
Copyright © 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit

is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions Dept, ACM

Inc., fax +1 (212) 869-0481 or e-mail permissions@acm.org.

Graphics Hardware 2007, San Diego, CA, August 04-05, 2007.

© 2007 ACM 978-1-59593-625-7/07/0008 $5.00

Graphics Hardware (2007)
Timo Aila and Mark Segal (Editors)

ETC2: Texture Compression using Invalid Combinations
Jacob Ström and Martin Pettersson

Ericsson Research

Abstract
We present a novel texture compression system for improved image quality. Building on the iPACKMAN/ETC
method, bit combinations that are invalid in that system are used to allow for three additional decompression
modes without increasing the bit rate. These modes increase quality, especially for color edges and blocks with
smoothly varying content. Due to the use of invalid bit combinations, the system, called ETC2, is backwards
compatible with iPACKMAN/ETC. It outperforms S3TC/DXTC and iPACKMAN/ETC in terms of PSNR with 0.8 dB
and 1.0 dB respectively, which is clearly visible to the human eye.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Texture

1. Introduction

The factor limiting performance in rasterization-based ren-
dering hardware is usually bandwidth [AMN03]. As shown
by Knittel et al. [KSKS96], Beers et al [BAC96] and Torborg
and Kajiya [TK96], texture compression can be used to re-
duce bandwidth usage. Our new texture compression system
is built on the iPACKMAN/ETC system (from hereon re-
ferred to as Ericsson Texture Compression, ETC) [SAM05],
and designed to take care of the blocks that ETC has most
difficulties with. Our major contribution is to show how three
extra modes can be added by the use of invalid bit combi-
nations, while keeping backwards compatibility and with-
out increasing the bit rate. Another contribution is the extra
modes themselves—two of them are versions of modes that
have been published earlier by us [PS05], but for a smaller
audience. The last mode has not been presented before.

2. Previous Work

Delp and Michell [DM79] present block truncation coding
(BTC) for compression of gray scale images to 2 bits per
pixel (bpp). The image is divided into 4×4 blocks, and two
shades of gray are encoded in the block, together with a bit
mask that decides for each pixel what shade to choose. The
method by Campbell et al [CDF∗86]—Color Cell Compres-
sion (CCC), extends BTC to color. Each 4×4 block includes
two colors instead of two gray scales. By using a 256-wide
color palette, the colors can be represented with eight bits
each, yielding 2 bpp for color images. However, having only
two colors per block limits image quality, and having a color
palette is a drawback in today’s systems, where memory ac-
cesses are slow in relation to computation. The de facto stan-
dard today is the S3TC/DXTC texture compression method

by Iourcha et al. [INH99], and it can be seen as an exten-
sion of CCC. Two colors in RGB565 format are stored in
the block, and two more colors are interpolated in-between.
Thus each pixel can choose from four colors, yielding better
image quality than CCC without the need for a color palette.
With 64 bits per 4×4 block, the rate of S3TC is 4 bpp. Beers
et al. [BAC96] use vector quantization for texture compres-
sion to reach compression rates of 1-2 bpp. However, this
requires a big LUT, which introduces indirect addressing re-
sulting in latencies that can be hard to hide. Fenney [Fen03]
uses two low-resolution images A and B, both upscaled bi-
linearly two times. Each pixel can then choose its color from
either image A, image B, or from two blend values between
A and B. A 2 bpp version and a 4 bpp version exist. ATI
has created a system for texture compression called ATI-TC,
that they have integrated in their texture compression tool
“The Compressonator”. We have not found any public in-
formation about this codec, but we have compared against
the 4-bpp version of ATI-TC in our results section. Whereas
most texture compression methods are using a fixed number
of bits per block, Inada and McCool [IM06] use variable bit
rate coding. They achieve random access through a B-tree
index. The system is for lossless coding, but could in princi-
ple be used for lossy coding as well. If used lossily, the sys-
tem would likely have a higher compression efficiency (qual-
ity per bit) than fixed rate coding systems, since it would be
possible to save bits on “easy” areas and instead spend them
on “hard” areas. However, the B-tree index means that the
caching structure must be changed, and in this paper we con-
centrate on algorithms that can be used in lieu of today’s de
facto texture compression standards without such architec-
tural changes. Munkberg et al. show how new modes can be
added in a fixed rate codec by the use of the ordering trick
from S3TC [MAMS06]. Our work is similar in spirit, but

mailto:permissions@acm.org
mailto:permissions@acm.org
http://www.eg.org
http://diglib.eg.org

Jacob Ström and Martin Pettersson / ETC2: Texture Compression using Invalid Combinations

+ =

color luminance final image

Figure 1: The core idea of PACKMAN. Left: The base color
for each 2× 4 block. Middle: Per-pixel luminance modula-
tion. Right: The final image.

uses invalid bit sequences instead of redundant ones. Since
our work is an extension of the PACKMAN [SAM04] and
ETC algorithms, we will go through them in more detail in
the next section.

3. PACKMAN and ETC

The PACKMAN algorithm exploits the fact that the human
visual system is more sensitive to changes in luminance than
in chrominance. It takes the rather radical approach of only
having a single chrominance per 2× 4 pixel block, repre-
sented as a RGB444 color (12 bits). Each pixel can then
modify the luminance of this base color additively, as shown
in Figure 1. More specifically, a modifier value is added to
all three components (R, G and B) of the base color. The
modifier value is taken from a small table of four entries,
and hence two bits, called pixel indices are needed to select
the value for each pixel. Four bits are spent on a table code-
word, to select the table from 16 prefixed tables. Altogether,
32 bits are used for 2×4 pixels, giving a rate of 4 bpp.

3.1. ETC

PACKMAN has been improved under the name
iPACKMAN (here called ETC) in two ways [SAM05].
First and most important, a differential mode is introduced,
allowing two neighboring 2×4 blocks to be coded together.
The base color of the left block can then be encoded using
RGB555, i.e., with higher precision, and the right base
color also in RGB555 format, but coded using a differential
dRdGdB333, where dR, dG and dB can assume values
between −4 and +3. Thus, for pairs of blocks with similar
base colors, the chrominance resolution effectively goes
up from RGB444 to RGB555 in both blocks. Blocks that
cannot be encoded well using the differential mode will be
coded as before, i.e., with two individually coded RGB444
colors. This mode is called the individual mode. The second
improvement is that blocks can be flipped so that a 4× 4
block consists of either two 2× 4 block next to each other,
or two 4×2 blocks on top of each other. Two mode bits are
needed, one to choose between individual and differential
mode, and one to indicate the flip status. Space for these two
bits are created by shrinking the number of possible tables
from 16 to eight, thus reducing the number of table bits in

1 14 4 4 4 4 4bit size

R0 R1 G0 G1 B0 B1

32

0

1 15 3 5 3 5 3bit size

diff

flipR0 dR1 G0 dG1 B0 dB1

32
1

individual

differential

table 0 table 1

table 0 table 1

pixel indices

pixel indices

3 3

3 3

diff

flip

Figure 2: Modes in original iPACKMAN. Top: Differential
mode. Bottom: Individual mode.

each sub-block from four to three. Figure 2 shows the bit
layout in the differential (top) and the individual (bottom)
modes.

These two small changes greatly affects image quality,
which jumps 2.5 dB in terms of Peak Signal to Noise Ratio
(PSNR), suddenly putting ETC on par with S3TC. Visually,
ETC lacks the disturbing banding artifacts that are a result
of the low chrominance resolution in PACKMAN. Still, only
one chrominance can be used for an eight-pixel block.

4. Invalid Bit Sequences

One major contribution of this paper is to show how invalid
bit combinations can be used to improve ETC. This idea is
related to the ordering trick that has been used in DXT1
to select the one-bit alpha mode for RGBA textures, or al-
ternatively, for RGB textures, to select a mode where the
third color is (col0 + col1)/2 and the fourth color is black
(0,0,0). It has also been used by Munkberg et al. in order to
increase the number of modes in a normal map compression
system [MAMS06]. The ordering trick exploits the fact that
there are redundant bit sequences—i.e., two different bit se-
quences will result in exactly the same decompressed block.
Since only one representation is necessary, the other bit se-
quence can be used for something else, such as signalling
an alpha mode. For ETC we have not found any interesting
redundant bit sequences, so instead we concentrate on in-
valid bit sequences. For instance, in the differential mode of
ETC, the second red component R1 is calculated as R0 plus
a delta, R1 = R0+dR. Here R0 is a five bit number between
[0,31] and dR is a three bit number between [−4,3]. But R1
should also be between [0,31], and thus the addition can both
overflow and underflow. Since intensities smaller than zero
(or larger than the maximum) are not physically meaningful,
these representations are invalid. They can thus signal that
the bits of the blocks should be interpreted in a new way,
and not be decoded using the regular ETC logic.

Figure 3 shows how the decompression of such a system
could work. If the diffbit is not set, the 63 remaining bits are
decoded using the regular individual mode from ETC. If the
diffbit is set, however, we first see whether the addition R1 =
R0+dR underflows or overflows. (From now on, we will just
use the term overflow for both under- and overflows.) If we
are not overflowing, we are decoding the 63 bits the usual

c© Association for Computing Machinery, Inc. 2007.

50

Jacob Ström and Martin Pettersson / ETC2: Texture Compression using Invalid Combinations

Is DIFFBIT set?

decode remaining
63 bits using the
individual mode

no yes

Is R0 + dR in [0, 31]?

decode remaining
63 bits using the
differential mode

yes no

decode remaining
63 - 8 = 55 bits
using an auxiliary
mode

Figure 3: Example of a decoder that uses invalid bit se-
quences. If the addition stays in the legal range, the regular
differential decompression is used. However, if the addition
overflows, the block is decoded in an auxiliary way.

way, using the differential mode from ETC. However, if the
sum overflows, we decode the bits in an alternate way. The
bits representing R0 and dR (eight in total) are used to signal
the overflow, and the diffbit must be set to 1, but the other
64−8−1 = 55 bits can be used for this auxiliary mode. We
say that we have a payload of 55 bits in the auxiliary mode.

In fact it is possible to increase the payload. We have re-
frained from using any of the eight bits in R0 and dR, but that
is over-zealous: As can be seen in the first two columns of
Table 1, R1 = R0+dR can overflow in exactly 16 ways, and
this means that we should be able to store four bits there by
selecting which of the 16 overflow bit strings to encode. For
instance, to encode the 4-bit string 1001bin (last column), we

R0 dR R0 dR binary 4-bit string
0 -4 00000 100 0000
0 -3 00000 101 0001
0 -2 00000 110 0010
0 -1 00000 111 0011
1 -4 00001 100 0100
1 -3 00001 101 0101
1 -2 00001 110 0110
29 3 11101 011 0111
2 -4 00010 100 1000
2 -3 00010 101 1001
30 2 11110 010 1010
30 3 11110 011 1011
3 -4 00011 100 1100
31 1 11111 001 1101
31 2 11111 010 1110
31 3 11111 011 1111

Table 1: The table shows all 8-bit strings that overflow. Four
bits can be encoded by selecting the appropriate 8-bit binary
overflow code. To decode, the underlined bits in the 8-bit
code are used to obtain the 4-bit code.

choose R0 = 2(= 00010bin) and dR =−3(= 101bin). When
decoding, we look up the concatenated overflowing string
00010 101 in the table and get back 1001. Due to the way
the rows in the table are ordered, the bits in the 4-bits string
are just the underlined bits in the 8-bit field. Thus the de-
coding process is yet simpler—we just take the underlined
bits from the overflowing string 00010 101 to get the 4-bit
string 1001. In this way, we have increased the payload in
our auxiliary mode from 55 bits to 59.

So far we have only used the red component, so it is
natural to investigate whether it is possible to exploit over-
flow in the green- and blue components to have even more
modes. For this to work, we must make sure that red does not
overflow—otherwise the decoding process will select that
mode. Looking again at the third column in Table 1, we see
that the two first bits are always the same for all overflowing
modes. By setting the first bit in R0 different from the sec-
ond bit in R0, it is thus possible to make sure that R0 + dR
never overflows. This means that a new mode can be con-
structed, where red does not overflow, but green does. Since
one bit is lost making sure that the red component does not
overflow, this auxiliary mode will have a payload of 59-1 =
58 bits. Analogously, it is possible to construct a third mode,
where red and green does not overflow, but blue does, and
this mode will have a payload of 57 bits. The decoding is

diffbit redOF greenOF blueOF decode using
no - - - individual mode
yes yes - - 59-bit mode
yes no yes - 58-bit mode
yes no no yes 57-bit mode
yes no no no differential mode

Table 2: Mode selection based on the diffbit and overflows.

performed according to Table 2. For instance, if the diffbit is
set and red does not overflow but green does, the 58-bit mode
is used (irrespectively if blue overflows or not). Note that if
an old ETC texture is passed into this decoder, it will end
up in the top or bottom row, since the colors never overflow.
Thus, our new system is backwards compatible.

5. New Modes in ETC2

We now have room for three new modes of 59, 58 and 57
bits respectively. Ideally, the new modes should be good at
compressing blocks for which ETC performs poorly. Exam-
ples are blocks with two distinctly different chrominances,
such as in the leftmost image in Figure 8, and slowly vary-
ing chrominance changes, shown in the second image.

In the development process, we have experimented with
a wide variety of algorithms, and the three modes that we
are describing here are the ones that turned out to work best.
Two of these have been presented by us in a previous pa-
per [PS05], and the third is novel.

c© Association for Computing Machinery, Inc. 2007.

51

Jacob Ström and Martin Pettersson / ETC2: Texture Compression using Invalid Combinations

A problematic block taken from the leftmost image of
Figure 8 can look like the left diagram in Figure 4 where
the colors are plotted in RGB-space. (The green dimension
is not shown for simplicity.) Note how most of the colors are
in the top left group (different intensities of yellow, not visi-
ble in B/W reproduction), which would suggest that regular
ETC compression would work quite well with intensity vari-
ation of a yellow base color. However, some of the pixels are
of a rather different color, which breaks the ETC model. For
this reason, the T-mode was introduced. Each pixel can here
choose from four paint colors. Three of the paint colors are
obtained by modifying the first base color along the inten-
sity direction by adding the vectors (−d,−d,−d),(0,0,0)
or (d,d,d) to the base color. The distance d is obtained from
a small look-up table. The fourth paint color is just the sec-
ond base color unmodified. The pattern, which is shown in
the rightmost diagram in Figure 4, can resemble the letter
“T”, hence the name. We propose to use the T-mode for the
59-bit slot, using RGB444 for the two base colors, and speci-
fying the distance d with three bits using the following small

R

B

R

B

d

d

Figure 4: Left: An uneven distribution of the original block
colors. Right: The T-pattern. Both base colors are used as
paint colors. The distance d is added to the first base color
in the direction (1,1,1) to get the other two paint colors.

look-up table (LUT): {3,6,11,16,23,32,41,64}. The same
LUT is used for all T-mode blocks in all textures, and can
therefore be kept on chip and hardwired. Since two bits per
pixel is enough to choose from the four paint colors, we need
12×2+3+16×2 = 59 bits, just fitting the 59-bit slot.

We further clarify this by giving a decoding ex-
ample for the uppermost T-mode block in Figure 9.
The block has been encoded to the following 59 bits:
1011 1001 0011 0100 0100 0101 110 01 01 01 01 01 01 01
10 01 01 00 11 01 00 11 00. The first 24 bits are the two
base colors coded as RGB444. These colors are extended
to RGB888 by copying the lower four bits to the upper
four bits for each component. The two base colors are thus
(187,153,51) and (68,68,85). These are also our first two
paint colors. The next three bits are the entry to the LUT,
where 110 points at 41. Adding the vectors (−41,−41,−41)
and (41,41,41) to the first base color yields the two other
paint colors, (146,112,10) and (228,194,92). The remain-
ing bits are the indices for the pixels, where each bit pair

is used to select one of the four paint colors. For instance,
the first index is 01 which means that the second paint color
(68,68,85) is used for this pixel.

Sometimes there are two groups of colors for which in-
tensity modulation could be useful, as illustrated in the left
diagram in Figure 5. It is then possible to modulate both base
colors with the vectors (−d,−d,−d) and (d,d,d) to pro-
duce the four paint colors, as seen in the right diagram in
the same figure. This mode is called the H-mode, since the

R

B

R

B

d

d

d

d

Figure 5: Left: The colors can be arranged in two groups so
that intensity modulation works well on both groups. Right:
Two base colors (marked with squares) are selected. Four
paint colors (marked with circles) are derived by adding a
distance d in direction (1,1,1) to form an H-pattern.

pattern can resemble the letter “H”. Using RGB444 for both
base colors, and two bits per pixel to specify the paint color,
we only have 58−12×2−2×16 = 2 bits left to specify the
distance d, if we want to fit it in the bit budget of the 58-bit
mode. However, since the H-pattern is completely symmetri-
cal, we can swap the base colors and obtain exactly the same
result. Thus we can use the ordering trick used in DXT1 to
get an extra bit for d. The two most significant bits of d are
stored explicitly, and the two base colors col0 and col1 are
treated as two 12-bit integers. If col0 < col1, we set the least
significant bit (LSB) in d to 0. However, if col0 ≥ col1, we
set the LSB in d to 1. In this way, the variable d can be speci-
fied with three bits in both the “T”-mode and the “H”-mode,
and the same look-up table can be used.

For the last mode, it is desirable to find a representation
that can cope well with smoothly varying chrominances, like
the ones found in the second image of Figure 8. There-
fore we propose the use of a planar approximation of the
color components in the block. To specify a plane, it suf-
fices to specify the colors in three locations in the block. In
the left diagram in Figure 6 we have positioned three red
components R0, RH and RV in certain positions in the block.
The red component can now be calculated anywhere in the
block by using R(x,y) = x(RH−R0)/3+y(RV −R0)/3+R0.
However, we instead propose to place the points accord-
ing to the right diagram in Figure 6. This means that the
equation now becomes the slightly more hardware friendly
R(x,y) = x(RH − R0)/4 + y(RV − R0)/4 + R0. Moreover,

c© Association for Computing Machinery, Inc. 2007.

52

Jacob Ström and Martin Pettersson / ETC2: Texture Compression using Invalid Combinations

R
0 R

H

R
V

R
0 R

H

R
V

Figure 6: The plane is specified by placing the components
R0, RH and RV . We have found that the rightmost placing
works better.

division by 4 instead of 3 gives the added advantage that
smaller steps are possible, and smoother transitions can thus
be represented. A disadvantage is that it is not always pos-
sible to have maximum or minimum strength in some pixels
in a block, since that would sometimes require RH and RV
to be negative or higher than the maximum value. However,
note that this mode does not have to cope with every type of
block, since there are four other modes that will most likely
be able to handle those well. We have tried both constella-
tions shown in Figure 6 and found that the rightmost one
gave higher quality in the compressed images. Thus the pos-
sibility to use smaller steps seems to outweigh the disadvan-
tage of not always being able to represent extreme values
inside a block. The green and blue components are calcu-
lated the same way as the red component, and we store the
colors using RGB676, resulting in (6 + 7 + 6)×3 = 57 bits
which exactly fits the 57-bit mode.

Compression in the planar mode is done using a least
squares fit to the plane of each color component, followed
by rounding of the resulting parameters to 6 or 7 bits. For the
59-bit T-mode and the 58-bit H-mode, see the work of Petter-
son and Ström [PS05] for compression and decompression
details.

In total, ETC2 consists of the following five modes: Indi-
vidual and differential, that were also part of ETC, the 59-bit
T-mode and the 58-bit H-mode, which are modifications of
previous work, and the 57-bit planar mode, which is new.

6. Complexity

We have not implemented our algorithm in VHDL, so it is
not easy to say exactly how much surface area will increase
when going from ETC to ETC2. Just like ETC, the H- and
T- modes work by modulating the intensity of a base color,
so much of the logic can be reused. Apart from more control
logic (which is simple), we have found that seven additional
multiplexors per color channel and one comparator for the
ordering trick in the T-mode are sufficient. The planar mode
must implement the function R(x,y) = x× (RH −R0)/4 +
y× (RV −R0)/4 + R0. Since x and y are either 0,1,2 or 3,

these multiplications can be implemented with a multiplexor
and an adder. Two subtractors (counted as adders) and two
adders are needed to sum the terms in the equation, in total
six adders per color channel (or five extra adders, since one
can be reused from ETC). Measuring complexity as number
of adders, it goes up from six in ETC to to 21, a factor of
3.5, which is a large increase. However, adders are not the
only thing that counts, so the real increase is likely smaller,
and since ETC is of low complexity to start with, we still
think that the size is manageable. Furthermore, with compu-
tational power rising much more rapidly than memory band-
width, it will make increasing sense to trade computational
power for compression efficiency.

7. Results

This section compares the results of the proposed system,
called ETC2, with S3TC/DXTC, ETC and ATI-TC. Since
all codecs are operating at 4 bpp, we can simply compare
the quality of the output. The quality measure that we use is
Peak Signal to Noise Ratio (PSNR), which is defined as

PSNR = 10log10

(
3×2552

MSE

)
, (1)

where MSE is the Mean Squared Error, defined as.

MSE =
1

w×h ∑
x,y

(∆R2
xy +∆G2

xy +∆B2
xy).

Here w and h are the width and the height of the image and
the differences between the original and the decompressed
images in pixel (x,y) are denoted ∆Rxy, ∆Gxy and ∆Bxy for
the red-, green- and blue component respectively.

Since the eye is more sensitive to the green component
than to the red and blue, it is common for encoders to
weight the errors for the components differently. In order
to maximize the PSNR score for the different coders, we
have used the weights (1,1,1) during compression for ETC,
S3TC/DXTC and ETC2. However, we have not found any
functionality to do so for ATI-TC, so we do not know the
weighting here. This could have a negative effect on ATI-
TC’s PSNR score with 0.5 - 1 dB.

A test set of 64 images of size 512× 512 has been used.
This set contains mainly photographs and game textures, but
also a small number of computer generated images, such as
colored text on colored background and one fractal. Smaller
resolution mipmaps of these images have been created using
box filtering down to a size of 8× 8 pixels, and these have
also been used in the evaluation.

The S3TC/DXTC and ATI-TC textures were compressed
using ATI’s “The Compressonator” version 1.27.1066. The
ETC textures (and the ETC modes in ETC2) were com-
pressed exhaustively, the 59-bit T-mode and the 58-bit H-
mode were compressed using radius 2 search (cf. Petterson

c© Association for Computing Machinery, Inc. 2007.

53

Jacob Ström and Martin Pettersson / ETC2: Texture Compression using Invalid Combinations

and Ström for detailed information [PS05]), and the planar
mode was compressed using least squares fitting.

The diagram in Figure 7 shows the quality for the entire
test set. For each mipmap size, the MSE score has been aver-
age over all images in the set, and then the aggregate PSNR
score for the test set is calculated using Equation 1. As can be
seen in the the diagram, ETC2 outperforms the second best
scheme (S3TC/DXTC) with a margin of between 0.82 dB
and 1.3 dB. As a rule of thumb, a difference of about 0.25 dB
is visible, so a difference of 0.82 is clearly visible.

Figure 9 show some examples of compressed images. Im-
ages for S3TC/DXTC, ETC, ETC2 are provided as well as
the original and a block map that tells which mode is used
per block in ETC2. All blue would mean that the image
would be exactly the same as ETC. Note how sharp color
transitions that previously gave rise to block artifacts are
handled much better (first row). Smooth color transitions
work very well due to the planar mode, whereas they are
often grainy or blocky in S3TC/DXTC and ETC (second
row). Since the method is backward compatible, areas that
were compressed well with ETC are left the same or slightly
improved (third row). For blurry areas, the planar mode is
almost exclusively used, and the result is a huge improve-
ment over S3TC/DXTC and ETC (fourth row). Colored text
on colored background is most often greatly improved (fifth
row), but sometimes remains problematic (sixth row).

 8 16 32 64 128 256 512
24

25

26

27

28

29

30

31

32

33

34

size

PS
N

R
(d

B)

ETC2
S3TC/DXTC
ETC
ATI−TC

Figure 7: PSNR scores averaged over the entire test set of
64 images, for different mipmap resolutions.

8. Conclusion

We have presented an extension of ETC called ETC2. By us-
ing invalid bit sequences, we are able to fit three new modes
to the codec, while keeping exactly the same bit budget.
Since we wanted to preserve backwards compatibility, this
work had to be incremental by definition, but we think the
performance increase of 0.82 dB is substantial, especially
since it improves problematic blocks.

Acknowledgements

Thanks to Tomas Akenine-Möller who spawned the idea idea to try
redundant bit combinations for ETC. Thanks also to Eric Fausett,
Eisaku Ohbuchi and DMP for permission to publish test images.

References

[AMN03] AILA T., MIETTINEN V., NORDLUND P.: De-
lay Streams for Graphics Hardware. ACM Transactions
on Graphics, 22, 3 (2003), 792–800.

[BAC96] BEERS A., AGRAWALA M., CHADDA N.: Ren-
dering from Compressed Textures. In Proceedings of SIG-
GRAPH (1996), pp. 373–378.

[CDF∗86] CAMPBELL G., DEFANTI T. A., FREDERIK-
SEN J., JOYCE S. A., LESKE L. A., LINDBERG J. A.,
SANDIN D. J.: Two Bit/Pixel Full Color Encoding. In
Proceedings of SIGGRAPH (1986), vol. 22, pp. 215–223.

[DM79] DELP E., MITCHELL O.: Image Compression
using Block Truncation Coding. IEEE Transactions on
Communications 2, 9 (1979), 1335–1342.

[Fen03] FENNEY S.: Texture Compression using Low-
Frequency Signal Modulation. In Graphics Hardware
(2003), ACM Press, pp. 84–91.

[IM06] INADA T., MCCOOL M.: Compressed Lossless
Texture Representation and Caching. In Graphics Hard-
ware (2006), ACM Press, pp. 111–120.

[INH99] IOURCHA K., NAYAK K., HONG Z.: System
and Method for Fixed-Rate Block-based Image Compres-
sion with Inferred Pixels Values. In US Patent 5,956,431
(1999).

[KSKS96] KNITTEL G., SCHILLING A., KUGLER A.,
STRASSER W.: Hardware for Superior Texture Perfor-
mance. Computers & Graphics 20, 4 (July 1996), 475–
481.

[MAMS06] MUNKBERG J., AKENINE-MÖLLER T.,
STRÖM J.: High-Quality Normal Map Compression. In
Proceedings of Graphics Hardware 2006 (2006), pp. 95–
101.

[PS05] PETTERSSON M., STRÖM J.: Texture Compres-
sion: THUMB — Two Hues Using Modified Brightness.
In Proceedings of Sigrad, Lund (2005), pp. 7–12.

[SAM04] STRÖM J., AKENINE-MÖLLER T.: PACK-
MAN: Texture Compression for Mobile Phones. In
Sketches program at SIGGRAPH (2004).

[SAM05] STRÖM J., AKENINE-MÖLLER T.: iPACK-
MAN: High Quality, Low Complexity Texture Compres-
sion for Mobile Phones. In Graphics Hardware (2005),
ACM Press, pp. 63–70.

[TK96] TORBORG J., KAJIYA J. T.: Talisman: commod-
ity realtime 3D graphics for the PC. In International
Conference on Computer Graphics and Interactive Tech-
niques (1996), ACM Press, pp. 353–363.

c© Association for Computing Machinery, Inc. 2007.

54

