
A Visual System for a Traffic Simulator

RMoller

Fachbereich Elektrotechnik, Lehr- und Forschungsgebiet Automatisierungstechnik
und graphische Datenverarbeitung, Institute of Automation Techniques,
University ofWuppertal,
FuhlrottstraBe 10, D-5600 Wuppertal 1, F. R Germany

INTRODUCTION

The prototype of a modular CGI-system for real time simulation in a
traffic simulator will be presented. It will be shown, that with
the proposed configuration of a large asymmetric multiprocessor
system, organized in different layers of homogenous partial

, systems, and an overlayed pipeline - architecture the usage of
common hardware components is generally possible for the realiza­
tion of low cost solutions.

On the other hand the technology of the used processors (mostly
MOS) requires intelligent programming to guarantee a real time
reponse of the visual system. The well known algorithms of computer
graphics are to be analyzed for their applicability, that means,
that parallelisms in graphics algorithms are to be found and the
required precision and expenditure are to be analyzed before the
solutions in special designed hardware components are implemented.

The proposed kind of simulator is usable as a training simulator
for driving schools or as a base for research (i.e. in ergonomic
design of car cockpits).

Two types of special display generators are described: a Curve-/
Surface Generator, which is usable to render continuous curved
objects and the Object Processor, which transforms complete tex­
tures in real-time.

TASKS AND REQUIREMENTS FOR A TRAFFIC SIMULATOR

The main task of a traffic simulator is the visualisation of highly
realistic complex traffic situations, so that it can be used for
the development of traffic guiding systems, research on traffic
accidents, the development of ergonomic optimal car-manipulation
equipment and finally for training-simulators.

Specially for the realization of training-simulators solutions at
low cost are to be found, which make their use in driving schools
possible.

http://www.eg.org
http://diglib.eg.org

46

The main difference between this CGI-system and a visual system for
car driving simulators is the observer's freedom of movement in the
model world and the scene complexity: The driver himself decides,
whether or not to change his direction of movement (e.g. at road
crossings). Independent controllable traffic guiding signals and
detailed "faces" of buildings animate the scene.

The following requirements for the visual system of a traffic
simulator exist:

no restriction on the observer's movement in the
modelled world,

the possibility of visualisation of road crossings,
traffic signs, signals and other objects,

a minimum horizontal viewing angle of 150 degrees,

visualisation of city traffic with other road users
(especially other cars),

simulation of special effects like fog,

visualisation of car dynamics.

THE VISUAL SYSTEM

As seen in Fig. 1 the proposed CGI- system for the traffic simula­
tor is divided into four main parts:

model computer,

control computer,

display processor,

simulation room.

The number of elements of the same kind in Fig. 1 (e.g. four
screens) is no principal restriction. The concept was realized and
tested with some representations of all shown components.

The four parts build a pipeline structure, where an action at the
steering elements of the simulator-car causes a visual reaction on
the screen. In parts of the visual system a layer structure was
created, where computation on a great amount of data is to be done.
Each layer contains a number of parallel working components so that
the amount of data, which is to be processed, is cut into small
usable pieces.

~
<:
f-'·
til
c:
PI
1-'

(Jl

'<
til
rt
(1)
;::!

HI
0
'1

PI

>-3
'1
PI
HI
HI
f-'·
()

(Jl
f-'·
;::!
c:
1-'
PI
rt
0
'1

~
VW-Golt

Simulation Room

CONTROL COMPUTER Transmission

ZLAB SBOOO if required

4i'ln4titSYS IFI ::l Tasks:
~ -Data Base
j Generation
..5 -Scene
~ Calculation
E -Retouch II
a

ZF 10 .a..

Mathematical
Car Model
(MINSIM}

Model Computer
ATM CLASSIC 7835

~

48

Model Computer / Car Model

The model computer connects the control computer with the simula­
tion car. Its main task is the calculation of the car model. The
mathematical model MINSIM was worked out in a undergraduate study
(Ganter 1982). It receives the output values of the physical car
model in the simulation room (fourth part of Fig. 1) and calculates
coordinates of the driver's position and angles of the drivers
orientation in the simulator data base (Fig. 2).

The model, which made the verification of the realized visual
system possible, consists of seven coupled second order differen­
tial equations. A detailed theoretical description of the model is
given in Mitschke (1972).

main direction
of movement : Z

yawing:lj!

y

Figure 2: Degrees of Freedom of the Simulated Car

There is no tactile and acoustic, but only the visual reaction of
the model implemented, and only the speed of the simulated car is
shown on the speedometer. So the visual system must give all the
necessary information to the driver to create the impression of
driving a real car.

Control Computer

In the traffic simulator the control computer which generates and
manipulates the scene database of the CGI-system is a main part.
The scene database contains all the elements for the visual simula­
tion, e.g.

49

geometric data describing a cartographically reproduction
of a road network including the primitive representation
of road elements,

2D picture objects,

3D solid objects,

all parameters and constants for the necessary
transformations.

The control computer contains interactive programs for the scene
generation (construction of the world model and application of the
scene elements). The reproduction of a cartographically given land­
scape is possible, also the definition of traffic junctions, traf­
fic guiding signals and road signs (Kuckel 1985).

The result of these operations is the data base, which will be
partially distributed into the special modules of the display
processor in the initial phase of the simulation. The driver of the
simulated car may move to any point of the modelled world with six
degrees of freedom but he can also be directed by road signs which
are controlled by the scene calculation program during simulation.

Display Processor

The proposed concept requires parallel processing in different
layers because of the amount of data to be administrated. Therefore
precomputers (VR) have been developed based on a 16-bit-micropro­
cessor. Their hardware is universal, but every VR has to solve one
special problem like clipping, sorting or transformation.

Most of the tasks require high precision calculations and a wide
range of numbers. So the precomputers were designed as multi­
processor-systems with one CPU and some special auxiliary proces­
sors(Skiba 1986). Because of the parallelism of many algorithms
(e.g. 4x4 transformation) three floating point processors are
implemented as standard auxiliary processors.

The precomputers use autonomous parallel interfaces for all of
their data communications.

For the movement of 2D picture objects containing extremely detai­
led picture information Object Processors were developed (Koster
1985), which obtain their transformation data from a precomputer
(here called VBD) while pixel data (picture memory contents) are
loaded via a special direct interface from the control computer.

The picture objects defined by line data are to be divided into two
categories:

polygonal (vector-) defined objects and

continuous curved objects.

Rendering a building requires only a few straight vectors (edges),
but a continuous stretch of road with variable curvature is only
renderable by a normally nonconvex polygon with many edges.

50

So for the special task of continuous curved objects Curve-/
Surface Generators (KFG) have been designed which are also able to
generate polygonally defined objects on the screen (Niechciol
1986).

The object processors and the curve-/surface generators work in
real time, that means, they generate all the necessary pixel infor­
mation while the electron beam of the CRT is running (calculations
must be finished before the beam has reached the actual display
coordinate).

The hidden elements calculations are an important part of the
visual system. Here some restrictions are very helpful:

all 30 scene objects are opaque,

all scene objects are solid (no penetration),

all objects are joined in the order of principal
visibility.

Because the objects are opaque and no penetration is allowed, the
hidden object calculations become very simple (e.g. object 1 hides
object 2). A visibility chain accelerates the speed of the hidden
object calculations.

The object-dependent hidden lines calculations are to be presolved
by procedural methods whenever it is possible. That means, priori­
ty chains of the parts of every object are defined for all view­
points of the observer relative to the viewed objects (an example
is realized in Rood (1986).

The pixel distribution- and screen control combines all pixel data
in real time. This main element of the display processor is able to
support a maximum of 7 display channels with the same number of
screens. The viewing angle is adjustable by special parameters in
the visual system. In the realized prototype version a horizontal
field of view of about 150 degree is chosen. Angles less than 150°
would complicate the task of turning into another road at cros­
sings.

The geometrical problem to connect screens as parts of a large
display is solved: the proposed system does all transformations
individually for any display channel, with immediate connections to
their neighbour channels. Another problem, the loss of intensity
and colour differences near the edges between screens of a multi­
channel display, is to be solved by analog methods.

For special effects like fog or driving at night experimental
electronic circuits have been developed, an implementation into the
visual system later on is possible.

MODULAR CONCEPT

For the display processor a concept of parallel working modules was
developed. In the following the terms Module and Transformer have
to be differentiated:

Transformer for Line Data

The transformer for line data consists of a precomputer for line
data (VLD) and n curve-/surface generators (KFGs). For the realized
visual system n max = 16 is chosen.

Object Transformer

The object transformer consists of a precomputer for pixel data
(VBD) and m object processors (OPs). The realized precomputer VBD
supplies m max = 5 OPs with transformation data in realtime (20ms).

Module

The Module is the leading representation of a displayable object
(e.g. house or an other than the viewer's car) or a function con­
trol (e.g . priority module = VPR and priority control). A module
consists of one or more transformers. It is possible to combine
object transformers and transformers for line data in one module.

Different methods for realizing Transformers have been developed:

problem oriented methods (special algorithms for a
special problem),

sequential methods (e.g. use of recursive algorithms for
rendering smooth curves),

procedural methods (every perspective of an object is
rendered by a special procedure).

The modular concept allows an object bound, parallel transformation
and the rendering of all scenic elements in a given time range of
20ms . For the prototype version of the traffic simulator the modu­
l es "horizon", "road", "mean line", "border line", "crossing" and
"other car" have been realized (Fig. 3). With adaptation of a
module "2D-Object" all required scenic elements can be realized:
Faces of buildings (2D -Objects). moving or parking vehicles with
lights and signals, the road network and traffic signals.

The described visual system for a traffic simulator is modular.
Relevant objects can be made obtainable for simulation with a
scene generation program. They are realized with the implementation
of a new module in the display processor.

51

52

Control
Computer
ZLAB

Figure 3:

MODULE Horizon

MODULE Landsca

MODULE Crossing

MODULE Road

MODULE Border Line

MODULE Mean Line

MODULE Border Post

MODULE Car

MODULE 2D-Object

MODULE Priority

0 -c
8
>. -·c:
0
....

0...

Screen

Modular Concept of a Visual System for Traffic
Simulation (Example)

SYNCHRONIZATION

The whole visual system is synchronized by signals of the display
processor. So the time lag between action at the steering elements
of the car model and the reaction with a synthetic image amounts
to 60ms. This is shown in Fig. 4.

The calculation of the car model MINSIM is done in a frame time of
lOms, that means, that a changing input value of the car model is
interpreted after a maximum of lOms. The necessary time for the
solution of the model equations in MINSIM is about 7ms, then the
output of the calculated data to the control computer follows
(DUl).

The control computer is interrupted periodically by the described
synchronization signals (tp =20ms). The data from the car model are
in the control computer a~ this time and will now be interpreted.
The "dynamic" data (data changing every simulation cycle t , e.g.
position of the observer and the orientation transformationpmatrix
TwBl are tra'?-.smitted directly to the transformers in the display
processor (DU2).

After calculating the potential visible scene elements for the next
simulation cycle the results (position transformation matrices and
control data) are transmitted as ''static" data to the display

53

processor. The time limit for these scene calculations is set to
tscene (= 0.9 tp (Dti2).

The transformers in the display processor begin their calculations
immediately after receiving the "dynamic" data (in Fig. 4: VBD and
VLD) und finish before the second raster is drawn on the screen
(interlaced mode assumed). The time boundary is: tTra s <= 0.9*t ·
The remaining time is used for transmissions (Dti3) an~ for organf­
zation tasks following "static" data.

t [msl
Sampling

Model Value
MINSIM

Di..i 1
Scene Calculat.
ou 2
Transformation

ou 3
Representation

0

u

10 20 30 40 50 60

n n n n
h_

Inn _nstat.Data liLn ..n. stat.Dafn
co v 0 VlD
lg;s! --

h
1st Fra e - _r -

Figure 4: Simulation Timing

It is shown in ~ig. 4, that the first raster following an action in
the model car 1s drawn after 60ms, if the time boundary is not
hurted.

A mean simulation cycle of 4*t~ is possible if the control computer
and the model computer are combined.

OBJECT PROCESSOR

The transformation of extremely detailed objects, e.g. textures
with 512 by 512 different coloured pixels, is difficult to do in
real time. It requires a large amount of special and expensive
hardware if the common way of transforming object coordinates into
display coordinates is chosen.

In the proposed Object Processor a reverse way of transformation
was realized: The given display coordinates are back - projected
into a 3D - viewer's coordinate system and from there back - trans­
formed and projected into a pixel memory coordinate system, which
describes a picture object stored in the memory of the Object
Processor.

54

This leads to the Projection Equation:

x 8 = X I z + dx

Ys = Y I z + dy.

In these equations X, Y and Z are some functions of the display
coordinates x 0 and y 0 , dx and dv translation coefficients and x 8
and Ys the pixel memory coordina~es.

The Projection Equation consists of six multiplications, two divi­
sions and eight additions (all of them single precision floating
point operations), together to be solved in less than 70 ns.

Because of the counter characteristics of the display coordinates
the multiplications could be replaced by sequential additions. The
parallelisms found in the Projection Equation led to the design of
the Object Processor as shown in Fig. 5.

The controlling element of the Object Processor is a common signal
processor. With it the non-timecritical calculations and operations
are done, while a scan line is being drawn. It controls two inter­
faces: the transformation coefficients interface to the precomputer
VBD and the pixel data interface, with which pixel data (picture
memory contents) are loaded directly from the control computer.

The caiculation of X(x 0 ,y0), Y(x 0,y~) and Z(x 0 ,y0) is done with
three parallel working arithmetic-un1ts, which del1ver their solu­
tions to two floating point dividers.

Today one-step dividers are not commonly available, so that a
solution with special exponent-ALU, barrel shifters and a parallel
multiplier unit was designed.

The dividers deliver the required pixel memory coordinates which
are usable as addresses for the pixel memory. A following memory
resolution control is used for the reduction of pixel flickering,
which is a special aliasing effect of moving picture - objects.

The pixel memory of one Object Processor amounts to 512 by 512
pixels, coded with 12 bit colour information. This is a useful
resolution, where unsealed picture objects cover about 213 of the
screen.

~!Control
Data ~~Picture

Data

Trans- Clock Pixel
formation Generator Data
Coefficients Interface
Interface

+ + + +
Signal
Processor

i., ~ ~

Arithm. Arithm.
Unit Unit

y z

1
.,[~

Floating
Point

Divider Y/Z

Ys

Addressmask

x-offset

Multiplexer I
~ Screen Control

I~ ~ ~ ~ t /
Release
Control

Channel
2 3 4

A

....,.

I

I I 0

~ ., ~ 7

Arithm. Floating
Unit Point

X Co pro-
cess or

~ "
Floating Pixel

Data
Point

Divider X/Z

~. [Vs
Memory
Solution
Control

lJPixel Data

Picture
Memory

(512 2 x12Bit)

Figure 5: Block Diagram of the Object Processor

55

56

CURVE-/SURFACE GENERATOR

The Curve-/Surface Generator was designed for rendering 3D-Objects.
These objects in the traffic simulator have rather monochrome
surfaces and are not extremely detailed, but have a continuous
curvature.

For the line- data modules special software solutions exist, which
generate points, lines (vectors), polygons or slopes. The Curve-/
Surface Generators are programmable to manage all these input data
because they contain a common signal processor as a controlling
unit like the Object Processor does. The structure of the whole
generator is shown in Fig. 6.

The signalprocessor receives its information via a ringbuffer from
the allocated precomputer. This ringbuffer is read out every frame
cycle and if there is no change in the stored information an idle
picture appears on the screen.

For the real time generation of picture elements all input data are
converted for use in a digital differential algorithm (DDA), which
is multiply implemented in the arithmetic units. The output values
of the DDAs are compared with the display coordinates of the used
screen and a following priority logic performs a display request to
the screen control of the display processor.
If the request is acknowledged, the colour control will be freed
and sends the colour information for one pixel to the screen
control.

The operation time for the above described scan conversion
procedure may be about 60 ~s maximum. Relevant pixels are generated
in real time, that means about 60 ns.

Data
Flow
Control

Signal-

Program
Memory

FIFO

Screen
Coordinates

Prio.
~.-__ __.Data

Figure 6: Block Diagram of a Curve-/ Surface Generator

57

CONCLUSION

A modular visual system for a traffic simulator has been proposed.
It was shown, that not only special hardware has to be developed,
if a solution for a special graphics problem without immense costs
is required, but also the combination of intelligently constructed
algorithms - with respect to their parallelisms - and the necessary
hardware is advantageous.

While working on the simulator problems a lot of logic has been
found, that can be replaced by gate arrays or custom VLSI-chips.
This and the intelligent-programming concept makes the proposed
modular system applicable for low cost training simulators.

A powerful tool for transformation of planar textures has been
shown. For an addi tiona! advance in terms of reality it would be
necessary, to solve the special problem of rendering curved tex­
tures. So that is one of the next problems the author 1ntends to
work on.

ACKNOWLEDGEMENTS

I would like to thank Prof. J. Heidepriem and all other members of
the graph~cs group at the Institute of Automation Techniques for
the many fruitful discussions and their active help in the success­
ful realization of the concept of our visual system.

The work on the visual system for a traffic simulator was supported
by Volkswagenwerk AG in Wolfsburg (FRG).

REFERENCES

Ganter M, (1982) Realzeit- Simulation eines Pkws. Studienarbeit am
Lehrstuhl I ftir Automatisierungstechnik im Fachbereich Elektro­
technik der BUGH Wuppertal

Koster A, (1985) Prozessor zur 3D-Transformation zweidimensionaler
Bildpunktfelder. Studienarbeit am Lehrstuhl I ftir Automatisie­
rungstechnik im Fachbereich Elektrotechnik der BUGH Wuppertal

Kuckel K, (1985) Implementation neuer Datenstrukturen in die
Szenenrechnung eines Verkehrssimulators. Diplomarbeit am Lehr­
stuhl I ftir Automatisierungstechnik im Fachbereich Elektrotechnik
der BUGH Wuppertal

Mitschke M, (1972) Dynamik der Kraftfahrzeuge. Springer-Verlag,
New York

Niechciol V, (1986) Generatoren ftir die Echtzeitdarstellung nicht­
konvexer Flachen mit quasikontinuierlichen Berandungskurven auf
Rasterbildschirmen. Diplomarbeit am Lehrstuhl I ftir Automatisie­
rungstechnik im Fachbereich Elektrotechnik der BUGH Wuppertal

58

Rood HA, (1986) Entwicklung eines Bildmoduls auf der Basis proze­
duraler Beschreibungen. Studienarbeit am Lehrstuhl I flir Auto­
matisierungstechnik im Fachb. Elektrotechnik der BUGH Wuppertal

Schachter BJ (ed.) (1983) Computer Image Generation.
John Wiley & Sons, New York

Skiba T (1986) Implementation von Floating-Point-Prozessoren in
das Mikrorechnerkonzept eines Sichtsimulators. Studienarbeit am
Lehrstuhl I flir Automatisierungstechnik im Fachbereich Elektro­
technik der BUGH Wuppertal

Yan JK (1985) Advances in Computer-Generated Imagery for Flight
Simulation. IEEE Computer Graphics & Applications 5 (No.8):
pp.37-51

