
Utilization of VLSI for Creating an
Active Data Base of 3-D Geometric Models

1. Skyttii and T. Takala

Helsinki University ofTechnoiogy, Laboratory oflnforrnation Processing Science
SF-02150 Espoo, Finland

INTRODUCTION

Parallelism of geometric computation can be achieved by distri­

buting the computation efforts according to essentially three

different strategies, based on functional, spatial and struc­

tural division, respectively (Mantyla 1983). The conventional

and already commercialized way to introduce parallel computa­

tion for viewing 3-D geometric models is employing functional

parallelism as a pipeline for performing different sequential

transformation phases of the 3-D viewing operation (Clark

1981). This approach limits the number of parallel activities

to the number of separable functional computational modules. A

second approach for parallelism is the division of the modeling

space into separable volume elements, which can be processed

independently using a suitable data structure like an octree

(Kronlof 1985). The logical component structure of a model

gives a third distribution strategy. Then each processor

answers only to the computational needs of its assigned ob­

jects.

The two latter approaches are utilized in this work. The

motivation is to speed up processing of small entities within

large geometric models. However, in conventional solutions a

centralized data structure is used, which provides a serious

communication problem. In VLSI environment the communication is

usually more expensive than the actual processing. This is a

totally controversial situation as compared to an ordinary com­

puter architecture where memory access of an element is much

http://www.eg.org
http://diglib.eg.org

84

cheaper than its actual processing. Thus also the data struc­

ture of a geometric model should be distributed among the pro­

cessors, resulting in an active data base.

In a spatial or structural division the elements cannot usually

be completely independent of each other, but they are interact­

ing. Objects may range or move over boundaries of a space

division, or logically different components may coincide spa­

tially and then affect each other. Our aim is to combine the

good features of both strategies. The smallest atomic logical

elements of a geometric model (polygons in our case) are not

destroyed, but are only roughly divided into partially overlap­

ping spatial subareas. The processor structure is hierarchical,

with small objects located in the leaf node processors and the

larger objects in intermediate nodes. These nodes take care of

a larger spatial area. The division strategy of objects among

nodes is adaptive, such that each node contains about the same

number of objects.

DATA STRUCTURES AND PROCESSOR ORGANIZATIONS

In order to be able to develop a feasible utilization schema

for VLSI in the 3-D modelling environment, we must restrict

ourselves to an essential subproblem of the model processing.

As explained, the geometry engine (Clark 1982) solves the view­

ing problem efficiently. A general problem with 3-D models is

the computation of a local operation between two model ele­

ments, for example an intersection of two surfaces. This can

either be a part of the complete model formation (e.g. boundary

evaluation or merging) or a way to access the model for provid­

ing useful exact information (e.g. a cross-section) of the ob­

ject described. At this stage we make the assumption that our

model is available in polygon format with desired accuracy for

curvilinear objects (Takala 1986).

These polygons may be set to a central data structure, which

makes possible an efficient search through the polygon space

85

(Tamminen 1982). This is a suitable solution for the calcula­

tion of intersections using a sequential computer, but the pos­

sibilities of parallelism offered by VLSI cannot be easily

utilized with this strategy. What has been proposed previously

as a suitable hardware solution has been an integrated circuit

module which is able to compute some critical part in the cal­

cUlation processing, for example determinant processing of tri­

angular intersections (Yamaguchi 1985). This method introduces

parallelism only into the computation, but not into the search

which is performed sequentially through the data structure.

In order to solve this problem we must distribute the data

structure into active elements. These elements should respond

both to search and calculation commands and thus form an active

data base of geometric information. In this way we can minimize

the communication costs while the model information is stati­

cally stored in the processor hierarchy and only the parameters

and results of computation are moved around in the network.

What is a suitable processor organization for localized 3-D

model processing? We encounter the same problem in processor

organization as in data organization in memory. The EXCELL

data structure (Tamminen 1982) has a solution which partitions

the model volume into a tree hierarchy according to the activi­

ty of the volume element, i.e. the more model entities are

present in the cube, the more leaves in the data structure tree

are used for representing them. However, this kind of dynamic

tree building, although an efficient data structure, cannot be

efficiently mapped to processor space with fixed interprocessor

communication links. Of course these fixed communication chan­

nels can be utilized in a dynamic way by using for example a

hexagonal processor array and packet routing for data messages,

but this leads to extensive consumption of physical resources

for pure wiring and inefficient worst case communication routes

(long paths of information packets if the physical and logical

data architectures are not compatible).

As we are tied to processor architectures being efficiently im­

86

plementable by a large number of moderately simple similar ele­

ments, the alternatives that are left for us as architecture

candidates are the pipeline, tree organization and a two­

dimensional grid. A pipelined structure can be computationally

very efficient, but it cannot by any means be a way to imple­

ment a data base approach because the ordering of the data ac­

cess is not fixed in such a way as computational functions are.

Two-dimensional grid architecture is very near to the real

hardware world, and even some existing microprocessor designs

support this approach. However, in order to support hierarchi­

cal search mechanisms in our data base we must include

hierarchical ordering in the processor grid. A balanced tree

maps nicely on the grid, and the extra communication channels

existing on the grid can be used for read only access to the

data base. Making all the updates to the data base using the

tree hierarchy guarantees the consistency, but using the strict

hierarchical structure for pure information consumption access

is ineffective. The hierarchy tree can be utilized for search­

ing the location of the data, but transfers of large volumes of

detailed image formation data can be handled using grid chan­

nels not included in the tree organization.

THE TREE APPROACH FOR PROCESSORS

The severe problem is how to map a static processor structure

into the dynamic world of 3-D models. A hierarchical tree

structure is a natural way to organize a large geometric model.

This hierarchy is usually based either on the logical composi­

tion of the object like in a CSG model, or on the geometric

distribution of the objects in space, like in a poly tree (Carl­

born 1984). We need to have a free choice of the depth of

hierarchy: we must either be able to produce a completely flat

model by connecting all polygons to the root or we must be able

to produce a deep hierarchy by creating intermediate objects.

Each node of the processor hierarchy should be aware of what

volume information is stored and processed below, and can then

give service or reject inquiries which are broadcast from the

87

upper level.

Both the eSG and the polytree methods often lead to very imbal­

anced tree structures. On the other hand the shortest inter­

processor communication paths can be provided within a balanced

tree structure assuming that the number of communication chan­

nels for one processor is limited to a few. A balanced po­

lytree can be achieved by dividing the space adaptively instead

of a fixed regular way. In the poly tree structure geometric

elements occupying more than one volume element are split by

pseudoboundaries. However, we want to avoid the creation of

extraneous geometric pseudoelements due to the division boun­

daries. This can be achieved through not splitting natural

geometric entities, but placing them one level higher in the

hierarchy. Thus all the geometric information involved is not

stored in the leaves of the tree, but throughout the hierarchi­

cal structure including the intermediate nodes. This means

that the processor nodes containing objects overlapping in

space must communicate with each other. In tree hierarchy of

processors this means communication load to the previous level,

or if the overlap is large in volume, to several upper layers.

If such a case can be predicted, the communication congestion

of the upper levels can be relieved by creating data paths

between the nodes of the same level. We can take for example a

planar quadratic architecture with four links to neighbouring

processors or even a hexagonal architecture with six links. In

this situation each processor can contain in its local memory a

routing table of those processors which can be reached more

directly through bypassing the hierarchical tree order, which

still forms the backbone of the information distribution in the

network.

As we distribute the objects of our model to the processor

space, i.e. we map the physical space to our architecture, we

have to choose between two fundamental principles: we can ei­

ther form tree hierarchy statically according to data structure

of the model, or we can split the data structure dynamically

according to the activity of different objects. If we choose

88

statical division, we have the problem of dividing sets par­

tially ordered in three dimensions into a planar hierarchy. If

we take the dynamic alternative (Dippe 1984), we can possibly

balance the load better, but have increased communication prob­

lems instead. Nothing can be guaranteed about the communica­

tion needs, but simulations can give useful information of

correct choices. The static method lends itself to mathemati­

cal analysis, and if a clever enough algorithm for the distri­

bution of the objects is developed, consistent analysis of the

performance is possible.

DATA DISTRIBUTION IN PROCESSOR SPACE

Our approach is the latter one: to use a static processor

structure of the form of a balanced binary tree (B-tree)

storage for geometric objects like e.g. individual polygons of

a faceted boundary model. The objects are distributed in the

network in such a way that the extents (bounding boxes) of ob­

jects in different processors overlap as little as possible.

Then operations with geometric locality, for example finding of

intersections, can mostly be performed in parallel, and inter­

processor communication is only needed between processors with

overlapping extents. Basically the idea of utilizing bounding

boxes is similar to that presented by Roth (1982) in the con­

text of CSG trees. However, the possibilities of balancing the

tree are better with small polygonal faces than with whole

half-space primitives.

An outline of the behavior of the system is as follows: In the

first phase a stream of polygons is brought into the top of the

processor tree, from which they are evenly distributed down to

the lowest level leaf processors. Each processor roughly

divides the coordinate space into two halves, and each polygon

is forwarded to either left or right subprocessor according to

its extents. In order to map a binary subdivision into the 3-D

space, each of the three coordinate axes is alternatively

selected at successive levels for divisioning. The approach is

89

[!iJ
'l!:ii

":r I"
1.,

Ii

Fig. 1 : Polygon space divided into compo­

site groups. Composite extents are shown
by boxes and the subdivision boundaries by
solid lines. Polygons crossing a boundary
are stored in the local memory of the
corresponding processor.

• •

90

Nt: 	 Ct (division value) Pi: E2i < Cit E 21+1 > Ci

8, (local data)
S't ... St + S'2t + 5'21+1

Si (size of 8.)
E', = Ei U E'21 U E'21+1

Ei (extents of 8t)

Fig. 2 : The processor tree organization.

Each processor (P) takes care that the ex­

tents at lower levels do not cross the

division boundary (Cl. Local data (D) to­

gether with parameters (S,E,C) are stored

in local memory (M). The total size (S')

and extents (E') of data in a subtree are

reported upwards.

91

similar to that in Excell (Tamminen 1982), except that if im­

balance occurs, the place of space division is changed and some

polygons are moved from one subtree to the other. These prin­

ciples are applied recursively at each level of the tree. Each

processor keeps track of the number of polygons and of their

total extents in its both subtrees. The sum of their numbers

and the union of their extents is recursively given to the next

higher level.

As all polygons are brought into the system, it behaves in the

second phase like an active geometric data base, where in­

quiries can be answered. The specific problem of finding in­

tersection of two or more faceted boundary models essentially

means calculating mutual intersections of individual faces.

This can be done in each leaf processor for those polygons,

whose extents don't overlap with any other processor's con­

tents. For the overlapping parts each polygon is sent back up

to the level where all its potential inter sectors are within

one processor's extents. The final results can be collected at

the top level and brought out from there as a stream of po­

lygons.

To formalize the problem for a more detailed analysis it is

simplified to the one-dimensional case. Then the first phase

can be presented as the problem of constructing a B-tree of

one-dimensional coordinate intervals as key values. It differs

from the construction of a usual ordered binary tree in that

the intervals are only partially ordered keys. In order to get

full ordering we give the additional optimization criterion:

the sum of path lengths between overlapping intervals should be

minimized in the tree. This means that the interprocessor com­

munication needed in the second phase is also minimized.

The solution and is analysis is next to be worked out in 1-0.

We are seeking for a recursive algorithm which would be the

same in all processors. After solving the 1-0 case, its exten­

sion to 3-D is straightforward, because the subdivision of

space is done by one coordinate at a time. Variations to the

92

solution may be caused, if lateral interprocessor communication

paths are arranged within the bottom levels.

The surface intersection algorithm basically consists of find­

ing intersection lines of polygons. Generally the complexity of

calculating mutual interferences of N polygons is N-squared.

However, if the number of potentially intersecting polygons can

be reduced by a factor C, then the complexity will be (N/C)­

squared. With geometrically localized distribution to C paral­

lel processors this is exactly achieved, if the N polygons can

be equally divided to C mutually non-overlapping spatial areas.

In practice there will be partial overlaps, which are handled

in the higher levels of processor hierarchy. Thus the overall

reduction factor of the problem using C processors will be

somewhat less than C-squared.

The idea of rough localisation of objects can be generalized to

other kinds of problems also. Any characteristic parameter of

the problem space can be used as a basis for grouping of ob­

jects, provided that the subproblems localized in parameter

space do not interfere each other but can be solved indepen­

dently in parallel. The processor organization presented in

this paper implements for such problems the well-known

"divide-and-conquer" strategy.

5. References

Carlbom I, Chakravarty I, Vanderschel D (1984) A Hierarchical

Data Structure for Representing the Spatial Decomposition of

3D Objects. In: Computer Graphics Tokyo 84, Tokyo, Japan.

Clark J (1980) A VLSI Geometry Processor for Graphics. IEEE

Computer 13: 59-68

Clark J (1980) The Geometry Engine: A VLSI Geometry System for

Graphics. Computer Graphics 16: 127-133

93

Dippe M, Swensen J (1984) An Adaptive Subdivision Algorithm and

parallel Architecture for Realistic Image Synthesis. Comput­

er Graphics 18: 149-158

Kronlof K, Tamminen M (1985) A viewing Pipeline for Discrete

Solid Modeling. The Visual Computer 1: 24-36

Mantyla M (1983) Hardware Structures for Computer Graphics and

Geometric Modeling. In: NICOGRAPH '83, Tokyo, Japan, p. 68­

79.

Roth S (1982) Ray Casting for Modeling Solids. Computer Graph­

ics and Image Processing 18: 109-144

Takala T (1986) Geometric Boundary Modelling without Topologi­

cal Data Structures. In: EUROGRAPHICS '86, Lisbon, Portugal,
p. 115-128

Tamminen M, Sulonen R (1982) The EXCELL Method for Efficient

Geometric Access to Data. In: 19th Design Automation Confer­

ence, Las Vegas, p. 345

Yamaguchi F, Tokieda T (1985) A Solid Modeler with a 4x4 Deter­

minant Processor. IEEE Computer Graphics and Applications 5:

51-59

