
to a length which is less than the number of pixels required, as 
well as less than the pipe length. This means that some way of 
managing several lists of less than the pipe length must be found, 
if continuous pixel rate output is to be maintained. There were 
two interrelated problems which had to be resolved to make this 
possible. Firstly, it was necessary to process variable length 
lists, and secondly it was necessary to prime the processor with new 
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incrementing directions each time a new list was entered. The 
simplest approach found so far is illustrated in Fig. 30. The 
first requirement is that only one list is generating output at any
instant in time. A processor which is producing an output value 
can only do so once it has processed the whole display list. The 
output will always be generated, therefore, at the tail end of a 
list. The only way of maintaining continuous output is to allow 
each list to generate output, only when it is the last list in the 
line: the shaded lists in Fig. 30. 
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In order for a list to be processed, the processors it is entering 
have to be primed with control data to determine the incrementing 
direction of each processor. This priming information is shown in 
capital letters in the diagram. At time t+l the two lists 
(v,u,t,s,r,q) and (x,y,z) are each entering the processor which is 
their own list length from the end of the pipe, so evaluation has to 
start for each of these lists. In each of these cases the 
processors are primed with the incrementing control data: Q and Z 
respectively. In the next clock period the display list has moved 
one step down the pipeline. In order to keep up, the priming-data 
list has to be passed down the pipeline at twice the speed, once 
list processing starts. This ensures that the priming-data list 
reverses its direction in the processors in the way shown. This is 
the only scheme which has been found which allows multiple lists to 
be handled, and at the same time allows the priming information to 
be entered with the list it controls. Clearly before a display 
list reaches the "active" primed processors it has to be passed 
passively down the pipeline, the incrementing operation suspended, 
and the output instruction masked out. 

It is possible to extend this prlmlng operation. If partial 
results from a previous calculation are stored in a depth buffer 
they can be passed down the pipeline in this way to the appropriate 
processor where they can be used as the starting point for a 
subsequent calculation. It is this facility which will make it 
possible to use this kind of processor for real-time ray tracing 
algorithms. 

CONCLUSIONS 

There are clearly many applications for the kind of system outlined 
above. At the simplest level, instrumentation displays which 
require 3D symbolism can be driven by a minimum set of hardware. 
At a more complex level, the pilot-training simulator still appears 
to make the most stringent demands on a display system's hardware, 
though the requirements of CAD/CAM systems are developing fast. 
The design work station may well end up with the widest range of 
demands to be satisfied, some of which will justifiably require the 
real-time movement of objects, and the highest level of image 
realism that technology can provide. Because the approach which 
has been described is totaly general, it is possible to include many 
other options within its overall system structure - ranging from 
specialised curved surface processors to existing line and point 
based sub-systems (Sutherland, 1963) - without major changes to the 
system's architecture. This and the system's intrinsic modularity 
make it worthy of serious consideration as the underlying framework 
for future design work~station processors. 

ACKNOWLEDGMENTS 

Funding provided by Science & Engineering Research Council. Key 
developments helped by J. Downie, J. Woodwark, M. Sabin and 
Professor R. Forrest. Electronic circuit design and VLSI design 
help received from J. Mclean and M. Morant. 



121 

REFERENCES 

Newell ME, Newell RG, Sancha TL (1972) A New Approach to the Shaded 
Picture Problem. Proceedings ACM National Conference. 

Rouge1ot RS (1969) The General Electric Computed Colour Display. In 
Pertinent Concepts in Computer Graphics ed. M Fairman and J 
Nievergelt, University of Illinois. 

Sutherland IE (1963) SKETCHPAD: A Man Machine Graphical 
Communication System. Spartan Books, Baltimore. 

Thomas AL (April 1976) Spatial Models in Computer Based Information 
Systems. Ph.D. Thesis, University of Edinburgh. 

Thomas AL (March 1986) Overlap Operations and Raster Graphics. 
Computer Graphics Forum, Vol. 5, 1. 

Warnock JE (1969) Hidden Line Problem and the Use of Half-Tone 
Displays. In Pertinent Concepts in Computer Graphics ed. M Faiman 
and J Nievergelt, University of Illinois. 

Watkins GS (June 1970) A Real Time Visible Surface Algorithm. 
Thesis Computer Science Department, UTECH-CSc-70-l01, University of 
Utah. 


