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Abstract

This paper presents a novel and fast technique to combine interleaved sampling and deferred shading on a GPU.
The core idea of this paper is quite simple. Interleaved sample patterns are computed in a non-interleaved de-
ferred shading process. The geometric buffer (G-buffer) which contains all of the pixel information is actually
split into several separate and distinct sub-buffers. To achieve such a result in a fast way, a massive two-pass
swizzling copy is used to convert between these two buffer organizations. Once split, the sub-buffers can then be
accessed to perform any fragment operation as it is done with a standard deferred shading rendering pipeline. By
combining interleaved sampling and deferred shading, real time rendering of global illumination effects can be
therefore easily achieved. Instead of evaluating each light contribution on the whole geometric buffer, each shad-
ing computation is coherently restricted to a smaller subset a fragments using the sub-buffers. Therefore, each
screen pixel in a regular n X m pattern will have its own small set of light contributions. Doing so, the consumed
fillrate is considerably decreased and the provided rendering quality remains close to the quality obtained with a
non-interleaved approach. The implementation of this rendering pipeline is finally straightforward and it can be

easily integrated in any existing real-time rendering package already using deferred shading.

1. Introduction

Major improvements in graphics hardware have been re-
cently achieved. A commodity GPU now offers program-
ming capabilities, a very high fillrate and a large memory
bandwidth. Unfortunately, the current architecture of the
GPUs requires specific cares and many classical and effi-
cient CPU techniques must often be completely re-designed
to remain fast with a GPU. In this paper, we present a GPU-
friendly method to perform interleaved sampling i.e. an ef-
ficient way to achieve uncorrelated computations on nearby
pixels. The principle of our algorithm is quite simple. Instead
of performing every computation for each pixel, we propose
to perform all shading operations on interleaved and sepa-
rate tiled sub-buffers. These sub-buffers are actually built
by splitting an initial buffer. Formally, the texels inside a
n x m regular pattern are dispatched over different regions of
the screen, the separate sub-buffers. Hence, texel (x,y) will
go to texel (x/n,y/m) belonging to sub-buffer (i, j) with
i = xmod nand j = y mod m. Combined with an ex-
tended deferred shading rendering pipeline, our interleaved
sampling technique can easily be used to perform real time
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global illumination effects on a single commodity computer.
In comparison with a brute force approach, the resulting per-
formance is thus improved by more than an order of magni-
tude.

(b)

Figure 1: The Indirect Lighting Impact (a) presents a snap-
shot of Q3tourney2 (courtesy of Id Software) with direct
lighting only (two point light sources). The screen resolu-
tion is 1024 x 768. (b) The same scene with 512 secondary
point light sources. Using interleaved deferred shading, the
scene is rendered at 17 f/s on a GeForce 6800 GT and 33 f/s
on a NVidia GeForce 7800 GT.
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The remainder of the paper is organized as follows. Sec-
tion 2 sums up the related work and our motivation. Section
3 presents our core technique i.e. the buffer splitting strat-
egy used to perform interleaved sampling and all following
shading operations. Section 4 shows how the standard de-
ferred shading rendering pipeline can be greatly accelerated
by combining it with the buffer splitting technique. Sections
5 and 6 are devoted to the results obtained for every step of
the pipeline and two different kinds of applications. A con-
clusion and possible future work are finally given in Section
7.

2. Previous Work

Since Kajiya formalized the light transport problem with the
rendering equation [Kaj86], many sampling methods have
been proposed. Cook et al. first presented several Monte-
Carlo strategies using camera path samples and incoher-
ent sampling from one pixel to the other [CPC84] [Co086].
More recently, Keller and Heidrich proposed a simple inter-
leaved sampling strategy [KHO1] quite suitable to graphics
hardware. First, interleaved samples are taken from a num-
ber of independent regular grids which are then merged into
a single sampling pattern. The samples of all regular grids
are thus interleaved such that in the final high-quality image,
adjacent pixels are not correlated.

This sampling technique was successfully used by Ingo
Wald et al. to perform interactive global illumination
[WKB*02]. First, the whole incoming radiance field is re-
placed and represented by a set of hemispherical virtual
point lights (commonly called V PLs) computed with the In-
stant Radiosity algorithm [Kel97]. Then, all visibility re-
quests are computed with an efficient and parallelized ray-
tracer [WBWSO01] [WSBWO1]. To perform the integration
with limited computation capabilities, the V PL contributions
are interleaved. Therefore, not every pixel computes every
lighting sample since each pixel in a regular pattern (3 x 3
for example) uses a different light sample set. The V PL con-
tributions are then filtered using a discontinuity buffer. With
a cluster of commodity computers, they achieved interactive
frame rates on highly complex scenes. Unfortunately, ray-
tracing is not currently supported by specific graphics hard-
ware and even if significant advances were recently achieved
in this domain [SWS02] [SWSO05], commodity "RPUs" are
not currently available.

This motivates a GPU approach. Indeed, major improve-
ments in the domain of graphics hardware considerably
accelerated many algorithms which used to be considered
slow. Deferred shading first introduced by Deering et al.
[DWS*88] then developed by Saito and Takahashi [ST90] is
certainly one of them. It suggests storing the geometric and
material information in buffers (generally called "G-buffer")
and reusing them to perform the lighting computations. It
greatly simplifies the rendering pipeline and it also pre-
vents the geometry from being reprojected each time a shad-

ing pass is performed. Unfortunately, achieving real time
global illumination without noticeable artifacts and there-
fore with a large set of virtual point light sources requires too
large computation capabilities. That is why Dachsbacher and
Stamminger recently presented several techniques [DS06]
to limit shading computations while integrating the incom-
ing radiance field. They precisely bound all computations
by ellipsoids surrounding the light sources and fix their size
proportionally to the light source power. Nevertheless, too
tight bounding volumes can lead to noticeable artifacts while
too large ones strongly limit the frame rate. Simply sub-
sampling the screen space also leads to visible problems
since filtering the irradiance as a post-process becomes quite
difficult.

These issues motivated our approach. We tried to set up
a GPU-friendly way to perform interleaved sampling and
therefore to achieve real time rendering of global illumina-
tion effects by combining it with a deferred shading process.

3. GPU-friendly Interleaved Sampling

The goal of this section is to limit computations to separate
and distinct fragment subsets. In a standard deferred shad-
ing application, since a light source will illuminate all screen
pixels, a large fillrate will be consumed if many light sources
are present in the scene. With interleaved sampling and a
n X m interleaved pattern, each pixel inside a n X m rectangle
will have its own set of light contributions and no correlation
between adjacent pixels occur. By exploiting the coherence
of neighbor pixels and blending their irradiance, the render-
ing quality can therefore remain close to the quality provided
by non-interleaved methods with a performance equivalent
to the performance obtained with a sub-sampling technique.
This section introduces the shortcomings of several basic
ideas to perform interleaved sampling and also presents a
more GPU-friendly approach. To compare all the tested ap-
proaches, we will assume that a geometric buffer containing
the normal, the position and the material information of each
pixel has been first created and stored.

3.1. Basic Approaches

The obvious way to accomplish interleaved sampling is to
render n X m passes by using a stencil buffer for each of
them so that only one pixel in each n x m cell should be ren-
dered. This approach was tested and as shown in Table 1, it
gave very poor results. Indeed, even if early fragment culling
is activated, the incoherence of the input data prevents the
GPU from being efficient. Several variants were also ex-
plored. First, stencil tests were replaced by depth tests in
order to exploit early-z culling capabilities. However, as the
hierarchical Z-buffer algorithm [GKM93] commonly used
by the GPUs also requires the coherence of the depth data,
the method was inefficient too. We secondly tested dynamic
branching but the incoherence of the data once again caused
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| 4x4 | 2x2
No Interleaving 75ms | 75 ms
Stencil Culling 73ms | 72 ms
Depth Culling 72ms | 74 ms

Dynamic Branching [ 78 ms | 82 ms

Table 1: Time to accumulate 16 point light contributions
The G-buffer resolution is equal to 1024 x 1024. Stencil or
depth culling and dynamic branching give very poor results.
The incoherence of the data inside a 2 X 2 or 4 X 4 pattern
strongly limits the performance.

bad results. We finally tried to directly create the tiled and
separate sub-buffers presented in Figure 3.c by accessing
the G-buffer data with an indirection during every shading
pass. Since the texture accesses are very incoherent, the ap-
plication becomes utterly bound by the memory latency and
considerably slows down. These failures motivated more so-
phisticated techniques.

3.2. One-pass G-Buffer Splitting

To provide the coherence needed by the GPU, explicitly
splitting the G-buffer G into n x m smaller tiled sub-buffers
i j seems a good idea since operations for each light source
can be performed on contiguous groups of pixels. To under-
stand this simple concept, Figure 3.b gives an example of a
split normal buffer. Hence, texel (x,y) from G goes to texel
(x/n,y/m) belonging to sub-buffer G; ; withi = x mod n
and j = y mod m. The split can be done in a single pass
with a specific fragment program. A look-up texture is first
precomputed and used to move a texel of the initial G-buffer
to the associated texel of the split G-buffer. Using one pass
to split the buffer is unfortunately slow since memory ac-
cesses remain strongly incoherent during the splitting pass.
Fortunately, the approach can be easily accelerated.

3.3. Two-pass G-Buffer Splitting

The memory organization on GPUs requires special care.
Indeed, like CPUs, GPUs are all the more efficient that
memory and cache accesses are coherent. To provide
coherence during any mapping operation, the textures are
2D block allocated by the graphics card drivers. It motivated
a coherent two-pass approach.

Block Splitting: The memory and cache access inco-
herence during the one-pass splitting is mainly caused by
the size of the manipulated data. A simple idea is therefore
to limit splitting operations to small 2D blocks to enhance
data locality. The initial G-buffer G is thus subdivided into
p X g blocks and each block is split into n X m separate
sub-blocks. If the blocks are small enough, memory ac-
cesses remain coherent during the pass. After this pass, each
sub-buffer is subdivided into p X ¢ sub-blocks spread across
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the whole buffer as shown by Figure 2.c.

Block Translation: To rebuild each sub-buffer, another
pass performs the translation of the interleaved sub-blocks
(See Figure 2.c and 2.d). Once again, the memory accesses
remain coherent since entire blocks are moved.

o A c
G-buffer
B D
a) b)
-
AN, % C ClC, AIC A CIA C
A% % clclc| /B|D| B, D) B]D
B, B,|B. [ D} Bi—+2C | |4 C,
B, B, B,|D|D| D B, D,| B,| D,|| B,| D,
c) d)

Figure 2: Two-pass G-buffer splitting The desired inter-
leaved pattern is 3 X 2. (a) presents the initial G-buffer. (b)
The G-buffer is subdivided in 4 (2 x 2) blocks. The inter-
leaved pattern size is 3 X 2. (¢) shows the G-buffer after the
block splitting. As the interleaved pattern is 3 X 2, each block
has been split in 6 (3 X 2) sub-blocks. The wanted sub-buffers
(A;iB;C;D;) are therefore spread across the whole buffer. (d)
shows how the sub-buffers (A;B;C;D;) are retrieved by the
block translation.

As shown in Section 5, this approach gives satisfactory
results. In most of the cases, performing block manipulations
is much more efficient than the one-pass naive approach.

3.4. Buffer Gathering

Once the shading operations have been achieved (See Sec-
tion 4.3), the interleaved pattern is reconstructed by gather-
ing the sub-buffers. This pass is the opposite of the buffer
splitting one (see Figure 3.d) and for the same reasons, it is
performed in two passes, the block translation pass and the
block gathering one.

With the buffer splitting approach, uncorrelated light con-
tributions or more generally uncorrelated computations can
be made for nearby pixels in a way as generic as the one
proposed by a standard deferred shading approach. In the
next sections, we will show that computing and accumulat-
ing hundreds of light contributions is now possible with a
decent framerate and a good rendering quality by combin-
ing buffer splitting with deferred shading and fast filtering
techniques.
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4. Non-interleaved Deferred Shading of Interleaved
Sample Patterns

‘We now present an extension of deferred shading using the
buffer splitting/gathering techniques. Instead of performing
the shading operations on the whole G-buffer, they are re-
stricted to low-resolution tiled sub-buffers. In comparison
with standard deferred shading, three passes are added. The
first one splits the G-buffer in several sub-buffers. The sec-
ond one reconstructs the interleaved sampling pattern after
the shading passes and the third one exploits the spatial co-
herence of neighbor pixels to blend uncorrelated lighting
contributions. Therefore, the rendering pipeline is now de-
composed into 5 steps all presented in Figure 3.

4.1. G-Buffer Creation (BC)

Before the shading operations, three float buffers (the G-
buffer) which respectively contain positions, normals and
colors are first created (see Figure ??). The material informa-
tion such as material identifiers is also packed in the remain-
ing components. For bandwidth reasons, precision is limited
to 16 bits and the scene is therefore bounded.

4.2. G-buffer Splitting (BS)

The initial G-buffer is split into separate sub-buffers. Two
look-up textures are first computed. The first one stores the
block splitting function presented in Section 3.3 while the
second one stores the block translation function. Then, two
fragment programs successively execute the two functions.
Once it is done, the sub-buffers are tiled in a buffer with the
same size than the initial one (see Figure ??).

4.3. Shading Computations (SSM / SNSM)

Different lighting contributions are computed for each sub-
buffer. Any operation possible with deferred shading is still
available. Indeed, as the former G-buffer is explicitly split
into smaller sub-buffers, any deferred shader can also be
used by focusing the viewport or drawing a quad on a given
sub-buffer. A tile of small irradiance sub-buffers is then ob-
tained (see Figure 3.c). It may be noticed that the visibil-
ity of hemispherical (resp. spherical) point light sources is
solved by unrolling the hemicube (resp. the cube) in a stan-
dard shadow map [Wil78] and reindexing it with a small
cube map as described in [KNO4]. Depending on the appli-
cation (see Section 6), two shading techniques can finally be
used: SSM (Shading with a Shadow Map) is a shading pass
with a shadow map reprojection and SNSM (Shading with
No Shadow Map) is a shading pass with no shadow map re-
projection (visibility is ignored). In both cases, glossy and
diffuse BRDFs are handled.

4.4. Buffer Gathering (BG)

Once all light contributions have been accumulated, the ir-
radiance buffer is rebuilt by two fragment programs which

successively perform the two passes of the buffer gathering
technique described in Section 3.4.

4.5. Filtering (F)

To maintain interactive or real time rendering, few light
contributions per pixel can be computed. If a filter is applied
on continuous zones of the screen, the geometric coherence
of the scene can be exploited to virtually compute many
light contributions per pixel.

Discontinuity Buffering (DB): A discontinuity buffer
is first computed. Two discontinuity thresholds (respectively
on normals and positions) are initially fixed. Then, a
fragment program reads the normal and the position buffers
and decides if the current pixel is on a discontinuity or not
by evaluating an arbitrary measure between the current frag-
ment (xg,yo) and its three "positive" neighbors (xo + 1,yp),
(x0,y0 + 1) and (xo + 1,yp + 1). Similar techniques are de-
scribed with more details by Simmons and Séquin in [SSO0].

Gaussian Blurring (B): The discontinuity buffer is
used to apply a two-pass separable Gaussian blur on
continuous zones of the screen. Two cases can occur.

e The current fragment (xg,yp) is not on a discontinuity.
The +x (resp. +y) and -x (resp -y) directions are explored
one after the other. Neighbor pixels are blended to the cur-
rent pixel until a discontinuity is encountered in the given
direction or the filter kernel size is reached.

e The current fragment (xq,yp) is on a discontinuity. Since
either (xo +1,y0) or (xo,yo+ 1) or (xo +1,y0 + 1) is not
similar to (xg,yp), only the -x (resp. -y) direction is ex-
plored. A neighbor pixel is once again blended to the cur-
rent pixel until a discontinuity is encountered.

+X +X
EEEEEEE NN

P\_H_H_H_H_H_A P\
(b) (a)

Figure 4: Gaussian Blur (a) The standard approach. For a
given direction, all texture accesses are made at texel cen-
ter. (b) With hardware-supported bilinear filtering. All tex-
ture accesses are made between two texels. Bilinear filtering
blends their contributions. One texture access is therefore
sufficient for two texels.

To speed up the filtering pass, we modify the standard Gaus-
sian blur by using hardware-supported filtering (see Figure
4). Instead of fetching data at the center of each texel, a 0.5
bias is applied and combined with hardware-supported bilin-
ear filtering. As extra artifacts can occur on discontinuities
with the fast filtering approach, the accesses to the disconti-
nuity buffer are also modified by activating the 0.5 bias and
the bilinear filtering. The texel contributions are then ignored
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(a)

(e) ) (€3]

Figure 3: Non-interleaved Deferred Shading of Interleaved Sample Patterns (a) G-buffer Creation. (b) G-buffer Splitting. The
G-buffer is subdivided into n X m separate smaller sub-buffers. Each sub-buffer contains a distinct texel subset. (c) Different
shading computations are performed on every sub-buffer. (d) G-buffer Gathering. The irradiance buffer is computed by gather-
ing all the irradiance sub-buffers. The resulting interleaved pattern may be noticed. (e) A discontinuity buffer is computed. (f) A
Gaussian blur is applied on the irradiance buffer and the discontinuity buffer is used to prevent non-neighbor texels from being
filtered. (g) The self-colors of the objects and the irradiance buffer are finally blended.

as soon as the discontinuity texel value is greater than 0. In
comparison with the first approach, this criteria is sufficient.

To prevent the object colors from being filtered, the self-
colors of the objects are blended only after applying the fil-
ter. As shown in Section 5, combining discontinuity buffer-
ing and interleaved sampling provides high quality filters
with very few visible artifacts.

4.6. Remarks

Two important remarks may be made. First, the discontinu-
ity buffer is already computed by many deferred shading en-
gines since it helps to perform antialiasing. Secondly, the
technique presented in this section can also be considered
as a Level-Of-Detail algorithm. If a 2" x 2™ (low details)
interleaved pattern has been computed, 2 x 2/ interleaved
patterns (higher details with i < n and j < m) can also be
performed by clustering several sub-buffers. Depending on
the application, it is therefore easy to interleave few direct
point lights and many secondary ones with only one inter-
leaved pattern.

5. Results

We present in this section the results obtained for every ren-
dering pass and the impact of all technical choices presented
in the previous sections.

5.1. Buffer Splitting Results

We analyzed the performance of the buffer splitting ap-
proach with or without block manipulations. Several sizes of
blocks were tested. Figure 5 presents some results obtained
on a GeForce 6800 GT. The performance greatly varies with
the size of the blocks and the interleaving sampling pattern
chosen. For a 2 x 2 interleaved sampling, buffer splitting
with 32 x 32 blocks is the most efficient method (only 5%
faster than the naive approach). For a 4 x 4 interleaved sam-
pling, buffer splitting with 16 x 16 blocks is 70% faster than
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Figure 5: Buffer Splitting Results The size of the G-buffer is
equal to 1024 x 1024. The x axis gives the size of the blocks
and the y axis gives the computation time in milliseconds.

Different interleaved sampling patterns are presented (2 X 2,
4x4and 8 x8)

the one-pass approach. Other tests were made. For larger res-
olutions such as 1280 x 1024 and large interleaved sampling
patterns, a finely tuned two-pass approach is more than three
times as fast as the naive one. Unfortunately, the choice of
the block size strongly depends on the organization of the
memory and caches on the card. That is why the optimal con-
figuration must often be empirically chosen for each screen
resolution and each regular pattern size.

5.2. Shading Results

The shading performance depends on the type of applica-
tions but it is identical to the one obtained with standard de-
ferred shading methods. All details are given in Section 6.

5.3. Buffer Gathering Results

The performance is quite similar to the one presented in Sec-
tion 5.1 but it may be noticed that only one three-component
16 bit float buffer has to be gathered since only the irradi-
ance buffer is rebuilt. This pass is therefore about 40% faster
than the splitting one.
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Normal Gaussian | Fast Gaussian

Blur Blur
Tx7 16.9 ms 10.9 ms
11 x11 29.7 ms 16.9 ms
17 x 17 51.8 ms 32.7 ms

Table 2: Filtering Results: Times to perform a Gaussian
blur on the picture. Two techniques are presented, with and
without hardware supported bilinear filtering. The screen
resolution is equal to 1280 x 1024. The GPU used for the
tests is a NVidia GeForce 6800GT.

5.4. Discontinuity Buffering and Filtering Results

Discontinuity Buffer: Computing discontinuities in a
fragment program does not strongly limit our application
since it is much less expensive than shading computations.
Nevertheless, handling discontinuities during the Gaussian
blurring is a bit more difficult and expensive.

Filtering: To stop blending texels beyond a disconti-
nuity, accesses to the irradiance buffer are sequentially done
along a direction. As soon as a discontinuity is encountered,
a flag is set to O to ignore the next texel contributions. It
can be noticed that dynamic branching can also be used to
stop blending texels beyond a discontinuity. This approach
was tested and does not provide any significant performance
enhancement (because the blurring operation is most of the
time performed on the whole kernel).

(a) (b) (©) (d)

Figure 6: Rendering Quality (a) the 1024 x 1024 reference
image computed with 512 point lights and no interleaved
sampling. (b) close-up on a lamp with a simple sub-sampling
approach. (c) 4 x 4 interleaved sampling with no filter. (d)
4 x 4 interleaved sampling + filtering

Table 2 shows results obtained with both standard and
hardware-supported approaches. Using float buffer filtering
capabilities provides a speed-up equal to 60 % without
visible differences.

Quality: Figure 6 presents some results obtained with
sub-sampling and interleaved sampling methods (self-colors
of objects are not blended). Even with high-variance
estimators due to glossy reflections, interleaved sampling
combined with a discontinuity buffer and our fast Gaussian
blur provides good results. Sub-sampling does not handle
high-frequencies details and it is much more difficult to deal
with discontinuities. As shown in picture 7, details brought

by a normal map or a finely tessellated model disappear
with sub-sampling whereas interleaved sampling and fast
Gaussian filtering still provide satisfactory results.

(b)

Figure 7: The surface details brought by a normal map are
conserved with interleaved sampling and our fast Gaussian
blur as shown in (a). They disappear with sub-sampling as
shown in (b).

6. Applications

After analyzing each computation pass of the algorithm, we
now present the overall performance obtained with two dif-
ferent kinds of applications. For both applications, a set of
virtual point light sources is first generated with the sam-
pling strategy provided by Instant Radiosity [Kel97].

6.1. Implementation Details

To handle visibility problems, several classical algorithms
were implemented. To speed up the visibility requests, the
geometry is first segmented with a kd-tree. Then, frustum
culling is performed to eliminate the unseen leaves of the
tree. A PVS or Potential Visible Set is finally computed for
the whole tree to cull leaves not seen by a given leaf. The
rasterization code was written using the OpenGL 2.0 API
and the ray tracing requests are done by using a finely tuned
kd-tree.

6.2. Fully Interactive Applications

Using our extension of the deferred shading pipeline with
real time applications (like video games) is straightforward
but requires specific approximations. An interactive applica-
tion needs a decent frame rate and computing all visibility
requests for every point light is very expensive. The first ap-
proximation which has to be done is thus to ignore visibility
for secondary light sources. Secondly, the variance is all the
larger that the number of bounces increases. To efficiently
handle this problem, only one-bounce indirect illumination
will be taken into account. It is generally visually sufficient.

Table 3 sums up the computation times of all passes with
two GPUs of different generations, a NVidia GeForce 6800
GT and a NVidia GeForce 7800 GT. With standard deferred
shading, BS, BG and F passes are not executed. Only one
or several shading passes are thus performed. It is therefore
easy to analyze the extra costs due to interleaved sampling.

(© The Eurographics Association 2006.
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| BC | BS | SSM | SNSM | BG | B
6800GT ‘ 10.9 ‘ 10.7 | 4.9 ‘ 4.7 451173

7800GT | 5.2 5.8 2.7 2.6 23 1 39

Table 3: Overview of the performance The results are given
in milliseconds per million of fragments. Times for the G-
buffer creation pass are given with a scene of Quake 3 (cour-
tesy of Id Software) counting 250000 triangles. All acronyms
are given in Section 4. The interleaved pattern size is 4 X 4
and the kernel size of the Gaussian filter is 5 X 5.

IS | nolS | speed-up
Q3dmll1 36f/s | 1.21/s x31
Dragon in Q3t1 29 f/s | 1.21/s x25
Buddha in Q3dm12 | 36 f/s | 1.2 1/s %30

Table 4: The performance with or without interleaved sam-
pling on a 7800 GT The screen resolution is 1024 x 768. The
interleaved pattern size is 8 x 6. 480 point light sources are
accumulated. With standard deferred shading, the situation
is intractable. If it is combined with interleaved sampling,
real time frame rate is achieved without too noticeable arti-
facts.

For a NVidia 6800GT, the extra time taken by the interleaved
sampling extension for one million of pixels is equal to 22.5
ms. It is roughly equivalent to 4.5 shading passes. There-
fore, if interleaved sampling saves more than 4.5 million
shading computations, it becomes competitive. For exam-
ple, with our implementation and a 4 x 4 interleaved pattern,
computing the contributions of 16 or more lights is already
more efficient with interleaved deferred shading. Further-
more, our approach seems to be adapted to current graph-
ics hardware improvements. With roughly the same mem-
ory bandwidth, the GeForce 7800 GT is roughly twice faster
than the GeForce 6800 GT. Therefore, even with large mem-
ory manipulations, the memory latency and bandwidth do
not strongly limit our approach and block splitting remains
efficient. Table 4 gives frame rates obtained with typical
scenes used in video games. Without interleaved sampling,
real time frame rate cannot be achieved. By extending the
rendering pipeline with buffer splitting, the performance is
improved by more than an order of magnitude without ma-
jor visible artifacts as shown in Figure 9.

6.3. Physically Based Rendering

Physically based rendering requires unbiased approaches.
The Instant Radiosity sampling strategy first gives a set of
virtual point lights (VPLs). For every VPL, a high quality
shadow map is computed. It is then reprojected into a given
sub-buffer. As visibility is solved for every VPL, the bot-
tleneck of the algorithm can be either the shading compu-
tations or the shadow map computations. Table 5 gives nu-
merical results obtained for scenes with different geomet-
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| Shadow Map | NolIS | 2x21IS | Speed Up
Office 2.2 ms 2.4 0.7s x3.4
Theater 4 ms 2.8s 1.0s x2.8
Conference 8 ms 38s 22s x1.7
Cruiser 15 ms 59s 40s x1.5

Table 5: Times to obtain less than 1% RMS error with a
NVidia GeForce 6800 GT. The office contains 31000 trian-
gles, the Candlestick theater 100000 triangles, the confer-
ence room 228000 triangles and the cruiser one million tri-
angles.

ric complexities. Hence, due to their linear algorithmic com-
plexities, the shadow maps become very expensive for large
scenes. With interleaved sampling, the shading problem can
be however efficiently handled. If the point of view and the
scene do not change, the G-buffer (split or not) does not have
to be recomputed. Therefore, if many V PL contributions are
accumulated, the G-buffer creation, the manipulation passes
and the filters become free. That is why our approach re-
mains most of the time much faster than deferred shading
with a speed-up roughly varying from the interleaved pat-
tern size like 2, 4 or 8% (for very simple scenes) to 1 (for
very large scenes). Figure 8 gives several images obtained
with this approach.

7. Conclusion and Future Work

In this paper, we presented an efficient and new way to per-
form interleaved sampling with today’s graphics hardware
and a novel and conservative extension of deferred shad-
ing. Instead of performing the shading computations with
the whole geometric buffer, they are made with small, sep-
arate and interleaved sub-buffers. Doing so, the necessary
fillrate is strongly limited and hundreds of light sources can
be accumulated in real time. By exploiting the pixel coher-
ence, the rendering quality remains very close to the qual-
ity obtained with a brute-force approach. Furthermore, all
operations available with deferred shading remain available
with our method and the algorithm can easily be integrated
in any existing real-time rendering packages already using a
deferred shading techniques.

The major step in improving the method is certainly to
solve the visibility problems in a better way. Shadow maps
like shadow volumes have a linear complexity in the relation
of the number of triangles. An interesting method would be
to perform the shadowing computations by ignoring the vis-
ibility during the shading passes but using a set of positive
and negative virtual point lights.
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(c) (d
1S:0.7s/NolS:2.4s 1S: 1.0s/No1S:2.8 s
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Figure 8: Physically Based Rendering Pictures and conver-
gence times obtained with less than 1% RMS error. Results
are given with or without interleaved sampling. The screen
resolution is 1280 x 1024 and the interleaved sampling pat-
tern is 2 X 2. (The theoretical maximum speed-up is there-
Jore equal to 4) (a) The office. 35 000 triangles are rendered.
(b) The Candlestick Theater with 100 000 triangles. (c) The
conference room. 200 000 triangles are rendered. (d) The
cruiser. One million triangles are displayed.

pointing out the missing references. The Cruiser, the Office,
the Conference Room and the Candlestick theater are cour-
tesy of Greg Ward and can be found on the RADIANCE
web site. Q3tourneyl, Q3tourney2, Q3dmll and Q3dm12
are courtesy of ID Software.
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(b.1) direct only

(a.1) direct only (a.2) direct + indirect (b.2) diet + indirect

6800 GT: 35 f/s 6800 GT: 19 f/s 6800 GT: 32 f/s 6800 GT: 15 f/s

7800 GT: 69 f/s 7800 GT: 36 f/s 7800 GT: 64 f/s 7800 GT: 29 f/s

(c.1) direct only (c.2) direct + indirect
6800 GT: 31 f/s 6800 GT: 15 /s
7800 GT: 58 /s 7800 GT: 29 /s

Figure 9: Fully Interactive Applications The screen resolution is 1024 x 768. The interleaved pattern size is 8 X 6. Visibility
for secondary light sources is ignored. All scenes count 480 secondary VPLs. Frame rates obtained for direct contributions
only (with a standard deferred shading method) are also given. (a) Q3dml1 (about 80 000 triangles) lit by one hemispherical
point light source. (b) Buddha in Q3dm12 lit by one hemispherical point light source. About 200 000 triangles are rendered. (c)
Dragon in Q3tourneyl lit by two hemispherical point light sources. About 150 000 triangles are rendered in this scene.
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