
Graphics Hardware (2008)
David Luebke and John D. Owens (Editors)

Total Recall: A Debugging Framework for GPUs

Ahmad Sharif and Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

Abstract
GPUs have transformed from simple fixed-function processors to powerful, programmable stream processors and
are continuing to evolve. Programming these massively parallel GPUs, however, is very different from program-
ming a sequential CPU. Lack of native support for debugging coupled with the parallelism in the GPU makes
program development for the GPU a non-trivial task. As GPU programs grow in complexity because of scaling
in maximum allowed program size and increased demand in terms of realism, debugging GPU code is becoming
a major timesink for content developers. In addition to more complex shaders, applications are using multi-pass
effects in order to create more convincing reality. In this paper, we present a debugging framework that can be
employed to debug complex code running on the GPU in an efficient manner. By observing the API calls of the
application that are made to the 3D runtime, the framework can keep track of the program’s state in memory.
Upon the programmer’s request, it is able to capture and deterministically replay the stream of instructions that
caused the final write to a pixel of interest. This execution stream includes writes to intermediate render targets
and spans across shader boundaries. The stream of instructions can then be replayed on the CPU via emulation
and the programmer can debug the straight-line code with ease. We also present a hardware-friendly scheme that
can be used to accelerate the debugging process for long-chain multi-pass effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: GPUs, Debugging

1. Introduction

In less than two decades, graphics hardware has evolved
from 2D accelerators, fixed-function 3D accelerators, to
today’s massively parallel programmable GPUs. Current
GPUs on the market have nearly billion transistor budgets
and are used for general purpose computation in addition to
rendering 3D graphics. As GPUs are becoming more and
more programmable, their complexity and cost to program
them in terms of time and effort are also increasing. This
heavy cost to program GPUs is one of the biggest man-hour
sink associated with creating shaders as well as porting se-
quential CPU code to the GPUs. The cost of programming
GPUs can be mainly attributed to the lack of native debug-
ging support and the parallel nature of the primitive process-
ing on the GPUs.

To tackle the challenge of debugging code on the GPU,
several techniques have been proposed. These techniques
can be divided into two broad categories: (a) instrumenting
shader code followed by outputting an intermediate value to

the bound render target for the programmer to inspect, or (b)
emulating all primitives sent to the GPU on the CPU. Iter-
ative deepening is an example of the first technique. Only
part of the shader is executed on the GPU and the interme-
diate values are dumped to the render target. These inter-
mediate values are then displayed as colors on the screen,
or read back by the CPU and printed for the programmer
to view. However, current manifestations of GPU debuggers
using iterative deepening cannot debug across render target
switches. The latter mentioned technique, emulation of the
GPU execution on the CPU, does vertex, geometry and pixel
shading of the entire scene on the CPU. By emulating all the
work on the CPU, the programmer can easily put in break-
points and execute the shader step-by-step. However, emu-
lation can be slow, especially when the number of primitives
or the resolution is large, or the shader is complex.

This paper introduces Total Recall, a debugging frame-
work that content-publishers can use to rapidly identify bugs
in the code running on the GPU. Our debugging framework

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org


Ahmad Sharif & Hsien-Hsin S. Lee / Total Recall: A Debugging Framework for GPUs

allows programmers to insert conditional breakpoints inside
shaders to enable error checking during development. When
a breakpoint is hit, a complete execution history of the pixel
that hit the breakpoint can be obtained from the debugger
runtime for emulation on the CPU. The programmer can
then execute the relevant code step-by-step and can observe
all intermediate results. Note that this technique does not
suffer the performance loss of full emulation, as only the
programmer-specified primitives are selected for emulation
on the CPU. By letting the CPU handle the complex task
of step-by-step execution with watches on variables, we can
simplify and speed up the debugging process.

Our main contributions are two-fold:

1. We present a debugging framework that allows the cap-
ture and deterministic replay of the entire execution
stream of a pixel of interest. Note that this stream may
contain writes to dynamic textures that were the sources
of the pixel of interest. This execution stream, once ob-
tained, can be replayed step-by-step on the CPU, as de-
sired by the programmer via emulation.

2. By tracking finer buffer dependencies, as explained in
Section 4, we can accelerate the debugging process for
multi-pass shaders. Hardware modification is required for
this acceleration technique.

The rest of this paper is organized as follows. First, our
motivation for our technique is presented in Section 2. The
next section, Section 3, describes the GPU programming
model and describes the challenges associated with debug-
ging GPU code. Section 4 then explains our proposed tech-
nique and delves into its implementation. Section 5 describes
our experimental framework for implementing our debugger
framework for Direct3D 9. Finally Section 8 concludes.

2. Motivation

Most programmers are used to debugging sequential code
using breakpoints, watchpoints, or printf statements. Break-
points and watchpoints are the primary mechanism em-
ployed by debuggers such as gdb, windbg, etc., to pause or
intercept the program state so the programmer can inspect
variables at certain interesting events. Printf statements, a
less elegant approach, are used to dump out intermediate val-
ues of program variables for the programmer to figure out
how the program computed its final output. Unfortunately,
neither breakpoints nor printf statements are natively avail-
able on GPUs. Emulation on the CPU can offer both of these,
but emulated code runs at a much slower speed than native
execution on the GPU. Another issue with debugging GPU
code is that GPUs are inherently parallel machines and hu-
man programmers are not used to thinking in parallel.

For debugging code that is not executing correctly, pro-
grammers are usually interested in watching or dumping in-
termediate values of a certain computation which they sus-
pect is not working as expected. For graphics applications,

0

2

4

6

8

10

12

14

16

18

3DMark05 -

Return to

Proxycon

3DMark05 -

Firefly Forest

3DMark05 -

Canyon

Flight

3DMark06 -

Return to

Proxycon

3DMark06 -

Firefly Forest

3DMark06 -

Canyon

Flight

3DMark06 -

Deep Freeze

R
en

d
er

 C
h

ai
n

 L
en

g
th

Figure 1: Comparison of different benchmarks’ maximum
render chain length. This corresponds to the maximum num-
ber of dynamic textures data has to pass through before it
shows up as a pixel on the final screen.

this can be done on the GPU by compiling and running a
shader whose final output is an intermediate value of the
programmer’s interest. Various programs, e.g., GLSLDevil
[SKE07] and Shadesmith [PS03] for OpenGL, were intro-
duced to intercept, modify and recompile shaders automati-
cally.

However, current GPU debuggers are unable to debug the
entire history of a pixel that went through several passes in-
cluding render target switches. The programmer might be
able to go through one shader step-by-step, but no frame-
work exists, to the best of our knowledge, that allows the
programmer to step through the entire execution stream that
led to the final write of the pixel of interest.

A piece of data can pass through an entire render chain
before appearing as a pixel on the final render target. Each
shader transforms the input texture and geometry data into
render target pixel values. Figure 1 shows the render chain
length for several 3D benchmarks. As can be seen, a pixel
value on the final screen can come from a chain of up to
17 textures in length for a benchmark (data passed through
a chain of 17 dynamic textures before it appeared on the
screen). Our debugger framework allows the programmer to
step through all 17 shaders in sequence which makes pro-
gramming multi-pass shaders much more intuitive and easier
to debug.

3. GPU Programming Model and Architecture

To the graphics programmer, the GPU exposes itself as a
z-buffer based primitive processing engine. Primitives like
triangles, lines, etc., are processed by the GPU and end up
showing on the render target as pixel values. Modern graph-
ics runtimes like Direct3D and OpenGL provide the ability

c© The Eurographics Association 2008.

14



Ahmad Sharif & Hsien-Hsin S. Lee / Total Recall: A Debugging Framework for GPUs

to perform three programmable operations on the primitives
in the form of vertex, geometry and pixel shaders. Vertex
shaders handle transformation and lighting of input vertices.
Geometry shaders provide a way to amplify or destroy ge-
ometry in a programmable fashion while pixel shaders com-
pute the final color of the pixels of the current render target.

The GPU does not define any ordering in which primitives
will pass through this pipeline. To ensure correct results, the
programmer enables z-culling with which geometry hidden
behind other geometry will not be displayed on the render
target. Because of this ordering constraint relaxation, the
GPU can be architected to achieve a large amount of par-
allelism for graphics workloads: primitives can be processed
in parallel with respect to each other. However, this paral-
lelism comes at a cost: since most programmers are used to
writing straight-line sequential CPU code, development and
debugging on the GPU becomes a non-trivial task to per-
form.

4. Total Recall Approach

Step-by-step shader execution can be done by either: (a)
stepping through all threads one instruction at a time, as
iterative deepening performs, or (b) selecting one thread
and stepping through it. Although stepping through all the
threads has its value, debugging a single thread at a time of-
fers several advantages over debugging all pixels at once:

1. Programmers, especially those having background in se-
quential CPU programming, are better at debugging se-
quential code than parallel code. Thus it would be eas-
ier for a programmer to follow just one execution stream
rather than many, especially if different threads follow
different paths (thread divergence).

2. Unlike multiple threads, a single thread will only have
one set of variables that it works on. For a programmer
with a background in CPU debugging, a single set of vari-
ables is easier to keep track of than multiple sets.

3. It might be the case that the programmer is interested in
only one or a few bad pixels, in which case this debugging
model fits perfectly in this situation.

Current methods like Microsoft’s PIX [Wal07] and
GLSLDevil [SKE07] allow the programmer to view all
writes to the pixel of interest. The programmer can step
then through the shader that caused each write. Applica-
tions, however, can use multiple passes or render-to-texture
in which a write is made to an off-screen buffer, which is
then read back in a subsequent draw call to write to the
final render target. Popular techniques like Shadow Map-
ping [Wil78] and deferred shading [DWS∗88] use multiple
pass rendering to create convincing graphics effects real-
time. A complete history of the pixel should incorporate all
writes that were made to off-screen buffers that led to the fi-
nal write of the current pixel. To the best of our knowledge,
no current GPU debugger offers this. We propose a debug-
ging framework that allows the programmer to recreate the

entire execution history of the pixel that they might be inter-
ested in. This execution history can then be replayed on the
CPU and the programmer can view all intermediate values
via emulation. Notice that this is different from emulating
the shader invocations on all the pixels on the CPU like Vi-
sual Studio .NET does for Direct3D shaders. Only the shader
invocations that the programmer is interested in are captured
and emulated on the CPU. This is also different from instru-
menting the shader and running it on the GPU using itera-
tive deepening as we selectively emulate code entirely on the
CPU after obtaining the input values of the relevant shaders.

Our proposed debugging framework allows the following:

1. Conditional breakpoint statements inside shaders with
break in program execution when the condition is satis-
fied.

2. Capture of the entire execution history of a particular
pixel of interest. This history encompasses writes done
to intermediate textures that were subsequently read by
the shader that did the write to the final render target.

While this can be done entirely in software, as a library
above the 3D runtime, we propose hardware support to do
this more efficiently and quickly.

Some of the elements of our debugging framework are
provided in the sub-sections below. These sub-sections will
identify the "book-keeping" and data capture that is required
by the debugging environment to debug shaders using our
proposed technique.

4.1. Conditional Breakpoints

Conditional breakpoints are breakpoints that get hit upon the
true evaluation of a certain condition. Once the breakpoint is
hit, the state of the program needs to be presented to the pro-
grammer. Current GPU hardware does not support break-
points natively. In order to capture the render state at the
breakpoint, the debugger runtime needs to first identify the
exact draw call which was made when the breakpoint was
hit.

A simple way of doing the aforementioned is to bind an
additional render target to the GPU state and write to it upon
meeting a certain condition specified by the programmer as
shown in Figure 2. This can be done fairly easily because
conditional writes are supported by the modern GPU hard-
ware. GPUs also support hardware counters to count the
number of pixels drawn in a set of draw calls. After every
draw call, the debugger runtime can read back this counter
via a query to see whether this counter is non-zero. For ex-
ample, in the Direct3D runtime, an object of the Occlusion-
Query class can be used to perform the query on the hard-
ware counter [Mic]. If the hardware counter is non-zero, the
debug render target can be read back and searched to see
which pixels hit the breakpoint. If multiple pixels are found,
they can be presented to the user to select one to view its

c© The Eurographics Association 2008.

15



Ahmad Sharif & Hsien-Hsin S. Lee / Total Recall: A Debugging Framework for GPUs

Figure 2: A simple way of finding whether a breakpoint con-
dition was met or not. A debug render target is bound to the
render state and the shader instrumented with a conditional
write to this render target. After the draw call, this debug
render target is queried for number of pixels drawn. If the
value is non-zero, the breakpoint condition was met in the
draw call.

execution stream. Presently, occlusion queries cannot track
pixels written to individual render targets separately. There-
fore, the shader has to be modified to remove the writes to the
regular render targets when the debug render target is bound.
Once it is known that the breakpoint was not hit, the original
shader can be restored and the execution can continue like
normal.

If the condition intended by the programmer is to break
on a certain pixel (by selecting, or otherwise specifying the
coordinates of it), the debugger can isolate the draw call that
writes to that pixel by doing the following. The debugger
runtime creates a depth buffer (of the same resolution as the
render target) that has all pixel values set to the lowest depth
except for the pixel of interest. This depth buffer can then be
bound to the render state and the draw call made. If the draw
call wrote a value to the pixel of interest, a query will return
non-zero number of pixels drawn. In this way, the precise
draw call that modifies the pixel of interest can be obtained.

Once we know the draw call that resulted in the break-
point being hit, we need to extract the render state and all
shader inputs to deterministically replay the shader on the
CPU, where it can be executed step-by-step for analysis.
The render state can be obtained by simply querying the
3D runtime on top of which the debugger runtime is run-
ning. For example, the Direct3D 9 device can be queried
for the current bound render targets, textures, etc., by us-
ing function calls like ID3DDevice9::GetRenderTarget() in
the ID3DDevice9 interface.

4.2. Obtaining the Shader Inputs

Shaders on the GPU have input values coming from the pre-
vious stages of the pipeline that are used to look up tex-

tures or perform other computations. These live-in values are
needed to faithfully and deterministically replay the GPU
execution stream that led to the breakpoint. Current GPU
hardware supports gather, but no scatter. This means that for
obtaining all input variables for a shader, we can use the fol-
lowing approach: create a render target whose bytes per pixel
is equal to or bigger than the size of the live-in values of the
shader times the number of pixels. The debugger runtime
can then bind this render target to the render state and cre-
ate a shader that packs all shader input values and outputs
them to this render target (pass-through shader). The stor-
age requirement of this debug render target can be reduced
by a multi-pass approach: at every pass, a certain number of
inputs of the shader are dumped to a smaller debug render
target and read back.

4.3. Buffer Dependencies

As mentioned earlier, the goal of this debugging method-
ology is to provide the programmer with the entire execu-
tion history of a particular pixel. This consists of a stream
of dynamic instructions that were executed on the GPU that
finally led to the conditional breakpoint. The debugger run-
time therefore has to keep track of all bound input textures
to see whether they were a render target sometime before. A
buffer dependency graph can be built by the debugger run-
time by intercepting all requests to set the render target and
checking whether the render target is a texture level or not.
Once the render target is detected as a texture, the current
shaders can be parsed and inspected to see if they are doing
any look-ups from the currently bound textures. If so, those
textures are added as parents to this render target. Figure 3
shows a buffer dependency graph for an application. In to-
tal 5 draw calls were made, each to a separate render target.
The value of a pixel in the final render target depends on the
entire chain of rendered textures as well as the input textures
(and the geometry/state at each draw call).

Once a breakpoint is hit, the debugger runtime can walk
through the buffer dependency graph and figure out exactly
how to construct the execution stream that led to the break-
point being hit.

4.4. Full Execution History

Execution history can be obtained by the following iterative
scheme once the breakpoint has been detected as hit:

1. First, obtain the live-in values of the pixel that hit the
breakpoint. This can be done by using the methods de-
scribed in the sub-sections above. These live-in values of
the pixel contain the texture coordinates of all its parents
in the buffer dependency graph. If the parent textures are
all static, meaning they have no parents in the buffer de-
pendency graph, then can go to step 4.
If the input bound textures are dynamic, go through each
of the dynamic textures and program a breakpoint at the

c© The Eurographics Association 2008.

16



Ahmad Sharif & Hsien-Hsin S. Lee / Total Recall: A Debugging Framework for GPUs

Figure 3: Example buffer dependency graph. At each draw
call the currently bound shader takes input from the input
textures as well as the geometry and produces an output ren-
der target. Note that any pixel value in the final render target
is dependent on pixel values of the previous passes’ render
targets.

coordinates obtained from the live-in values. If the dy-
namic texture is looked-up at various coordinates in the
pixel shader, breakpoints will have to be set at all these
locations.
If the input dynamic texture supports texture filtering
upon texture access, breakpoints will have to be set at
multiple locations per set of texture input coordinates.
This is done so that the emulation environment can do
texture filtering to produce the same result as the GPU
hardware.

2. Start from the beginning of the frame and keep mak-
ing draw calls until we hit the breakpoint that was pro-
grammed in step 1. The debugger runtime has to store
the initial state and all state and draw call information (as
well as vertex/index buffer writes) in the current frame to
replay these draw calls. This information can be stored in
memory and typically does not take more than 100 MB
per frame (for the 3DMark06 game tests that we tested).

3. The breakpoint was hit. Go to step 1 to read the shader
inputs.

4. We now have all the relevant execution history that can be
passed on to the emulator module. This history includes
all writes to dynamic textures that led to the breakpoint
that was programmed in by the developer.

Figure 4: In debug pass 0, the render target under debug
hits a breakpoint and its input values (u, v) are found. Next,
a breakpoint is inserted at those coordinates in the dynamic
texture. The same draw calls are made and we obtain the in-
put of the dynamic texture (u’, v’) in the second pass. Finally
the full execution stream is reconstructed and emulated for
debug.

An example debug session is shown in Figure 4. In this
case, 2 passes are required in order to obtain the shader
inputs that can be used for deterministic emulation on the
CPU.

Once this execution history is obtained, we can emulate
the entire stream on the CPU and allow the programmer to
go forward and backward in time. Through emulation, the
programmer should be able to view all intermediate results,
set watchpoints, etc.. The emulator can compute the final ex-
pected output of the shader and match it against the pixel
values obtained from the series of draw calls in the replay
buffer for sanity check.

4.5. Challenges and Limitations

The emulated output could be different from the GPU output
because of floating point format and multi-sampling issues.
Typical GPUs implement a non-standard floating point for-

c© The Eurographics Association 2008.

17



Ahmad Sharif & Hsien-Hsin S. Lee / Total Recall: A Debugging Framework for GPUs

mat for speed and efficiency reasons. In order to emulate the
GPU execution more faithfully, a hardware-vendor supplied
functional emulator can be used to emulate the non-standard
floating point format implemented in hardware. This can en-
able the emulation result to be accurately paired with the real
result from execution on the GPU.

Hardware support for multi-sampling/super-sampling can
also cause differences between the emulation and actual
GPU execution. Since the atom of pixel execution exposed
to software is a single pixel, our framework cannot insert
"breakpoints" at sub-pixel locations in the dynamic textures.
Thus our framework is currently limited to accurately de-
bugging render targets that do not have hardware support for
super-sampling.

Alpha blending can present another challenge to isolating
the shader inputs that will be used for deterministic emu-
lation. When alpha-blending is enabled and a draw call is
made, a binary search is done to isolate primitives that cause
a write to the pixel location of interest. The debugger runtime
has to intercept the draw call and make modified draw calls
to figure out which primitives cause a write to the pixel lo-
cation. The debugger runtime can use the depth-buffer clear
technique mentioned before to see if half the primitives of
the original draw call end up writing to the pixel of inter-
est. Both halves have to be checked recursively to obtain all
primitives that write to the pixel of interest. In the worst case,
all primitives of the draw call write to the same pixel location
with transparency enabled. In this case, these primitives will
have to be drawn one-by-one, and all shader inputs obtained
this way.

4.6. Accelerating multi-pass debugging

The main loop explained in Section 4.4 can take some time
to execute, especially if there is a long chain of buffer de-
pendencies. In this case, hardware can be employed to ac-
celerate this process. Each source and destination buffer can
be divided into a uniform grid of blocks. The hardware can
maintain a bitvector for each render target block that main-
tains information about which source blocks were used in
writing to this destination block. From reading this bitvector,
one can determine the source buffer blocks that contributed
to the write of a render target block. If there is a lot of spatial
coherence in the pixel shader, this bitvector will be sparse.
In this case, in step 2) from the previous sub-section, we can
make a less expensive draw call by only drawing a small por-
tion of the dynamic buffer. This can be done by clearing only
a few blocks of the z-buffer, so that all other blocks will not
be shaded because of early-z reject. This acceleration tech-
nique requires hardware modifications.

PIX and others already have functionality to determine the
primitive id from the pixel value. If the exact primitive cov-
ering the pixel of interest is known, the debugging environ-
ment needs to only process that primitive in order to perform
deterministic replay. This can be done in a few ways:

1. Assigning each primitive an id value and tagging a sep-
arate buffer with the primitive id of the primitive. In this
way, by looking up the value of the primitive id in the cor-
responding pixel of the primitive-buffer, the exact primi-
tive that covers that pixel can be determined.

2. By only clearing the z-buffer of the pixel of interest and
reading back the number of pixels rendered after every
draw call, the exact draw call that writes to the pixel
can be determined. Then, a binary search can be per-
formed on the primitives inside the draw call using the
same mechanism to figure out exactly which primitive
caused a write to the pixel. A subset of the primitives
in the draw call are sent to the GPU and the hardware
counter is queried to see whether they got drawn to the
pixel of interest.

5. Experimental Results

In order to provide a proof-of-concept debugger, we imple-
mented a debugger runtime library for Direct3D 9. Direct3D
9 is a 3D runtime that exposes a common interface to appli-
cations and games using COM objects that want to utilize the
graphics hardware. On the back-end, the runtime interacts
with the driver code provided by hardware manufacturers.
The Direct3D runtime handles the creation, binding and de-
struction of various resources like vertex and index buffers,
shaders, devices, etc. The application interacts with this run-
time via different interfaces like IDirect3DDevice9, etc.

For our debugger, we encapsulated the Direct3D 9 inter-
faces in our own spy dll to capture the behavior of the appli-
cation to debug. All the application needs to do is to put our
spy dll inside the working directory and it will get loaded
when the Windows loader inspects the import table of the
application. The architecture of our debugger is shown in
Figure 5.

Our debugging library saves relevant per-frame informa-
tion like writes to vertex buffers, creation and setting of pixel
and vertex shaders, etc., to segments of memory called re-
play buffers. It does that so the programmer can revert back
to a previous frame by the press of a button. Once the pro-
grammer is in the desired frame, a pixel to debug can be
selected by clicking on it.

Once we receive input from the programmer, we replay
the current frame (by playing commands from the replay
buffer), but instead of running the pixel shader of the ap-
plication, we modify the shader on-the-fly to dump the in-
put variables of the shader to render targets as described be-
fore. Additional render targets are created and bound if the
inputs to the shader are more than the current render tar-
gets allowed. If multi-pass shading was done in the current
frame, our debugger runtime detects that and iteratively exe-
cutes the captured draw calls to obtain the input variables of
the very first shader. Once this "execution map" is created, it
is dumped to a file for the programmer to view.

c© The Eurographics Association 2008.

18



Ahmad Sharif & Hsien-Hsin S. Lee / Total Recall: A Debugging Framework for GPUs

Figure 5: Architecture of our debugger framework. The de-
bugger exports an interface identical to the Direct3D run-
time and intercepts all Direct3D function calls made by the
application. Replay buffers store per-frame information.

6. Related Work

Single-threaded CPU debugging is a long-studied problem
and effective solutions exist. Since the programmer is mostly
interested in breaking on a special condition and inspecting
intermediate values in registers and memory, a special break-
point instruction (int 3 on x86 CPUs) is placed at the point
of interest. When this breakpoint instruction is executed, ex-
ecution jumps to an entry point in the debugger application
and it displays the intermediate values in registers and mem-
ory. From here on, the programmer can execute instructions
step-by-step to gain insight into the execution of the pro-
gram. Conditional breakpoints are achieved by simply eval-
uating the desired condition and breaking execution if it is
met.

A number of techniques have been proposed and imple-
mented for GPU shader debugging. These techniques fall
into two broad categories: the debugging environment in-
tercepting shaders and modifying them on-the-fly, or em-
ulating all shader invocations on the CPU. Shadesmith
[PS03], Imdebug, Relational Debugging Engine [DNB∗05]
and GLSLDevil [SKE07] all use shader code instrumen-
tation and readback after the draw call in order to debug
shaders. .NET Shader Debugger uses the REF_RAST de-
vice and emulates shader code on the CPU. Starting from
the June 2006 DirectX SDK version, PIX has a Pixel His-
tory feature which can be used to debug a single pixel by
stepping through the vertex and pixel shaders that led to the
write of that pixel.

Shadesmith [PS03] enables the user to step through shader
code forward and backward. It does so by wrapping the ac-
tual OpenGL function calls in its own library and intercept-
ing those function calls. When a draw call is made using
some shader and the user wants to debug it, Shadesmith cre-
ates a temporary shader and binds that to the pipeline and
makes the same draw call. This temporary shader executes a
part of the original shader and outputs the intermediate result
on to the render target. After the draw call, Shadesmith reads
back the pixel values which contain the intermediate results.
The user can step forwards and backwards and Shadesmith
handles the creation and binding of the temporary shaders.

Microsoft’s Visual Studio .NET can have conditional
breakpoints inside shaders. It uses CPU emulation on a
REF_RAST device to handle breakpoints. Every vertex and
pixel is shaded on the CPU without discrimination. This
emulation is slow, and becomes time-consuming especially
at higher screen resolutions, high primitive count or longer
shaders. Our technique does selective emulation of pixels
that contribute to the pixel under debug.

gDebugger [TS05] is an OpenGL debugger that allows the
programmer to visualize the OpenGL state before the draw
call as well as after it. It does not allow stepping through
shader code, but does offer a wide variety of performance
visualizations.

The Relational Debugging engine [DNB∗05], proposed
by Duca et al, is implemented as a library for OpenGL which
intercepts OpenGL function calls and stores the graphics
state as a set of virtual tables. These virtual tables can then
be accessed by an SQL-like query based language inter-
face which is used to debug the application of interest. Like
other debugging tools, they implement their debugger as a
library over OpenGL’s runtime, intercepting OpenGL state
and shaders. The captured shaders are then instrumented and
bound to the pipeline, yielding the desired results.

GLSLDevil [SKE07] is an OpenGL debugger that al-
lows the programmer to select intermediate values in the
shader for display. An intercepting library understands the
semantics put in by the programmer as debugging state-
ments, rewrites the shaders accordingly and binds them to
the pipeline. The library can then read back the debug chan-
nel of the pixel values to display intermediate variables.
GLSLDevil can handle regular code, conditionals, loops and
function calls in GLSL. Additionally, pixels can be selected
by the user for individual debug.

PIX [Wal07], in 2006, introduced a utility for debugging
individual pixels called Pixel History. This feature allows
the programmer to go through the shader instruction-by-
instruction for all the invocations that wrote to a particular
pixel. PIX can also display the state of the Direct3D runtime
as well as bound and unbound resources at each point in the
program’s lifetime. However, unlike our approach, PIX does
not allow the programmer to view the full execution history
of a pixel beyond a single shader invocation.

Our proposed technique is similar to other techniques pro-
posed earlier as far as shader instrumentation is concerned.
However, we only dump the input variables (live-ins) of
the shader in order to deterministically replay the execution
stream on the CPU. Once all the live-ins are determined, the
CPU can do what it does best, i.e., go step-by-step and exe-
cute the captured stream. We also propose a hardware mech-
anism to speed up the capture of the execution stream.

c© The Eurographics Association 2008.

19



Ahmad Sharif & Hsien-Hsin S. Lee / Total Recall: A Debugging Framework for GPUs

7. Future Work

This work could be expanded in several directions in the fu-
ture. Debug history could be enhanced by including vertex
shaders, geometry shaders and stream out in the emulated
stream of instructions. Similarly, one could think of a way
to provide a complete history of a particle for a particle sys-
tem simulated on the GPU, and emulate it on the CPU for
debugging purposes.

With the introduction of Nvidia’s CUDA [NVI08] and
ATI’s CTM [ATI08] technology, GPGPU programming is
on the rise. However, other than emulation, there is currently
no way to debug GPGPU code. This work could be extended
to provide a framework that could help in debugging faulty
output. The framework could allow for capture of the en-
tire execution stream of instructions that led to a particular
final output value. This stream could then be faithfully and
deterministically replayed on the CPU in order to analyze
program behavior and find bugs.

8. Conclusion

We provided the design and implementation of a framework
that allows a shader programmer to sequentialize instruc-
tions from different shaders that caused the final write of
a pixel of interest. This pixel of interest can be specified
as input coordinates or a conditional breakpoint can be put
inside the shader. The application is transparent to the de-
bugger runtime and does not have to be recompiled to use
it. After obtaining the sequentialized instructions, they can
be deterministically emulated on the CPU step-by-step with
ease. This allows the programmer to inspect all intermediate
values as the execution progresses. Our framework is espe-
cially well-suited to multi-pass shading algorithms, as the
programmer can view the entire execution stream at once
regardless of render state changes (render target switches,
shader changes, etc.). We think that by looking at the entire
execution stream which causes the final write to a pixel, the
programmer will gain valuable insight and will be able to
correct unintentional program bugs.

9. Acknowledgment

This research was supported in part by NSF Grant CNS-
0325536, a Department of Energy Early CAREER Award,
and an NSF CAREER Award CNS-0644096.

References

[ATI08] ATI: ATI researcher re-
lations - CTM document library.
http://ati.amd.com/companyinfo/researcher/Documents.html.

[DNB∗05] DUCA N., NISKI K., BILODEAU J., BOLITHO

M., CHEN Y., COHEN J.: A relational debugging engine

for the graphics pipeline. ACM Transactions on Graphics
24, 3 (Aug. 2005), 453–463.

[DWS∗88] DEERING M. F., WINNER S., SCHEDIWY B.,
DUFFY C., HUNT N.: The triangle processor and normal
vector shader: A vlsi system for high performance graph-
ics. In Computer Graphics (Proceedings of SIGGRAPH
88) (Aug. 1988), pp. 21–30.

[Mic] MICROSOFT: Queries (di-
rect3d 9). http://msdn2.microsoft.com/en-
us/library/bb147308(vs.85).aspx.

[NVI08] NVIDIA: CUDA zone - resource for C de-
velopers of applications that solve computing problems.
http://www.nvidia.com/object/cuda_home.html.

[PS03] PURCELL T. J., SEN P.: Shade-
smith fragment program debugger.
http://graphics.stanford.edu/projects/shadesmith/, 2003.

[SKE07] STRENGERT M., KLEIN T., ERTL T.: A
hardware-aware debugger for the opengl shading lan-
guage. In Graphics Hardware 2007 (Aug. 2007), pp. 81–
88.

[TS05] TEBEKA Y., SHAPIRA A.: Advanced opengl de-
bugging and profiling with gdebugger. Game Developer’s
Conference (2005).

[Wal07] WALBOURN C.: Debugging direct3d 10 applica-
tions. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses
(New York, NY, USA, 2007), ACM, pp. 299–321.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. In Computer Graphics (Proceedings of
SIGGRAPH 78) (Aug. 1978), pp. 270–274.

c© The Eurographics Association 2008.

20


