
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Graphics Hardware 2007, San Diego, CA, August 04-05, 2007.

© 2007 ACM 978-1-59593-625-7/07/0008 $5.00

Graphics Hardware (2007)
Timo Aila and Mark Segal (Editors)

Programmable Shaders for Deformation Rendering
Carlos D. Correa and Deborah Silver

Rutgers, The State University of New Jersey

Figure 1: Example cuts and deformations on geometric models. From left to right: (a) Armadillo with bending deformation
(172K triangles) (b) Torso (25,528 triangles) with peeled skin and interior Mask model (10,213 triangles) (c) Horse with twist
deformation (97K triangles)

Abstract
In this paper, we present a method for rendering deformations as part of the programmable shader pipeline of
contemporary Graphical Processing Units. In our method, we allow general deformations including cuts. Previ-
ous approaches to deformation place the role of the GPU as a general purpose processor for computing vertex
displacement. With the advent of vertex texture fetch in current GPUs, a number of approaches have been proposed
to integrate deformation into the rendering pipeline. However, the rendering of cuts cannot be easily programmed
into a vertex shader, due to the inability to change the topology of the mesh. Furthermore, rendering smooth de-
formed surfaces requires a fine tessellation of the mesh, in order to prevent self-intersection and meshing artifacts
for large deformations. In our approach, we overcome these problems by considering deformation as a part of the
pixel shader, where transformation is performed on a per-pixel basis. We demonstrate how this approach can be
efficiently implemented using contemporary graphics hardware to obtain high-quality rendering of deformation at
interactive rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object ModelingGeometric Transformations; I.3.6 [Computer Graphics]: Methodology and TechniquesInter-
action techniques;

1. Introduction

In this paper, we present a novel rendering methodology
which produces high-quality deformations including cuts
and twists, using programmable graphics hardware. Un-
like previous approaches to hardware-assisted deformation,
which place the deformation at the vertex shader, we place
deformation in the pixel shader. This has certain advantages
over per-vertex deformation. First, generic deformations can
be defined in deformation textures, which sample 3D dis-
placements in a 2D or 3D texture. Vertex texture fetch has

only been supported in the latest GPUs, and have limited
filtering modes. However, pixel texture fetch is still con-
siderably faster, and provides support for multiple filtering
modes, such as bi-linear, tri-linear and anisotropic. Second,
deformation on image-space, as opposed to object space,
provides smoother results, as it is not limited by the reso-
lution of the mesh. In our approach, we deform the object
as part of the rendering pipeline. This is different from other
traditional deformation methods, where deformation is con-
sidered as a modeling problem and a new mesh is required.

mailto:permissions@acm.org
http://www.eg.org
http://diglib.eg.org

C. Correa & D. Silver / Programmable Shaders for Deformation Rendering

Deformation as a rendering process does not produce a re-
sulting mesh, but generates images of a deformed object in
real-time and with very high quality. This has a wide number
of applications in real-time illustration, animation, gaming
and generation of special effects.

In this paper, we propose a generalized notion of defor-
mation shaders, where we exploit the programmability of
graphics hardware to render all kinds of deformations, in-
cluding cuts and breaks. These are more difficult to model
using vertex processing, as topology changes are required
(i.e., remeshing). However, we show that these can be real-
ized in a pixel shader, by considering a special kind of de-
formation textures which encode discontinuity information.
Because we realize deformation as a pixel shader, it is con-
sidered as an inverse space warping problem rather than a
vertex transformation problem. As a general approach, we
use raycasting to find intersections of viewing rays with the
deformed surface. This paradigm was introduced earlier for
raytracing of deformed objects [Bar86], and we show how it
can be efficiently implemented using programmable graph-
ics hardware. Further, we solve a number of additional chal-
lenges when incorporating cuts.

2. Related Work
Deformations have been widely used in computer graphics
to generate a number of effects, and they have applications
in animation, shape modeling and simulation. The literature
in deformation is extensive, for which there are a number of
surveys [NMK∗05,BS07]. Mesh cutting is another aspect of
deformation, where the mesh topology is modified to simu-
late breaks and incisions [BSM∗02]. Work closely related to
this paper are GPU-based deformation techniques and ren-
dering of implicit surfaces.

GPU Accelerated Mesh Deformation. Most deformation
approaches transform the vertices of a mesh directly, via
procedural transformations [Bar84], via a proxy geometry
[SP86], or via a physically-based simulation [NMK∗05]. Re-
cently, physically-based deformation approaches have used
graphics hardware for solving partial differential equations
required for mass-spring or finite element models [KW03,
GWL∗03]. In this case, rendering is seen as a different stage
to the deformation process. This approach has been ex-
tended to the rendering of cuts, especially for surgery simu-
lation [MS05]. Others have applied deformation during the
rendering process, in a vertex shader. The deformation is
procedurally defined [d’E04], defined as a deformation tex-
ture [JP02] or a displacement map [SKE05], or as a com-
bination of basis functions [MBK06]. The ability to define
deformations as textures is possible thanks to vertex-texture
capabilities of recent GPU’s. A problem with vertex-shader-
based deformation is the reliance on a smooth tessellation of
the input mesh for high-quality rendering and the difficulty
to model topology changes, required for cuts. As an alter-
native, deformation can be done in a pixel shader. Trans-

forming the shape of an object in image space has been suc-
cessfully implemented for displacement mapping. Displace-
ment mapping [Coo84] allows the rendering of geometric
detail on a base surface. Recent methods use GPU-based
ray casting [OBM00, HEGD04, WTL∗04, PO06]. However,
many of these techniques do not extend easily to general de-
formation or to large cuts, because the displacement map
is usually independent from the input geometry and be-
cause it is assumed to be contained within a small volume
(shell) surrounding the surface. A displacement was pro-
posed in [CSC06b, CSC06a], where a volumetric object is
deformed and cut at interactive rates. Because the volume is
represented as a stack of view-aligned slices, this approach
is prone to aliasing and undersampling. In this paper, we
generalize the notion of displacement map for deformation,
including the ability to render cuts in polygonal models in
an efficient manner, without the requirement of explicitly
changing the topology of the mesh.

Implicit Representations. Implicit surfaces have been used
widely in computer graphics as an object representation,
with applications in modeling, deformation and animation
[Blo97]. One of the challenges with implicit deformations
is finding intersections efficiently for interactive rendering
or accelerated ray tracing. A number of approaches were
proposed very early [Har96, KB89, SP91], for both unde-
formed and deformed implicit surfaces. Recently, Hadwiger
et al. [HSS∗05] showed how these methods can be extended
to the rendering of arbitrary meshes using the distance field
as an implicit representation. In this paper, we exploit the
programmability of pixel shaders to represent mesh defor-
mation as a rendering of a deformed distance field. Unlike
previous approaches, our method can be extended to the ren-
dering of cuts, which may introduce sharp corners, difficult
to render accurately via raycasting. We show how efficient
ray casting algorithms can be developed for artifacts-free
rendering of deformation-cuts.

3. Overview

Our pipeline for deformation is based on the raytracing of
implicit deformable surfaces. Because of the exactness of
representation, we choose signed distance fields as a repre-
sentation. Later, in Section 6.1, we show how this require-
ment can be adjusted to improve GPU memory efficiency.
An implicit surface is defined as an isosurface of a function
f : R3 7→ R. As a convention, a surface of interest S can be
defined implicitly as the set of points p such that f (p) = 0.
Also, as a convention, f is positive inside the object and neg-
ative outside. A deformed implicit surface S′ is defined as the
zero-set f ′(p) = 0. Let T : R3 7→ R3 by a spatial transforma-
tion, so that a point p is transformed into p′ = T (p) and its
inverse T−1 such that p = T−1(p′). In this paper, we define
T−1 as a 3D inverse displacement, i.e., p = p′ +D(p′), with
D : R3 7→ R3, a displacement field. The deformed implicit

c© Association for Computing Machinery, Inc. 2007.

90

C. Correa & D. Silver / Programmable Shaders for Deformation Rendering

surface can be found as the set of points p′ such that :

f ′(p′) = f (T−1(p′)) = f (p′ +D(p′)) = 0 (1)

Since we intend to apply this method to surfaces defined
as meshes, our rendering pipeline requires a stage where a
signed distance field is obtained from the mesh. However,
we do not require a signed distance field for the entire mesh,
but rather only the subset of the surface which is to be de-
formed. Thanks to a number of GPU-based techniques for
the generation of distance fields [SPG03, SGGM06], it can
be done interactively.

First, the user selects a region where deformation is to
be applied using a bounding box. Let SD ⊆ S be the part
of the surface contained in that region, which is to be de-
formed. The user selects a 3D displacement texture from a
pool of pre-defined deformations, and applies it to the sur-
face, much in the way color or displacement textures are
applied in current graphics pipelines. Because we know the
maximum attainable displacement for a given deformation
texture, we can bound the space occupied by the deformed
surface within a bounding box B(S′D), where S′D is the de-
formed surface. Then, the rendering can be done in two
stages. First, we render the undeformed part of the object us-
ing traditional shaders, enabling depth culling of the region
defined by B(S′D), so that the deformed region is not ren-
dered twice. In the second stage, we render the bounding box
B(S′D) using a deformation shader. The deformation shader
is a shader program that enables the rendering of deformed
implicit surfaces in image space rather than object space. Fi-
nally, once both are rendered, we blend the color near the
seams so that both parts (the one using an explicit surface
and the one using an implicit surface), are integrated with-
out artifacts. This is possible as long as deformation vanishes
as it gets near the boundaries. This could be enforced in all
boundaries of the deformation cube, but, in practice, this is
only enforced in certain faces of the cube, depending on the
deformation. Twisting, for instance, is constrained to be zero
at all the faces except the top of the deformation box. This
means that it should be placed so that the top face do not
intersect the object.

The deformation shader then consists of a ray traversal
procedure. Each fragment generates a ray in the view direc-
tion. For each sample point we perform the following steps,
as shown in Fig.(2):

1. Warping. Each sample along the ray p′ is inversely
warped by sampling the deformation texture, and using
the values as a 3D displacement. That is:

p = p′ +M(D(M−1(p′))) (2)

where D is a displacement field (stored as a deformation
texture), and M is a coordinate transformation between
texture space and object space.

2. Sampling. The warped coordinate p is used to sample
the implicit representation f .

DD

D

D

D

0

f
i+1

i
f

i i i

i+1 i+1 i+1

f

2. RAY CASTING1. MAPPING 3. COMPOSITION

per sample point:

2.1. WARPING 2.2. SAMPLING

INTERSECTION
2.3. FIND

2.4. LIGHTING

SS

S’

S’

S

S

rays
viewing

Bounding Box B(S ’) D

(p)

(p)

p = p’ +D(p’)

p = p’ + D(p’)

n(p’)(p) = 0

Figure 2: Deformation of an apple. S, the original sur-
face is rendered with a traditional shader. A 3D displace-
ment/deformation texture is chosen and added to the object.
The bounding box B(S′0) is rendered as an implicit repre-
sentation using ray casting. The result of both shaders are
composited together.

3. Find Intersection. The ray traversal is stopped when-
ever an intersection is found, as the zero-set f (p) = 0. A
number of approaches can be applied for the determina-
tion of a stopping criteria and ray traversal, as discussed
in section 3.1

4. Lighting. Finally, when an intersection is found, color
and lighting attributes are obtained by estimating the nor-
mals to the deformed surface at the intersection point.

3.1. Ray traversal and Intersections

In order to find the closest intersection of a ray with the sur-
face, this stage traverses the ray at sampling positions:

p′
i = p0 + tiv (3)

for ti ∈ (0, tend) and p0 the entry point of the ray v into the
bounding box B(S′0). This linear search has been used for
interactive rendering of displacement maps. For more accu-
rate intersections, linear search is usually accompanied with
a binary intersection refinement, such as in [HSS∗05], and
an adaptive sampling mechanism. For speed up, linear and
binary search gives good results for smooth surfaces. Sur-
faces with narrow details, however, results in artifacts due to
missing an intersection. In the context of deformation, there
are two additional challenges: the introduction of large de-
formations, and the introduction of sharp cuts, both of which

c© Association for Computing Machinery, Inc. 2007.

91

C. Correa & D. Silver / Programmable Shaders for Deformation Rendering

can introduce narrow details into the new deformed surface.
These problems are discussed in the following sections.

3.1.1. Adaptive Sampling
One of the challenges with the rendering of implicit sur-
faces is accurately finding the first intersection with the sur-
face. With linear search, regions of high spatial frequency
might be skipped, resulting in artifacts near edges. A num-
ber of solutions have been proposed. Previous approaches
aiming toward ray tracing require “guaranteed” intersection-
finding algorithms, based on Lipschitz constants [KB89].
Hadwiger et al. use adaptive sampling based on a user-
controlled threshold [HSS∗05]. In our paper, we are inter-
ested in the cases where adaptive sampling is needed in the
case of deformation. For this purpose, and without loss of
generality, we assume that the original undeformed surface
can be rendered robustly using one of the above techniques.
With deformation, additional conditions must be met so that
the deformed surface is rendered properly. For instance, a
long narrow pull or a large twisting, may increase the re-
quired sampling of the deformed surface. Let us define a
ray in deformed space p0 + tv, where v is the view direc-
tion and p0 is the ray entry point. This ray corresponds to
a 3D curve R(s) in undeformed space. We can consider
s = T−1(t), for an inverse transformation T−1, such that
R(s) = T−1(p0 + tv). To avoid missing intersections in the
case of a sharp or large deformations, we ensure that samples
in the deformed space correspond to uniform samples along
the curve in the undeformed space. Taking the derivative of
s with respect to t yields:

ds
dt = |JT−1 v|

where JT−1 is the Jacobian of the transformation T−1. Since
T−1 is a displacement, JT−1 = I + JD, where I is the iden-
tity matrix and JD is the Jacobian of the displacement field.
Then, assuming a constant sampling distance δs, an adaptive
sampling (which we call Jacobian sampling) is obtained as:

δti =
1

|(I+JD(t))v|δs (4)

and points along the ray direction can be found as pi+1 =
pi + δtiv. Fig.(3) shows an example of a narrow pull on the
golf ball model. Because adaptive sampling can be costly, we
allow the programmer to define whether to use a threshold-
based sampling as in [HSS∗05], Jacobian sampling or no
adaptive sampling at all.

3.2. Warping
Warping of the sampled positions is done via inverse
displacement using Eq.(2). Previous approaches to pro-
grammable deformation define the warping as a hard-coded
statement within a vertex or pixel shader. This method, how-
ever, is difficult to generalize and some deformations, such
as peels, require a complex procedural definition that may be

(a) (b)

(c) (d)

Figure 3: (a) Narrow Pull over golf ball model (245K tri-
angles). (b) Linear search with binary refinement results in
missed intersections (c) Adaptive sampling based on thresh-
old (thresh=0.04) cannot resolve all misses (d) Jacobian
sampling finds the intersections properly.

costly to compute. Instead, complex deformations are sam-
pled into deformation textures. In Eq.(2), we allow the defi-
nition of a spatial transformation M, which represents a map-
ping between object space and displacement space. This type
of mapping may be used to map the deformation in cylin-
drical coordinates, for example, to render “round” cuts. An-
other use is the interactive control of the spatial extents of the
deformation, as an affine transformation A(p)+ u, where A
contains a rotation and scaling, and u) is a translation. This
allows the user to translate and rotate the deformation tex-
ture to simulate interactive manipulation of the deformation
parameters, without the need to modify the deformation tex-
ture on the fly. For instance, translating a twist in the y di-
rection, has the effect of increasing the strength of the twist.
Similarly, a translation along the x direction of a peel defor-
mation simulates the effects of progressive peeling (Fig.(4)).

3.3. Lighting
After an intersection point is found, color properties are ob-
tained depending on the lighting parameters. For this pur-
pose, we need to estimate the normal at that point. The nor-
mal can be reconstructed from the gradient of f ′ on the fly,
or, for speed up, from a transformation applied to the original
gradient of f . In traditional deformation, this can be encoded
into the vertex shader by multiplying the original normal by
the inverse transpose of the Jacobian of the forward trans-
formation function T [Bar84]. In our approach, we require
a transformation based on the inverse displacement. From
vector calculus, we have that for an inverse transformation,
J−>

T (p) = J>T−1(T (p)) [Dav67], where JT is the Jacobian of
a transformation T . For T−1(p) = p+D(p), the Jacobian is

c© Association for Computing Machinery, Inc. 2007.

92

C. Correa & D. Silver / Programmable Shaders for Deformation Rendering

Figure 4: Example of applying an affine transformation to
the deformation texture. Top: A progressive twisting of a fin-
ger is obtained by applying a translation along the y axis.
Bottom: A translation of the deformation space (blue box)
along the z direction results in progressive peeling. This is
encoded in the mapping stage of the deformation shader.

defined as JT−1(p) = I+JD(p), where JD(p) is the Jacobian
of the displacement and I is the identity matrix. Therefore,
normals can be obtained as:

−→n ′(p) = normalize
(

(I+JD(p))>−→n (p+D(p))
)

(5)

where −→n ′(p) is the normal to the deformed surface at point
p and −→n (p) is the normal to the undeformed surface at point
p. Note that this is a different expression from the usual nor-
mal estimation formula which has been derived from direct
deformation. Eq.(5) applies for inverse warping.

4. Definition of Deformation Textures
Deformation Textures are defined as a sampling of
an inverse displacement in a regular grid. There are a
number of ways of obtaining a deformation texture:
procedurally, as the result of inverting a forward trans-
formation, via control points, or via a simulation. In
this paper, our deformations are obtained from a pro-
cedure. For a twist deformation, for instance, a forward
transformation is given by the expression: DF (x,y,z) =
(xcosα(z)+ ysinα(z)− x,−xsinα(z)+ ycosα(z)− y,0)).
The inverse displacement is simply D = −DF . For a bend
deformation, the inverse transformation can also be found,
as described in [Bar84]. Complex deformations, however,
may be difficult to define procedurally. Further, finding a
close form solution to the inverse may prove difficult. In
this case, deformation can be obtained using a finite set
of control points, which are deformed interactively by the
user, and using inverse weighted interpolation in order to
find the values at grid points [RM95]. Once a deformation
texture is created, it can be re-used into a number of surface
models and applications, much in the way of color or
image textures. Further, deformation textures based on
displacements are algebraically easy to combine. Addition

of deformation textures can be used to add deformation
“detail” to a deformation texture.

5. Cut shader
The above method is essentially for continuous deforma-
tions, where the displacement function D is defined every-
where in the domain of the deformation texture. Deforma-
tion cuts, such as incisions, create discontinuities into the
surface, without removing material. Other cuts, such as the
removal of parts (i.e., a CSG operation), can also be realized
with this method. To implement a cut shader, a number of
changes are made to the different stages of the deformation
pipeline. First, we must encode the cut information into our
deformation texture. Second, finding intersections is differ-
ent, as the introduction of cuts implies a change in the conti-
nuity of the surface. Further, when simulating a solid model,
a ray may intersect the object at the interior, on a new sur-
face that appears due to the cut. And finally, because a new
surface may appear, the normal information must be adapted
to the shape of the cut geometry as well. These cases are de-
scribed below.

The deformation texture, which contains a discrete sam-
pling of D must be extended to contain discontinuity in-
formation. This is achieved by creating an alpha map A(p)
(scalar field), which tells whether a point is inside or outside
of a cut region. As a convention, we assume that a point p is
cut, if it lies in the region A(p) > 0, or not, otherwise.

5.1. Ray Intersection with Deformation Cuts
The ray intersection process differs from the original shader
in that a ray may not intersect the surface if it is cut, or it may
intersect a new surface that appears at the interior of a solid
object. The appropriate ray intersection method depends on
whether the object is assumed to be hollow, solid, or a hollow
thick shell. Although surfaces are modeled as thin shells, a
deformation cut shader allows the rendering of any of these
three types of objects, as selected by the user.

5.1.1. Rendering of Hollow Surfaces
In the simplest case, we may consider a surface as a thin
shell. Cutting a surface reveals the empty space inside an
object, and provides a view of the backside of parts of the
object. In traditional deformation, cutting a surface implies a
change in topology, which is difficult to do in a vertex shader.
However, this can be done using our pixel-based deforma-
tion shaders, by modifying the ray intersection algorithm, as
follows: Whenever an intersection p′ is found, a test for vis-
ibility is performed, using the alpha map which encodes the
shape of the cut. If A(p′) < 0, the point is not within a re-
gion of the cut and the intersection is found. Otherwise, the
point is discarded and the ray traversal continues until an-
other intersection with the surface is found, or the stopping
criteria are met. This is shown in Fig.(5a). The intersection

c© Association for Computing Machinery, Inc. 2007.

93

C. Correa & D. Silver / Programmable Shaders for Deformation Rendering

point 1 is discarded and only 2 is used for rendering. Note
that these intersections are on the interior or underside of the
model. We can use the normals to render the interior in a
different color. Because of false intersections, this approach
may be slow. Another approach is to use the original ray
intersection algorithm over a combined implicit representa-
tion of the surface minus the geometry of the cut (CSG op-
eration). However, this approach may result in intersection
misses for sharp cuts. With the approach described above,
however, sharp cuts can be represented without artifacts.

5.1.2. Rendering of Solid Objects
If we assume that the object is solid, rendering a cut reveals
the interior of the solid. To render this effect, a ray may in-
tersect a new surface that appears due to the cut. A similar
algorithm is used, except that when an intersection with the
object is discarded (because it is within the volume of the
cut), it may be possible that it still intersects the cut geome-
try. In such case, the algorithm continues traversing the ray,
but this time it searches for intersections with the cut surface,
which is found at points where A(p) = 0. A valid intersec-
tion with the surface of the cut must be in the interior of the
object, i.e., f (p) > 0. If that is not the case, the algorithm
continues in the search of intersections. This is depicted in
Fig.(5b). Rendering a solid object also changes the lighting
stage, since the reconstructed normal depends on whether
the point found intersects the surface f or the alpha map A.
The following test computes the correct normal:

−→n ′(p) =

{

−→n ′
f (p) p < ε

∇(A) otherwise
(6)

where −→n ′
f is the normal found using Eq.(5), and ∇(A) is the

gradient of the alpha map A.

5.1.3. Rendering of Thick Shells
Finally, another possibility is the case where we have hol-
low objects with a “thick skin”. In this case, there are re-
gions where intersections with the cut surface are needed
(the thick part of the outer shell of the object), and other re-
gions where these are ignored . Remarkably, this can be ob-
tained by modifying the surface representation and follow-
ing the algorithm for solid objects. Let τ > 0 be the thickness
of the shell. Then, the new surface representation is:

f̂ (p) =

{

τ− f (p) f (p) > τ
2

f (p) otherwise
(7)

The different rendering of cuts can be seen in Fig.(6). In
traditional deformation with cuts, it is required to remesh a
complex tetrahedral mesh to represent these different types
of solids.

6. GPU Implementation
Our approach can be efficiently implemented exploiting the
programmability of fragment shaders. A deformation shader

Original Solid CutHollow Cut

(a) (b)

2

1 1

2

Figure 5: Ray intersection of cut surface. (a) For a hollow
object, we compute intersections with f (p), discarding those
inside the cut region (1), and stopping when it is outside the
cut region (2). (b) For a solid object, we keep track of inter-
sections with the cut region and the object (point 2).

(a) Hollow (b) Thick Hollow (c) Solid

Figure 6: Hollow, Thick and Solid Apple

is then a realization of the different stages described in Sec-
tion 3. To render a deformed implicit shader, we first com-
pute the distance field of the partial surface SD and store it
into a 3D texture. We use a while loop to traverse the ray
along the view direction, and use a conditional statement
for early termination. Current GPU’s often incur in branch
penalties with these type of loops. We believe that branch-
ing support of newer GPU’s will improve the performance
of our approach. Within the loop, we warp each sample po-
sition according to the displacement stored in a deformation
map, and use the result to sample the implicit representation
f , stored also as a texture. An interval for a possible intersec-
tion is found whenever a change in sign of f occurs. Then,
we use a binary refinement to narrow down the intersection
coordinates.

6.1. GPU Efficiency
In our approach, we require a distance field representation
of an object. Depending on the complexity of the mesh,
this may be memory consuming. As an alternative, one may
choose smaller representations, trading off the exactness of
distance fields. An example is 2D depth maps. A depth or
height map is a 2D mapping function H : R2 7→ R, which

c© Association for Computing Machinery, Inc. 2007.

94

C. Correa & D. Silver / Programmable Shaders for Deformation Rendering

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Dragon (871,414 triangles)
ContinuousCuts

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Armadillo (172,974 triangles)
ContinuousCuts

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Bunny (72,027 triangles)
ContinuousCuts

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60 70 80 90 100

Re
nd

er
 T

im
e

(m
se

c.
)

Render area (%)

Hand (18,905 triangles)
ContinuousCuts

Figure 7: Rendering time for continuous deformation, in re-
lation to the relative size of the deformation bounding box,
as a percentage of the screen area (512×512)

contains depth values to the closest point in the surface along
a given vector −→n , normal to the plane where the depth map
is defined. Depth maps can be used as an implicit represen-
tation of an object as: f (p) = H(px)− d(p), where d(p) is
the closest distance of p to the plane, and px is the projection
of the point into the plane, defined in 2D coordinates local
to that plane. Although a depth map is not a complete repre-
sentation of the closest distance to an object, it can be used
as an implicit representation of a convex surface, as long as
all points in the surface are visible along the direction nor-
mal to the depth map. In Fig. (6), for example, we used a
depth map. To overcome the limitations of depth maps, one
can approximate a distance field based on depth maps along
the six planes defined by a cube embedding the object. We
call this a depth map cube. For the purpose of rendering,
an implicit representation can be obtained by combining the
corresponding f functions for the six faces. Given two repre-
sentations f1 and f2, a new representation f can be found as:
f (p) = ρ ·min(| f1(p)|, | f2(p)|), where the sign ρ is obtained
as positive for the cases where f1(p) and f2(p) are positive,
i.e., when the point is in the inside of both representations.
This combination is then repeated for the six faces of the
cube. As an example of the memory savings, a 3D layered
representation of resolution 1283 requires 8 MB of texture
memory while a depth map cube of the same resolution re-
quires only 6×64KB = 384KB. However, there is a visibil-
ity trade off, and the depth map cube can only be used for
geometries which do not contain significant concavities.

6.2. GPU Performance Results

Different displacement textures were created to test our ap-
proach. In this paper, we include ones simulating a peel
(Fig.(1b)), a twist (Figs.(1c) and (4)), a bend (Fig.(1c)), and
a knife cut (Fig.(6)). For Fig.(1b), an object (mask model)
was placed under the original torso model, so that when it is
peeled, the bottom surface is revealed.

Model Triangles Continuous Cuts Cuts
(no ESK) (ESK)

hand 18,905 89.79 225.46 75.77
bunny 72,027 87.32 249.92 114.95
armadillo 172,974 83.89 260.18 126.00
dragon 871,414 119.24 323.20 126.5

Table 1: Weighted average of rendering time for continuous
and discontinuous deformation in milliseconds.

Since our approach is largely implemented as pixel
shaders, its performance depends on the screen area of the
deformation region rather than its complexity in terms of
number of vertices. We performed a series of experiments
with models of varying size and obtained rendering times
for different sizes of the deformation region, relative to the
size of the viewport (512× 512), on a Pentium XEON 2.8
Ghz PC with 4096 MB RAM, equipped with a Quadro FX
4400 with 512MB of video memory. Composite representa-
tion in all these cases used 2MB of texture memory. Fig.(7)
shows the rendering times vs. the effective screen area of the
deformation region, as a percentage of the window area. We
measured time for the rendering of continuous deformation
(Continuous) and for a solid rendering of cuts (Cuts), as de-
scribed in Section 5.1.2. We can see the overhead due to ex-
tra intersection tests when rendering solid cuts. To overcome
the performance cost of “false” intersections when rendering
cuts, we may employ an empty space skipping mechanism,
where rays are initiated only at the continuous part of the
alpha mask used for the deformation. This information can
be obtained from a distance field representation of the cut
geometry. If a sample point is found to be within the region
of the cut, we can safely skip the sample points which are
within the distance given by the distance field at that point,
without the need of testing for intersections with the object
surface. This method proved to be very fast compared to the
original method, and rendering time was comparable to that
for continuous deformation.

To summarize the rendering time for the two methods in a
comparable way, we computed a weighted average on those
results. The weighted average is computed as ∑aktk/∑ak,
where ak ∈ [0,1] is the relative render area of the deformed
space and tk is the rendering time for a measure k. Table 1
shows the results of this averaging, where rendering time is
given in milliseconds.

6.3. Discussion
Previous results are encouraging for future generations of
GPUs. As per-pixel processing becomes more powerful, we
believe that the speed up on deformation approaches based
on ray traversal can be considerable. For applications where
real-time is needed, such as games, the deformation pipeline
can be improved with a multi-resolution mechanism. First,
ray traversal can be performed in a best effort basis, where
deformations taking place in a small area of the screen or
at very high speed can be rendered using low frequency

c© Association for Computing Machinery, Inc. 2007.

95

C. Correa & D. Silver / Programmable Shaders for Deformation Rendering

sampling. One of features that makes our approach flexi-
ble is the ability to store complex deformations as textures.
In our examples, deformations only require from 128 KB
(peel) to 2 MB (twist). In general, a displacement texture of
size w× h× d requires 8whd bytes. However, highly com-
plex deformations may require large 3D textures to render
high quality images. One mechanism to overcome this is
to allow the composition of deformations via simpler tex-
tures. Another limiting aspect is the implicit representation
of complex objects via 3D textures. For instance, the ar-
madillo model (at a resolution of 2563) required 64 MB of
texture memory. This can be reduced by applying alternative
representations as seen in section 6.1. However, handling
large complex models requires a partitioning of the object
into several textures and improved CPU-GPU bandwidth.
With the advent of new vertex capabilities, improved ver-
tex support may be available. We believe our approach still
has validity and can complement mesh-based deformation.
In fact, it would open possibilities for a hybrid approach,
where coarse deformation can be implemented on a vertex
shader, while fine-grained deformation and cuts can be done
at the pixel level.

7. Conclusions
We have presented a novel pipeline for rendering deforma-
tions and cuts using programmable graphics hardware. Un-
like previous approaches, which introduce deformation as
part of a vertex shader, we define deformation rendering as
a pixel shader. This makes possible the rendering of cuts,
which are difficult to produce using vertex shaders due to
the changes in mesh topology. In our case, we do not need
to explicitly split the geometry or remesh along the edges of
a cut. It also overcomes the need for a fine tessellation of
the mesh, required for smooth rendering of deformation. To
implement our approach, we use an implicit representation
of the portion of the mesh undergoing deformation, stored in
the GPU as a distance field texture. We have shown how dis-
placement maps can be applied to render deformation, simi-
lar to image-space displacement mapping, and how they can
be extended to render deformation-cuts. Through a number
of examples, we show how our method can be used to ren-
der hollow and solid objects, without the need for a complex
tetrahedral mesh. We believe this approach has applicability
in authoring and animation systems, in surgical simulation
and interactive applications.

References
[Bar84] BARR A. H.: Global and local deformations of solid primitives. In SIGGRAPH

’84: Proc. of the 11th annual conference on Computer graphics and interactive tech-
niques (1984), pp. 21–30. 2, 4, 5

[Bar86] BARR A.: Ray tracing deformed surfaces. Computer Graphics (Proc. SIG-
GRAPH 86) 20, 4 (1986), 287–296. 2

[Blo97] BLOOMENTHAL J.: Introduction to Implicit Surfaces. 1997. 2

[BS07] BOTSCH M., SORKINE O.: On linear variational surface deformation methods.
IEEE Transactions on Visualization and Computer Graphics (2007). 2

[BSM∗02] BRUYNS C., SENGER S., MENON A., MONTGOMERY K., WILDERMUTH
S., BOYLE R.: A survey of interactive mesh-cutting techniques and a new method
for implementing generalized interactive mesh cutting using virtual tools. Journal of
Visualization and Computer Animation 13, 1 (2002), 21–42. 2

[Coo84] COOK R. L.: Shade trees. Computer Graphics (Proc. SIGGRAPH 84) 18, 3
(1984), 223–231. 2

[CSC06a] CORREA C., SILVER D., CHEN M.: Feature aligned volume manipulation
for illustration and visualization. IEEE Transactions on Visualization and Computer
Graphics (September-October 2006). 2

[CSC06b] CORREA C. D., SILVER D., CHEN M.: Discontinuous displacement map-
ping for volume graphics. In Fifth Eurographics / IEEE VGTC Workshop on Volume
Graphics 2006 (2006), pp. 9–16. 2

[Dav67] DAVIS H.: Introduction to Vector Analysis, 3rd ed. Allyn and Bacon, 1967. 4

[d’E04] D’EON E.: GPU Gems. Addison Wesley, 2004, ch. 42. 2

[GWL∗03] GOODNIGHT N., WOOLLEY C., LEWIN G., LUEBKE D., HUMPHREYS
G.: A multigrid solver for boundary value problems using programmable graphics
hardware. In SIGGRAPH/EUROGRAPHICS conference on Graphics hardware 2003
(2003), pp. 102–111. 2

[Har96] HART J. C.: Sphere tracing: A geometric method for the antialiased ray tracing
of implicit surfaces. The Visual Computer 12, 10 (1996), 527–545. 2

[HEGD04] HIRCHE J., EHLERT A., GUTHE S., DOGGETT M.: Hardware accelerated
per-pixel displacement mapping. In Graphics Interace 2004 (2004), pp. 153–158. 2

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BUHLER K., GROSS M.: Real-
time ray-casting and advanced shading of discrete isosurfaces. In Eurographics 2005
(2005). 2, 3, 4

[JP02] JAMES D. L., PAI D. K.: Dyrt: dynamic response textures for real time defor-
mation simulation with graphics hardware. ACM Trans. Graph. 21, 3 (2002), 582–585.
2

[KB89] KALRA D., BARR A. H.: Guaranteed ray intersections with implicit surfaces.
In SIGGRAPH ’89: Proceedings of the 16th annual conference on Computer graphics
and interactive techniques (1989), pp. 297–306. 2, 4

[KW03] KRÜGER J., WESTERMANN R.: Linear algebra operators for GPU implemen-
tation of numerical algorithms. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers
(2003), pp. 908–916. 2

[MBK06] MARINOV M., BOTSCH M., KOBBELT L.: GPU-based multiresolution de-
formation using approximate normal field reconstruction. ACM Journal of Graphics
Tools (2006). 2

[MS05] MOSEGAARD J., SÃŸRENSEN T.: GPU accelerated surgical simulators for
complex morphology. In IEEE Virtual Reality (IEEE VR) (2005), pp. 147–153. 2

[NMK∗05] NEALEN A., MULLER M., KEISER R., BOXERMAN E., M.CARLSON:
Physically based deformable models in computer graphics. In Eurographics STAR
Report (2005). 2

[OBM00] OLIVEIRA M. M., BISHOP G., MCALLISTER D.: Relief texture mapping.
In Computer Graphics (Proc. SIGGRAPH 2000). ACM Press, 2000, pp. 359–368. 2

[PO06] POLICARPO F., OLIVEIRA M. M.: Relief mapping of non-height-field surface
details. In SI3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics
and games (2006), pp. 55–62. 2

[RM95] RUPRECHT D., MÜLLER H.: Image warping with scattered data interpolation.
IEEE Comput. Graph. Appl. 15, 2 (1995), 37–43. 5

[SGGM06] SUD A., GOVINDARAJU N., GAYLE R., MANOCHA D.: Interactive 3d
distance field computation using linear factorization. In SI3D ’06: Proceedings of the
2006 symposium on Interactive 3D graphics and games (2006), pp. 117–124. 3

[SKE05] SCHEIN S., KARPEN E., ELBER G.: Real-time geometric deformation dis-
placement maps using programmable hardware. The Visual Computer 21, 8-10 (2005),
791–800. 2

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form deformation of solid geometric
models. In SIGGRAPH ’86: Proc. of the 13th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1986), ACM Press, pp. 151–160. 2

[SP91] SCLAROFF S., PENTLAND A.: Generalized implicit functions for computer
graphics. In SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer
graphics and interactive techniques (1991), pp. 247–250. 2

[SPG03] SIGG C., PEIKERT R., GROSS M.: Signed distance transform using graph-
ics hardware. In VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03)
(2003), p. 12. 3

[WTL∗04] WANG L., TONG X., LIN S., HU S., GUO B., SHUM H.-Y.: Generalized
displacement maps. In Proc. Eurographics Symposium on Rendering (2004). 2

c© Association for Computing Machinery, Inc. 2007.

96

