Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

GPU-Accelerated Deep Shadow Maps
for Direct Volume Rendering

Markus Hadwiger Andrea Kratz Christian Sigg™* Katja Biihler

VRVis Research Center * ETH Ziirich

Abstract

Deep shadow maps unify the computation of volumetric and geometric shadows. For each pixel in the shadow map,
a fractional visibility function is sampled, pre-filtered, and compressed as a piecewise linear function. However, the
original implementation targets software-based off-line rendering. Similar previous algorithms on GPUs focus on
geometric shadows and lose many important benefits of the original concept. We focus on shadows for interactive
direct volume rendering, where shadow algorithms currently either compute additional per-voxel shadow data, or
employ half-angle slicing to generate shadows during rendering. We adapt the original concept of deep shadow
maps to volume ray-casting on GPUs, and show that it can provide anti-aliased high-quality shadows at interactive
rates. Ray-casting is used for both generation of the shadow map data structure and actual rendering. High
frequencies in the visibility function are captured by a pre-computed lookup table for piecewise linear segments.
Direct volume rendering is performed with an additional deep shadow map lookup for each sample. Overall,
we achieve interactive high-quality volume ray-casting with accurate shadows. To conclude, we briefly describe
how semi-transparent geometry such as hair could be integrated as well, provided that rasterization can write to
arbitrary locations in a texture. This would be a major step toward full deep shadow map functionality.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation;

1.3.7 [Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction

Although the computation of accurate shadows is not triv-
ial, they are very important in order to provide intuitive vi-
sual cues for depth and shape. Regular shadow maps sam-
ple the depth of the occluder closest to the light source, and
thus the corresponding step in the visibility function from
fully visible to fully occluded. For semi-transparent objects
and media, however, the visibility is not a simple step func-
tion but decreases monotonically as the objects absorb more
and more of the light originally emitted by the source. For
thin structures such as hair, the shadow map needs to be
pre-filtered to avoid aliasing, which also leads to visibility
functions with a fractional visibility for each depth. Deep
shadow maps [LV00] represent a visibility function for each
pixel in the shadow image plane, corresponding to the light
attenuation at any possible depth. Visibility is approximated
and stored in compressed form as a piecewise linear func-
tion. The nodes of the approximation are sorted for efficient
lookup during rendering. For each fragment position, the
light attenuation can be read from the corresponding posi-
tion in the deep shadow map. The (x,y)-position is deter-
mined by the shadow image plane, while the z-position has
to be searched within the sorted list of sample nodes. The al-

(© The Eurographics Association 2006.

gorithms for construction and lookup of deep shadow maps
have been designed for off-line rendering and are inherently
software-based. The varying number of sample nodes across
the shadow plane as well as the heap data structure employed
for depth peeling during construction prohibit a simple and
efficient implementation on GPUs.

Our goal is dynamic high-quality shadows for GPU-based
volume ray-casting with a minimal amount of memory us-
age. GPU ray-casting is becoming more and more popular
for direct volume rendering due to its superior image quality,
efficiency, and flexibility in comparison to slice-based vol-
ume rendering. For example, efficient empty space skipping
and early ray termination are much simpler to achieve, and
adaptive sampling rates are easy to implement [RGW*03].

In this paper, we demonstrate that deep shadow maps
for volumetric datasets can be implemented on GPUs and
yield high-quality anti-aliased shadows for GPU-based ray-
casting. We employ a blocked memory layout to efficiently
store the deep shadow map in a 3D texture. Both deep
shadow map construction and rendering are based on ray-
casting, including empty space skipping and early ray ter-
mination. In order to accurately capture discontinuities in

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

M. Hadwiger, A. Kratz, C. Sigg, K. Biihler / GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering

the visibility function by the discrete sampling process, the
visibility between two possible successive samples is pre-
computed and pre-compressed. This idea is similar to pre-
integrated volume rendering [EKEO1], but instead of only
storing one integral between two samples, our lookup table
stores nodes of the corresponding visibility function. This
allows one to effectively capture discontinuities, e.g. from
isosurfaces, during deep shadow map generation with mod-
erate sampling rates.

2. Related Work

An early approach for volumetric shadows [BR9S] slices the
volume and pre-computes and stores shadow information
on a regular 3D grid, e.g. the voxel positions of the origi-
nal volume itself. It can be used with ray-casting for ren-
dering, but consumes a significant amount of memory even
for medium quality shadows. Shadows can also be computed
with half-angle slicing, either by using simultaneous slicing
for rendering and shadow computation [KPHEO02], or com-
bined with splatting [ZC03]. Half-angle slicing re-computes
the shadow every time the volume is rendered, which we
want to avoid, and cannot be combined with ray-casting.

Deep shadow maps [LVOO] store a representation of the
shadow volume in light space. For each pixel of the map,
the fractional visibility function is sampled, pre-filtered,
compressed and stored for fast access with spatial coher-
ence. Current similar GPU implementations exclusively tar-
get rendering of geometry. Opacity shadow maps [KNO1]
generate a regular sampling of the visibility function, which
is stored in texture maps without compression. In a way, this
is more similar to storing shadow information on a volume
grid [BR98] than to deep shadow maps. Irregular sampling
can be achieved by exploiting the fact that hair strands re-
sult in clustered attenuation, and sampling the visibility in
histogram bins corresponding to these clusters [MKBRO4].
In practice, this is restricted to a small number of bins and
cannot be used for direct volume rendering.

3. Algorithm

We sample the visibility function in light space with a ray-
casting approach. Pre-filtering and compression are carried
out in a fragment program. The sequence of nodes (vertices)
comprised of a corresponding (depth,opacity) pair each are
written to multiple frame buffers and then copied into a 3D
texture, where the third texture coordinate represents the in-
dex of each node. Because of hardware limitations, a maxi-
mum of eight nodes can be generated in each run of the frag-
ment program. Once eight nodes have been determined, the
fragment program stops execution and a new pass picks up
at the sampling position of the last node to generate the next
eight nodes. The visibility function is captured within a spec-
ified accuracy [LVO00], and thus the total number of nodes de-
pends on the pixel location. For example, rays which do not
hit the volume do not require any nodes while rays which in-
tersect multiple structures require a large number of nodes.

Figure 1: The deep shadow map is constructed in a tile by
tile manner in light coordinates. Blocks are dynamically al-
located to pack the generated nodes into the 3D texture that
constitutes the shadow map. An additional low-resolution
layout texture references the storage position of each block.

Thus, a direct mapping of the sampling nodes into a 3D tex-
ture results in a significant memory overhead, because the
number of texture layers has to match the size of the longest
sequence of nodes. Instead, we dynamically allocate blocks
in the 3D texture to store stacks of samples as they are gen-
erated by the ray-casting process. For this, the shadow plane
is partitioned into tiles and a constant number of consecutive
sample layers of one tile are stored in a block of the texture.
An additional layout texture references the storage location
of each block in the packed deep shadow texture, which can
be used as in bricked volume ray-casting [HSS*05], where
often many bricks are inactive. This is illustrated in Figure 1.

In order to employ fast empty space skipping for com-
pletely transparent areas during both shadow map construc-
tion and volume rendering, the original volume is also par-
titioned into bricks, and a data structure containing the den-
sity range of each brick is maintained. Rays are started and
stopped as close to non-transparent regions as possible by
rasterizing the bounding geometry of these bricks [HSS*05].
A screen-aligned quad then initiates the sampling process,
which reads the sampling segment from the two buffers pre-
viously generated. Additional empty space inside the bound-
ing geometry is implicitly skipped during compression of the
visibility function.

3.1. Ray Propagation and Pre-Filtering

The deep shadow map data structure is computed via multi-
pass ray-casting from the light source’s point of view. Each
pass computes a set of new nodes for each pixel in the deep
shadow map. The sampling process starts at the bounding
geometry of non-empty bricks for the first pass, or at the pre-
vious node position for all consecutive passes. Pre-filtering
is carried out by combining the samples of multiple sub-
pixel rays which are cast by the same fragment program. An
opacity transfer function maps the density sampled from the
volume texture to light attenuation, i.e. opacity. Using a con-
stant sampling rate of the visibility function, discontinuities
in the transfer function lead to aliasing in the shadow map,
which can only be mitigated by high sampling rates. In order
to avoid these sampling artifacts, we pre-compute a table of
pre-compressed visibility functions.

(© The Eurographics Association 2006.

M. Hadwiger, A. Kratz, C. Sigg, K. Biihler / GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering

j OL p OL

Figure 2: The volume density at the borders of a linear seg-
ment is used to lookup a pre-compressed visibility function.
The interpolation nodes (red / dark gray) of the lookup table
approximate the visibility function (dashed line) much better
than regular sampling (green / light gray) because they can
be placed arbitrarily within the segment.

3.2. Pre-Compressing Transfer Function Frequencies

The main idea of pre-integrated volume rendering [EKEO1]
is to pre-compute the volume rendering integral for all possi-
ble combinations of two successive density samples. Instead
of storing only a single integral per sample pair, we pre-
compute and compress the visibility function of the segment
between two successive density samples using the same
compression method used for deep shadow map generation
itself [LVOO]. This effectively decouples the sampling rate
during deep shadow map construction from the frequencies
in the transfer function. The sampling rate is chosen accord-
ing to the volume, and the influence of high frequencies in
the opacity transfer function is captured by pre-compression.
Figure 2 (left) illustrates this idea for capturing a step func-
tion due to an isosurface transfer function. Two successive
samples one sampling distance apart completely miss the
discontinuity which results in a very inaccurate visibility
function and finally leads to self-shadowing of isosurfaces
as illustrated in Figure 3 (left). The pre-compression table
stores the nodes of a compressed visibility function for each
possible combination of successive samples. The red nodes
in Figure 2 (left) accurately capture the isosurface, which
leads to the results shown in Figure 3 (right).

Figure 2 (right) illustrates the difference between sim-
ply using a higher sampling rate (green nodes) in-between
samples of a lower sampling rate (white nodes), and the
pre-compressed visibility function with the same number of
nodes (red). Note that the sampling rate used for comput-
ing the pre-compressed visibility functions can be chosen
according to the transfer function domain. Hence it is as high
as necessary to capture all transitions [EKEO1]. As a result
of the optimal placement of the nodes (red versus green),
the discontinuity comprising the fourth red segment in Fig-
ure 2 (right) accurately captures a semi-transparent isosur-
face. Also the locations of all other nodes capture the real
visibility function more accurately. The only trade-off we
make is the maximum number of nodes in a pre-compressed
visibility function, which is set to a small constant, e.g. four.
Two nodes of a pre-compressed function can be stored in

(© The Eurographics Association 2006.

Figure 3: Capturing high transfer function frequencies with
pre-compression. Visibility functions of isosurface disconti-
nuities computed with equi-distant samples result in erro-
neous self-shadowing (left), which is removed by using accu-
rate pre-computed nodes (right). Both images use the same
number of samples/nodes during deep shadow map creation.

a single 2D lookup table. Overall, the required number of
nodes is much smaller than using a high number of equidis-
tant samples in order to achieve similar results.

3.3. Compression During Deep Shadow Map Creation

We employ the original compression algorithm [LV00] in
the fragment program, which reduces the number of inter-
polation nodes written to the frame buffer and copied into
the deep shadow map. This greedy algorithm combines mul-
tiple successive visibility nodes by approximating more and
more nodes by a linear function until a specified error bound
would be violated. Then, the end point of the current lin-
ear segment is stored and a new segment is started. Each re-
sulting node consists of a (depth,opacity) pair. We store two
successive nodes in the RG an BA components of the shadow
map texture. With a maximum of four render targets on cur-
rent GPU architectures, this implies that we can compute and
write out eight successive nodes in a single rendering pass.

3.4. Memory Management

The total number of nodes required to approximate the vis-
ibility function varies from pixel to pixel. Thus, storing the
nodes directly in layers of a 3D texture would be highly in-
efficient, because only the first few layers would be fully uti-
lized. Instead, we pack the nodes into a texture using a block
layout. Each block corresponds to, e.g. eight, consecutive
layers for one tile of the shadow map. During shadow map
generation, the blocks are dynamically allocated for each tile
and the storage position is referenced in an additional low-
resolution layout texture. We use occlusion queries to deter-
mine if the construction of all visibility functions of a tile
is completed either because it has reached full opacity, or
the ray has exit the volume. In these cases, all fragments
of the tile are discarded, which is checked by the occlusion
query, and the tile is removed from further processing. Oth-
erwise, a new block is allocated and the ray-casting process
is resumed by drawing an additional tile-aligned quad. See
Figure 1 for an illustration of this process.

M. Hadwiger, A. Kratz, C. Sigg, K. Biihler / GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering

3.5. Rendering

Actual rendering uses the same ray-casting process with
empty space skipping. Each density sample is mapped to
color and opacity values by a transfer function and is then
modulated by the light intensity extracted from the deep
shadow map. For this, the sorted (depth,opacity) pairs of the
closest pixel in the shadow plane are searched linearly for the
depth of the sample in light coordinates. This node traversal
requires a lookup into the layout texture to retrieve the stor-
age position of the current block of nodes (see Figure 1). The
spatial coherence of the shadow map lookup is exploited by
starting the search at the position of the last sample. Note
that we do not use bilinear interpolation of four neighboring
visibility values, because in order to be correct this cannot
be done by hardware-native filtering. However, with some
additional cost it could be done in the fragment program.

4. Results and Conclusion

Rendering of the views in Figures 4 and 6 (left) with an
already constructed deep shadow map, i.e., when the light
source is not moving, can be performed with 3-6 fps on an
ATI Radeon X1800 (512x512 viewport). Times for shadow
map construction with different resolutions are shown in Ta-
ble 1. A lower resolution and higher error bound during in-
teraction allow moving the light source with 1-2 fps includ-
ing rendering. A major performance factor is the number of
nodes in the resulting compressed visibility function, since
it directly determines the number of rendering passes and
layers that must be copied to the 3D shadow map texture.

Our implementation has shown that high-quality anti-
aliased deep shadow maps for direct volume rendering can
be computed and rendered on current GPUs. Shadow map
quality is improved considerably by using pre-compressed
visibility functions. Our deep shadow map representation
could be extended to additionally support semi-transparent
geometry such as hair, when fragments can be written to ar-
bitrary locations in a 3D texture during rasterization. Each
(depth,opacity) pair could be extended with a link field that
allows rasterizing additional geometry “in-between” already
written visibility nodes. Alternatively, nodes could be com-
puted out of order and then sorted into depth order in a post-
processing step.

The VRVis Research Center is funded in part by the Austrian
Kplus project. The medical data are courtesy of Tiani MedGraph.
The David model is courtesy of the Digital Michelangelo Project.

[fps] 128x128 256x256 512x512
£€=0.02 2-3 12 0.3-0.5
£€=0.06 5-6 2-3 1-1.5

Table 1: Shadow map computation times for the setting
shown in Figure 4 with different map resolutions and error
bounds € for compression. A larger € does not decrease the
number of samples during shadow map construction, but de-
creases the resulting number of nodes and thus the number
of rendering passes and time for copying to the 3D texture.

Figure 4: CT scan of a human hand with direct volume ren-
dering and shadowing. Shadow map resolution is 512x512
with a 5-tap pre-filter kernel.

T
o
a6

number of nodes

| L 4y
as 40 a5 B0 [} 80

1ite id
Figure 5: The number of nodes in the visibility function
varies per pixel and thus per tile (here: 16x16 pixels) in the
shadow map plane. Many tiles require only a small number
of nodes, depending on the error bound for compression (€).

References

[BR98] BEHRENS U., RATERING R.: Adding shadows to a
texture-based volume renderer. In Proceedings of IEEE VolVis
(1998), pp. 39-46.

[EKEO1] ENGEL K., KRAUS M., ERTL T.: High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. In Proc. of Graphics Hardware (2001), pp. 9-16.

[HSS*05] HADWIGER M., SIGG C., SCHARSACH H., BUHLER
K., GROSS M.: Real-time ray-casting and advanced shading of
discrete isosurfaces. In Proc. of Eurographics (2005), pp. 303—
312.

[KNO1] KiM T.-Y., NEUMANN U.: Opacity shadow maps. In
Proc. of Eurographics Symposium on Rendering (2001), pp. 177—
182.

[KPHEO2] KNiss J., PREMOZE S., HANSEN C., EBERT D.: In-
teractive translucent volume rendering and procedural modeling.
In Proc. of IEEE Visualization (2002), pp. 109-116.

[LVOO] Loxkovic T., VEACH E.: Deep shadow maps. In Proc. of
ACM Siggraph (2000), pp. 385-392.

[MKBR04] MERTENS T., KAUTZ J., BEKAERT P., REETHF. V.:
A self-shadow algorithm for dynamic hair using density cluster-
ing. In Proc. of Eurographics Symposium on Rendering (2004),
pp. 173-178.

[RGW*03] ROTTGER S., GUTHE S., WEISKOPF D., ERTL T.,
STRASSER W.: Smart hardware-accelerated volume rendering.
In Proc. of VisSym (2003), pp. 231-238.

[ZC03] ZHANG C., CRAWFIS R.: Shadows and soft shadows

with participating media using splatting. IEEE Transactions on
Visualization and Computer Graphics 9, 2 (2003), 139-149.

(© The Eurographics Association 2006.

M. Hadwiger, A. Kratz, C. Sigg, K. Biihler / GPU-Accelerated Deep Shadow Maps for Direct Volume Rendering

Figure 6: Renderings of a CT scan of a human hand with direct volume rendering and shadowing with deep shadow maps (left
images). Shadow map resolution is 512x512 and a 5-tap pre-filter kernel has been used. The right images illustrate capturing
high transfer function frequencies with pre-compression. Visibility functions of isosurface discontinuities computed with equi-
distant samples result in erroneous self-shadowing (bottom), which is removed by using accurate pre-computed nodes (top).

(© The Eurographics Association 2006.

