
Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

Pseudorandom Number Generation on the GPU

M. Sussman1, W. Crutchfield1, and M. Papakipos†1

1PeakStream, Inc., Redwood City, CA, USA

Abstract
Statistical algorithms such as Monte Carlo integration are good candidates to run on graphics processing units.
The heart of these algorithms is random number generation, which generally has been done on the CPU. In this
paper we present GPU implementations of three random number generators. We show how to overcome limitations
of GPU hardware that affect the feasibility and efficiency of employing a GPU-based RNG. We also present a data
flow model for managing and updating substream state for each of the parallel substreams of random numbers.
We show that GPU random number generators will greatly benefit from having more outputs from each thread. We
discuss other hardware modifications that will be beneficial to the implementation of GPU-RNG, and we present
performance measurements of our implementations.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications G.3 [Proba-
bility and Statistics]: Randum Number Generation G.4 [Mathematical Software]: Parallel and vector implementa-
tions

1. Introduction

GPU performance is improving rapidly and already offers
a significant performance advantage in floating point com-
putations compared to the CPU [OLG∗05]. Statistical algo-
rithms such as Monte Carlo integration are particularly good
candidates for using the computing power of the GPU, as
these algorithms are often referred to as “naturally paral-
lel” [MCS99]. An important part of Monte Carlo integra-
tion techniques, as well as numerical simulations of stochas-
tic systems [SPM05], is the generation of pseudorandom
numbers. For certain random number generators, the perfor-
mance advantage of the GPU should make it significantly
faster at generating random numbers than the CPU. Addi-
tionally, using a GPU-based RNG for statistical simulations
on the GPU avoids the data transfer cost of using a CPU-
based RNG. In this paper we present techniques for mapping
pseudorandom number generation algorithms to the GPU, in
order to use the GPU as a parallel compute engine for statis-
tical simulations.

There are many pseudorandom number generation al-
gorithms (also referred to as random number generators),

† Founder and Chief Technology Officer, PeakStream, Inc.

which provide sequences of numbers that approximate the
statistical properties of true random numbers. In this paper
we are concerned with uniform random numbers un in the
interval [0,1):

{u0,u1,u2, . . .}

By far the most popular random number generators are lin-
ear generators, whose basic operations consist only of multi-
plication, addition, and modulus [Knu97]. For example, the
linear congruential generator (LCG) is written as:

xn = (axn−1 + c) mod m

un =
xn

m
where a is the multiplier, m is the modulus, and c is the in-
crement. As with all pseudorandom number generators, the
LCG has a period, or cycle length over which the sequence
repeats. With appropriate choices of a, c, m and x0 (referred
to as the seed), the period is m [Knu97]. In contrast to the
linear random number generators of various types are non-
linear random number generators, such as inversive congru-
ential generators. These generators are less popular because
they require more operations.

In computer graphics, noise functions such as the Per-
lin noise function are used to add randomness to other-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


M. Sussman, W. Crutchfield, & M. Papakipos / Pseudorandom Number Generation on the GPU

wise sharp computer generated images. They have control-
lable frequency bands and are designed such that anima-
tions do not change unexpectedly from frame to frame.
Some noise functions have recently been implemented on
the GPU [Ola05]. These appear to be related to a class of
explicit nonlinear pseudorandom number generators. How-
ever, the requirements for noise functions and pseudorandom
number sequences for Monte Carlo simulations are different,
so we do not further discuss noise functions here.

Modern GPU hardware (Direct3D 9 pixel shader version
ps_3_0 [Micb]) provides a programmable parallel processor
with the following important attributes [LKM01] [Eng04]:

• floating point arithmetic, single precision only
• no hardware support for integer arithmetic
• up to 16 floating point outputs for each thread (4 render

targets of type float4)

We will show how these hardware attributes play an impor-
tant role in determining which random number generation
algorithms may be efficiently implemented on a GPU.

We present implementations of three different random
number generators for the GPU. The first is a nonlinear gen-
erator that may be implemented using ps_3_0. The second
and third are linear generators that require changes to the
GPU hardware and programming model to enable efficient
implementations. We also propose a model for any gener-
ator, where parallel substream states are initialized, main-
tained and updated on the CPU, while the random numbers
are generated on the GPU.

In the remainder of this paper we discuss well-known
methods of parallelizing random number generators. We
give examples of parallel random number generators that
have been implemented on the CPU, and we discuss the lim-
itations and difficulties of mapping such algorithms to the
GPU. We then show how many of these limitations may be
overcome in the implementations of our three random num-
ber generators. We present performance measurements (or
performance estimates) for our GPU-based random number
generators and compare their performance to reference im-
plementations on the CPU. Finally, we discuss future work,
and review the changes in GPU hardware that will be most
beneficial for GPU-based random number generation.

1.1. Parallel Random Number Generators

It is well-known that correlations occur in linear random
number generators [Knu97]. To construct a generator that
minimizes correlations, tests such as the spectral test are
used to find good choices of modulus and multiplier. If such
searches for modulus and multiplier are not done carefully,
it is easy to construct a method that has poor randomness
properties according to one or more tests. Examples of soft-
ware containing a “bad” generator can be found in the liter-
ature [Ent97]. The problem of correlations also affects any
parallel linear random number generator.

Much work has already been devoted to devising ran-
dom number generation algorithms for parallel computa-
tion [EUW98] [MCS99] [LSCK02]. The key problem solved
in previous work has been to create parallel substreams
of random numbers that are statistically independent, both
within a substream and between substreams. Defining paral-
lel substreams:

{xn,xn+1,xn+2, . . .}
{yn,yn+1,yn+2, . . .}

...

{wn,wn+1,wn+2, . . .}

Any of the substreams may be tested for intra-stream corre-
lations, using one or more tests. Any sequence constructed
by selecting elements of the substreams at the same n

{xn,yn, . . . ,wn}

may be tested for inter-stream correlations. The cycle length
of the substreams, over which the pattern of numbers re-
peats, must be sufficiently long to avoid repeating a cy-
cle within one computation [SPM05]. Testing the statisti-
cal properties of random number generators can be done
using well-known test suites such as Diehard [Mar95] and
TestU01 [L’E05].

There are two primary methods of parallelizing random
number generators, referred to as cycle splitting and param-
eterization [SPM05]. In parameterization, a random num-
ber stream has input parameters that have different values in
each substream. The parameters may be seeds, which means
that each substream is a different stream emitted from the
same generating function, or the parameters may be used
in the underlying generating function at each iteration n,
for example parameterizing the multiplier and modulus of
an LCG. In the latter case, the method of generating ran-
dom numbers is different in each substream. An example of
this kind of parameterization is the Wichmann-Hill genera-
tor [Mac89], a family of combined linear congruential gen-
erators (CLCG) that offers 273 possible substreams with dif-
ferent multipliers and moduli.

In cycle splitting, a single random number stream un of
length N is broken into P separate substreams of length
B. If blocking is being used, the ith substream gener-
ates the sequence {uiB,uiB+1, . . . ,uiB+B−1}. If leapfrog
is being used, the ith substream generates the sequence
{ui,ui+P,ui+2P, . . .}. Figure 1 is a schematic diagram show-
ing these two methods of cycle splitting.

Long range correlations that occur in linear random num-
ber generators are further exacerbated by cycle splitting.
With blocking, long range correlations in a random num-
ber stream become inter-substream correlations, and with
leapfrog, long range correlations become short-range intra-
substream correlations [SPM05]. Searches are performed to

c© The Eurographics Association 2006.



M. Sussman, W. Crutchfield, & M. Papakipos / Pseudorandom Number Generation on the GPU

1 2 3 4 5 B B+1 B(P-1)... ... ...

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Substream 1 Substream P

1 2 3 4 5 ...6 7 8

1 1 1 1 2 2 2 3 3 3 3 4 ...

Substream 1

Blocking:

Leapfrog:

2

Figure 1: Diagrams of blocking and leapfrog

find good values of block size for a given linear generator in
order to minimize these correlations [LSCK02].

2. Examples of Parallel RNGs

2.1. Combined Multiple Recursive Generator

The multiple recursive generator (MRG) is a linear generator
with k stages defined by:

xn = (a1xn−1 +a2xn−2 + · · ·+akxn−k) mod m (1)

un =
xn

m
(2)

The output of the generator is a floating point number un
which is in the half-open interval [0,1), while the state of
the generator is represented by k integers xn−1, . . . ,xn−k. To
create a generator with a longer period, the combined mul-
tiple recursive generator (CMRG) [L’E96] combines more
than one MRG according to:

un =
(

xn1
m1

+ · · ·+
xn j

m j

)
mod 1 (3)

One example of a CMRG that has good properties is the
MRG32k3a generator of L’Ecuyer [LAZ∗99]. It has a pe-
riod approximately 2191 and can be divided into many par-
allel substreams [LSCK02]. It is incorporated in the MKL
and ACML math libraries from Intel and AMD, respec-
tively [MKL] [ACM].

2.2. Combined Explicit Inverse Congruential Generator

An example of a non-linear random number generator is the
Explicit Inverse Congruential Generator (EICG) [EUW98]
of the form:

xn = a(n+n0)+ c mod m (4)

un =
xn

m
(5)

where the horizontal bar indicates inversion modulo m with
special handling of zero argument:

nn = 1(mod m) , n 6= 0
n = 0, n = 0

(6)

Equation 6 may be solved using the extended Euclid al-
gorithm [Knu97] and by the binary extended gcd algo-
rithm [MvOV96]. The EICG is explicit because the nth ran-
dom number un only depends on n and the “seed” n0, and not
on the previous state. The period of the generator is m and
m is a prime number. Combining more than one EICG, each
with different modulus, according to Equation 3, results in
a CEICG. The period of CEICG is equal to the product of
moduli [EUW98]:

period =
j

∏
i=1

mi (7)

Note that computing modular inverse involves integer divi-
sion and remainder, which means that intermediate values
computed in the modular inverse algorithm never exceed the
number of bits of m.

CEICG have good randomness properties [Lee95], for ex-
ample they are completely free of lattice structure observed
with linear generators [Knu97], and therefore require no spe-
cial tuning of parameters to split into substreams for use in
parallel computing [EUW98]. However, their use is limited
by the fact that modular inversion is an expensive operation
where cost scales O(logm), using the extended Euclid algo-
rithm. As we discuss below, CEICG are of interest on the
GPU, due to the limits of the hardware.

3. Mapping to the GPU : Limitations and Difficulties

3.1. Limitation: 16 outputs per thread

In a pixel shader program, each pixel position (x,y) may
be thought of as being a separate thread of execution. Al-
though the actual number of executing SIMD threads is
much smaller than the maximum number of pixels, the or-
der in which pixel positions will be visited by the shader
program is unknown. Framebuffers have maximum size of
4096 by 4096, meaning that a GPU-RNG may process up
to 224 independent requests to generate random numbers. If
the GPU does not allow more than 16 outputs per thread,
the choice of the method of parallelizing the generator is
restricted. In a pixel shader program, 16 random numbers
may be generated for each pixel position. In this case, there
would be a need for 220 parallel substreams to fill the largest
possible buffer with random numbers (16 · 220 = 224). Us-
ing the method of substream parameterization, either a large
amount of seed data would be needed, or the family of ran-
dom number generators would have to offer a large choice of
substream parameters (far exceeding, for example, the avail-
able options for the Wichmann-Hill type). For most genera-
tors a large amount of memory would be required to store the

c© The Eurographics Association 2006.



M. Sussman, W. Crutchfield, & M. Papakipos / Pseudorandom Number Generation on the GPU

states of all of the 220 substreams. For example, MRG32k3a
would require 48 MB to store substream state.

Without more than 16 outputs per thread, it would be pro-
hibitive to use the CPU to update the state of each substream
because of the number of substreams required, both in CPU
cost of the update function and in memory transfer cost.
Alternatively, updating the state of each substream on the
GPU would require most of the output render targets be used
for outputting substream state rather than generated random
numbers. For example, the substream state of MRG32k3a is
represented by six 32-bit integers. As discussed below, this
requires 12 single precision floating point numbers to rep-
resent on the GPU. Each pixel position would therefore be
required to write 12 floating point values to update the state
of its substream, leaving only four slots to write outputs from
the RNG. That increases the required number of substreams
by another factor of four.

It is clear that without more than 16 outputs for each
thread, it will be difficult to create an efficient implemen-
tation of many types of parallel RNGs. One exception to
this concern is CEICG, which does not require storage of
substream states, since it is an explicit method. This allows
computation of independent substreams dependent on pixel
position and not previous state.

3.2. Difficulty: 32-bit (and higher) integer arithmetic

Most modern parallel RNGs require 32-bit integer con-
stants, with greater than 32-bit arithmetic. For example,
MRG32k3a uses formulas of the form:

zn = (ax−by) mod m (8)

In this case the modulus m is 32 bits, as are the previous val-
ues of the state x and y. The coefficients a and b are up to 21
bits. The computation may be carried out using either dou-
ble precision floating point arithmetic, which can represent
integers up to 53 bits, or it may be carried out using 64-bit
integer arithmetic. Otherwise, simulated higher-range inte-
gers are required to perform the steps of the computation.
In ps_3_0, arithmetic operations are limited to single preci-
sion floating point arithmetic, which can exactly represent
integers up to 24 bits.

In general it is a complex task to find the parameters for
a good linear random number generator that will fit into a
certain number of bits. For this reason, implementing linear
generators on the GPU will most often require simulating
higher range integers, because many of the published meth-
ods that are known to work well use greater than 24-bit arith-
metic. An exception to this rule is the Wichmann-Hill gen-
erator included in MKL and ACML.

Another exception to this concern is CEICG, because it is
nonlinear. A nonlinear generator may be readily constructed
in which all of the operations require only 24-bit floating
point arithmetic, as will be shown in a later section.

3.3. Difficulty: inexact integer division

Although the GPU supports IEEE-754 format single preci-
sion floating point numbers, certain mathematical operations
do not necessarily conform to the results expected from the
CPU. Among those operations are integer division and mod-
ulus, which are the basic operations needed by many ran-
dom number generators. On the GPU there may be rounding
errors in integer division results in the least significant bit,
which causes errors in fmod. A workaround for fmod is Al-
gorithm 1. The workaround for integer division ba/bc is sim-

Algorithm 1 Calculate fmod(a,b) for non-negative integers
div← floor(a/b)
rem← a−b ·div
if rem < 0 then

div← div−1
rem← rem+b

else if rem >= b then
div← div+1
rem← rem−b

end if
return rem

ilar to fmod, instead returning div at the end of Algorithm 1,
or if both the integer division and fmod result are needed,
they may be returned simultaneously from Algorithm 1.

4. Implementation of CEICG on the GPU

Because of the difficulties discussed in the previous sections,
it is easier to implement CEICG on the GPU than it is to
implement a high quality linear random generator. Specifi-
cally, single precision floating point arithmetic is sufficient,
and there is no need for more than 16 outputs per thread. We
may have a large number of substreams because there is no
need to save substream state.

Since CEICG is explicit and we are limited in the number
of outputs, we would like to have as many substreams as
there are pixel positions. Thus we require there to be 224

substreams. To avoid exceeding 24-bit arithmetic, we choose
prime numbers slightly less than 224 as the prime modulus
m for each EICG. Since the period of the generator is m, we
will require a combination of three EICG to give a period ≈
272 (recall Equation 7, the period is the product of 3 moduli
≈ 224). The sequence can be divided into 224 substreams of
length B not to exceed ≈ 248. If we were to only combine
two EICG, each substream would have less than 17 million
numbers before repeating, which is too short a period for
practical use. We divide the long stream into substreams of
length B using each pixel position (x,y), so that each EICG
is:

xn = a [n+n0 +(x +4096y)B]+ c mod m (9)

The values of the multipliers and moduli for the three com-
bined EICG are given in Table 1.

c© The Eurographics Association 2006.



M. Sussman, W. Crutchfield, & M. Papakipos / Pseudorandom Number Generation on the GPU

Table 1: Parameters used in CEICG

k m a c B mod m
1 16777213 7 0 24
2 16777199 11 0 1753
3 16777183 13 0 3969

B = 140739392569023≈ 247

The only tuning that has been done is to select a value of
B such that B mod m is less than

√
m. We can then apply

Algorithm 2, a factorization for modular multiplication that
permits computing ax mod m without computing any num-
bers that exceed m in absolute value [Knu97]. Since m is
less than 224 that means we do not require more than single
precision floating point arithmetic.

Algorithm 2 Calculate ax mod m without exceeding m

Require: a2 < m
Require: x < m
Require: bm/ac and m mod a {Precompute}

q← bm/ac
r← a(x mod q)− (m mod a)bx/qc {use Algorithm 1}
if r < 0 then

r← r +m
end if
return r

The pseudocode for computing one of the EICG is shown
in Algorithm 3. The three EICG are combined according to
Equation 3 to form the final random number output.

Algorithm 3 Compute EICG at pixel position (x,y)
Require: x < 4096
Require: y < 4096
Require: n+n0 < m

s← (x +4096y) mod m
b← B mod m
s← bs mod m {use Algorithm 2}
s← (s+n) mod m
s← as mod m {use Algorithm 2}
s← (s+ c) mod m
r← s mod m
return r

The state of the generator is represented by only three
floating point numbers n1,n2,n3, one for each of the three
EICG, where

0≤ nk < mk

After each call, the state is advanced according to

nk = (nk +1) mod mk.

The float4 version of this generator uses the leapfrog
method, taking four consecutive values of nk for the r,g,b,α

components of the float4 buffer. In that case the state is ad-
vanced according to

nk = (nk +4) mod mk.

The initial value of nk is set to a user-specified seed value
n0k with no loss of generality.

4.1. Test Results

This generator passes the Diehard test suite provided we as-
sume that the resolution of the generator is 23 bits, and gen-
erate 32-bit inputs to Diehard from two consecutive outputs
of the generator.

5. Implementation of MRG32k3a on the GPU

We assume that the hardware limitation of 16 outputs per
thread will be eliminated in future GPU hardware. This as-
sumption is a requirement for this section of the paper. One
method of providing more outputs per thread is a hardware
scatter operation, where a thread may write to multiple loca-
tions in an output target. In ps_3_0 hardware, pixel position
(x,y) always writes to position (x,y) in one to four render tar-
gets. Scatter operations are desirable for algorithms that re-
quire random access to output array(s). Vertex shaders are al-
ready capable of scatter operations [OLG∗05]. In the case of
random number generators, the primary benefit of a scatter
operation would be to allow more outputs per thread. There-
fore, the requirement for this section of the paper would be
satisfied by any hardware modification that permits a much
larger number of outputs per thread.

Assuming that a much larger number of outputs are possi-
ble from a shader program, it is feasible to implement a lin-
ear generator such as MRG32k3a. In this case pixel position
designates a particular random number substream, whose
state may be read from input textures. As an example, one
may partition the 224 values in a large output target into 212

substreams that each write 212 output values. The amount of
memory required to store the state of 212 substreams is 192
KB, because each substream requires 12 floating point val-
ues (48 bytes). A detailed study is needed to determine the
precise optimum number of substream states that should be
maintained. It should be noted that such a study may also
need to test for correlations between different positions in
an output target, which is a function of the chosen number
of substreams and the size of the arrays being filled.

The basic update step of MRG32k3a is [L’E96]

x1,n =
(
ax1,n−2−bx1,n−3

)
mod m1 (10)

x2,n =
(
cx2,n−1−dx2,n−3

)
mod m2 (11)

un =
x1,n

m1
+

x2,n

m2
(12)

where the values of the constants are given in Table 2.

Since we require greater than single precision floating

c© The Eurographics Association 2006.



M. Sussman, W. Crutchfield, & M. Papakipos / Pseudorandom Number Generation on the GPU

Table 2: MRG32k3a parameters [L’E96]

constant value
m1 4294967087
m2 4294944443

a 1403580
b 810728
c 527612
d 1370589

point arithmetic, numbers are represented by partitioning
them into 2 or 3 values, depending on whether they are 32-
bit generator state or 53-bit intermediate quantities, respec-
tively. An extended range integer is represented by

x = x0 + x1224 + x2248 (13)

if 53 bits are required, and x2 = 0 if only 32 bits are re-
quired. The algorithm to add or subtract two such extended
range integers is an extension of the paper and pencil method
with carry and borrow. The algorithm to multiply two such
numbers relies on further factoring the numbers according to

x = xl +4096xh

and again keeping track of the carry digits as in the paper and
pencil method. An algorithm to compute modulus is called
Barrett modular reduction [MvOV96], which relies on stor-
ing the numbers b264/mkc and using multiplication and di-
vision by powers of 2. Finally the division by mk necessary
in Equation 12 is done by storing 1/mk in the form

1/mk = d02−24 +d12−36 +d22−48

that is sufficient to produce the required accuracy in the final
floating point result.

5.1. Initializing and Maintaining Substream State on
the CPU

In our proposed example, each thread designated by a pixel
position (x,y) will compute 4096 output values that will be
written to an output render target. At the end of that loop, ei-
ther the GPU must update the substream state in preparation
for the next call to the RNG, or this update must be done on
the CPU. For the update to be done on the GPU, we must be
able to follow the computation of the output values by writ-
ing 12 floating point values representing the updated state of
the substream for pixel position (x,y).

Alternatively, the substream states may be updated on the
CPU either after a call to the shader program that generates
the random numbers, or while such a shader program is exe-
cuting. This may also be advantageous in the instance that
the generator requires periodic re-seeding from the CPU,
because the substream state will be resident on the CPU.
This update step when a substream is advanced by more
than one iteration is called “jumping ahead” [LSCK02].

For our example implementation of MRG32k3a, the new
state of each substream may be computed by jumping
ahead by 4096. This involves multiplying the state vec-
tor

(
xk,n−1,xk,n−2,xk,n−3

)
by a 3-by-3 matrix Aν

k mod m,
which can be computed by a divide-and-conquer algorithm
from the jump-ahead one step matrix Ak, with cost O(logν).
The same procedure is used for each of 2 state vectors, i.e.
k = 1,2. To do the jump-ahead computation on the GPU
would be cumbersome, because intermediate numbers go up
to 64-bits, but in theory it could be done using the same ex-
tended range integers that are used in the update step. This
model of the GPU-RNG data flow is shown in Figure 2. A
more detailed study is necessary to determine the optimum
location to perform the substream state updates, and the op-
timum may be specific to the particular RNG and to the way
it is being used.

generate 
pseudo-
random 
numbers

Statistical 
simulation

GPUCPU

Ns

Ns

Nrsubstream 
states

advance
states

seed

Figure 2: Data flow for substream state and RNG. Note that
Nr � Ns, where Nr is the amount of data generated by the
RNG and Ns is the amount of substream state data.

6. Implementation of Wichmann-Hill on the GPU

Assuming that a much larger number of outputs are possible
from a shader program, the Wichmann-Hill generator may
also be easily implemented on the GPU. This generator is
one of the few linear generators with the significant advan-
tage of requiring only single precision floating point arith-
metic. The update step for Wichmann-Hill is [Mac89]

x1,n =
(
c1x1,n−1

)
mod m1

x2,n =
(
c2x2,n−1

)
mod m2

x3,n =
(
c3x3,n−1

)
mod m3

x4,n =
(
c4x4,n−1

)
mod m4

un =
(

x1,n

m1
+

x2,n

m2
+

x3,n

m3
+

x4,n

m4

)
mod 1

In this case there are up 273 sets of constants, so we can
have (for simplicity) 256 substreams that would each output

c© The Eurographics Association 2006.



M. Sussman, W. Crutchfield, & M. Papakipos / Pseudorandom Number Generation on the GPU

65536 values to fill up a render target of size (4096,4096).
The constants vary in the range [Mac89]

16718909 ≤ mk ≤ 16776971

112 ≤ ck ≤ 127

Because the constants mk are 24 bits, and ck are all less
than

√
mk, we may use Algorithm 2 to compute modular

multiplication, and that is what permits the computations
to be done with single precision floating point arithmetic.
The Wichmann-Hill generator may also be “skipped-ahead”,
meaning that substream state may be updated on the CPU
while the GPU is computing random numbers, as shown in
the data flow model in Figure 2. Since Wichmann-Hill is
a linear generator that can be computed with single preci-
sion floating point arithmetic, it is expected to be among the
fastest possible random number generators on the GPU.

7. Summary and performance

Table 3 has a summary of the three random number gener-
ators that we have implemented on the GPU, showing the
number of substreams, the length of the sequence generated
by each thread, and the total amount of substream state data
that must be managed.

Table 3: Summary of GPU-RNG substream properties

name number of sequence state data
substreams length memory use

CEICG 224 ≈ 247 12 B
MRG32k3a 4096† ≈ 2115 192 KB
Wichmann-Hill 256 ≈ 262 4 KB
†for example

We measured the performance of CEICG on an ATI
X1900 series GPU with 500 MHz clock and 594 MHz mem-
ory clock. Peak speed was 44 million random numbers gen-
erated per second. In addition, we measured the speed of the
update functions for MRG32k3a and Wichmann-Hill gen-
erators, while writing out only 16 values per pixel position.
For MRG32k3a, we were unable to fit the entire update func-
tion in the limited instruction count for the pixel shader pro-
gram, so we measured the performance of updating only one
of the two component random numbers. That brings up an-
other hardware limitation, which is limited number of pro-
grammable instructions (the complete generator would re-
quire two passes). From these measurements we estimate
the peak speeds of MRG32k3a and Wichmann-Hill gener-
ators to be 111 million and 823 million random numbers
per second, respectively. As anticipated, CEICG is the slow-
est generator because it is nonlinear. The huge difference in
speed between MRG32k3a and Wichmann-Hill is due to the
fact that for MRG32k3a we’re required to perform extended

range integer arithmetic beyond the range of single preci-
sion floating point, and this requires many instructions. Fu-
ture generations of GPU hardware that offer 32-bit IEEE-
compliant integer arithmetic, as described in the Direct3D
10 Technology Preview [Mica], are expected to yield signif-
icant improvements in the performance of MRG32k3a and
other linear generators on the GPU.

Table 4: Summary of RNG performance measurements

name machine speed (million/sec)
CEICG ATI X1900 44
CEICG Xeon 3.6 GHz 0.3†

MRG32k3a ATI X1900 111 (est.)
MRG32k3a Xeon 3.6GHz 110
Wichmann-Hill ATI X1900 823 (est.)
Wichmann-Hill Xeon 3.6 GHz 79
†not using SSE

For comparison purposes, we also measured MKL imple-
mentations of MRG32k3a and Wichmann-Hill on an Intel
Xeon using one 3.6 GHz CPU. We measured 110 million
random numbers per second for MRG32k3a and 79 million
random numbers per second for Wichmann-Hill. We also
measured the performance of CEICG on an Intel Xeon using
a reference C language implementation compiled with gcc,
achieving a peak speed of 0.3 million random numbers per
second. The measurements are summarized in Table 4. In the
cases of CEICG and Wichmann-Hill, a significant advantage
in performance is achieved using the GPU. It is expected that
a significant advantage will be observed for CEICG even if
compared to a highly tuned reference implementation on the
CPU using SSE instructions.

8. Conclusions and summary of desirable GPU design
changes

This paper presented three example implementations of ran-
dom number generators on the GPU, showing the limitations
of present GPU hardware that affect such algorithms, and
showing how to overcome these limitations. We also pre-
sented a data flow model where the CPU is used for main-
taining and updating the substream state for each of the par-
allel substreams on the GPU. Of the generators we exam-
ined, the nonlinear generator CEICG may be run on present
hardware, and offers excellent randomness properties as well
as efficient utilization of the GPU. Linear generators such
as MRG32k3a and Wichmann-Hill will significantly bene-
fit from being able to write many more output values from
each thread, for example by using a scatter operation. GPU-
based random number generators will also greatly benefit
from hardware improvements such as:

• unlimited number of outputs per thread
• double precision arithmetic and/or integer arithmetic
• IEEE-754 exactly compliant fmod function

c© The Eurographics Association 2006.



M. Sussman, W. Crutchfield, & M. Papakipos / Pseudorandom Number Generation on the GPU

• more instructions in each shader program
• scatter operations

Finally, our performance measurements showed the promise
of GPU implementations of random number generation, and
by extension, of GPU-based statistical simulations.

References

[ACM] ACML: AMD Core Math Library. http://
developer.amd.com.

[Eng04] ENGEL W.: Programming Vertex and Pixel
Shaders. Charles River Media, Inc., 2004.

[Ent97] ENTACHER K.: A collection of selected pseu-
dorandom number generators with linear structures.
Tech. Rep. TR 97-1, ACPC, Austrian Center for Parallel
Computation, 1997. http://random.mat.sbg.ac.at/
results/karl/server.

[EUW98] ENTACHER K., UHL A., WEGENKITTL S.:
Linear and inversive pseudorandom numbers for parallel
and distributed simulation. In Proceedings of the 12th
Workshop on Parallel and Distributed Simulation (1998),
IEEE Computer Society, pp. 90–97.

[Knu97] KNUTH D. E.: The Art of Computer Program-
ming, 3 ed., vol. 2: Seminumerical Algorithms. Addison-
Wesley, 1997.

[LAZ∗99] L’ECUYER P., ARIELY D., ZAUBERMAN G.,
FISCHER W., CARMON Z.: Good parameters and imple-
mentations for combined multiple recursive random num-
ber generators. Operations Research 47, 1 (1999), 159–
164.

[L’E96] L’ECUYER P.: Combined multiple recursive gen-
erators. Operations Research 44, 5 (1996), 816–822.

[L’E05] L’ECUYER P.: TestU01: Empirical Testing of
Random Number Generators, 2005. http://www.iro.
umontreal.ca/~simardr/testu01/tu01.html.

[Lee95] LEEB H.: Random Numbers for Computer Simu-
lation. Master’s thesis, University of Salzburg, 1995.

[LKM01] LINDHOLM E., KILGARD M. J., MORE-
TON H.: A user-programmable vertex engine. In Pro-
ceedings of ACM SIGGRAPH (2001), pp. 149–158.

[LSCK02] L’ECUYER P., SIMARD R., CHEN E. J., KEL-
TON W. D.: An object-oriented random-number package
with many long streams and substreams. Operations Re-
search 50, 6 (2002), 1073–1075.

[Mac89] MACLAREN N. M.: The generation of multiple
independent sequences of pseudorandom numbers. Ap-
plied Statistics 38 (1989), 351–359.

[Mar95] MARSAGLIA G.: The Marsaglia Random Num-
ber CDROM including the Diehard Battery of Tests of
Randomness, 1995. http://www.stat.fsu.edu/pub/
diehard.

[MCS99] MASCAGNI M., CEPERLEY D., SRINIVASAN

A.: SPRNG: A scalable library for pseudorandom number
generation. In Recent Advances in Numerical Methods
and Applications II, Proceeding of NMA ’98 (1999), Iliev
O., Kaschiev M., Sendov B., Vassilevski P. S., (Eds.).

[Mica] MICROSOFT: Direct3D 10 Technology Preview.
http://msdn.microsoft.com/directx/sdk.

[Micb] MICROSOFT: Direct3D 9. http://msdn.
microsoft.com/directx/sdk.

[MKL] MKL: Intel Math Kernel Library. http://www.
intel.com.

[MM65] MACLAREN M., MARSAGLIA G.: Uniform ran-
dom number generators. JACM 12, 1 (1965), 83–89.

[MN98] MATSUMOTO M., NISHIMURA T.: Mersenne
twister: A 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Trans. on Mod-
eling and Computer Simulations 8, 1 (1998), 3–30.

[MvOV96] MENEZES A. J., VAN OORSCHOT P. C.,
VANSTONE S. A.: Handbook of Applied Cryptography.
CRC Press, 1996.

[Ola05] OLANO M.: Modified noise for evaluation on
graphics hardware. In Graphics Hardware (2005), Meiss-
ner M., Schneider B.-O., (Eds.).

[OLG∗05] OWENS J. D., LUEBKE D., GOVINDARAJU

N., HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL

T. J.: A survey of general-purpose computation on graph-
ics hardware. In Eurographics 2005, State of the Art Re-
ports (2005), pp. 21–51.

[SPM05] SCHOO M., PAWLIKOWSKI K., MCNICKLE

D. C.: A Survey and Empirical Comparison of Mod-
ern Pseudo-Random Number Generators for Distributed
Stochastic Simulations. Tech. Rep. TR-CSSE 03/05, Uni-
versity of Canterbury, New Zealand, 2005.

c© The Eurographics Association 2006.


