

 GPU Accelerated Pathfinding

 Avi Bleiweiss

 NVIDIA Corporation

Abstract
In the past few years the graphics programmable processor (GPU) has evolved into an increasingly convincing
computational resource for non graphics applications. The GPU is especially well suited to address problem sets expressed
as data parallel computation with the same program executed on many data elements concurrently. In pursuing a scalable
navigation planning approach for many thousands of agents in crowded game scenes, developers became more attracted to
decomposable movement algorithms that lend to explicit parallelism. Pathfinding is one key computational intelligence
action in games that is typified by intense search over sparse graph data structures. This paper describes an efficient GPU
implementation of parallel global pathfinding using the CUDA programming environment, and demonstrates GPU
performance scale advantage in executing an inherently irregular and divergent algorithm.

Categories and Subject Descriptors (according to ACM CCS): [Artificial Intelligence] I.2.8 Problem Solving, Control
Methods, and Search – Graph and Tree Search Strategies I.3.1

1. Introduction

One of the more challenging problems in real time games
is autonomous navigation and planning of many
thousands of agents in a scene with both static and
dynamic moving obstacles. Agents must find their route
to a particular goal position avoiding collisions with
obstacles or other agents in the environment. The
computational complexity of simulating multiple agents
in crowded setup becomes intractable and arises from the
fact that each moving agent is a dynamic obstacle to
other agents [Lav06]. Ideally, we would want each agent
to navigate independently without implying any global
coordination or synchronization of all or a subset of the
agents involved. This is analogous to the way individual
humans navigate in a shared environment, where each of
them makes its own observations and decisions, without
explicit communication with others.

Navigation planning techniques for multi agents have
been traditionally studied in the domain of robotics and in
recent years have been increasingly applied to games.
Centralized techniques [Lat91, Lav06] consider the sum
of all agents to be a single agent and a solution is
searched in a composite space. However, as the number
of agents increases problem complexity becomes
prohibitively high. Decoupled planners, on the contrary,
are more distributed, but do require coordination space
that may not always guarantee completeness. Their
adaptation to dynamic environments [LH00] had either
altered the pre-computed global static roadmap or
modified the derived path itself.

A real-time motion planning technique using per-
particle energy minimization and adopting a continuum
perspective of the environment is discussed in Treuille et

al. [TCP06] work. The formulation presented yields a set
of dynamic potential and velocity fields over the domain
that guide all individual motion simultaneously. This
approach unifies global path planning and local collision
avoidance into a single optimization framework. The
authors found that the global planning assumption
produces significantly smoother and more realistic crowd
motion. Nonetheless, in avoiding agent based dynamics
altogether the ability to succinctly express the
computation in parallel becomes fairly constraint.

Several models devise a planning algorithm that is
completely decoupled and localized [LG07, VPS*08]
The method is a two-level planning technique; the first
deals with the global path planning towards the goal, and
the second addresses local collision avoidance and
navigation. The global path is computed using the
roadmap graph that represents static objects in the scene
without the presence of agents. A classic search
algorithm is then used to compute distances from a goal
position to any graph node. Local planning infers velocity
obstacles [FS98] from a set of neighboring agents and
obstacles. Agents are modeled geometrically as a disc
with a position and a radius. This simplified model
avoids any orientation considerations in evaluating a
collision free route for an agent. The integration of global
and local planning is accomplished by computing a
preferred velocity vector for each agent that is in the
direction of the next node along the agent’s global path.
The technique described is simple, robust, and easily
parallelizable for implementation on multi- and many-
core CPU architectures. It runs at interactive rates for
environments consisting of several thousands to ten-
thousands of agents and its performance scales well with
the number of agents.

Graphics Hardware (2008)
David Luebke and John D. Owens (Editors)

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

The feasibility of a parallel hardware based motion
planning processor (MPP), running probabilistic roadmap
method [KSLO96] for static environments, is studied by
Atay and Bayazit [AB06]. The method first constructs the
roadmap by determining connectivity along collision free
paths. Then, the delimiting endpoints of an agent are
being tied to roadmap locations and queried for the most
desirable joining path. The MPP was realized as a Field
Programmable Gate Array (FPGA) that utilizes
configurable parallelism for both construction and query
processing. It demonstrated roadmap generation and
query speedup of over an order of magnitude compared
to a high end CPU.

This explicit parallelism of navigation planning for
many thousands of agents in a game lends itself well to
data parallel compute paradigm. Essentially, a single
program consults global connectivity data and resolves
concurrently an agent’s optimal path, bound by a start
and goal positions. The program produces a pair of
outputs: a scalar value for path total cost and a list of
positions that constitutes a preferred track of plotted
waypoints. Our work exploits a more generic form of
nested data parallelism to global pathfinding, and its main
contribution is an efficient GPU implementation of a
highly irregular and divergent algorithm. Our empirical
results demonstrate performance scale advantage of the
GPU for medium and large number of agents compared
to both an optimized scalar C++ and Single-Instruction
Multiple-Data (SIMD) CPU implementations.

The remainder of the paper is structured as follows.
Section 2 formulates global pathfinding and briefly
discusses graph data structure and search algorithms.
Section 3 sets the work objective, highlights the CUDA
programming environment and presents the GPU
implementation approach. Performance results are
demonstrated and analyzed in section 4 and 5,
respectively. In conclusion, possible forward looking
game impact of GPU accelerated pathfinding is further
addressed in section 6.

2. Pathfinding
Pathfinding is one of the more pivotal, low level core
intelligence actions in a game [Buc04, Pat07]. Its main
objective is to optimally navigate each of the game agents
to its goal position avoiding collisions with other agents
and obstacles in a constantly changing environment. The
task involves a cost based search over a transitional
roadmap graph data structure. Nodes in the roadmap
represent the position of a key area or an object in the
scene and edges attribute cost to connected locations. An
agent movement is not restricted to roadmap edges and
the navigation graph is consulted to negotiate the
environment for forward planning. The next two sections
provide mathematical characterization of graphs and
search algorithms.

2.1 Graph
A graph (G) is formally defined as a pair of a set of nodes
or vertices (N) binary linked with a set of edges (E): G =

{N, E}. The ratio of edges to nodes expresses a graph as
being dense (|E| is close to |V|2) or sparse (|E| much less
than |V|2). Graphs are either directed or undirected. In a
directed graph nodes define an edge are an ordered pair
specifying edge direction. Edges in an undirected graph
consist of unordered pair of nodes. Undirected graphs are
often represented as directed acyclic graphs (DAG) by
connecting each linked node pair with two bidirectional
edges. Adjacency matrix and a collection of adjacency
lists are the two main data structures for representing a
graph [CLRS01], depicted in Figure 1:

Figure 1: Graph data structure representations:
adjacency matrix (left) requires an O(N2) footprint,
independent of the number of edges in the graph; and
adjacency lists (right) consumes O(N+E) memory space
for both directed and undirected graphs.

Adjacency matrix representation is a two dimensional
array of Booleans that stores graph topology for a non
weighted graph. It is simple, intuitive and more useful for
dense graphs. The matrix has the added property of
quickly identifying the presence of an edge in the graph.
However, for large sparse graphs the adjacency matrix
tends to be wasteful. Adjacency lists are commonly
preferred providing a compact storage for the more wide
spread sparse graphs at the expense of a lesser traversal
efficiency. Each node stores a list of immediately
connected edges. Adjacency lists data structure is more
economically extensible and adapted to represent
weighted graphs for traversing an edge that is associated
with a cost property for moving from one node to
another.

2.2 Search

Numerous algorithms have been devised to search and
explore the topology of a graph [Nil86, BCF90, Sha92].
It is possible to visit every node of the graph, find any
path between two nodes or find the best path between
two nodes. Game navigation planning is ultimately
concerned with the arriving at an optimal path that may
be any of the shortest path between two nodes, the path
that takes an agent between two points in the fastest time,
or the path to avoid enemy line of sight. Searches are
generally classified as being either uninformed or
informed. Informed searches reduce overall amount of
computations by making intelligent choices in selecting
the graph region of interest. The problem set of
pathfinding attends to informed searches that consider a
cost weighted edge for traversing a graph. The cost alone
is sufficient to determine the action sequence that leads to
any visited node. Virtually any search algorithm is
considered systematic, provided that it marks visited
nodes to avoid revisiting the same nodes indefinitely.

 0 1 2 3

0 0 1 1 0
1 0 0 0 1
2 0 0 0 0
3 0 0 0 0

0 1 2
1 3

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

66

Figure 2 depicts a general template of forward search
algorithms expressed by using a state space [Lav06]
representation. A planning state represents any of
position, velocity or orientation of an agent. The
definition of a state is an important component in
formulating a planning problem and the design of an
algorithm to solve it. A planning problem usually
involves starting in some initial state and trying to arrive
at a specified goal state. Feasibility and optimality are the
major concerns of a plan that applies a search action. At
any point during the search there is one of three possible
node states: unvisited, dead or alive. Visited nodes with
all possible next nodes already visited are considered
dead. Alive are visited nodes with possible non visited
adjacent nodes.

Figure 2: A general template for forward search: alive
nodes are stored in a priority queue Q; nS and nG are the
start and goal positions, respectively; u is an action in a
list of actions U for the current node n; and n’ is a next
adjacent node derived from the state transition function
f(n, u). Node that is reached multiple times in a cost
based search requires the resolution step in line 12.

Classical graph search algorithms include Best First
(BFS), Dijkstra and A* (pronounced A Star) [CLRS01,
Lav06, RN95]. Each algorithm is a special case of the
general template above, obtained by defining a different
sorting function to the priority queue Q. Given a path
defined by its endpoint positions a cost during a search is
evaluated from the current node to either the starting
point, to the goal or to both. Incorporating a heuristic
estimate [HNR68, Val84, DP85] of the cost to get to the
goal from a given node reduces the overall graph space
explored. The table in Figure 3 summarizes the properties
of the search algorithms of concern:

° assumes admissible heuristic
Figure 3: Search algorithm comparative properties
table: A* search appears more efficient in balancing both
the cost from start and to the goal in determining the best
path; A* without heuristic degenerates to Dijkstra’s
algorithm.

A* is both admissible and considers fewer nodes than
any other admissible search algorithm with the same
heuristic function. Admissible means optimistic in the
sense that the true cost will be at least as great as the
estimate. The use of heuristics trades off optimality vs.
execution speed and often scales better to solve larger
problems. The more notable heuristic methods used in a
grid based graph search involve any of Manhattan,
diagonal and Euclidian distance calculations. Various tie-
breaking techniques are used for search optimization, but
they are beyond the scope of this paper. Figure 4
illustrates the pseudo code of the A* algorithm.

Figure 4: A* algorithm pseudo code: g(n) is the cost
from start to node n, h(n) is the heuristic cost from node
n to goal; f is the entity to sort in the priority queue, its
cost member is the sum of g(n) and h(n).

A* is fairly irregular and highly nested. For most part it
is memory bound with very little math, largely embedded
in the heuristic method. The outer loop of the algorithm
commences as long as the priority queue contains live
nodes. Queue elements are node index based and are
sorted by their cost values in an ascending order.
Element’s cost value is the sum of current-to-start and
current-to-goal costs. The top element of the queue is
extracted, moved to the resolved shortest node (or edge)
set and if the current node position matches the goal the
search terminates successfully. Else, adjacent nodes (or
edges) are further evaluated to their cost; unvisited nodes
or live nodes with lesser cost to start are pushed onto both
a pending list of live nodes (or edges) and onto the
priority queue. A successful search returns to the user
both a total cost value of the resolved path, and a list of
ordered nodes that provides plotted waypoints.

Optimal, non-weighted A* and Dijkstra search
algorithms, running over undirected, sparse graphs that
are stored in an adjacency lists format, are the concern of
the GPU implementation described in the next section.

Search Start Goal Heuristic Optimal Speed

BFS no yes yes no fair

Dijkstra yes no no yes slow

A* yes yes yes yes° fast

 1: f = priority queue element {node index, cost}
 2: F = priority queue containing initial f (0,0)
 2: G = g cost set initialized to zero
 3: P, S = pending and shortest nullified edge sets
 4: n = closest node index
 5: E = node adjacency list
 6: while F not empty do
 7: n ← F.Extract()
 8: S[n] ← P[n]
 9: if n is goal then return SUCCESS
10: foreach edge e in E[n] do
11: h ← heuristic(e.to, goal)
12: g ← G[n] + e.cost
13: f ← {e.to, g + h}
14: if not in P or g < G[e.to] and not in S then
15: F.Insert(f)
16: G[e.to] ← g
17: P[e.to] ← e
18: return FAILURE

 1: Q.Insert(nS) and mark nS as visited
 2: while Q not empty do
 3: n ← Q.Extract()
 4: if(n == nG) return SUCCESS
 5: for all u є U(n) do
 6: n’ ←f(n, u)
 7: if n’ not visited then
 8: Mark n’ visited
 9: Q.Insert(n’)
10: else
11: Resolve duplicate n’
12: return FAILURE

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

67

3. Implementation

The main objective of the work presented in this paper is
to exploit general data parallelism in performing global
navigation planning for many thousands of game agents.
The irregular and deeply nested A* search algorithm
imposes acceleration challenges on a device with a
relatively large SIMD thread group. Ultimately, the goal
is to demonstrate materialized GPU speedup compared to
an equivalent single and multi threaded, both scalar and
hand coded vector implementations running on the CPU.

NVIDIA’s CUDA [NVI07] programming environment
was the platform of choice, exposing hardware features
that are essential to impact final performance of data
parallel computations. The next section provides a brief,
high level overview of CUDA’s programming model
followed by a detailed discussion of parallel global
pathfinding realization on the GPU.

3.1 CUDA

CUDA stands for Compute Unified Device Architecture
and is a relatively new hardware and software
architecture for managing the GPU as a data parallel
computing device. The CUDA programming
environment inherits from the Brook [BH03, BFH*04]
framework developed at Stanford. When programmed
through CUDA, the GPU is viewed as a device capable
of executing a very high number of threads in parallel. A
single program, called a kernel, written in a C extended
programming language is compiled to the device
instruction set and operates on many data elements
concurrently. To this extent the GPU is regarded as a
coprocessor to the main CPU and data parallel, compute
intensive portions of applications running on the host are
offloaded onto the device. The CUDA software stack is
largely partitioned into a low level hardware driver and a
light weight runtime layer; the work presented here
predominately communicates with the runtime
application programming interface (API).

CUDA provides general DRAM memory addressing
and supports both scatter and gather memory operations.
From a programming perspective, this translates into the
ability to read and write data at any location in DRAM,
much like on a CPU. Both the host and the device
maintain their own DRAM, referred to as host memory
and device memory, respectively. One can copy data
from one DRAM to the other through optimized API
calls that utilize the device’s high performance Direct
Memory Access (DMA) engines.

The batch of threads that executes a kernel is organized
as a grid of thread blocks. A thread block is a collection
of threads that can cooperate together by efficiently
sharing data through fast shared memory. In a block each
thread is identified by its thread ID. A block can be
specified as any of one, two or three dimensional
arbitrary sized array, simplifying software thread
indexing. Number of threads per block is finite and hence
the provision for a grid extent of thread blocks, all
performing the same kernel. The grid further insures

efficient distribution of threads on the GPU yet trading
off thread cooperation – threads of different blocks have
no communication paths. A thread block in a grid has a
unique ID and a grid of blocks can again be defined as
one, two or three dimensional array.

The device is implemented as a set of multiprocessors,
each of a SIMD architecture e.g. at any given clock cycle,
a processor of the multiprocessor executes the same
instruction, but operates on different data. The CUDA
memory model defines a hierarchy ranking from per
thread read-write registers and local memory, to per
block read-write shared memory, and per grid read-write
global memory, and read only constant and texture
memory. On chip registers, shared memory, and constant
and texture cache access is very fast; off chip local and
global memory reads and writes are non-cached and
hence much slower. The global, constant, and texture
memory spaces can be read from or written to by the host
and are persistent across kernel launches by the same
application.

The device thread scheduler decomposes a thread block
onto smaller SIMD thread groups called warps.
Occupancy, the ratio of active warps per multiprocessor
to the maximum number of warps allowed, is an
execution efficiency criterion largely determined by the
register and shared memory resources claimed by the
kernel. An execution configuration with integral multiple
of warps assigned to a thread block is a first line of order
to insure adequate SIMD efficiency. CUDA’s Occupancy
Calculator tool further assists the programmer in finely
matching threads per block to kernel usage of shared
resources. The compute capability of the device exploited
in the parallel pathfinding work presented in this paper
complies with CUDA version 1.1. Asynchronous kernel
launches, the use of the newly event API for timing
measurements and a somewhat reduced register pressure
per thread appeared to have benefited the implementation
described next.

3.2 Software

We have implemented a navigation planning software
library that has both a CPU and GPU invocation paths.
The implementation of the A* search algorithm was
made consistent on both processor types in order to
deliver as credible as possible comparative performance
data. The following sections discuss primarily the CUDA
realization of global pathfinding alluding to design
tradeoffs pertaining to roadmap textures allocation
preferences, working set coalesced access constraints,
optimal priority queue insert and extract operations and
finally, parallel execution of a highly irregular and
divergent kernel with extremely low arithmetic intensity .

3.2.1 Roadmap Textures

The sparse roadmap graph is encapsulated in an
adjacency lists data structure. Being read-only the graph
is stored as a set of linear device memory regions bound
to texture references. Device memory reads through

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

68

texture fetching has the benefit of being cached and
potentially exhibit higher bandwidth for localized access.
The A* inner loop exemplifies coherence in accessing
adjacency list of edges, sequentially. In addition, texture
reference bound to linear device memory has the added
advantage of a much larger address extent when
compared to a CUDA array; it sports a maximum width
of 227 (128M) components, well in line of
accommodating large footprint graphs. Texture access in
the pathfinding kernel uses consistently CUDA’s
preferred and efficient tex1Dfetch() family of functions.

The roadmap graph storage set has been intentionally
refitted to enhance GPU coherent access. The set of
textures includes a node list, a single edge list that
serializes all the adjacency lists into one collection of
edges, and an adjacency directory that provides index and
count for a specific node’s adjacency list. The adjacency
directory entry pair maps directly onto A*’s inner loop
control parameters. As a result, one adjacency texture
access is amortized across several fetches from the edge
list texture. Nodes and edges are stored as four IEEE float
components and the adjacency texture is a two integer
component texture. Texture component layout is depicted
in Figure 5:

Figure 5: Roadmap graph texture set are of either four
or two components to comply with CUDA’s tex1Dfetch()
function. Component layout shown has the node with a
unique identifier and a three component IEEE float
position; an edge has a direction node identifier pair
{from, to}, a float cost, and a reserved field; adjacency is
composed of an offset into the edge list and a count of
edges in the current adjacency list.

The roadmap graph texture set is a single copy memory
resource shared across a grid of threads. The presence of
the adjacency directory texture brings the total graph
memory footprint in the GPU to 16*(N+E)+8*N bytes.
This layout incurs an extra cost of 8*N bytes compared to
an equivalent CPU implementation; in return, it
contributes to a more efficient roadmap traversal.

It is often the case in games for the roadmap to be
constantly modified. An incremental change per time step
carries little overhead in adding and removing nodes and
edges of the currently loaded roadmap in host memory. A
more substantial environment transformation could
potentially require a new roadmap generation that is
subject to a higher cost for loading the graph. Parallel,
efficient roadmap generation techniques [AB06] are
evolving and promising, but are outside the scope of this
paper. The final step for copying the roadmap from host

memory to the device’s texture space is however a small
percentage of the overall search computation workload.

3.2.2 Working Set

The working set for a CUDA launch is commonly
referred to as per thread private local and shared memory
resources. In the parallel pathfinding workload an agent
constitutes a thread on the GPU. The A* kernel has five
inputs and two outputs that collectively form the working
set. The inputs are each in the form of an array and
include:

 A list of paths, each defined by a start and a goal
node id, one path per agent.

 A list of costs from the start position (G), initialized
to zero.

 A list of costs combined from start and to goal (F),
initialized to zero.

 A pair of lists of pointers for each the pending and
the shortest edge collections P and S, respectively.
Initialized to zero.

The memory space complexity for both the costs and
edge input lists are O(T*N), with T the number of agents
participating in the game and N the number of roadmap
graph nodes. The pair of outputs produced by the kernel
follows:

 A list of accumulated costs for the kernel resolved
optimal path, one scalar cost value for each agent.

 A list of subtrees, each a collection of three
dimensional node positions, that formulate the
resolved plotted waypoints of an agent.

Kernel resources associated with both the inputs and
outputs are being allocated in linear global memory
regions. The involved data structures are memory aligned
with the size of any of 4, 8 or a maximum of 16 bytes to
limit multiple load and store instructions per memory
transfer. Arranging global memory addresses,
simultaneously issued by each thread of a warp, into a
single contiguous, memory aligned transaction is highly
desirable for yielding optimal memory bandwidth.
Coalesced 4 byte accesses deliver the highest bandwidth,
with 8 byte and 16 byte accesses contributing a little
lower to a noticeably lower bandwidth, respectively.
Fulfilling coalescing requirements in a highly divergent
A* kernel, remains a programming challenge.

A strided and interleaved, per thread, working set
access versions of kernels have been implemented with
the goal of identifying the benefit of coalesced global
memory access patterns. The strided version working set
index for an element in any of the input lists is graph
nodes (N) entries apart for each thread in a warp. This
type of access is implicitly non-coalesced and for 4 byte
reads and writes could experience an order of magnitude
slower bandwidth compared to a coalesced access. On the
other hand, the interleaved kernel has its element index
only data structure size (4, 8 or 16 bytes) apart between
consecutive threads in a wrap. Aside from the kernel
being highly divergent, the interleaved version has the

node
id position.x position.y position.z

edge
from to cost reserved

adjacency
offset offset+count

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

69

likelihood to benefit from coalescing global memory
transactions. Performance data related to the behavior of
strided vs. interleaved access are provided in section 5.

3.2.3 Priority Queue

The priority queue in the search algorithm maintains a set
of element pairs composed of a float type cost and an
integer node id. Elements with the smallest cost are
placed on top of the queue, regardless of the insertion
order. The queue is realized as an array of structure
pointers in CUDA. Insertion of an element and extracting
(and deleting) the element with a minimal cost are the
queue operations of concern. The priority queue is the
most accessed inside the search inner loop and its
operation efficiency is critical to overall performance.
The priority queue operates in a fixed size array, set to
the number of graph nodes N, and avoids dynamic
allocation. Both a naïve and a heap based operations were
realized in CUDA giving a performance edge to the heap
approach. Figure 6 lists the device heap based insert and
extract methods.

Figure 6: CUDA device implementation of heap based
priority queue insertion (top) and extraction (bottom);
both are of complexity O(logC) time (C is the number of
elements enqueued); heapify runs one round of a
heapsort loop after removing the top of the heap and
swapping the last element into its place.

In examining the A* kernel workload it was evident
priority queue insertions dominate extractions for the
early exit cases, once the search reaches the goal position.
Nonetheless, a naïve, linear time cost extraction appeared
to have hurt performance. In our implementation the
extraction (and deletion) operation received equal

efficiency attention and performs a heap sort in CUDA
resulting in a logarithmic running cost. Finally, both
insertion and extraction operations are in-place and avoid
any recursion.

3.2.4 Execution

This section addresses parallel execution considerations
of global pathfinding running on the GPU. An agent
defines a start and goal end points and constitutes a
disjoint thread entity for performing an optimal search,
operating over the shared roadmap graph. The total
number of participating agents in a game defines the
CUDA launch scope.

The navigation software lays out threads in a one
dimensional grid of one dimensional thread blocks. The
software initially consults the device properties provided
by CUDA and sets not to exceed caps for the dimensions
of each the grid and the block. The A* kernel has no
explicit allocation of device shared memory and any
shared memory usage is an implicit assignment by the
CUDA compiler. The number of threads allocated per
block is therefore largely dependent on the register usage
by the kernel. The CUDA occupancy metrics for thread
efficiency scales well for regular algorithms with high
arithmetic intensity. A memory bound, irregular and
divergent A* kernel with little to no arithmetic presence
appears to be peaking at a 0.5 occupancy rate, yielding
the parameters listed in Figure 7 (with 20 registers and 40
bytes of shared memory used per thread):

 1: __device__ void
 2: insert(CUPriorityQ* pq, CUCost c)
 3: {
 4: int i = ++(pq→size);
 5: CUCost* costs = pq→costs;
 6: while(i > 1 && costs[i>>1].cost > c.cost) {
 7: costs[i] = costs[i>>1];
 8: i >>= 1;
 9: }
10: pq→costs[i] = c;
11: }

Threads per Block 128
Registers per Block 2560
Warps per Block 4
Threads per Multiprocessor 384
Thread Blocks per Multiprocessor 3
Thread Blocks per GPU 48

 1: __device__ CUCost
 2: extract(CUPriorityQ* pq)
 3: {
 4: CUCost cost;
 5: if(pq→size >= 1) {
 6: cost = pq→costs[1];
 7: pq→costs[1] = pq→costs[pq→size--];
 8: heapify(pq);
 9: }
10: return cost;
11: }

Figure 7: NVIDIA’s CUDA Occupancy Calculator tool
generated output for the default pathfinding block of 128
threads, running on current generation GPU.

The total roadmap graph texture and the working set
memory space allocated for the entire game agents are
liable to exceed the global memory available on a given
GPU. The available global memory is an attribute of the
device properties provided by CUDA. The pathfinding
software validates the total memory required for the grid
of threads and automatically splits the computation into
multi launch tasks. Each launch in the sequence is
synchronized and partial search results are copied from
the device to the host in a predefined offset into the
output lists. Per launch allocation is always guaranteed to
be in bounds providing a graceful path for running
parallel pathfinding on lower end GPU platforms.

Finally, the last thread block in a grid is likely to be
only partially occupied with active threads. The A*

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

70

kernel compares the current thread id against the total
number of threads (agents), provided to the kernel as an
input argument, and bails out before committing to any
search computation. This is not much of a performance
gain and is more to account towards not overflowing the
total working set space allocated for active threads.

4. Performance

We instrumented the performance of parallel global
pathfinding on the GPU by benchmarking half a dozen
test roadmaps with varying number of agents from
several tens to many thousands. The test graphs were
generated using the Raven game graph editor [Buc04]
and they largely represent small to moderate topology
complexity for the roadmaps. We ran both Dijkstra and
A* search kernels using the more efficient interleaved
version for working set access. At the time our software
was compatible with CUDA 1.1 compute type devices.
The following sections discuss benchmark parameters
and experiment methodology, and demonstrate memory
footprint distribution, speedup and running time results.

4.1 Benchmarks

Figure 8 illustrates the topological characteristics of each
of the test roadmaps used in our benchmark. The
roadmap graphs are undirected and the number of agents
used for each benchmark is the graph nodes squared (N2),
each exercising any possible pair of start and goal
endpoint positions. The table also highlights the number
of thread blocks deployed for each of the benchmarks.

Graph Nodes Edges Agents Blocks

G0 8 24 64 1
G1 32 178 1024 8
G2 64 302 4096 32
G3 129 672 16641 131
G4 245 1362 60025 469
G5 340 2150 115600 904

Figure 8: List of parallel pathfinding benchmarks;
depicting for each test graph number of nodes and edges,
number of agents (threads), and the number of thread
blocks (128 threads per block).

In our benchmarks the CPU was a dual core 2.11 GHz
AMD Athlon™ 64 X2 4000+ in a system of 2 GBytes of
memory. The GPU was an NVIDIA 8800 GT running at
shader clock of 1.5 GHz and has attached 512 MBytes of
global memory. The 8800 GT we used had 112 shader
processors that amount to 14 multiprocessors (a more
latent version of the chip sports 16 multiprocessors). The
GPU performance was compared to running on the CPU
single threaded both an optimized scalar C++ code and
an embedded hand-compiler, tuned SIMD intrinsics
(SSE) program with potential vector arithmetic
acceleration. In addition, we have validated the CPU

performance scale running two threads, one on each core
of a 2.0 GHz Intel Core Duo T7300 processor in a system
of 2 GBytes of memory and a 4 MBytes of L2 cache; the
front-side-bus (FSB) speed was 1.12 GHz. The
pathfinding software ran in a Windows XP environment
and speedup figures shown reflect wall-to-wall running
time measured using Windows high performance
counters for both processor types.

4.2 Results

In this section we present our experimental results for
running the benchmarks listed above. Figure 9 shows
consumed GPU global memory footprint figures for each
of the benchmarks, broken into roadmap textures
(KBytes), working set (MBytes) and the total global
memory (MBytes). Expectedly, the working set memory
space allocated by far exceeds the roadmap set share. G4
and G5 global memory capacity surpasses the available
GPU memory (512MBytes) and are thereby broken into
multiple pathfinding compute launches, each responsible
for a subset of the total agents.

Graph Roadmap Working Set Total Launches
G0 0.576 0.021 0.021 1
G1 3.616 1.319 1.322 1
G2 6.368 10.518 10.519 1
G3 13.848 86.001 86.001 1
G4 27.672 588.726 588.726 2
G5 42.560 1573.086 1573.086 3

Figure 9: Benchmark’s GPU global memory footprint for
each the roadmap (KBytes), working set (MBytes) and
total (MBytes). Multiple launches are the result of
exceeding available GPU global memory.

The chart of Figure 10 compares GPU’s performance
vs. scalar C++ (compiled with O2 level optimization on
Microsoft’s Visual C++ 2005 compiler) for the
benchmarks running the Dijkstra search:

Figure 10: Comparative performance of GPU running
CUDA Dijkstra search algorithm vs. CPU scalar C++
compiled with optimization.

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

71

Figures 11 and 12 provide performance statistics for
running the A* search algorithm using a Euclidian
heuristic. Figure 11 demonstrates CPU performance scale
for a cost comparable, dual core CPU in running two
threads, one on each core executing code with SIMD
intrinsic (SSE) calls. Figure 12 shows GPU CUDA
performance compared to both plain, optimized C++
code and hand-compiler tuned SIMD intrinsics (SSE)
program.

Figure 11: Performance of two-threaded A* search
algorithm using Euclidian heuristic, one thread per CPU
core with hand-compiler tuned SIMD intrinsics (SSE),
compared against a single threaded run.

Figure 12: Performance of GPU running CUDA A*
search algorithm using Euclidian heuristic, compared to
CPU plain optimized C++ code and to hand-compiler
tuned SIMD intrinsics (SSE) implementation.

The absolute running time for the benchmarks
executing on the GPU ranged from 30 milliseconds for
G0 up to 2.5 seconds for G5 performing for the latter an
average search time of 21 microseconds and 12.6576
average points per resolved agent path. The start and goal
positions across agents of a thread block were
intentionally spatially non coherent in the roadmap and
hence expose high degree of execution divergence within
a multiprocessor. The running time logarithmic scale as a
function of the benchmark’s topology complexity,
normalized to G0 benchmark, is shown in Figure 13:

Figure 13: Current GPU running time logarithmic scale,
normalized to G0, demonstrates a (close to) linear
ascend with growing roadmap complexity

5. Analysis

The pathfinding software ran the six benchmarks
introduced above. G0 and G1 workloads are of relatively
low agent count and GPU performance scale is either
none or insignificant. Speedup is substantially more
noticeable for tens to hundreds of thousands of agents, as
evidenced in G3 to G5 scenarios, with active number of
thread blocks exceeding one hundred and thereby
sustaining a higher rate of GPU thread efficiency.
Overall, the A* search kernel exhibits a larger GPU
performance scale compared to Dijkstra, mostly
attributed to the elevated arithmetic intensity rate of the
former. A* math is embedded in the Euclidian heuristic
function and is invoked in the inner loop of the search at
a frequency that balances out part of global memory
access cost. The math is composed of a vector subtract
and a dot product followed by a scalar square root. The
A* CPU implementation incorporates SIMD intrinsic
(SSE) calls in the heuristic methods and as a result
contributed to an average of 2.3X speedup across all
benchmarks, compared to the scalar C++ code. In
addition to vector math acceleration the implementation
leverages an efficient SSE square root instruction in
contrast to a slow C runtime function. GPU performance
speedup for Dijkstra (against scalar C++) and A*
(compared to the SSE implementation) searches reached
up to 27X and 24X, respectively.

In the course of running the benchmarks we have
collected performance statistics emitted by the CUDA
Profiler tool that helped understand our current
limitations of both the navigation software
implementation and the hardware. The tool assisted us in
identifying performance bottlenecks and quantifying the
benefit of kernel optimizations. The profiler queries
device performance counters state inline with the
execution of the code in a non intrusive manner. The
performance counter values do not correspond to an
individual thread and rather represent events within a
thread warp. The profiler only targets a single
multiprocessor on the GPU and we found it highly useful
to analyze relative performance of the strided vs. the
interleaved kernel versions. The following list accounts

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

72

for some of the more important profiler data to affect
overall efficiency:

 Total memory copies from device-to-host and host-
to-device incurred an overhead comparable to kernel
running time for some of the workloads. Roadmap
copy to device and device-to-host copy appears a
small percentage of overall copy cost (less than 1%).

 Non-coalesced global memory loads and stores by
far exceed coalesced accesses. Nonetheless, many of
the non-coherent accesses are of 8 or 16 bytes and
suffer lesser bandwidth fallout.

 The interleaved kernel exhibited a 1.15X
performance edge over the strided accessed working
set. The interleaved thread indexing improved
coalesced loads and stores substantially, but
remained a small share of overall global memory
transactions after all, and hence the mild speedup.

The GPU absolute running time for the benchmarks
appears to be consistent with the increased topological
complexity of the roadmap graph. Running time is
somewhat sub linear with the number of thread blocks
being less than one hundred and (close to) linear for a
higher block count when sustaining an increased overall
GPU thread utilization. We were encouraged to find
CUDA launch and synchronization toll in the multi-
launch benchmarks to be non critical to overall
performance.

The pathfinding software supports multi core
parallelism with a core semantic orthogonal to any of the
CPU and GPU processor types. In a multi core run
computation load is partitioned by assigning evenly a
subset of the agents to each core. Multi core GPU system
assumes the roadmap texture set replicated across
devices. In our experiments we have observed an average
speedup of 1.3X across benchmarks in comparing two
CPU threads, one per core, to a single thread each
running the A* search with SSE vector optimization
(illustrated in Figure 11). Relative to the two threaded,
dual core CPU running A* the GPU performance scale is
up to 18X.

6. Conclusion and Future Work

This paper demonstrated an efficient implementation of
global pathfinding on the GPU, challenging the
irregularity and a highly divergent core algorithm. The
work presented exploits nested data parallelism on the
GPU and proved its performance scale to be over an
order of magnitude compared to a single and two
threaded, optimized plain C++ and SSE accelerated CPU
implementations for the classic Dijkstra and A* search
algorithms, respectively. The method presented adapts
seamlessly to a multi GPU core system, anticipating close
to a linear performance scale. CUDA programming
environment has played an important role in achieving
this speedup level by providing direct access to
conventionally invisible GPU hardware resources. Many
thousands of agents participating in a game is a near term
reality and this work reaffirms the GPU as the preferred

platform for off loading game computational intelligence
workloads. The scaling of navigation planning in
crowded scenes holds the prospect of elevating
interactive game play credibility.

We look forward to GPU devices that support efficient
double precision math computation and result in a
consistent behavior for floating point accumulation of
search cost values. The sequential fetch of an adjacency
list proved the binding of the roadmap graph to texture
memory favorable, resulting in cache locality when
mattered most, and is likely to scale well for larger
roadmaps. We feel our working set allocation is
somewhat greedy and could potentially be relaxed with
dynamic allocation support in CUDA. Caching global
memory reads, especially for priority queue insertion and
extraction, is expected to enhance our efficiency further.
We also anticipate the improved auto coalescing of
global memory accesses by the device to yield a higher
effective memory bandwidth for four bytes scatter. Using
host type CUDA allocation and leveraging the GPU
faster DMA transfers is likely to reduce the overall copy
overhead incurred in the current implementation. The
option of spawning threads within a kernel with a
relatively low fork and join expense will allow the A*
inner loop to be completely unrolled and parallelized
[CN90], potentially reducing iteration cost.

Finally, we would like to evolve our software into local
navigation planning and account for inter-agent
constraints and dynamic obstacles [VPS*08]. We think
we might improve our overall performance and benefit
from searching abstraction hierarchy as demonstrated in
[HPZM96, Stu07]. We also want to understand the
performance tradeoff for a much larger roadmap graph
(N > 10000), and the influence of agents with coherent
start and goal endpoint positions, coalesced as much as
possible into distinct thread blocks, to possibly lessen
thread divergence.

Acknowledgements

We would like to thank the anonymous reviewers for
their constructive and helpful comments.

References

[AB06] ATAY N., BAYAZIT B.: A Motion Planning
Processor on Reconfigurable Hardware. Proceedings
of the International Conference on Robotics and
Automation, (May 2006), 125–132.

[BCF90] BARR A., COHEN P. R., FEIGENBAUM E.
A.: Search. The Handbook of Artificial Intelligence.
Addison-Wesley, 1990.

[BFH*04] BUCK I., FOLEY T., HORN D.,
SUGERMAN J., FATAHALIAN K., HOUSTON M.,
HANRAHAN P.: Brook for GPUs: Stream Computing
on Graphics Hardware. ACM Transactions of Graphics,
(Aug. 2004), 777–786.

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

73

[BH03] BUCK I., HANRAHAN P.: Data Parallel
Computation on Graphics Hardware. Tech. Report
2003-03, Stanford University Computer Science
Department, (Dec. 2003).

[Buc04] BUCKLAND M.: Programming Game AI by
Example. Wordware Publishing, Inc, 2004.

[CLRS01] CORMEN T. H., LEISERSON C. E., RIVEST
R. L., STEIN C.: Introduction to Algorithms. MIT
Press, Cambridge, MA, 2001.

[CN90] CVETANOVIC Z., NOFSINGER C.: Parallel
AStar Search on Message-Passing Architectures.
System Sciences, Proceedings of the Twenty-Third
Annual Hawaii Conference, 1 (1990), 82–90.

[DP85] DECHTER R., PEARL J.: Generalized Best-First
Search Strategies and the Optimality of A*. Journal of
the ACM, 32 (Jul. 1985), 505–536.

[FS98] FIORINI P., SHILLER Z.: Motion Planning in
Dynamic Environments using Velocity Obstacles.
International Journal of Robotics Research (1998),
760–772.

[HNR68] HART, P. E., NILSSON, N. J., RAPHAEL, B.:
(1968). A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on System
Science and Cybernetics, 4 (Jul. 1968), 100–107.

[HPZM96] HOLTE R. C., PEREZ M. B., ZIMMER R.
M., MACDONALD A. J.: Hierarchical A*: Searching
Abstraction Hierarchies Efficiently. Proceedings of the
Thirteenth National Conference on Artificial
Intelligence, (Aug. 1996), 530–536.

[KSLO96] KAVARAKI L., SVESTKA P., LATOMBE
J. C., OVERMARS M.: Probabilistic Roadmaps for
Path Planning in High-Dimensional Configuration
Spaces,” Proceedings of the International Conference
of. Robotics and Automation, (Aug. 1996), 566–580.

[Lat91] LATOMBE, J.: Robot Motion Planning. Kluwer
Academic Publishers, 1991.

[Lav06] LAVALLE S. M.: Planning Algorithms.
Cambridge University Press.
http://msl.cs.uiuc.edu/planning/,
(2006).

[LG07] LI, Y., GUPTA, K.: Motion Planning of
Multiple Agents in Virtual Environments on Parallel
Architectures. IEEE International Conference on
Robotics and Automation, (Apr. 2007), 1009–1014.

[LH00] LEVEN P., HUTCHINSON S.: Toward Real-
Time Path Planning in Changing Environments.
Proceedings of the Fourth International Workshop on
the Algorithmic Foundations of Robotics, (Mar. 2000),
363–376.

[Nil86] NILLSSON N. J.: Search Strategies for AI
Production Systems. Principles of Artificial
Intelligence. Morgan Kaufmann Publishers, 1986, 53–
96.

[NVI07] NVIDIA CORPORATION: CUDA Compute
Unified Device Architecture Programming Guide.
http://developer.nvidia.com/cuda, (Jan.
2007).

[Pat07] PATEL A.: Amit’s A* Pages.
http://theory.stanford.edu/~amitp/Gam
eProgramming/, 2007.

[RN95] RUSSELL S. J., NORVIG P.: Artificial
Intelligence: A Modern Approach, Prentice Hall, 1995,
97–104.

[Sha92] SHAPIRO S. C.: Artificial Intelligence.
Encyclopedia of Artificial Intelligence. John Wiley &
Sons, 1992, 54–57.

[Stu07] STURTEVANT N. R.: Memory-Efficient
Abstractions for Pathfinding. Proceedings of the 3rd
Artificial Intelligence and Interactive Digital
Entertainment Conference, (Jun. 2007), 31–36.

[TCP06] TREUILLE A., COOPER S., POPOVIC Z.:
Continuum Crowds. In ACM Transactions on
Graphics, (Jul. 2006), 1160–1168

[Val84] VALTORTA M.: A Result on the Computational
Complexity of Heuristic Estimates for the A*
Algorithm. Information Sciences, 34 (Jan. 1983), 48–
59.

[VPS*08] VAN DEN BERG J., PATIL S., SEWALL J.,
MANOCHA D., LIN M.: Interactive Navigation of
Multiple Agents in Crowded Environments. Symposium
on Interactive 3D Graphics and Games, (Feb. 2008),
139–147.

Avi Bleiweiss / GPU Accelerated Pathfinding

c© The Eurographics Association 2008.

74

http://msl.cs.uiuc.edu/planning/
http://developer.nvidia.com/cuda
http://theory.stanford.edu/%7Eamitp/GameProgramming/
http://theory.stanford.edu/%7Eamitp/GameProgramming/

	Word Bookmarks
	AB06
	BCF90
	BFH04
	BH03
	Buc04
	CLRS01
	CN90
	DP85
	FS98
	HNR68
	HPZM96
	KSLO96
	Lat91
	Lav06
	LG07
	LH00
	Nil86
	NVI07
	Pat07
	RN95
	Sha92
	Stu07
	TCP06
	Val84
	VPS08

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Calibri
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1800
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

