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Abstract 
In the past few years the graphics programmable processor (GPU) has evolved into an increasingly convincing 
computational resource for non graphics applications. The GPU is especially well suited to address problem sets expressed 
as data parallel computation with the same program executed on many data elements concurrently. In pursuing a scalable 
navigation planning approach for many thousands of agents in crowded game scenes, developers became more attracted to 
decomposable movement algorithms that lend to explicit parallelism. Pathfinding is one key computational intelligence 
action in games that is typified by intense search over sparse graph data structures. This paper describes an efficient GPU 
implementation of parallel global pathfinding using the CUDA programming environment, and demonstrates GPU 
performance scale advantage in executing an inherently irregular and divergent algorithm. 
 
Categories and Subject Descriptors (according to ACM CCS): [Artificial Intelligence] I.2.8 Problem Solving, Control 
Methods, and Search – Graph and Tree Search Strategies I.3.1  
 

 
 

 

1. Introduction 

One of the more challenging problems in real time games 
is autonomous navigation and planning of many 
thousands of agents in a scene with both static and 
dynamic moving obstacles. Agents must find their route 
to a particular goal position avoiding collisions with 
obstacles or other agents in the environment. The 
computational complexity of simulating multiple agents 
in crowded setup becomes intractable and arises from the 
fact that each moving agent is a dynamic obstacle to 
other agents [Lav06]. Ideally, we would want each agent 
to navigate independently without implying any global 
coordination or synchronization of all or a subset of the 
agents involved. This is analogous to the way individual 
humans navigate in a shared environment, where each of 
them makes its own observations and decisions, without 
explicit communication with others. 

Navigation planning techniques for multi agents have 
been traditionally studied in the domain of robotics and in 
recent years have been increasingly applied to games. 
Centralized techniques [Lat91, Lav06] consider the sum 
of all agents to be a single agent and a solution is 
searched in a composite space. However, as the number 
of agents increases problem complexity becomes 
prohibitively high. Decoupled planners, on the contrary, 
are more distributed, but do require coordination space 
that may not always guarantee completeness. Their 
adaptation to dynamic environments [LH00] had either 
altered the pre-computed global static roadmap or 
modified the derived path itself.   

A real-time motion planning technique using per-
particle energy minimization and adopting a continuum 
perspective of the environment is discussed in Treuille et 

al. [TCP06] work. The formulation presented yields a set 
of dynamic potential and velocity fields over the domain 
that guide all individual motion simultaneously. This 
approach unifies global path planning and local collision 
avoidance into a single optimization framework. The 
authors found that the global planning assumption 
produces significantly smoother and more realistic crowd 
motion. Nonetheless, in avoiding agent based dynamics 
altogether the ability to succinctly express the 
computation in parallel becomes fairly constraint.  

Several models devise a planning algorithm that is 
completely decoupled and localized [LG07, VPS*08] 
The method is a two-level planning technique; the first 
deals with the global path planning towards the goal, and
the second addresses local collision avoidance and 
navigation. The global path is computed using the 
roadmap graph that represents static objects in the scene 
without the presence of agents. A classic search 
algorithm is then used to compute distances from a goal 
position to any graph node. Local planning infers velocity 
obstacles [FS98] from a set of neighboring agents and 
obstacles. Agents are modeled geometrically as a disc 
with a position and a radius. This simplified model 
avoids any orientation considerations in evaluating a 
collision free route for an agent. The integration of global 
and local planning is accomplished by computing a 
preferred velocity vector for each agent that is in the 
direction of the next node along the agent’s global path. 
The technique described is simple, robust, and easily 
parallelizable for implementation on multi- and many-
core CPU architectures. It runs at interactive rates for 
environments consisting of several thousands to ten-
thousands of agents and its performance scales well with 
the number of agents. 
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The feasibility of a parallel hardware based motion 
planning processor (MPP), running probabilistic roadmap 
method [KSLO96] for static environments, is studied by 
Atay and Bayazit [AB06]. The method first constructs the 
roadmap by determining connectivity along collision free 
paths. Then, the delimiting endpoints of an agent are 
being tied to roadmap locations and queried for the most 
desirable joining path.  The MPP was realized as a Field 
Programmable Gate Array (FPGA) that utilizes 
configurable parallelism for both construction and query 
processing. It demonstrated roadmap generation and 
query speedup of over an order of magnitude compared 
to a high end CPU.  

This explicit parallelism of navigation planning for 
many thousands of agents in a game lends itself well to 
data parallel compute paradigm. Essentially, a single 
program consults global connectivity data and resolves 
concurrently an agent’s optimal path, bound by a start 
and goal positions. The program produces a pair of 
outputs: a scalar value for path total cost and a list of 
positions that constitutes a preferred track of plotted 
waypoints. Our work exploits a more generic form of 
nested data parallelism to global pathfinding, and its main 
contribution is an efficient GPU implementation of a 
highly irregular and divergent algorithm. Our empirical 
results demonstrate performance scale advantage of the 
GPU for medium and large number of agents compared 
to both an optimized scalar C++ and Single-Instruction 
Multiple-Data (SIMD) CPU implementations.                                                                  

The remainder of the paper is structured as follows. 
Section 2 formulates global pathfinding and briefly 
discusses graph data structure and search algorithms. 
Section 3 sets the work objective, highlights the CUDA 
programming environment and presents the GPU 
implementation approach. Performance results are 
demonstrated and analyzed in section 4 and 5, 
respectively. In conclusion, possible forward looking 
game impact of GPU accelerated pathfinding is further 
addressed in section 6. 
 
2. Pathfinding 
Pathfinding is one of the more pivotal, low level core 
intelligence actions in a game [Buc04, Pat07]. Its main 
objective is to optimally navigate each of the game agents 
to its goal position avoiding collisions with other agents 
and obstacles in a constantly changing environment. The 
task involves a cost based search over a transitional 
roadmap graph data structure. Nodes in the roadmap 
represent the position of a key area or an object in the 
scene and edges attribute cost to connected locations. An 
agent movement is not restricted to roadmap edges and 
the navigation graph is consulted to negotiate the 
environment for forward planning. The next two sections 
provide mathematical characterization of graphs and 
search algorithms. 

 
2.1 Graph 
A graph (G) is formally defined as a pair of a set of nodes 
or vertices (N) binary linked with a set of edges (E): G = 

{N, E}. The ratio of edges to nodes expresses a graph as 
being dense (|E| is close to |V|2) or sparse (|E| much less 
than |V|2). Graphs are either directed or undirected. In a 
directed graph nodes define an edge are an ordered pair 
specifying edge direction. Edges in an undirected graph 
consist of unordered pair of nodes. Undirected graphs are 
often represented as directed acyclic graphs (DAG) by 
connecting each linked node pair with two bidirectional 
edges. Adjacency matrix and a collection of adjacency 
lists are the two main data structures for representing a 
graph [CLRS01], depicted in Figure 1:  

 
 
 

 
 
 

 
Figure 1: Graph data structure representations: 
adjacency matrix (left) requires an O(N2) footprint, 
independent of the number of edges in the graph; and 
adjacency lists (right) consumes O(N+E) memory space 
for both directed and undirected graphs. 

Adjacency matrix representation is a two dimensional 
array of Booleans that stores graph topology for a non 
weighted graph. It is simple, intuitive and more useful for 
dense graphs. The matrix has the added property of 
quickly identifying the presence of an edge in the graph. 
However, for large sparse graphs the adjacency matrix 
tends to be wasteful. Adjacency lists are commonly 
preferred providing a compact storage for the more wide 
spread sparse graphs at the expense of a lesser traversal 
efficiency. Each node stores a list of immediately 
connected edges. Adjacency lists data structure is more 
economically extensible and adapted to represent 
weighted graphs for traversing an edge that is associated 
with a cost property for moving from one node to 
another. 

 
2.2 Search 

Numerous algorithms have been devised to search and 
explore the topology of a graph [Nil86, BCF90, Sha92]. 
It is possible to visit every node of the graph, find any 
path between two nodes or find the best path between 
two nodes. Game navigation planning is ultimately 
concerned with the arriving at an optimal path that may 
be any of the shortest path between two nodes, the path 
that takes an agent between two points in the fastest time, 
or the path to avoid enemy line of sight. Searches are 
generally classified as being either uninformed or 
informed. Informed searches reduce overall amount of 
computations by making intelligent choices in selecting 
the graph region of interest. The problem set of 
pathfinding attends to informed searches that consider a 
cost weighted edge for traversing a graph. The cost alone 
is sufficient to determine the action sequence that leads to 
any visited node. Virtually any search algorithm is 
considered systematic, provided that it marks visited 
nodes to avoid revisiting the same nodes indefinitely.  
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Figure 2 depicts a general template of forward search 
algorithms expressed by using a state space [Lav06] 
representation. A planning state represents any of 
position, velocity or orientation of an agent. The 
definition of a state is an important component in 
formulating a planning problem and the design of an 
algorithm to solve it. A planning problem usually 
involves starting in some initial state and trying to arrive 
at a specified goal state. Feasibility and optimality are the 
major concerns of a plan that applies a search action. At 
any point during the search there is one of three possible 
node states: unvisited, dead or alive. Visited nodes with 
all possible next nodes already visited are considered 
dead. Alive are visited nodes with possible non visited 
adjacent nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: A general template for forward search: alive 
nodes are stored in a priority queue Q; nS and nG are the 
start and goal positions, respectively; u is an action in a 
list of actions U for the current node n; and n’ is a next 
adjacent node derived from the state transition function 
f(n, u). Node that is reached multiple times in a cost 
based search requires the resolution step in line 12. 

Classical graph search algorithms include Best First 
(BFS), Dijkstra and A* (pronounced A Star) [CLRS01, 
Lav06, RN95]. Each algorithm is a special case of the 
general template above, obtained by defining a different 
sorting function to the priority queue Q. Given a path 
defined by its endpoint positions a cost during a search is 
evaluated from the current node to either the starting 
point, to the goal or to both. Incorporating a heuristic 
estimate [HNR68, Val84, DP85] of the cost to get to the 
goal from a given node reduces the overall graph space 
explored. The table in Figure 3 summarizes the properties 
of the search algorithms of concern: 

° assumes admissible heuristic 
Figure 3: Search algorithm comparative properties 
table: A* search appears more efficient in balancing both 
the cost from start and to the goal in determining the best 
path; A* without heuristic degenerates to Dijkstra’s 
algorithm.   

A* is both admissible and considers fewer nodes than 
any other admissible search algorithm with the same 
heuristic function. Admissible means optimistic in the 
sense that the true cost will be at least as great as the 
estimate. The use of heuristics trades off optimality vs. 
execution speed and often scales better to solve larger 
problems. The more notable heuristic methods used in a 
grid based graph search involve any of Manhattan, 
diagonal and Euclidian distance calculations. Various tie-
breaking techniques are used for search optimization, but 
they are beyond the scope of this paper. Figure 4 
illustrates the pseudo code of the A* algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 4: A* algorithm pseudo code: g(n) is the cost 
from start to node n,  h(n) is the heuristic cost from node 
n to goal; f is the entity to sort in the priority queue, its 
cost member is the sum of g(n) and h(n).  

A* is fairly irregular and highly nested. For most part it 
is memory bound with very little math, largely embedded 
in the heuristic method. The outer loop of the algorithm 
commences as long as the priority queue contains live 
nodes. Queue elements are node index based and are 
sorted by their cost values in an ascending order. 
Element’s cost value is the sum of current-to-start and 
current-to-goal costs. The top element of the queue is
extracted, moved to the resolved shortest node (or edge) 
set and if the current node position matches the goal the 
search terminates successfully. Else, adjacent nodes (or 
edges) are further evaluated to their cost; unvisited nodes 
or live nodes with lesser cost to start are pushed onto both 
a pending list of live nodes (or edges) and onto the 
priority queue. A successful search returns to the user 
both a total cost value of the resolved path, and a list of 
ordered nodes that provides plotted waypoints. 

Optimal, non-weighted A* and Dijkstra search 
algorithms, running over undirected, sparse graphs that 
are stored in an adjacency lists format, are the concern of 
the GPU implementation described in the next section. 

Search Start Goal Heuristic Optimal Speed 

BFS no yes yes no fair 

Dijkstra yes no no yes slow 

A* yes yes yes yes° fast 

  1:  f = priority queue element {node index, cost}  
  2:  F = priority queue containing initial f (0,0) 
  2:  G = g cost set initialized to zero 
  3:  P, S = pending and shortest nullified edge sets 
  4:  n = closest node index 
  5:  E = node adjacency list 
  6:  while F not empty do 
  7:      n ← F.Extract() 
  8:      S[n] ← P[n] 
  9:      if n is goal then return SUCCESS 
10:      foreach edge e in E[n] do 
11:          h ← heuristic(e.to, goal) 
12:          g ← G[n] + e.cost 
13:          f ← {e.to, g + h} 
14:          if not in P or g < G[e.to] and not in S then  
15:              F.Insert(f) 
16:              G[e.to] ← g 
17:              P[e.to] ← e 
18:  return FAILURE

  1:     Q.Insert(nS) and mark nS as visited 
  2:     while Q not empty do  
  3:         n ← Q.Extract() 
  4:         if(n == nG) return SUCCESS 
  5:         for all u є U(n) do 
  6:             n’ ←f(n, u) 
  7:             if n’ not visited then 
  8:                 Mark n’ visited 
  9:                 Q.Insert(n’)   
10:             else 
11:                 Resolve duplicate n’ 
12:      return FAILURE 
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3. Implementation  

The main objective of the work presented in this paper is 
to exploit general data parallelism in performing global 
navigation planning for many thousands of game agents. 
The irregular and deeply nested A* search algorithm 
imposes acceleration challenges on a device with a 
relatively large SIMD thread group.  Ultimately, the goal 
is to demonstrate materialized GPU speedup compared to 
an equivalent single and multi threaded, both scalar and 
hand coded vector implementations running on the CPU.  

NVIDIA’s CUDA [NVI07] programming environment 
was the platform of choice, exposing hardware features 
that are essential to impact final performance of data 
parallel computations. The next section provides a brief, 
high level overview of CUDA’s programming model 
followed by a detailed discussion of parallel global 
pathfinding realization on the GPU. 

 
3.1 CUDA 

CUDA stands for Compute Unified Device Architecture 
and is a relatively new hardware and software 
architecture for managing the GPU as a data parallel 
computing device. The CUDA programming 
environment inherits from the Brook [BH03, BFH*04] 
framework developed at Stanford. When programmed 
through CUDA, the GPU is viewed as a device capable 
of executing a very high number of threads in parallel. A 
single program, called a kernel, written in a C extended 
programming language is compiled to the device 
instruction set and operates on many data elements 
concurrently. To this extent the GPU is regarded as a 
coprocessor to the main CPU and data parallel, compute 
intensive portions of applications running on the host are 
offloaded onto the device.  The CUDA software stack is 
largely partitioned into a low level hardware driver and a 
light weight runtime layer; the work presented here 
predominately communicates with the runtime 
application programming interface (API).   

CUDA provides general DRAM memory addressing 
and supports both scatter and gather memory operations. 
From a programming perspective, this translates into the 
ability to read and write data at any location in DRAM, 
much like on a CPU. Both the host and the device 
maintain their own DRAM, referred to as host memory 
and device memory, respectively. One can copy data 
from one DRAM to the other through optimized API 
calls that utilize the device’s high performance Direct 
Memory Access (DMA) engines.  

The batch of threads that executes a kernel is organized 
as a grid of thread blocks. A thread block is a collection 
of threads that can cooperate together by efficiently 
sharing data through fast shared memory. In a block each 
thread is identified by its thread ID. A block can be 
specified as any of one, two or three dimensional 
arbitrary sized array, simplifying software thread 
indexing. Number of threads per block is finite and hence 
the provision for a grid extent of thread blocks, all 
performing the same kernel. The grid further insures 

efficient distribution of threads on the GPU yet trading 
off thread cooperation – threads of different blocks have 
no communication paths.  A thread block in a grid has a 
unique ID and a grid of blocks can again be defined as 
one, two or three dimensional array.  

The device is implemented as a set of multiprocessors, 
each of a SIMD architecture e.g. at any given clock cycle, 
a processor of the multiprocessor executes the same 
instruction, but operates on different data. The CUDA 
memory model defines a hierarchy ranking from per 
thread read-write registers and local memory, to per 
block read-write shared memory, and per grid read-write 
global memory, and read only constant and texture 
memory. On chip registers, shared memory, and constant 
and texture cache access is very fast; off chip local and 
global memory reads and writes are non-cached and 
hence much slower. The global, constant, and texture 
memory spaces can be read from or written to by the host 
and are persistent across kernel launches by the same 
application. 

The device thread scheduler decomposes a thread block 
onto smaller SIMD thread groups called warps. 
Occupancy, the ratio of active warps per multiprocessor 
to the maximum number of warps allowed, is an 
execution efficiency criterion largely determined by the 
register and shared memory resources claimed by the 
kernel. An execution configuration with integral multiple 
of warps assigned to a thread block is a first line of order 
to insure adequate SIMD efficiency. CUDA’s Occupancy 
Calculator tool further assists the programmer in finely 
matching threads per block to kernel usage of shared 
resources. The compute capability of the device exploited 
in the parallel pathfinding work presented in this paper 
complies with CUDA version 1.1. Asynchronous kernel 
launches, the use of the newly event API for timing 
measurements and a somewhat reduced register pressure 
per thread appeared to have benefited the implementation 
described next. 

 
3.2 Software 

We have implemented a navigation planning software 
library that has both a CPU and GPU invocation paths. 
The implementation of the A* search algorithm was 
made consistent on both processor types in order to 
deliver as credible as possible comparative performance 
data. The following sections discuss primarily the CUDA 
realization of global pathfinding alluding to design 
tradeoffs pertaining to roadmap textures allocation 
preferences, working set coalesced access constraints, 
optimal priority queue insert and extract operations and 
finally, parallel execution of a highly irregular and 
divergent kernel with extremely low arithmetic intensity . 

 
3.2.1 Roadmap Textures 

The sparse roadmap graph is encapsulated in an 
adjacency lists data structure. Being read-only the graph 
is stored as a set of linear device memory regions bound 
to texture references.  Device memory reads through 
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texture fetching has the benefit of being cached and 
potentially exhibit higher bandwidth for localized access. 
The A* inner loop exemplifies coherence in accessing 
adjacency list of edges, sequentially. In addition, texture 
reference bound to linear device memory has the added 
advantage of a much larger address extent when 
compared to a CUDA array; it sports a maximum width 
of 227 (128M) components, well in line of 
accommodating large footprint graphs. Texture access in 
the pathfinding kernel uses consistently CUDA’s 
preferred and efficient tex1Dfetch() family of functions. 

The roadmap graph storage set has been intentionally 
refitted to enhance GPU coherent access. The set of 
textures includes a node list, a single edge list that 
serializes all the adjacency lists into one collection of 
edges, and an adjacency directory that provides index and 
count for a specific node’s adjacency list. The adjacency 
directory entry pair maps directly onto A*’s inner loop 
control parameters. As a result, one adjacency texture 
access is amortized across several fetches from the edge 
list texture. Nodes and edges are stored as four IEEE float 
components and the adjacency texture is a two integer 
component texture. Texture component layout is depicted 
in Figure 5:  

 
 
   

 
 
 

 
 
 
 
Figure 5: Roadmap graph texture set are of either four 
or two components to comply with CUDA’s tex1Dfetch() 
function. Component layout shown has the node with a 
unique identifier and a three component IEEE float 
position; an edge has a direction node identifier pair 
{from, to}, a float cost, and a reserved field; adjacency is 
composed of an offset into the edge list and a count of 
edges in the current adjacency list.  

The roadmap graph texture set is a single copy memory 
resource shared across a grid of threads. The presence of 
the adjacency directory texture brings the total graph 
memory footprint in the GPU to 16*(N+E)+8*N bytes. 
This layout incurs an extra cost of 8*N bytes compared to 
an equivalent CPU implementation; in return, it 
contributes to a more efficient roadmap traversal.  

It is often the case in games for the roadmap to be 
constantly modified. An incremental change per time step 
carries little overhead in adding and removing nodes and 
edges of the currently loaded roadmap in host memory. A 
more substantial environment transformation could 
potentially require a new roadmap generation that is 
subject to a higher cost for loading the graph. Parallel, 
efficient roadmap generation techniques [AB06] are 
evolving and promising, but are outside the scope of this 
paper. The final step for copying the roadmap from host 

memory to the device’s texture space is however a small 
percentage of the overall search computation workload. 

 
3.2.2 Working Set 

The working set for a CUDA launch is commonly 
referred to as per thread private local and shared memory 
resources. In the parallel pathfinding workload an agent 
constitutes a thread on the GPU. The A* kernel has five 
inputs and two outputs that collectively form the working 
set. The inputs are each in the form of an array and 
include: 

 A list of paths, each defined by a start and a goal 
node id, one path per agent. 

  A list of costs from the start position (G), initialized 
to zero.  

 A list of costs combined from start and to goal (F), 
initialized to zero.  

 A pair of lists of pointers for each the pending and 
the shortest edge collections P and S, respectively. 
Initialized to zero. 

The memory space complexity for both the costs and 
edge input lists are O(T*N), with T the number of agents 
participating in the game and N the number of roadmap 
graph nodes. The pair of outputs produced by the kernel 
follows: 

 A list of accumulated costs for the kernel resolved 
optimal path, one scalar cost value for each agent. 

 A list of subtrees, each a collection of three 
dimensional node positions, that formulate the 
resolved plotted waypoints of an agent.  

Kernel resources associated with both the inputs and 
outputs are being allocated in linear global memory 
regions. The involved data structures are memory aligned 
with the size of any of 4, 8 or a maximum of 16 bytes to 
limit multiple load and store instructions per memory 
transfer. Arranging global memory addresses, 
simultaneously issued by each thread of a warp, into a 
single contiguous, memory aligned transaction is highly 
desirable for yielding optimal memory bandwidth.  
Coalesced 4 byte accesses deliver the highest bandwidth, 
with 8 byte and 16 byte accesses contributing a little 
lower to a noticeably lower bandwidth, respectively. 
Fulfilling coalescing requirements in a highly divergent 
A* kernel, remains a programming challenge.  

A strided and interleaved, per thread, working set 
access versions of kernels have been implemented with 
the goal of identifying the benefit of coalesced global 
memory access patterns. The strided version working set 
index for an element in any of the input lists is graph 
nodes (N) entries apart for each thread in a warp. This 
type of access is implicitly non-coalesced and for 4 byte 
reads and writes could experience an order of magnitude 
slower bandwidth compared to a coalesced access. On the 
other hand, the interleaved kernel has its element index 
only data structure size (4, 8 or 16 bytes) apart between 
consecutive threads in a wrap.  Aside from the kernel 
being highly divergent, the interleaved version has the 

node 
id position.x position.y position.z 

edge 
from to cost reserved 

adjacency 
offset offset+count 

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

69



likelihood to benefit from coalescing global memory 
transactions. Performance data related to the behavior of 
strided vs. interleaved access are provided in section 5. 

  
3.2.3 Priority Queue 

The priority queue in the search algorithm maintains a set 
of element pairs composed of a float type cost and an 
integer node id. Elements with the smallest cost are 
placed on top of the queue, regardless of the insertion 
order. The queue is realized as an array of structure 
pointers in CUDA. Insertion of an element and extracting 
(and deleting) the element with a minimal cost are the 
queue operations of concern. The priority queue is the 
most accessed inside the search inner loop and its 
operation efficiency is critical to overall performance. 
The priority queue operates in a fixed size array, set to 
the number of graph nodes N, and avoids dynamic 
allocation. Both a naïve and a heap based operations were 
realized in CUDA giving a performance edge to the heap 
approach. Figure 6 lists the device heap based insert and 
extract methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: CUDA device implementation of heap based 
priority queue insertion (top) and extraction (bottom); 
both are of complexity O(logC) time (C is the number of 
elements enqueued); heapify runs one round of a 
heapsort  loop after removing the top of the heap and 
swapping the last element into its place. 

In examining the A* kernel workload it was evident 
priority queue insertions dominate extractions for the 
early exit cases, once the search reaches the goal position. 
Nonetheless, a naïve, linear time cost extraction appeared 
to have hurt performance. In our implementation the 
extraction (and deletion) operation received equal 

efficiency attention and performs a heap sort in CUDA 
resulting in a logarithmic running cost. Finally, both 
insertion and extraction operations are in-place and avoid 
any recursion.  

 
3.2.4 Execution 

This section addresses parallel execution considerations 
of global pathfinding running on the GPU. An agent 
defines a start and goal end points and constitutes a 
disjoint thread entity for performing an optimal search, 
operating over the shared roadmap graph. The total 
number of participating agents in a game defines the 
CUDA launch scope.  

The navigation software lays out threads in a one 
dimensional grid of one dimensional thread blocks. The 
software initially consults the device properties provided 
by CUDA and sets not to exceed caps for the dimensions 
of each the grid and the block. The A* kernel has no 
explicit allocation of device shared memory and any 
shared memory usage is an implicit assignment by the 
CUDA compiler. The number of threads allocated per 
block is therefore largely dependent on the register usage 
by the kernel. The CUDA occupancy metrics for thread 
efficiency scales well for regular algorithms with high 
arithmetic intensity. A memory bound, irregular and 
divergent A* kernel with little to no arithmetic presence 
appears to be peaking at a 0.5 occupancy rate, yielding 
the parameters listed in Figure 7 (with 20 registers and 40 
bytes of shared memory used per thread):  

  1:  __device__ void 
  2:  insert(CUPriorityQ* pq, CUCost c) 
  3: { 
  4:     int i = ++(pq→size); 
  5:     CUCost* costs = pq→costs; 
  6:     while(i > 1 && costs[i>>1].cost >  c.cost) { 
  7:        costs[i] = costs[i>>1]; 
  8:           i >>= 1; 
  9:      } 
10:      pq→costs[i] = c; 
11: } 

 
Threads per Block 128 
Registers per Block 2560 
Warps per Block 4 
Threads per Multiprocessor 384 
Thread Blocks per Multiprocessor 3 
Thread Blocks per GPU 48 

  1:  __device__ CUCost 
  2:  extract(CUPriorityQ* pq) 
  3: { 
  4:     CUCost cost; 
  5:     if(pq→size >= 1) { 
  6:         cost = pq→costs[1]; 
  7:       pq→costs[1] = pq→costs[pq→size--]; 
  8:         heapify(pq); 
  9:    } 
10:    return cost; 
11: } 

 

Figure 7: NVIDIA’s CUDA Occupancy Calculator tool 
generated output for the default pathfinding block of 128 
threads, running on current generation GPU. 

 

The total roadmap graph texture and the working set 
memory space allocated for the entire game agents are 
liable to exceed the global memory available on a given 
GPU. The available global memory is an attribute of the 
device properties provided by CUDA. The pathfinding 
software validates the total memory required for the grid 
of threads and automatically splits the computation into 
multi launch tasks. Each launch in the sequence is 
synchronized and partial search results are copied from 
the device to the host in a predefined offset into the 
output lists. Per launch allocation is always guaranteed to 
be in bounds providing a graceful path for running 
parallel pathfinding on lower end GPU platforms.  

Finally, the last thread block in a grid is likely to be 
only partially occupied with active threads. The A* 
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kernel compares the current thread id against the total 
number of threads (agents), provided to the kernel as an 
input argument,  and bails out before committing to any 
search computation. This is not much of a performance 
gain and is more to account towards not overflowing the 
total working set space allocated for active threads. 

 
4. Performance 

We instrumented the performance of parallel global 
pathfinding on the GPU by benchmarking half a dozen 
test roadmaps with varying number of agents from 
several tens to many thousands. The test graphs were 
generated using the Raven game graph editor [Buc04] 
and they largely represent small to moderate topology 
complexity for the roadmaps.  We ran both Dijkstra and 
A* search kernels using the more efficient interleaved 
version for working set access. At the time our software 
was compatible with CUDA 1.1 compute type devices. 
The following sections discuss benchmark parameters 
and experiment methodology, and demonstrate memory 
footprint distribution, speedup and running time results.  

 
4.1 Benchmarks 

Figure 8 illustrates the topological characteristics of each 
of the test roadmaps used in our benchmark. The 
roadmap graphs are undirected and the number of agents 
used for each benchmark is the graph nodes squared (N2), 
each exercising any possible pair of start and goal 
endpoint positions. The table also highlights the number 
of thread blocks deployed for each of the benchmarks. 

 
Graph Nodes Edges Agents Blocks 

G0 8 24 64 1 
G1 32 178 1024 8 
G2 64 302 4096 32 
G3 129 672 16641 131 
G4 245 1362 60025 469 
G5 340 2150 115600 904 

 

Figure 8: List of parallel pathfinding benchmarks; 
depicting for each test graph number of nodes and edges, 
number of agents (threads), and the number of thread 
blocks (128 threads per block). 
 

In our benchmarks the CPU was a dual core 2.11 GHz 
AMD Athlon™ 64 X2 4000+ in a system of 2 GBytes of 
memory. The GPU was an NVIDIA 8800 GT running at 
shader clock of 1.5 GHz and has attached 512 MBytes of 
global memory. The 8800 GT we used had 112 shader 
processors that amount to 14 multiprocessors (a more 
latent version of the chip sports 16 multiprocessors). The 
GPU performance was compared to running on the CPU 
single threaded both an optimized scalar C++ code and 
an embedded hand-compiler, tuned SIMD intrinsics 
(SSE) program with potential vector arithmetic 
acceleration. In addition, we have validated the CPU 

performance scale running two threads, one on each core 
of a 2.0 GHz Intel Core Duo T7300 processor in a system 
of 2 GBytes of memory and a 4 MBytes of L2 cache; the 
front-side-bus (FSB) speed was 1.12 GHz. The 
pathfinding software ran in a Windows XP environment 
and speedup figures shown reflect wall-to-wall running 
time measured using Windows high performance 
counters for both processor types. 

 
4.2 Results 

In this section we present our experimental results for 
running the benchmarks listed above. Figure 9 shows 
consumed GPU global memory footprint figures for each 
of the benchmarks, broken into roadmap textures 
(KBytes), working set (MBytes) and the total global 
memory (MBytes). Expectedly, the working set memory 
space allocated by far exceeds the roadmap set share. G4 
and G5 global memory capacity surpasses the available 
GPU memory (512MBytes) and are thereby broken into 
multiple pathfinding compute launches, each responsible 
for a subset of the total agents. 

Graph Roadmap Working Set Total Launches 
G0 0.576 0.021 0.021 1 
G1 3.616 1.319 1.322 1 
G2 6.368 10.518 10.519 1 
G3 13.848 86.001 86.001 1 
G4 27.672 588.726 588.726 2 
G5 42.560 1573.086 1573.086 3 

 

Figure 9: Benchmark’s GPU global memory footprint for 
each the roadmap (KBytes), working set (MBytes) and 
total (MBytes). Multiple launches are the result of 
exceeding available GPU global memory.  
 

The chart of Figure 10 compares GPU’s performance 
vs. scalar C++ (compiled with O2 level optimization on 
Microsoft’s Visual C++ 2005 compiler) for the 
benchmarks running the Dijkstra search:  

 

 

Figure 10: Comparative performance of GPU running 
CUDA Dijkstra search algorithm vs. CPU scalar C++ 
compiled with optimization. 
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Figures 11 and 12 provide performance statistics for 
running the A* search algorithm using a Euclidian 
heuristic. Figure 11 demonstrates CPU performance scale 
for a cost comparable, dual core CPU in running two 
threads, one on each core executing code with SIMD 
intrinsic (SSE) calls. Figure 12 shows GPU CUDA 
performance compared to both plain, optimized C++ 
code and hand-compiler tuned SIMD intrinsics (SSE) 
program.  

 

 
 
Figure 11: Performance of two-threaded A* search 
algorithm using Euclidian heuristic, one thread per CPU 
core with hand-compiler tuned SIMD intrinsics (SSE), 
compared against a single threaded run. 
 

 

Figure 12: Performance of GPU running CUDA A* 
search algorithm using Euclidian heuristic, compared to 
CPU plain optimized C++ code and to hand-compiler 
tuned SIMD intrinsics (SSE) implementation. 

The absolute running time for the benchmarks 
executing on the GPU ranged from 30 milliseconds for 
G0 up to 2.5 seconds for G5 performing for the latter an 
average search time of 21 microseconds and 12.6576 
average points per resolved agent path. The start and goal 
positions across agents of a thread block were 
intentionally spatially non coherent in the roadmap and 
hence expose high degree of execution divergence within 
a multiprocessor. The running time logarithmic scale as a 
function of the benchmark’s topology complexity, 
normalized to G0 benchmark, is shown in Figure 13: 

 
Figure 13: Current GPU running time logarithmic scale, 
normalized to G0, demonstrates a (close to) linear 
ascend with growing roadmap complexity 
 
5. Analysis 

The pathfinding software ran the six benchmarks 
introduced above. G0 and G1 workloads are of relatively 
low agent count and GPU performance scale is either 
none or insignificant. Speedup is substantially more 
noticeable for tens to hundreds of thousands of agents, as 
evidenced in G3 to G5 scenarios, with active number of 
thread blocks exceeding one hundred and thereby 
sustaining a higher rate of GPU thread efficiency. 
Overall, the A* search kernel exhibits a larger GPU 
performance scale compared to Dijkstra, mostly 
attributed to the elevated arithmetic intensity rate of the 
former. A* math is embedded in the Euclidian heuristic 
function and is invoked in the inner loop of the search at 
a frequency that balances out part of global memory 
access cost. The math is composed of a vector subtract 
and a dot product followed by a scalar square root. The 
A* CPU implementation incorporates SIMD intrinsic 
(SSE) calls in the heuristic methods and as a result 
contributed to an average of 2.3X speedup  across all 
benchmarks, compared to the scalar C++ code. In 
addition to vector math acceleration the implementation 
leverages an efficient SSE square root instruction in 
contrast to a slow C runtime function. GPU performance 
speedup for Dijkstra (against scalar C++) and A* 
(compared to the SSE implementation) searches reached 
up to 27X and 24X, respectively. 

In the course of running the benchmarks we have 
collected performance statistics emitted by the CUDA 
Profiler tool that helped understand our current 
limitations of both the navigation software 
implementation and the hardware. The tool assisted us in 
identifying performance bottlenecks and quantifying the 
benefit of kernel optimizations. The profiler queries 
device performance counters state inline with the 
execution of the code in a non intrusive manner. The 
performance counter values do not correspond to an 
individual thread and rather represent events within a 
thread warp. The profiler only targets a single 
multiprocessor on the GPU and we found it highly useful 
to analyze relative performance of the strided vs. the 
interleaved kernel versions. The following list accounts 
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for some of the more important profiler data to affect 
overall efficiency:  

 Total memory copies from device-to-host and host-
to-device incurred an overhead comparable to kernel 
running time for some of the workloads. Roadmap 
copy to device and device-to-host copy appears a 
small percentage of overall copy cost (less than 1%). 

 Non-coalesced global memory loads and stores by 
far exceed coalesced accesses. Nonetheless, many of 
the non-coherent accesses are of 8 or 16 bytes and 
suffer lesser bandwidth fallout. 

 The interleaved kernel exhibited a 1.15X 
performance edge over the strided accessed working 
set. The interleaved thread indexing  improved 
coalesced loads and stores substantially, but 
remained a small share of overall global memory 
transactions after all, and hence the mild speedup. 

The GPU absolute running time for the benchmarks 
appears to be consistent with the increased topological 
complexity of the roadmap graph. Running time is 
somewhat sub linear with the number of thread blocks 
being less than one hundred and (close to) linear for a 
higher block count when sustaining an increased overall 
GPU thread utilization. We were encouraged to find 
CUDA launch and synchronization toll in the multi-
launch benchmarks to be non critical to overall 
performance. 

The pathfinding software supports multi core 
parallelism with a core semantic orthogonal to any of the 
CPU and GPU processor types. In a multi core run 
computation load is partitioned by assigning evenly a 
subset of the agents to each core. Multi core GPU system 
assumes the roadmap texture set replicated across 
devices. In our experiments we have observed an average 
speedup of 1.3X across benchmarks in comparing two 
CPU threads, one per core, to a single thread each 
running the A* search with SSE vector optimization 
(illustrated in Figure 11).  Relative to the two threaded, 
dual core CPU running A* the GPU performance scale is 
up to 18X. 

 
6. Conclusion and Future Work 

This paper demonstrated an efficient implementation of 
global pathfinding on the GPU, challenging the 
irregularity and a highly divergent core algorithm. The 
work presented exploits nested data parallelism on the 
GPU and proved its performance scale to be over an 
order of magnitude compared to a single and two 
threaded, optimized plain C++ and SSE accelerated CPU 
implementations for the classic Dijkstra and A* search 
algorithms, respectively. The method presented adapts 
seamlessly to a multi GPU core system, anticipating close 
to a linear performance scale. CUDA programming 
environment has played an important role in achieving 
this speedup level by providing direct access to 
conventionally invisible GPU hardware resources. Many 
thousands of agents participating in a game is a near term 
reality and this work reaffirms the GPU as the preferred 

platform for off loading game computational intelligence 
workloads. The scaling of navigation planning in 
crowded scenes holds the prospect of elevating 
interactive game play credibility. 

We look forward to GPU devices that support efficient 
double precision math computation and result in a 
consistent behavior for floating point accumulation of 
search cost values. The sequential fetch of an adjacency 
list proved the binding of the roadmap graph to texture 
memory favorable, resulting in cache locality when 
mattered most, and is likely to scale well for larger 
roadmaps. We feel our working set allocation is 
somewhat greedy and could potentially be relaxed with 
dynamic allocation support in CUDA. Caching global 
memory reads, especially for priority queue insertion and 
extraction, is expected to enhance our efficiency further. 
We also anticipate the improved auto coalescing of 
global memory accesses by the device to yield a higher 
effective memory bandwidth for four bytes scatter. Using 
host type CUDA allocation and leveraging the GPU 
faster DMA transfers is likely to reduce the overall copy 
overhead incurred in the current implementation. The 
option of spawning threads within a kernel with a 
relatively low fork and join expense will allow the A* 
inner loop to be completely unrolled and parallelized 
[CN90], potentially reducing iteration cost. 

Finally, we would like to evolve our software into local 
navigation planning and account for inter-agent 
constraints and dynamic obstacles [VPS*08]. We think 
we might improve our overall performance and benefit 
from searching abstraction hierarchy as demonstrated in 
[HPZM96, Stu07]. We also want to understand the 
performance tradeoff for a much larger roadmap graph 
(N > 10000), and the influence of agents with coherent 
start and goal endpoint positions, coalesced as much as 
possible into distinct thread blocks, to possibly lessen 
thread divergence.  
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