
Position Paper:

Display Hardware for Boolean Expression Models

A. L. Thomas

School ofEngineering & Applied Sciences, The University ofSussex
Brighton, Sussex

In any discussion of graphics hardware there appear to be two basic
positions which can be adopted. The first is that of the technol­
ogist, who is primarily concerned with what it is possible to make
and how to make it. The second is that of the system designer who
is more interested in what it would be desirable to make. To be a
designer it is necessary to have a view of the future ••• or at
least a view of a plausible future! This is only possible with a
reasonably sound idea of what the technologists might be persuaded
to provide. I suspect that most of the "images of the future" which
have guided or moulded current proposals have been around for some
time. In spite of this it is a good preliminary exercise to set
out a brief statement of the main ideas Which lie behind current
developments, before homing in on specific hardware proposals.

Perhaps the most important idea which has emerged with the devel­
opment of graphics hardware is the provision of a common base for
all electronic images. This was made possible by the development
of the digital frame store (Newell, Newell, Sancha, 1972), which
depended on the evolution of memory integrated-circuits. The
second important idea is the ability to interact with synthesised
images in real-time. The third important idea is the development
of higher level languages for interacting with objects in displays.
Fourthly, the least exploited idea to date is the capability of
automatically extracting higher-level object information from found
images, such as those received from the TV camera. Underlying all
these ideas is the unifying concept of improving the man-machine and
world-machine interfaces to improve communication which, it is
hoped, will allow machines to operate at a higher or more intell­
igent level.

A different set of ideas, linked with the development of display
hardware, seems to be emerging from work on array processors
developed for image analysis work. These ideas are concerned with
a graphical counterpart to a program listing in the sense that
program code can be read meaningfully as text on one hand, but can
also be employed as instruction codes, on the other. Diagrams,
charts and graphs, in a similar way, can be understood as images but
can also act as instructions to an array of processors considered as
a display. There is at least the possibility that display gener­
ating hardware could be designed to have very powerful general,
parallel processing capabilities. This would provide an inter­
esting twist to the "wheel of reincarnation" I

The initial idea behind the specific hardware proposals outlined
below was that in a computer environment drawings would be replaced
by mathematical models for design and analysis work. This meant
that the highest level of modelling language that was compatible
with the interactive capabilities needed for design work could be

http://www.eg.org
http://diglib.eg.org

95

sought to replace the line based systems that had evolved from a
draughtsman's methodology. At present this appears to be provided
by a Boolean-expression modelling system (Thomas, 1986), though in
the future there is no reason why more complex modelling structures
should not take over. The advantage that the Boolean model has is
that it provides a system with a built in hierarchy, useful for
developing efficient algorithms to take advantage of scene coher­
ence. It also provides a natural way of representing object­
interference or volume overlap, which often needs to be located as
an unwanted consequence of editing operations. These are both
capabilities which will have to be included in future systems even
if they provide higher level modelling facilities.

The second idea controlling the way in which the hardware described
below evolved was the need to generate real-time, moving, synthetic­
images. This was important for simUlation and teaching systems.
It was useful in CAD work even if not always demanded by current
practice, and in the long run appeared essential if better man
machine communication was to be achieved.

Real-Time Boolean Expression Modelling System

The first real-time raster based systems were developed by
Schumacker (Rougelot, 1969) and Watkins in 1969 and 1970
respectively.

Watkins' algorithm was a solution to real-time display generation
which in principle was hard to improve. There were four steps to
producing a moving synthetic image.

1. Transformation Processing.
2. Divide and Conquer Scan-Line, Scene Coherence Processing.
3. Pixel Rendering or Value Interpolation.
4. Illumination Calculations.

What did seem open for improvement was the object modelling stage of
the process.

Two main approaches to modelling emerged from a study of this part
of the system (Thomas, 1976). The first was based on a set of
homogeneous vertex coordinates, (x,y,z,w), the second on a set of
facet plane equation coefficients, (a,b,c,d). The vertex based
approach consisted of different ways of setting up triangulated
networks. A characteristic of this model was that shape changes
could be most simply achieved by transforming vertex coordinates:
edges and facets depending on interpolation to complete the model.
One way of implementing this system was to represent a set of
tetrahedra as 4 x 4 graph matrices and then employ a series of
operations to glue the tetrahedra together by adding together the
appropriate matrices. A variation on this approach was based on a
hierarchy of convex hulls.

The second main method grew out of a study of overlap operations.
The facets of the target volume were represented by a set of plane
half-spaces. These unbounded planes partitioned the object space
into a collection of convex blocks: the required volume being
defined by writing down the Boolean expression which selected the
appropriate collection of convex blocks. This expression model was
relatively easy to convert automatically into a graph-matrix or
convex hull model when required, and vice versa. Shape
modification following the second approach was achieved by

96

transforming the surface plane equations. However both point and
surface based models were capable of being transformed using the
same matrix multiplication hardware.

VE~ MODELS ~E MODELS FACEr MODES

A .3 2.1

I B 3 4­
3 4­ c 2.
2. I 4­ t>

I

(p,p,.p.p.) (A.8.c..D)2~4

.:3

IA
D2.
AC
8D

81)
A C
38
C4­

4­

CONVex ~ULL 8CX:>t£AN
HI~ARo{Y e:x..?RESSION

HIERARa{Y

3

(PI f'2. PI p,+ (pI P4- ps ps ')) (A,C. D. eEl F.G-"))

Fig. 1 Alternative Volume Models

If an object is entered
Fig. 2, defined as the
the Target Volume

into the
interaction

comp
of

uter
a se

system
quence

in
of

the
sub-

form
models

in
where

T C. d • (! E+f) • D;

the lower case names representing plane half-spaces, and the capital
letter names representing the other objects:

C a.b;

E e.r. (1+m+! (k+j)+n+s);

D t.u.v;

Then the first step is to substitute for the object names to get:

T a.b.d. (I (e.r. (1+m+1 (k+j)+n+s»+f) .t.u.v;

97

e b

Fig. 2 Boolean Expression Model Standard Form

The next step is to apply De Morgan's theorem to all complemented
sub-expressions to give:

T = a. b. d. (I e+ I r + (11. 1m. (k+j) • In. Is) +f) • t. u. v:

and the final step is to collect all the free plane half-spaces at
each level into convex groups that can be renamed in the way shown
in Fig. 2.

T = a.b.d.t.u.v.(!e+lr+f+(11.1m.ln.ls.{k+j»);

A B c D l»)

This process is implemented using the tree structures which result
from parsing the input expressions defining the various objects, in
the way illustrated in Fig. 3.

Figure 2 illustrates the input models which result from parsing the
volumes labelled T, C, E and 0 in Fig. 3, in the trees numbered 1,
2, 3, 4. The first step in processing these trees was to link
incomplete references to the relevant sub-trees. In this case the
result is a single expanded tree for T. Applying De Morgan's
theorem consists of switching all the operator nodes in the comple­
mented sub-trees and complementing all the half-space references.
This makes it possible to represent the expression by a Knuth tree
where each deeper level corresponds to alternating union and inter­
section operators. The final step is to collect all the free
half-space references together at each level in the Knuth tree at
the beginning of each row. Renaming these units allows the
schematic representation using convex elements shown in Fig. 2.
This diagram corresponds to the tree labelled 6 in Fig. 3, which
would be implemented in the form of the tree labelled 5. The

98

convex units in this example are (a.b.d.t.u.v), (!e+!r+f),
(11. 1m. In. Is) and (k+j). Renaming these convex units results in an
object defined as A. (B+(C.(D»} or A(B(C(D») where the first level
is known.

T C

1.
2.

aAbc~
D

E
I

E
e

D3.

t~v
s

Q
T5. . .~
Q b d t v. V

!e..

TG.

k j

B=

C a. (

D= (k j)

Fig. 3 Boolean Expressions as Tree Structures

99

Once the convex components have been set up in this way it is poss­
ible to carry out a further series of operations on these trees
which correspond to the algebraic manipulation of the original
expression described below. The purpose of these operations is to
generate a Boundary model from the simple expression form used for
input. This process was initially developed to control the
conversion of the expression model into its corresponding graph­
matrix form.

Take as an example the triangular object (A.B.C). It is a natural
step to define the boundary of this object -- expressed as @(A.B.C)
-- as made up from the three sides of the triangle. The first
side of the triangle will be the boundary of the half-space A
denoted by @A where it lies inside (B.C), in other words @A.B.C.
Similarly the second and third sides will be @B.A.C and @C.A.B
respectively, giving in total:

@(A.B.C) @A.B.C + @B.A.C + @C.A.B

This idea can be extended by considering the triangle to be a hole
rather than a solid. In which case the expansion becomes:

@A.B.C + @B.C.A + @C.A.B

From this example two swapping rules can be extracted:
@(A. B)... @A.B + @B.A @(A+B) ... @A.B + @B.A

If these swapping rules or productions are applied to the previous
example, the results will be the set of boundary segments shown in
Fig. 4 as Bl, B2, B3 and B4 where these elements are defined as
follows:

@(A.(B+(C.(D»»'" @A.(B+(C.(D») + @(B+(C.(D»).A

@(B+(C.(D»).A'" @B.A.(C.(D» + @(C.(D».A.B

@(C. (D)) .A.B ... @C.A.B. (D) + @D.A.B.C

Renaming:

Bl @A. (B+(C. (D)» B2 @B. (A. (C+ (0) »

B3 @C. (A.B. (D» B4 @D. (A.B.C)

Fig. 4 Boolean Expression Boundary Operator

100

An alternative expansion can be obtained by using a different
swapping rule for the '+' operator.

@(A+B) + @A + @B

Applying this rule to the previous example gives:

@ (A. (B+ (C. (0»» + @A. (B+ (C. (0») + @(B+(C. (D») .A

@(B+ (C. (D») .A + @B.A + @(C. (D) 1 .A

@(C. (D».A + @C.A. (D) + @D.A.C

Renaming:

BI @A. (B+(C. (D») B2 @B. (Al

B3 = @C. (A. (D» B4 @D. (A.C)

Fig. 5 Alternative Boundary Expansion

The alternative expansion makes use of the fact that pieces of
surface which lie inside the solid interior of an object will not be
seen. It was developed to handle the problem of hanging faces.
This form of boundary expansion allows sheet like objects with no
thickness to be handled by a display algorithm on one hand and
applying a different interpretation, it also allows regularised set
operations to be implemented in the display process on the other.

The Display of Boolean Expression Models

Consider a convex solid defined as the intersection of a set of
plane surfaced half-spaces. From any viewing point this set will
be partitioned into two sets: those facing towards the viewing
position and those facing away from it. The front surface of the
convex object can be defined by selecting the front plane which lies
furthest away from the viewing position along a given viewing ray.
Conversely the back surface of the same object will be given by
selecting the back plane which lies closest to the viewing position
along any viewing ray. These two surfaces however are infinite in
extent, defined in this way, whereas the original object is not.
The final step is to select that section of the front surface which
lies in front of the back surface, as the visible surface of the
convex object. Given a set of convex objects then the nearest one
to the eye will be the visible object in a particular viewing
direction.

101

Viewing Ray Distances

The distance to a plane surface from a pixel position R can be
evaluated in the way shown in Fig. 6. The distances to two
surfaces AA and BB are shown in the diagram as the lengths NR and
MR.

A

,,,,,,
, E

R ~~ a'{E. /

//
/

/
/

/

A

Fig. 6 Viewing Ray Distances

MR CR NR LR Similar trianglesME PE NE KE

MR.PE = CR. (MR+RE) NR.KE LR. (NR+RE)

RE.CR RE.LRNRMR =(PE-CR) (KE-LR)

Since RE will be a constant for any pixel position these relation­
ships can be renamed to give the ratios

>

where kl and k2 are the perpendicular distances from the plane to
the raster point and the eye respectively. These distances can be
obtained by calculating the dot product of the coefficients of the
plane's equation with the coordinates of the positions of Rand E.

Because it was the order in which surfaces cut a viewing ray which
was important, the ratios:

>

102

could be replaced by:

kl 	 kl
A 	 B>2k	 ~
A 	 B

These ratios have the advantage that their values lie in the range
o to 1, as well as preserving the order of surface intersections

with a viewing ray. If this ratio is expanded to give

1 IIIkl a.x + b.y + C.z + d.w z 	 (1)222 2~ a.x + b.y + c.z + d.w

where Z is the new distance value, then a new display space is
defined, and the transformation from the object space to this new
space can be summarised by rearranging (1) to give:

(a, b, c, d) 	 : 1, 0, -x2, 0 j lxll o

: 0, 1, _y2, 0 : lyl;

:0,0, -z2, zll I Z :

10, 0, -1, 1: 11 1

This matrix defines the perspective transformation for the plane (a,
b, c, d). The advantage of using this form is that this matrix can
be concatenated with rotation and translation matrices in the same
way that is done in point processing systems. The importance of
this is that point, line, area and volume objects can all be trans­
formed using the same hardware, more or less in the same way.
Pipelining this operation, by first passing a scene description
through a matrix multiplier to transform it, then passing it through
a hidden area removal and illumination processor, gives a system
which is capable of producing a real-time moving display if the
second stage can be made fast enough.

If a plane (a, b, c, d) in the object space gives a new plane in the
display space (A, B, c, DJ, then the depth value Z can be calculated
at any pixel position (X,Y) by the equation:

Z (A.X + B.Y 	+ O)/(-C)

This distance is perpendicular to the display screen in the display
space, and can be used to represent the plane in visibility tests at
the given pixel position. An alternative distance which is
important in several algorithms is the distance K from the pixel
position to the plane, taken perpendicular to the plane itself.

K (A.X + B.Y 	+ OJ

Working with a raster display it is possible to simplify the
calculations of K and Z for each pixel, by calculating an initial
depth value at one pixel position, and then calculating the size of
the increments needed to modify this value, moving in regularly
spaced steps over the display surface.

If the display transformation is set up so that the display space
has its origin at the origin of the object space with the x and y
axes corresponding to the X and Y axes and the direction of viewing
being along the z axis, then the following values can be calculated:

103

Z D/(-C)

t.Zx A.t.X/(-C)

t.Zy B.H/(-C)

where t.x and t.Y are the pixel spacing dimensions, or the screen
width increments -- depending on the next stage. Where C + 0 then
there is a problem. This situation corresponds to the plane
surface getting closer and closer to being perpendicular to the
display screen. The perpendicular and near perpendicular plane
can be processed in a different way, by using the value of K rather
than z. This value and its increments will already be available:

K D

t.Kx A.t.X

t.Ky B. t. Y

t.Kz C.t.Z

in other words the intermediate result, before carrying out the
division operation. The critical situation where the value of K
replaces the value of Z will occur when either of the pixel level
increments of Z exceeds 1.0. This corresponds to a surface which
is not visible at one pixel position but has crossed the display
screen to give a cross section cut at a neighbouring pixel position.
Although there are a variety of ways in which this set of operations
can be carried out, a simple pipelined arrangement has been evolved
where an approximation method for calculating the division is
employed to make the test for perpendicularity easy to implement.

The division by multiplication is carried out in the following way.
Consider D/C. Normalise C to be a fraction of the form O.xxxx and
consider it to be the value (l-t.). Both 0 and C are then
multiplied by (lH) which is (2-(1-6», in other words 2-C.

D. (lH)

(1+t.). (l-t.) = ~i

Cl (1-t. 2) which permits the process to be repeated:

(1+6 2) = 2-Cl

D2
Cl (1-6 2) • (lH2) C2
Dl

C2 (1-6 4) •

This process is continued until the error term is below some fixed
value. At this point

D -Z
C + 1.0 -Z

Using this scheme, it has been estimated that 4 or 5 multiplies in
series will give the required accuracy for the division operation.
If multiplication time is lOOn sees then 500n sees are required for
each plane transformation. This will allow 80,000 planes to be

D
C

104

transformed in the frame time of 1/25 sec. If the transformation
time can be reduced to 400n sees then this figure goes up to 100,000
planes in a frame time.

Moving Images and Transformations

The selection of the front and back surfaces of a convex object at a
particular pixel position can be achieved in one pass through a
display list -- a list of plane half-spaces linked by intersection
operators: A.B.C.D.E.F. It is necessary to hold two temporary
values in registers during this process: the first holding the
furthest away front surface encountered up to that point, the second
holding the nearest back surface. In order to carry out this
process it is necessary to know which are front surfaces and which
are back surfaces. Clearly this is a classification task which has
to be carried out after each plane transformation, if a moving scene
is being generated.

Consider a plane defined relative to the origin by the value K.
This distance will be positive where the or1g1n lies inside the
plane and negative where it lies outside:

K a.x + b.y + c.z + d

K d (x=O, y=O, z=O)

The sign of d can consequently be used to indicate the inside­
outside relationship between a plane and the origin. Backness or
frontness depends on the intercept of the plane on the Z axis,
combined with this inside-outside value. From the diagrams in
Fig. 7 it can be seen that the exclusive OR of the sign bits of K
and Z defined at the origin gives a simple and fast way of
maintaining this classification of frontness or backness.

FRONT"
SU1<:FACE'

dol-ve­
'X-VII!.

Fig. 7 Front or Back Planes

::z. z

B.A.c.K

~K
SUR:,FAcE"

SIJl<FP£,.E.

d-ve.
z:.-ve.

If display lists for convex units are pre-ordered so that all front
surfaces are received for processing before the back surfaces in the
same convex group, then only one temporary value needs to be stored
carrying out the display algorithm. However this requires a

105

-

I
 I
I IDISPlAYI
SP;IIC.'E I
I I

L I

Fig. 8 Object Space to Image Space Transformation

CONVEX SOLID CoNVEX VOID

A+S-rC

F~SOR.FACE

Fig. 9 Display Operations: Convex Units

106

~7 T

GIC

~

RI Gt+IT MAF<':GfN

B

reordering of the elements in the display list after transformation.
If the length of each convex unit is held with each display list
then a simple addressing operation can be used to achieve this
reordering, where outputting the values to the hidden area removal
processing unit, from the transformation unit.

Figure 8 summarises the transformation operation implemented in the
way described above. The result is a display space which can be
thought of as a cube lying behind the display screen. Objects in
this display space can be displayed using a simple parallel pro­
jection operation. The display algorithms used for Boolean
expression models in this context are shown in Fig. 9 for both
convex solids and convex voids.

HIDDEN AREA REMOVAL HARDWARE

Given the ability to calculate depth values using a transformation
unit similar to that used for point based models, hardware to
implement the selection operations summarised in Fig. 9 had to be
developed for hidden area removal. It was clearly possible to
implement a Watkins' (1970) style scan-line algorithm. An advan­
tage which resulted from having surfaces spanning the whole display
space was that binary sub-division, instead of being applied to each
polygon facet section, could in the manner of Warnock's algorithm
(1969) be applied to the whole display space. Each scan line could
be sub-divided using a common framework for all surface-surface
comparisons.

f-A B-t
I:;-A

LEFr MAR4-IN ~

Fig. 10 Binary Sub-division of a Raster Line Cross Section Plane

Consider the two volumes A and B shown in cross section in Fig. 10.
If the front surfaces and back surfaces of these two volumes are
determined at the margin positions LM and RM, then their relative
positions and orientations will indicate in which direction the

107

objects lie. In this case both A and B exist to the right of the
left margin and to the left of the right margin. When the same
tests are applied at the centre point, the results show that A lies
to the left but B lies to the right. A recursive sub-division
procedure based on these tests will sort objects into order along
the raster line and considerably reduce the work in finding visible
sections of objects' surfaces.

It appeared that if reasonably simple scenes were being processed
then this approach would be adequate. All that was needed to
obtain a display was a video-rate interpolator to fill in the pixels
between the facet edges determined by the sub-division algorithm.
However where an image complexity was required which might demand
changes every few pixels, this sub-division process could not be
carried out fast enough to support real-time without some form of
parallel hardware implementation. At the time this seemed too
difficult. What appeared much easier to implement was the simple
hidden area algorithm of Fig. 9, in an iterative form using
repeating hardware units, and then to use it in partnership with a
software sub-division or other scene coherence algorithm. It now
seems fairly clear that to obtain the speed and complexity desired
will need both stages, both implemented in hardware, the overall
system structure being extended to that shown in Fig. 11.

l..IlDDEN Afi?£A/ WI>tE R!:Mo.tAL SYSTE.N\.

,--------------,
I SCENE HIDDEN AR~ I'DATA - BASE

I
 CO~ERENCE. r--i
 REMOVAL IS'(STElvI PROCESSOR PROCESSORS II '---1---- - _1__ :.1I
I LLUM {I-J ,11..11 oNGrEOM'ETRIC TRANSFoRM-

AnONS AND 'ReAUSM' r--+T.V.MOt>EWNG- {----j

TRA;J"E'CfORI6S I~Ssro~SYSTEM.

Fig. 11 Display System Block Diagram

Parallel Schemes

There were two stages to the simple iterative implementation of the
algorithm which were:

1. Evaluating depth values at each
half-space in the display list.

pixel position for each plane

2. Comparing depth values to select visible surfa
inside-outside or viewing ray priority tests.

ces, based on

It was found possible to construct two different parallel schemes.
In the first, depth generating units from parallel processors were
combined into a single entity. In the second the comparison and

108

selection units were combined together as a single unit. Each of
these combined units could be implemented using either pipelined
(systolic) processing or simultaneous (synchronous) processing.
This gave four general schemes. The two main parallel implement­
ations are shown in Fig. 12. The labelled sUb-systems: A, B, c,
D, E and F are shown in Figs. 13 to 18.

IINfrA. WJ UNIT ell> I U'NfT' ElF WJ UNIT B

A

A

A

I'~ ~
11>\ DePENPEW'r COMBINED COMBINED INt>EPEND-aIT

PI:1"'T1-l COMl"~SON PEf"ll-I COMl"A.R.lsoN

~eRATIN~ & SEl..ECT1oN ~NE~t.lc::t z.. sELECt10N

UNITS UNITS UNITS UNITS.

Fig. 12 Parallel Processing Schemes

I NCII':.t!'Me:N.1"S DE1"T"H "",-ues

UNIT"A"

Fig. 13 Independent Depth Generating Unit

The independent depth generating unit can be a microprocessor.
However, the minimum arrangement for modelling a plane surface is
given in Fig. 13. The minimum unit can be combined in two ways to
create a stream of depth values for neighbouring pixel positions.
The first is a systolic solution, using a pipeline, the second is a
synchronous solution, in this case using a binary, quad or oct tree
of incrementing units in the way shown. The advantage that
independent units have over the combined units is that they can be
implemented using general purpose microprocessors: as long as video
rate output is not required this arrangement appears to provide the
simplest scheme for exploring the modelling of curved surfaces.

109

40--------40 (L+I)

Fig. 14 Pipelined Incrementing Unit

UNIT "F"

Fig. 15 Synchronous Incrementing Unit

UNIT rt~"

Fig. 16 Independent Comparison and Selection Unit

110

The combined depth generating units are shown in Figs. 14 and 15.

Figure 16 shows an independent comparison and selection unit.

Figures 17 and 18 show the two combined units. In unit C depth

values are passed from unit to unit in a pipelined system, in unit D

values are compared with a broadcast value on a bus. An altern­

ative to D is a tree structure made up from comparison units. In

the example shown a special bus driver was designed to maintain the

maximum value on the bus from all the values being driven onto it,

and to flag the units where this maximum value originated.

These comparison and selection units were initially designed in two

stages corresponding to the product level and summation level of a

simple Boolean expression.

UNIT~CP

INPUT

SUMMP;i1CNPRODtJCr
j..£\IEl-LEVEL...

Fig. 17 Pipelined Comparison and Selection Unit

However, the structure of unit D suggested a way of implementing an
array processor which would handle multiple level Boolean expression
models directly. This approach also linked to a way of processing
quadric surfaces. PROPucrLEVE:!.. SUMMATlON LfNEL-

UN Ii "0·'

su.scr

INPUT

-SusI3US­

Fig. 18 Synchronous Comparison and Selection Unit

Quadric Surfaces, Convex Objects and Front and Back Pairs

A quadric surface can cut a viewing ray twice, and if it does it
will intersect the ray with a front and back surface in much the
same way that a product phrase made up from plane facets does.
This means that the surface can be considered to be two variable
surfaces called F for front and B for back. The hierarchical
structure of a Boolean model allows a parallel scheme of the kind
shown in Fig. 19 to be constructed, which is capable of generating
video rate output.

111

In this arrangement, each of the comparison and selection units
compares two sets of front and back depth values. Values passing
from left to right in the array are either passed through or
replaced by values on the vertical lines, depending on their
relative location in the Boolean expression hierarchy and their
relative values. This system generates the set of viewing ray
spans which define where the viewing ray pierces solid objects for a
particular line of sight. The final stage in the array represents
a sorting bus or a sorting pipeline of the form described above,
which produces the final visible surface.

A. S C 1> E F G H 1"

F
A

15

B
F

e.

C
p

1'1

F
D •

F
E

8

F '" •
G F

B

H F

B

I "
1\

'''''P~I$ON. ANt> SCI..ECfIOt-t VtHrS OUTPUT

Fig. 19 Comparison and Selection Array Processor

A general real-time solution to this problem requires a square array
of n.n comparison and selection units, because the worst case
expression of the form (A{B(C(D(E(F(G(H(I»»»») requires (n 2)
comparisons. The array processor can be implemented using either
a synchronous or a systolic sorting process. In the latter case
the data wave front has to flow diagonally across the array to
maintain a continuous video refresh-rate output of pixel values.
The problems arise with this system when the worst case does not
occur -- many of the comparison and selection units become
redundant.

A solution to this problem was provided by the boundary expansion.
If the first form of the boundary expansion is applied to an
expression model containing n convex units then a display list of n2
convex units is created. This modified display list can be pro­
cessed by a linear array of processors designed to handle boundary
expressions. Such a processor is almost identical to the two
stage processor already described. The primary data path for
depth values is the same. Only the control is a little more complex
having to contain a one bit wide push down stack to hold

112

intermediate inside-outside test values. This approach to the
display problem seemed more versatile because given a pipe of n2
processors it was possible to process a fully nested expression
containing n convex units, at one extreme, and a simple expression
of n2 elements long at the other: both in real-time, both in the
same processor. There was no complicated mapping task setting up
an array in an optimal fashion, in order to use all its components
for simple models.
The Boundary Expansion and Clipping Volumes

The boundary expansion of the model shown in Fig. 2 was:

@(A.(B+(C.(D»» '" @A.[B+(C.(D»J + @B.[A.(C+(i5»J

+ @C. [A.S. (D) J + @D. [A.S.C]

Each phrase in the expansion consists of a convex element, nominally
a surface, followed by a volume definition inside a pair of square
brackets. The phrase represents the section of the surface which
lies inside the volume. In the expression shown there are four
pieces of surface making up the boundary of the total object. The
visible section of each convex surface can be determined in the same
way used to display simple convex solids. Since these convex
boundary pieces can be voids, in other words concave surfaces, this
process has to be extended in the way summarised in Fig. 9 to
include convex voids.

The visible surface at each pixel position will be represented by a
distance along the viewing ray. It is possible to test this
distance against the front and back surface distances of the convex
units making up the clipping volume in the square brackets. The
inside-outside results of these tests can be combined using the
Boolean operators in the clipping expression, to determine whether
the surface point is within the clipping volume and should be
retained or whether it is outside and should be discarded. If the
convex surface is processed first and its visible surface distance
is held in the first stage register of the comparison and selection
unit, and the half-spaces in the clipping expression are passed
through the input register of the same unit, then it is possible to
implement the clipping operation using a one bit wide push-down
stack to hold intermediate inside-outside results. The operation
is cartooned in Fig. 20 for the simple object A+B.'.:.':...;.;" Q
.' /- ",'.'

. .j y.:
.:/ L

"'1 I:: : .. .:. o.
"\ I.·, ' ...;...:...:...:.. .:.'

1.' . 0, ~'. . +': '., --,-7
··i ':'.

':1 I:'
::1 I:'
.:\ oJ'.'\ .
':.~ ,,/"

~ '.~.,":\-::

A+e. -7 @A.8 + @S.A -7 @(A+B)

Fig. 20 Boundary Operator

113

A Prototype Display Processor

Of the four schemes outlined above the two processors with combined
pipelined units appeared the easiest to implement in an efficient
way, using the minimum of hardware. The one being investigated in
current work is the one with a pipelined, combined depth generating
unit. In this system depth values are established for a reference
pixel point for all the plane half-spaces in a scene model. These
depth values are then passed to the first comparison and selection
unit, on one hand, and through an incrementing unit to the next
procesor on the other. In this way the depth values received by
the second processor represent the planes at the next pix,el
position, so that the identical process can be repeated by each
processor in the line, the difference being that the values operated
on by neighbouring processors are for neighbouring pixel positions.

1 1 1
LA.Tt:.t(A'ZX

~

LA'"l1':.+t 6ZY LA"l"aI 'Z
"R>

1 COt(\P#>.R.ISO'"
J, J, -1 AN.!)

Se1..ECrIDt.!APD oR. ,SEI-ECT UNIT.SU~

"V J.,

Fig. 21 Incrementing Stage

Block diagrams of a processor which can be used in a pipeline of
this kind are given in Figs. 21, 22, and 23. If the arrangement in
Fig. 21 allows increments to be subtracted as well as added, then
these units can be made to follow any linear sequence of steps on
the display screen, as an alternative to following a regular raster
pattern. In Fig. 22 the results of the comparisons I and J are
combined with control data to give the select signals P, Q and the
output enable Signal R.
Fli:OM DEPTl(<SiE'N1:RA""'~ 01.Irr;

71

COMPAI<.E

l'
J. At 1

SELEcr LA-n:.H ,8

71

OE"PTI-l VAW£"

CoMPARE'

T

J, p I
 J.

sus
LATt::.H ASELECt" t>~IVER:.

L T I i 1
Ol1Tl"'lJT BUS

Fig. 22 Comparison and Selection Stage

114

There are two comparison and selection stages. In the first one
the visible front surface facet for each convex volume is selected,
for a pixel position, by retaining the front surface with either the
maximum depth value for solids or minimum depth value for voids.
These front
values or by
ison stage s

surface values are then clipped
an explicit clipping expression

elects the minimum visible front

either
. The
surface value

by back
second

surface
compar­
from the

COLOUR

SE\..E.Cr !..A'T\':HA. SEL.ECT LATt:'.I-\B
!:IUS

J::>1:t,IVER

R:

olJT'"Pllr BUS

Fig. 23 Property Value Selection Unit

values passed from the first stage. It is necessary to select the
depth value of the visible surface, but it is also necessary to
select the name or some property of the visible surface for later
reference. This is done using a slave selection unit controlled by
the same signals P, Q and R shown in Fig. 22, this property selec­
tion unit being shown in Fig. 23. Outputs are driven onto a bus.
Since only one unit contains the end of a display list there is no
contention on the bus, as the last element in the list triggers the
output.

INTEGRATED CIRCUITS

A prototype system to demonstrate this display system was built
using eight processors constructed from TTL components. Although the
prototype display system was successful, the approach was only going
to be economically practical if the processors could be implemented
as integrated circuits. To do this it was necessary to reduce the
number of inter-processor links. Of the four parallel schemes
outlined above, two permitted this reduction in a reasonably simple
way: the tree structured incrementing scheme, and the pipelined
incrementing scheme. The number of bits necessary for the
comparison and selection stage ruled out both forms of combination
into a single unit. Both the combined incrementing units could be
rearranged to process their values serially, while outputs were
still provided in parallel at the clock rate. The first system to
be examined from this point of view was the tree structured
processor. However the eventual desire to implement a scheme where
increments were also incremented to give curved surfaces seemed
easier to accomplish with the second arrangement.

Once the systolic method of processing had been established, there
were a number of ways in which the internal processing of each unit
could be arranged. The objective was to reduce the clock cycle
time to as short a period as the technology and the architecture
would allow.

115

The simplest scheme consists of a one bit wide input stream for
depth data values, in the way illustrated in Fig. 24. The shift
registers are shown schematically to be four units long. The only
drawback of this arrangement was that a pipeline of processors had
to be over thirty of these units long to hold the depth value for a
single plane. An alternative solution resulted from increasing

Fig. 24 Serial 1 Bit Machine

the width of the incrementing unit. In this case the addition
(+l and the two comparisons (el require a carry to be included in
the operation which has to be completed each clock cycle. The
result is that half the number of processing units are required to
hold the value of one plane in their incrementing unit latches.
This means that half the number of pixels have to be processed per
plane. The limit to this approach is set by the carry chain speed.

The layout of Fig. 25 suggested an alternative way of arranging the
processing. If a latch were placed between each of the one bit

Fig. 25 Serial 2 Bit Machine

116

adders and one bit comparators, to make the operation truly
systolic, then the delay time of the carry would be saved. The
difficulty with this approach is illustrated if a map of the data
passing down the pipeline of this kind of processor is made. Take
as an example the completely parallel version of the schematic four
bit system shown in Fig. 26.

At first sight this arrangement seemed to save components. The
adding unit shown in Fig. 26 would take four cycles to process one
value but it would be processing three other values at the same

II .. I ~ I <> I:: I rA.t>t>INGj- UNIT

Fig. 26 Systolic Processing

time. It is possible to place a comparison either directly in
parallel or one delay period after this addition. However, it is
not possible to follow this by a selection operation, at least as
far as a particular depth value is concerned. The whole four bit
comparison has to be completed before the selection of the plane can
be decided. It is therefore necessary to include delay elements in
the data path in the way shown in Fig. 27 where an interesting
similarity to the unit in Fig. 24 appears. The only differences
are where carry bits are not looped round within the unit but are
passed on to a neighbouring unit, and the depth values in each shift
register are not from the same plane.

k' •) 0 I..1T'PlIf"

Fig. 27 Parallel Systolic Processing

117

Although there are many ways of combining these processors in
parallel, there seem to be two principles which can be applied to
produce an optimum Ie. The first results in the use of the scheme
shown in Fig. 24 rather than that shown in Fig. 27, because this
partitioning of the system gives a unit which can be packed onto an
Ie in whatever number that the current technology will allow,
without increasing the pin count for the IC. The equivalence
between these two circuits is reflected in the way that both can be
arranged to give a bit sliced implementation of the pipeline. The
units from Fig. 24 have to be arranged in the way shown in Figure
28. By arranging the delays in the incrementing pipeline in the
appropriate way and passing output to fast shift registers in the
same way used in frame stores it is possible to reduce the pin
counts to the same number that a scheme built up from the units in
Fig. 27 would allow -- without a cumulative increase in carry pins
as the Ie's processor count is raised. The second principle is that
doubling the data path for the arithmetic and comparison operations
halves the necessary pipe length and reduces the ratio of memory
cells to logic elements in each processor. On the other hand it
increases the addition time, though not necessarily in a linear way.

There is consequently a design trade-off to be made depending on the
nature of the implementation. Where register cells are relatively
large, a wider data path appears justifiable; where they are
smaller, less so. The advantage of the structure in Fig. 24,
developed in 1975 for the tree processor in Fig. 15, was the way
that shift registers from neighbouring processors could be stacked
together as a block of memory.

Figure 29 shows a schematic floor plan for the ultimate IC.
Because the shift registers are all the same length, the access
point to an equivalent set of memory registers will be at the same
place at the same instant in time. This makes it possible to use a
cycling addressing scheme and a standard block of memory. The
particular advantage that this has is that a 32 word wide unit can
be provided, but the number of words cycled through can be software
selected depending on the required resolution. Although one bit
wide processing provides the shortest latch to latch delays, hence
the fastest clock rates, the adoption of multiple pipelines makes
this less critical for speed, and the arrangement shown in Fig. 29
will work with one or more bits-wide data-paths depending on the

Ptl"ii.a. P'IPE4PtPE:4PIPS 1

SIT
SEi<::IAL

I'ROCeSS

0\J'l"PtJr

nM£S: t., s ... -1:+1, $..1. .. t+~ 5+:2. ... t+3,S"13 .. ,

Fig. 28 Equivalent Bit Slice, Multiple Pipeline Processing

118

properties of the final design. One factor which it has been
difficult to assess is how long a pipeline needs to be built to give
the best system performance.

-7 0OTP(]'!"

+- N\E1Y\O~ '81..OC.k:

Fig. 29 IC Floor Plan

Pipeline Control and Priming

In concept, the simplest way of using this kind of machine in real­
time is to have a pipeline long enough to hold the maximum length
display list likely to be encountered. In practice the scene is
subdivided until the display list is the same length as the pipe.
However, while the primary display algorithms were being explored,
the simple approach was adopted. If a technology could be found
which reduced the size of these processors sufficiently, then this
approach would give a very simple system useful in quite a variety
of applications. With this objective in mind, first CCD
technology (1975-6) was investigated, then n-mos (1976-84), and
finally c-mos. However, it seems that the simple approach is still
some way off. When it became clear that a complex scene would
require a large number of integrated circuits, particularly if the
processor was extended to handle curved surfaces, then it became
important to consider what facilities were necessary to allow the
pipeline to be used with a scene subdivision or other scene
coherence pre-processor.

Consider a display list of 50 units long, and a pipe of 25 pixel
processors in length. If the display screen is divided into four
quadrants and the display list is subdivided to remove elements
which do not feature in each quadrant, then four new display lists
will result. If the new display areas require display lists of 20
elements, 4 elements, 15 elements and 17 elements respectively, then
the display pipeline will be able to work in real-time. Each list
can be padded out to give a list 25 units long, which can then be
cycled through the pipe until the required number of pixel values
have been generated for each of the display lists. The lists
being swapped as each section of the display screen is completed in
sequence.

Where complex scene models are being processed there may well be a
need to sub-divide the screen down to the level of a few pixels, for
part of the image. In this case the display list must be reduced
to a length which is less than the number of pixels required, as
well as less than the pipe length. This means that some way of
managing several lists of less than the pipe length must be found,
if continuous pixel rate output is to be maintained. There were
two interrelated problems which had to be resolved to make this
possible. Firstly, it was necessary to process variable length
lists, and secondly it was necessary to prime the processor with new

119

incrementing directions each time a new list was entered. The
simplest approach found so far is illustrated in Fig. 30. The
first requirement is that only one list is generating output at any
instant in time. A processor which is producing an output value
can only do so once it has processed the whole display list. The
output will always be generated, therefore, at the tail end of a
list. The only way of maintaining continuous output is to allow
each list to generate output, only when it is the last list in the
line: the shaded lists in Fig. 30.

0) .t¥\17I-. Fl.DW AC)"'"IVI:! CEUA

u T 5 R
1.\ t: s ""

~ .. " .. Q .. • %.

" F M V U T S R Q x Y 'Z

f "" IT 1.\ t: 5 ",. C0\­ x ':1 :z.

PRIME!::> ctnJ,S

PRtMtNGi-~

t>Is?I.AY I,'::>A'T;&..

t+1

.. COl R .. Z Y

• " U T S R)(Y
IT '" t S r ct­ x ::J z.

.. ,.
"

.., Go R s
F M " U T S

" .. " 9 m If" u t s v­ ct­

.. .. GI R .. " • <> V

" ... ;f IY\ 'IT IA t S

i:: +2

c+3

t+-4­

..
.. '"

Q R S T IA V U
II t:­ IS v- q"

~I:"H) OF
PIPE. UN E­t+5

.. " .. " '" "
t. +- G " " " F M

• " 5 m

.. " ..
t+1 .. F M.

" ... f ~

Fig. 30 Pipeline Control

120

In order for a list to be processed, the processors it is entering
have to be primed with control data to determine the incrementing
direction of each processor. This priming information is shown in
capital letters in the diagram. At time t+l the two lists
(v,u,t,s,r,q) and (x,y,z) are each entering the processor which is
their own list length from the end of the pipe, so evaluation has to
start for each of these lists. In each of these cases the
processors are primed with the incrementing control data: Q and Z
respectively. In the next clock period the display list has moved
one step down the pipeline. In order to keep up, the priming-data
list has to be passed down the pipeline at twice the speed, once
list processing starts. This ensures that the priming-data list
reverses its direction in the processors in the way shown. This is
the only scheme which has been found which allows multiple lists to
be handled, and at the same time allows the priming information to
be entered with the list it controls. Clearly before a display
list reaches the "active" primed processors it has to be passed
passively down the pipeline, the incrementing operation suspended,
and the output instruction masked out.

It is possible to extend this prlmlng operation. If partial
results from a previous calculation are stored in a depth buffer
they can be passed down the pipeline in this way to the appropriate
processor where they can be used as the starting point for a
subsequent calculation. It is this facility which will make it
possible to use this kind of processor for real-time ray tracing
algorithms.

CONCLUSIONS

There are clearly many applications for the kind of system outlined
above. At the simplest level, instrumentation displays which
require 3D symbolism can be driven by a minimum set of hardware.
At a more complex level, the pilot-training simulator still appears
to make the most stringent demands on a display system's hardware,
though the requirements of CAD/CAM systems are developing fast.
The design work station may well end up with the widest range of
demands to be satisfied, some of which will justifiably require the
real-time movement of objects, and the highest level of image
realism that technology can provide. Because the approach which
has been described is totaly general, it is possible to include many
other options within its overall system structure - ranging from
specialised curved surface processors to existing line and point
based sub-systems (Sutherland, 1963) - without major changes to the
system's architecture. This and the system's intrinsic modularity
make it worthy of serious consideration as the underlying framework
for future design work~station processors.

ACKNOWLEDGMENTS

Funding provided by Science & Engineering Research Council. Key
developments helped by J. Downie, J. Woodwark, M. Sabin and
Professor R. Forrest. Electronic circuit design and VLSI design
help received from J. Mclean and M. Morant.

121

REFERENCES

Newell ME, Newell RG, Sancha TL (1972) A New Approach to the Shaded
Picture Problem. Proceedings ACM National Conference.

Rouge1ot RS (1969) The General Electric Computed Colour Display. In
Pertinent Concepts in Computer Graphics ed. M Fairman and J
Nievergelt, University of Illinois.

Sutherland IE (1963) SKETCHPAD: A Man Machine Graphical
Communication System. Spartan Books, Baltimore.

Thomas AL (April 1976) Spatial Models in Computer Based Information
Systems. Ph.D. Thesis, University of Edinburgh.

Thomas AL (March 1986) Overlap Operations and Raster Graphics.
Computer Graphics Forum, Vol. 5, 1.

Warnock JE (1969) Hidden Line Problem and the Use of Half-Tone
Displays. In Pertinent Concepts in Computer Graphics ed. M Faiman
and J Nievergelt, University of Illinois.

Watkins GS (June 1970) A Real Time Visible Surface Algorithm.
Thesis Computer Science Department, UTECH-CSc-70-l01, University of
Utah.

