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Abstract
Relief mapping is an image based technique for rendering surface details. It simulates depth on a polygonal model
using a texture that encodes surface height. The presented method incorporates a quadtree structure to achieve a
theoretically proven performance between Ω(log(p)) andO(

√
p) for computing the first intersection of a ray with

the encoded surface, where p is the number of pixels in the used texture. In practice, the performance was found
to be close to log(p) in most cases. Due to the hierarchical nature of our technique, the algorithm scales better
than previous comparable techniques and therefore better accommodates to future games and graphics hardware.
As the experimental results show, quadtree relief mapping is more efficient than previous techniques when textures
larger than 512×512 are used. The method correctly handles self-occlusions, shadows, and irregular surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Color, Shading, Shadowing, and Texture; Raytracing I.3.5 [Computational Geometry and Object Modeling]: Hi-
erarchy and geometric transformations

Keywords: pixel based displacement mapping, relief mapping, quadtree, image based rendering, surface details

1. Introduction

Image based methods for rendering surface details are get-
ting more and more important in real time rendering. Tradi-
tional techniques such as texture and bump or normal map-
ping have increased the amount of perceived detail in ren-
dered scenes without requiring additional geometry, and are
now commonly used in games [Cat74,Bli78,Coo84]. While
normal mapping appropriately shades pixels according to the
perceived detail geometry, it doesn’t take geometric depth of
the surface into account. In recent years, many techniques
have been proposed that go a step further by providing mo-
tion parallax, where the surface appears to move correctly
with respect to the viewer. Some of these techniques actually
add detail geometry by recursive tesselation and displace-
ment of polygons [DH00,LMH00], while others rely on im-
age space to simulate depth in the resulting scenery (such
as relief texture mapping [OBM00]). A problem with the
first group of techniques, based on the displacement map-
ping work by Cook [Coo84], is that the rendering of a large
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number of small polygons is not appropriate for real time ap-
plications. The image space methods aim to render displace-
ment maps without explicitly rendering these small poly-
gons, while still being able to handle self-occlusions and
shadows.

Parallax mapping is, to our knowledge, the first technique
that allowed efficient parallax effects on simple geometry
[KTI∗01]. This method approximates the motion parallax ef-
fect by shifting the texture coordinates using the view vector
and a height map value. When implemented on the GPU,
parallax mapping is about as efficient as normal mapping,
while it appears much more realistic - especially for smooth,
low frequency height maps. Steep bumps, however, are ren-
dered incorrectly and the technique suffers from swimming
artifacts at grazing angles [Wel04].

Instead of just approximating motion parallax by shift-
ing texture coordinates, more recent techniques try to de-
liver a result that more closely resembles actual displace-
ment mapping. For every viewing ray, the first intersection
with a height map or surface should be computed. Figure 1
illustrates the difference between normal mapping, standard
parallax mapping and the result new techniques aim for.

View-dependent and generalized displacement mapping
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Figure 1: When looking along the depicted ray, normal
mapping gives the result at A, standard parallax mapping
shows the pixel at B, and the actual intersection is at C.

store the result of every possible ray intersection with a 3D
volume in a 5D structure [WWT∗03, WTL∗04]. Even after
compression, this requires quite a lot of storage. Also, the
significant amount of preprocessing reduces the appeal of
this method. For most game applications, 2D textures are
preferable for various reasons.

Relief mapping [POC05, OP05] is a tangent space tech-
nique that tries to find the first intersection of a ray with a
height field by walking along the ray in linear steps, until a
position is found that lies beneath the surface. Then a binary
search is used to more precisely locate the intersection point.
Although this technique is very fast, and has been shown
to support self-occlusions, shadows and even correct silhou-
ettes, it has one large disadvantage; linear search requires a
fixed step size. Therefore, to resolve small details, it is nec-
essary to increase the number of steps. If the step size is too
large, intersections with the surface can be missed as shown
in Figure 2. This can result in gaps in the rendered geometry
and aliasing artifacts if the frequency of the height field is
too high for the sampling frequency along the viewing ray.

Figure 2: Linear search can miss the first intersection with
a surface if the step size is too small.

Steep parallax mapping [MM05] tries to solve this prob-
lem by making the step size smaller than a pixel, but a
more elegant solution would be to automatically adjust the
step size as necessary. The distance mapping algorithm by
Donnelly does exactly that by implementing sphere trac-
ing [Don05]. His algorithm utilizes a distance map, in which
for every point the shortest distance to the surface is stored.
This distance is used to make a potentially large step along
the ray, without overshooting the surface (see Figure 3). Un-

fortunately, the distance map is a 3D texture, with an average
size of 512×512 pixels and a height of 16 to 32 layers.

Figure 3: With sphere tracing, the step size depends on the
minimal distance from a point to the surface. This distance
can be precomputed for any point in the enclosing volume.
Sphere tracing is guaranteed to find the first intersection of
a ray with a surface.

In this paper we present a relief mapping variation that
also takes large steps along the ray without overshooting the
surface, but without requiring a 3D texture. This is achieved
through the use of a quadtree on the height map and yields
a method that has time complexity between Ω(log(p)) and
O(
√

p), where p is the number of pixels in the used texture.
The storage requirements are only slightly higher than those
of relief mapping (we need 1 1

3 times as much space to store
all levels of the quadtree).

From a geometric point of view, the problem of finding the
intersection of a ray with a surface boils down to ray shoot-
ing on axis-oriented polyhedra. Each point on the height map
can be seen as a box which extends upward a certain height.
For this problem,O(log(p2)) query time can be achieved by
using O(p2) storage [Pel93]. Unfortunately, this method is
useless for implementation on graphics hardware due to its
storage requirements. In the same paper, Pellegrini gives a
trade-off between storage space and query time. UsingO(m)
space, for p1+ε ≤ m ≤ p2+ε, he obtains a query time of
O( p1+ε

√
m ) [Pel93]. For (almost) linear space, this would be

a O(
√

p1+ε) query time. Although the method described
in this paper does not significantly improve this result the-
oretically, our method is practically faster and easily imple-
mentable on graphics hardware using pixel shader version
3.0. Note that sphere tracing, steep parallax mapping, dis-
tance mapping and our method all have a worst-case query
time of O(

√
p), while Policarpo’s relief mapping method

has a constant query time because of the fixed number of
steps. However, if we relate the step size of his method to
the size of the texture used (to reduce aliasing), it also has a
O(
√

p) query time. As the results show, our relief mapping
method approaches a running time of log(p) in most cases.

2. Quadtrees

Quadtree relief mapping is based on the observation illus-
trated in Figure 4. Assume we are given a subsegment s of a
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viewing ray r, and a surface encoded in a height map. If we
know that the maximum height of the part of a surface below
s is lower than the minimal height of any point on s, then s
lies completely above this surface. Thus, if we are searching
the first intersection of r with the surface, we can jump over s
knowing that this subsegment does not intersect the surface.

h
p2

p1

s

Figure 4: Subsegment s of the viewing ray depicted above
extends from p1 to p2. The maximum height h of the part of
the surface that lies below s is indicated by a horizontal line
segment. Since s lies entirely above this line, we can safely
jump from p1 to p2 when searching for the first intersection.

The remaining question is how to determine which sub-
segments of the viewing ray should be used. To approach
logarithmic running time in any algorithm, an iteration
should be able to potentially reject half of the remaining op-
tions. This leads to the use of a space subdivision scheme
on the height map. We use a quadtree [Sam84] to handle ray
height map intersections. Each node of the quadtree stores
the maximum height value for the corresponding subtree (i.e.
the maximum height of the corresponding part of the sur-
face). This means that the lowest level of the quadtree stores
the complete height map, and the root of the quadtree stores
the maximum height over the entire surface.

Node B

Node A1 Node A2 Node B1 Node B2

Node A

Figure 5: The side view of 2 levels of a quadtree on a height
map, together with the encoded surface. Maximum heights
are indicated by red, horizontal line segments. The bold part
of the viewing ray in the upper and lower picture is associ-
ated with respectively node B and node B1.

Figure 5 shows a side view of the quadtree on maximum
height values. Every node in the quadtree stores the maxi-
mum height of the corresponding part of the surface encoded
in the height map. The four children of a node are each asso-
ciated with one fourth of its associated surface. In the same
way, a subsegment of the viewing ray can be associated with
a node (as illustrated in Figure 5).

To find the first intersection of a ray with the surface, the
quadtree is used as follows. When considering a node, we
are actually asking whether the view ray can intersect the
part of the surface that corresponds to this node. If the maxi-
mum height value stored in this node is lower than the lowest
point on the associated subsegment of the viewing ray, this
is clearly not possible. Thus, it is safe to jump over this node
and the corresponding subsegment of the view ray.

However, if there does exist a point on the associated sub-
segment of the viewing ray that goes below the stored maxi-
mum, we need to investigate this node further. One or more
children of this node have to be visited. Children are visited
in front to back order to ensure that the first intersection with
the surface is found. In Figure 5, children of node A as well
as node B have to be visited, starting with node B. Node B2
can be safely skipped, so B1 is visited next. The algorithm
stops when the first intersection is found.

If the viewing ray is (nearly) vertical, we only have to
visit one node in every level of the quadtree. So under the
best possible circumstances, the intersection can be found in
logarithmic time in the number of pixels in the height map
(O(log(p))). However, if the viewing ray is close and paral-
lel to the surface, we may have to enter a significantly larger
number of nodes. Consider a ray that lies diagonally over
the surface. In the worst case such a ray needs to enter twice
the square root of the number of nodes in every level of the
quadtree. This implies that the total number of visited nodes
is at most O(

√
p).

3. Algorithm

This section explains the algorithm that calculates the in-
tersection of the view ray and the surface encoded in the
quadtree relief map. The algorithm is designed to take ad-
vantage of graphics hardware. It requires a start position and
a direction (the view ray) and a preprocessed height map.
The starting point is the point where the view ray intersects
the actual geometry (i.e. the top plane of the box enclosing
the surface), in tangent space. The required quadtree relief
map is similar to a mip mapped version of the height map
texture. But instead of taking the average over 2× 2 pixels,
the maximum is calculated. This way the value of a pixel
equals the maximum over a certain area, which corresponds
to the highest point in that area. Every pixel in the resulting
texture represents a node in the quadtree. The highest level in
the quadtree has only one pixel, which stores the maximum
height of the surface.
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The algorithm uses a cursor that points to the current po-
sition along the view ray. Initially this cursor is at the start-
ing point (defined above). The cursor divides the view ray
in two segments. The first segment, from the startpoint up to
the cursor, does not intersect with the surface. Our goal is to
advance the cursor as far as possible in each iteration, until
the intersection with the surface is found.

Node

Ray 2Ray 1

Figure 6: Plane - Ray intersection. The height of the plane
is the maximum height of the surface associated with the cur-
rent node. Ray 1; continue in the lower right child. Ray 2;
jump over this node and continue in a neighbouring node.

We start at the root node and proceed as follows. At each
node there are two options; either we go down the tree into
one of the four children, or we jump to a neighbouring node.
The decision depends on the maximum height associated
with the current node. Figure 6 shows a plane drawn at the
height stored in the node. This plane is intersected by the
view ray. Ray 1 intersects the plane within the area of the
node (in the lower right child), but ray 2 does not. Each ob-
servation has its own effect on the new position of the cursor.

In the first case, the cursor is moved to the intersection
point of the view ray and the plane. Since the plane is at the
maximum height of the area associated with the node, no in-
tersection can occur above the plane. Therefore, moving the
cursor down to this height is guaranteed to be safe. Now the
algorithm has to continue in the correct child. This is easy,
because the cursor encodes exactly where we are in any level
of the quadtree. Regardless of the level, the cursor is always
in the correct node. Each level of the quadtree corresponds
to a texture, and for each texture the coordinates range from
0 to 1 even though the texture sizes are different. So going
up and down in the quadtree boils down to selecting the cor-
rect texture. For memory reasons, the textures for all levels
are still put together into one texture, which is twice as large
as the original height map texture.

In the other case, the ray lies above the plane inside the
boundary of the current node. The cursor is advanced to the
boundary, since the intersection is not inside this node. In-
stead of moving up the tree to the common ancestor of the
current node and its neighbour (which a raytracer would do),
the algorithm continues directly in the adjacent node. Al-
though both methods produce the exact same result, we have
empirically found that the second approach is faster.

3.1. Boundaries

The boundary of the current node is needed to determine the
new position of the cursor. It is used to determine whether

a point lies inside the node, and if not, the cursor is moved
to the boundary itself. To avoid calculating the intersections
of the ray with all four boundaries of the node, the direc-
tion of the ray is taken into account. Figure 7 shows how
this is done. Depending on the quadrant the direction of the
ray points to, two boundaries are chosen to intersect with. In
quadrant A this would be the right and upper boundaries (1
and 4). This results in two intersections (t1 and t2), of which
the nearest is chosen as the new cursor position.

r
1

B

C D

A

4

2

3

t1

t2

r

Figure 7: The direction of the view ray determines with
which boundaries we have to calculate an intersection (line
1 and 4 in this case). The intersection closest to the current
position, t1, is used as the new cursor position.

When choosing the boundary as the new position of the
cursor, we have to add a small offset. The boundary between
two nodes does not belong to any node. By adding a small
displacement, the cursor gets a correct new position.

4. Implementation

Pseudo-code for the algorithm is listed below.

Algorithm 1: findIntersect(ray, texCoord, relie f Map)

1: cursor←texCoord
2: startPoint ←texCoord
3: quadrant ←(sign(ray) + 1) div 2
4: delta← 1

2 · textureWidth
5: level←0
6: tcursor ←0
7: while level 6= log(textureWidth)
8: height ←relie f Map[cursor, level]
9: t ← height

rayz

10: bound←bcursor · 2level +quadrantc

11: tbound ←
bound
2level −startPoint

rayxy

12: tmin←min(tboundx , tboundy )
13: tcursor ←max(tcursor,min(t, tmin +delta))
14: cursor←startPoint + rayxy · tcursor
15: if t < tmin +delta then
16: level←level +1
17: end if
18: end while
19: return cursor
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The first six lines are initialization, partly to speed up
the algorithm. Lines 8 and 9 calculate the intersection with
the plane set on the height found in the current node. The
boundary is calculated in parametric representation in lines
10 - 12 (note that the division by rayxy is component-wise).
The observation of whether the cursor is in- or outside the
current node is partly made in line 13, and partly in the if-
statement. Regardless of whether the cursor is in- or outside
the node, its new position is the furthest point along the ray
that is known to be safe. This is either the closest boundary
point, or the calculated intersection with the plane. Line 13
makes sure that when the cursor enters a neighbouring node
that stores a higher height value, the cursor continues further
down in the tree (instead of jumping back up). In line 14 the
new position of the cursor is calculated. Next, an if-statement
decides whether we need to go further down the tree. If not,
we start in the neighbouring node in the next iteration.

Note that the dynamic while-loop is only available in
graphics hardware that supports pixel shader model 3.0.
However, we noticed that decent results are still obtained
when the dynamic loop is replaced by a fixed loop with
about log(p) iterations. For example, for a height map with
1024×1024 pixels, 20 iterations is enough.

5. Discussion

The quadtree relief mapping method does not function cor-
rectly when standard mip mapping with filtering is enabled
on the height map texture. The problem is that the average
operator does not propagate over the maximum operator.
Therefore, a mip mapped version of the height map would
no longer represent a valid quadtree relief map. Note that
the levels of the quadtree relief map itself can be stored as
different layers in a mipmap texture. We expect that using
these mipmap layers, instead of bilinearly filtered mipmap
layers, will give acceptable results.

A significant improvement both in visual result as in the
number of iterations required would be to implement ori-
ented quadtrees. Looking again at Figure 5 it is obvious that
instead of the horizontal plane, an oriented plane that rests on
top of the surface could also be used. For an oriented plane,
there are four height values: one for each corner. Instead of
using 1 color in the height map, all RGBA channels could
be used to encode the four different heights. The benefits of
needing fewer iterations to find the intersection are likely to
outweigh the costs of extra calculations inside each iteration.

To add self shadowing to the algorithm, essentially the
same ray-heightfield intersection method can be used by
shooting a ray from the light source toward the computed
intersection point. If this ray intersects the surface encoded
in the height field, the point lies in shadow [POC05]. Further,
it would be interesting to find out whether correct silhouettes
can be obtained in a similar way as presented in [OP05].

6. Results

The algorithm used in quadtree relief mapping is guaranteed
to find the first intersection of a viewing ray with a surface
encoded in a height map. This significantly reduces artifacts
on highly irregular surfaces (Figure 10). Still, the technique
works with a 2D texture that can easily be generated from a
standard height map. Because of the hierarchical approach,
the algorithm scales well to large height maps. The measure-
ments in Table 1 were made using a height map that encoded
a highly irregular surface, as shown in Figures 9 and 10, and
give an average framerate for a range of viewing angles. For
less irregular surfaces our technique is even faster, since the
number of steps performed depends on the frequency of the
height map. The number of steps used in relief mapping is
taken from Policarpo’s paper for 256× 256 textures. If the
texture dimensions are twice as large, the number of linear
steps is doubled and one additional binary step is performed.

Parallax Relief Quadtree relief
mapping mapping mapping

256×256 360 188 95
512×512 360 84 82

1024×1024 357 48 71
2048×2048 354 <9 63

Table 1: Average fps for viewing angles ranging from top
down to grazing, on two Geforce 6600GT cards in SLI mode.

While the amount of fragments that need to be rendered
determines how many times the pixel shader has to be exe-
cuted, the amount of time spent for one fragment is higher
when a larger height map is used. Developers are starting
to use normal and texture maps of 2048x2048 resolution for
large parts of their game content [Epi05]. Although textures
of this size are mostly atlases, it makes sense for image based
rendering techniques that aim to improve such games visu-
ally to support increasing texture sizes.

We showed that an intersection query of a ray with the
height map takes between Ω(log(p)) and O(

√
p) time,

where p is the number of pixels in the height map. In prac-
tice, most intersection queries only need a logarithmic num-
ber of steps, as demonstrated in Figure 8. Figure 9 shows
how quadtree relief mapping performs for various depths.
Finally, Figure 11 compares our method with relief mapping
with respect to the perceived height.
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Figure 8: Quadtree relief mapping using a 512×512 height
map. White means not found within 10, 15 and 25 iterations.

Figure 9: Quadtree relief mapping using various heights.

Figure 10: Artifacts in relief mapping (left) and quadtree
relief mapping (right) when rendering an irregular surface.

Figure 11: Relief mapping (top) and quadtree relief map-
ping (bottom). Note the differences in perceived height when
looking at the screws from a grazing angle.
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