
Graphics Hardware (2006)
M. Olano, P. Slusallek (Editors)

A Digital Rights Enabled Graphics Processing System

Weidong Shi1, Hsien-Hsin S. Lee2, Richard M. Yoo2, and Alexandra Boldyreva3

1Motorola Application Research Lab, Motorola, Schaumburg, IL
2School of Electrical and Computer Engineering

3College of Computing
Georgia Institute of Technology, Atlanta, GA 30332

Abstract

With the emergence of 3D graphics/arts assets commerce on the Internet, to protect their intellectual property
and to restrict their usage have become a new design challenge. This paper presents a novel protection model for
commercial graphics data by integrating digital rights management into the graphics processing unit and creating
a digital rights enabled graphics processing system to defend against piracy of entertainment software and copy-
righted graphics arts. In accordance with the presented model, graphics content providers distribute encrypted 3D
graphics data along with their certified licenses. During rendering, when encrypted graphics data, e.g. geometry
or textures, are fetched by a digital rights enabled graphics processing system, it will be decrypted. The graph-
ics processing system also ensures that graphics data such as geometry, textures or shaders are bound only in
accordance with the binding constraints designated in the licenses. Special API extensions for media/software de-
velopers are also proposed to enable our protection model. We evaluated the proposed hardware system based on
cycle-based GPU simulator with configuration in line with realistic implementation and open source video game
Quake 3D.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Digital Rights, Graphics
Processor

1. Introduction

The industry of real time graphics applications such as video
games, interactive avatars, 3D online games, handheld mo-
bile gaming, etc., grows rapidly with the advancement of
new graphics hardware technology. However, it remains a
great technological and legal challenge to enforce digital
rights protection for graphics applications. The problem be-
comes even more prominent with the emergence of 3D
graphics/arts commerce on the Internet. In the virtual space,
these trademarked and proprietary 3D models or textures
in the forms of digitized sculptures [LPC∗00], characters,
avatars, vehicles, weapons, outfits, wallpapers, etc., possess
real monetary values to online gamers, collectors and artists.
According to International Intellectual Property Alliance,
the loss of revenue due to piracy of entertainment software
is measured in billions of dollars every year globally [IIP].
In the past, digital rights enabled silicon chips have made
significant contribution to fight against piracy of music and
video contents [BCK∗99, HDC, SVP]. Today digital rights
management (DRM) IC is widely used for protecting digi-
tal content in set-top boxes, satellite video/audio receivers,

video players, mobile devices, etc. However, little research
has been performed in the area of protecting digital rights
of graphics data and 3D objects for the consumer market. In
this paper, we explore the technologies of digital rights en-
abled graphics processing unit (GPU) for countering piracy
of real time graphics entertainment software and graphics
assets.

Different from digital rights protection of media data
(audio/video) that can use specially tailored hardware and
protocol to enforce an end-to-end digital rights solution
[HDC,SVP], enforcing the protection of graphics data with
a tamper-proof silicon chip was almost impossible. In a con-
ventional computing platform, CPU is heavily involved in
pre-processing graphics data before the data are sent to the
specialized graphics accelerator or GPU for accelerated ren-
dering. Such tightly-coupled dependency and involvement
of CPU in graphics processing pipeline leave many security
holes to the hackers for duplicating and reverse-engineering
digital contents guarded by a digital rights protection system
that runs the protection software on CPU.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

���

���������
���������

	
��
����

���

����������

�
����������� ������������������ �
��

�
�
��� �����

�
��
�	

�
�
�

��
�

����

�
��

�
�

��������
����

��������
���������

�

��������

����������

�

����

�
��

�
�

�
�
�

�
��
�
�

����
�
�
�

�
��

�
�

��
�
	

�
��
��

�

!

�
�"

���

��
�
�
�

�"

��
��

�
��
��
�

�
��
�

���������

��

�����

	���

 ����!"

#��������

�����$"

�# �"����������

����������

�����$"

%��
�

&�������	��$��

�# �"����������

��$�'��"

%��
�

&����"('����"

����������

���������"��������

��	�����
�
���

#�����
��$�

��������

%
	��&

Figure 1: 3D Graphics Pipeline

There were techniques proposed for tracing illegal users
of 3D meshes by embedding watermarks into 3D models
under protection [Ben99,DGM02,PHF99]. However, water-
marking does not prevent unauthorized users from duplicat-
ing, sharing or using watermarked graphics data. In addition,
watermarks are often fragile and could be easily destroyed
via data transformations. In general, a pure software based
digital rights protection solution, as shown by history, offers
very weak content protection because software components
can be easily bypassed, circumvented, subverted, or reverse
engineered.

The main objective of this work is to provide a tamper-
proof digital rights management scheme for real time graph-
ics data through an innovative combination of digital rights
protection functionalities with GPU. The result is adigi-
tal rights enabled graphics processing systemthat provides
tamper-proof processing for graphics data. Since it directly
integrates digital rights protection into GPU, it leaves no
loophole for the hackers to launch software exploits or sim-
ple hardware based tampering. A hacker cannot defeat the
protection offered by the presented model by simple reverse-
engineering, patching, altering, modifying software and data
accessible by the CPU.

This paper represents the first thrust to forge a common
ground for digital rights community, GPU designers, and
computer graphics researchers for studying digital rights is-
sues of graphics data. The rest of the paper is organized as
follows. In Section2, we briefly discuss the background in-
formation for modern day graphics processing pipeline and
GPU architecture. Section3 presents the design of the digi-
tal rights enabled graphics processing unit. In Section4, we
discuss design challenges and graphics API extension. Fi-
nally, Section6 concludes the paper.

2. 3D Graphics Pipeline

3D graphics processing involves projecting and rendering
3D geometry models onto a 2D display with surface de-
tail enhancement such as texture mapping, bump mapping to
create realism [FvDFH95,WDS99]. The rapid growth of 3D

graphics industry to a great extent ascribes to the advance-
ment of high performance and low cost graphics hardware
and real-time graphics applications such as video games.

Figure1 illustrates a graphics pipeline for polygon-based
rendering that converts graphics input data from 3D geom-
etry vertices into 2D image frames. It also shows the func-
tional partitioning of CPU and GPU for state-of-the-art com-
puting platforms. The graphics input consists of a list of
geometry data, denoted by triangle vertices in world co-
ordinates. The first stage of the processing, the geometry
stage, transforms each vertex from the world space into the
viewer’s space, culls backfaced vertices, performs perspec-
tive correction, and calculates lighting intensity for each
vertex. This process is generally called geometry pipeline
(transformation and lighting) and is floating-point intensive.
The output from the geometry pipeline is comprised of trian-
gles in the viewer’s space. In the rasterization stage, a raster-
izer determines the plane equation of each triangle surface
and its corresponding coordinates on the screen. Then for
each screen pixel, it computes a set of graphics parameters
by interpolating vertex parameters of the triangle computed
in the previous stage. The result of the rasterization stage is
a set of fragments (or pixels) enclosed by each triangle. The
next stage, the fragment or pixel processing stage computes
the color of each pixel. When surface details enhancement
is applied, each fragment takes the color values provided
by texture maps into account. For each fragment, there is
a set of corresponding texels. The fragment stage computes
texture access addresses based on the texel coordinates and
fetch the associated texture values from the textures stored
in the system memory or GPU’s memory. Then the fragment
stage combines the fetched texture color with the interpo-
lated lighting color to generate the fragment’s final color.
Finally, fragments are assembled into the frame buffer as a
2D image of color values. The graphics processing selects
the final color of each pixel based on the depth (z value) if
several fragments overlap to the same location.

Figure 1 also shows the functional decoupling of 3D
graphics processing between today’s 3D GPU and CPU.
Over the last few years, GPU architectures became increas-
ingly powerful. It gradually engulfed most of the graph-
ics processing stages originally completed by CPU, start-
ing from rasterization to floating-point intensive geometry
processing into hardware. In addition to absorbing more
graphics processing stages into silicon, the GPU architec-
ture itself also evolved by converting some of the fixed func-
tional stages into more flexible programmable stages. These
high performance GPU architectures employ programmable
pipelined SIMD engines known as vertex processor and
fragment processor (or pixel processor) to process graphics
data. Those engines use specially designed SIMD instruc-
tions internal to the GPU and run specialshader programs
for vertex and pixel processing.

With the continuing advancement of GPU hardware, the
software driver on CPU became very thin layer in standard
3D pipeline. The primary task of CPU reduces to controlling
of the GPU hardware, setting up, and moving graphics com-

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

mands and data around, leaving extra computing power for
artificial intelligence, simulations, and game logics.

3. DRM for Graphics

The industry of real time graphics entertainment applica-
tions has been mauled by wide-spread piracy since the very
beginning. Theft or piracy of graphics arts assets or even
the applications themselves is relatively easy when graph-
ics rendering relies primarily on CPU. Hackers can eas-
ily reverse-engineer a graphics application, circumvent any
software based digital rights protection, recover its art as-
sets, or make illegal copies. [KL05] discusses several po-
tential exploits hackers can launch for violating digital rights
of graphics data including attacks such as 3D model file
reverse-engineering, 3D application tampering, or graphics
driver tampering, etc.

The advancement of graphics hardware brings looming
opportunities to enforce digital rights protection of graph-
ics assets at silicon level because the role of CPU in a tra-
ditional graphics pipeline withers while the complexity of
GPU increases over different generations. Integration of dig-
ital rights protection within GPU has the following advan-
tages:

• Strong digital rights protection . Integrating digital
rights protection with GPU results in a very secure con-
tent protection system. It is extremely difficult to break
such a system using software based attacks or physical
hardware tampering, e.g. using a logical analyzer to probe
and dump signal traces at chip interconnects.

• Sufficient protection. Integrating digital rights protection
with GPU also provides sufficient protection to graphics
based entertainment software such as video games. As-
sume that a hacker can freely duplicate the software and
violate its copyrights. Since copyrights of graphics data
are enforced by the digital rights enabled GPU, the pi-
rated software will become useless to the offenders be-
cause graphics data will not be rendered properly.

• High performance. Digital rights protection of graphics
data requires real-time decryption of protected data. Im-
plementing it directly on the silicon reduces its potential
negative impact on graphics processing performance.

Note that a hacker may still be able to launch sophisti-
cated hardware attacks such as micro-probing directly on
the die or other side-channel exploits e.g. differential power
analysis [Wit02]. These attacks can be addressed by security
countermeasures at packaging level or circuits level [Wit02].
Such studies are general to all the approaches that use silicon
hardware to build a security system, thus orthogonal to the
study of this work. It is also worth pointing out that different
from music or video content protection, graphics protection
as proposed in this paper does not significantly suffer from
analog attack such as dumping display output. Reconstruct-
ing 3D models from 2D images is considered a great chal-
lenge, remaining a major research topic in computer vision.
There exists no handy and reliable method for hackers to
launch such sophisticated attacks to reconstruct 3D models
from rendered images.

��������	
�������
�	

�
�� �����	������

�������	��
��������
���
	������

��������	������

�������������	

�
��

����
��	

�����������

�
��

��
����	
�������
�	

�
��

�������	������

�!���	��������

�������
�	"�����

������	#
�������

Figure 2: Digital Rights Enabled GPU

However, the nature of the research does require a
cross-disciplinary collaboration in digital rights manage-
ment (DRM) community, graphics researchers, and GPU ar-
chitects.

4. Digital Rights Aware Graphics Processing System

In this section, we outline the architecture of our digi-
tal rights enabled graphics processing system. It comprises
three aspects: (1) digital rights enabled GPU architecture; (2)
digital rights enabled graphics API; and (3) content distrib-
ution.

4.1. Digital Rights Enabled GPU

Compared to a traditional GPU architecture, a digital rights
enabled GPU contains two more components, acrypto-
graphic unit to decrypt protected graphics input data, and
a license verification unitto process the licenses of graphics
data. Figure2 illustrates a digital rights enabled GPU. Simi-
lar to digital rights licenses used in other content protection
cases, the graphics digital rights licenses released by their
content providers specify and designate the desired usage
of the graphical data. A digital rights enabled GPU features
the necessary means to authenticate the licenses. During ac-
tual graphics rendering, it is guaranteed that graphics data be
used strictly in compliance with the license agreement.

As discussed in Section2, an advanced graphics process-
ing system performs both geometric and fragment (as pro-
grammable shaders) processing in GPU. A GPU generally
allows arbitrary binding of geometry data with any texture
and arbitrary binding of shader programs with any geome-
try input. Such freedom creates potential security loopholes
for hackers to reverse-engineer protected graphics data. For
example, customized malicious shader programs can output
raw, unprocessed geometry data or in a format friendly for
reverse-engineering to a result buffer that a hacker can read.
To reverse-engineer protected textures, a hacker can draw a
textured square into the frame buffer and dump the origi-
nal texture data. To prevent these exploits, bindings among
geometry input, textures, and shaders must be restricted. As
shown in Figure3, such restrictions can be incorporated into
the licenses of the protected graphics data.

A license of a geometry object may look like what is
shown in the left-hand side of Figure3. It comprises a name,
decryption key context, digests of the encrypted geome-
try data, a geometry data ID, the binding constraints as

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

����������	

�

�������
	�������

�����	�
��������������
���������������

��	�����������

 �
!��	"�
	 �������	�
��������������
�������

#�����	�������		��$%�&�'

(������	 ����	�������	��)�������

(������	*�������		�
��������������
����������������+��,�

#�����	-.����	*�������	�
��������������
�������/�.�����,�

0�������	-.����	*�������	�
��������������
�������1�.�����,�

�������	������	�
�	������
�������������

(������	-+��	�������

�����	�
��������������
����������������+����

��	��%�1������

 �
!��	"�
	 �������	�
��������������
�������

�������		��)����$���

�������
	*�������		�
��������������
���������������

�������	������	�
�	������
�������������

#�����	-.����	�������

�����	�
��������������
�������/�.�����21���3��-+������

��	���)$$�����

�������		�������'

�������	������	�
�	������
�������������

������������+���	

�

���21���3��-+������

	
�

*������	 ������

����
!����	+�

����
!����	+�

�������	#���1�������

4���

���		

������$���5	��$�&�%)��5	

�����$%)$�5	�����$����5

��$)������5	��$�&����$5	

�����$����5	���1�$����5

���

������

Figure 3: Graphics Asset Licenses and Binding Context

to which textures or shaders can be applied to this ob-
ject, and the digest of its license signed by a certified con-
tent provider. Note that the binding permission can be in-
herited by all the sub-classes of this object. In the exam-
ple of Geometry Licensefor a monster 3D object in Fig-
ure 3, the geometry object is released by a certified con-
tent providermy_game_studio for a game titledmy_title.
The name of the geometry object ismonster which belongs
to a root class:my_game_studio:my_title that includes all
the graphics sub-class objects released formy_title. Accord-
ing to the license,monster geometry model should be de-
crypted using decryption key associated with the root class
my_game_studio:my_title. The monster geometry model is
allowed to bind with any texture whose name is prefixed
by my_game_studio:my_title:monster:skin. In addition, the
license specifies the shader programs allowed to bind with
the geometry object.

Similarly, a license for a texture map comprises sim-
ilar fields. According to the license specified for mon-
ster skin texture in Figure3, the monster skin can be
decrypted using the decryption key of the root class
my_game_studio:my_title, and is allowed to bind with
the geometry object:my_game_studio:my_title:monster. It
should be understood that the binding is not a one-to-one
mapping. The same texture can be bound to several graphics
objects and vice versa.

Figure 3 also shows an exemplary license for vertex
shader and a binding example. For a shader program, the
license comprises the name of the shader, digest of its bi-
nary image, and digest of the license signed by the content
provider. The described solution applies effortlessly when
the shader programs are distributed in machine code bina-
ries directly executable by the GPU. This is the case of con-
tent distribution on mobile platform. However, sometimes
shader programs are distributed as source codes or in some
intermediate formats that require additional compilation or

translation at runtime before they are loaded to the GPU.
If source code distribution is employed, the above license
binding model may not be applicable. In this case, the con-
tent provider needs to pre-compile the shaders for different
GPU targets to provide a list of shader digests compatible
with different target GPUs and device drivers and distrib-
utes them along with the sources. During execution when
a shader is compiled by a runtime compilation module in
a host computing system, a digital rights enabled graphics
processing system can verify its authenticity by computing
the digest based on the given binary image and comparing it
with the corresponding shader digest picked from the list of
pre-computed digests targeted for the GPU.

An alternative yet elegant solution is to integrate a secure
micro-controller into the proposed system for runtime shader
optimization and translation. The micro-controller resides
in a secure and protected domain. It authenticates shader
sources before runtime optimization or translation and the
object shader code is then protected with a digest generated
by the micro-controller. The area cost of integrating a lean
micro-controller into today’s GPU is very small provided
the vast number of transistor budget in the design of mod-
ern GPUs.

Given a set of licensed geometry input, textures and
shaders, the digital rights enabled graphics processing sys-
tem creates a binding context that comprises decryption keys
that will be used during graphics processing for decrypting
protected contents such as geometry models or textures. The
right-hand side of Figure3 illustrates this process. Further-
more, when the integrity of graphics data is a security con-
cern, the binding context comprises digests of the protected
graphics data that can be used by the digital rights enabled
graphics processing system to verify the integrity of graph-
ics data during rendering. The digital rights enabled graphics
processing system securely preserves confidentiality of sen-
sitive binding context information such as decryption keys.

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

��������	
�������
��������

�����

���

��������	
�������
�

�������
�����

������
���
��

������
����
����
��

���	���
�������

	���������

���
���

	���������

���
���

����������

!����

��

"��

���#�����"����
��	�

���

��������	
�������
�

�������
�����

��

"��

���#�����"����
��	�

��������	
�������
�

�������
�����

��

"��

���#�����"����
��	�

$�������	
������
���"���������
��"��

����������
%��

���#�����"����
!����

��������	

�������
�

�������
�����

��

"��

���#�����"����

��	�

����"��

�����"�
&��#�

��"'��	

(�"�#��

$����

���
)�
���

��������	

*������
��������
�����

+���

!����
���#�����"����

&�
���

��������������

�"�#�

��

��������������

,���#���
-���

�"�
%��

Figure 4: Processing Encrypted Vertices

There is a piece of enable information included as part
of a binding context to indicate whether a piece of graphics
data requires decryption or authentication. When graphics
data are not protected, the binding context is disabled, and
all the graphics data are processed in the usual manner.

Figure 4 shows the components and steps for decrypt-
ing or authenticating protected geometry data during graph-
ics processing. Each individual vertex and its attributes or a
collection of vertices and their attributes are separately en-
crypted. Optionally stored together with vertex attributes is
a message authentication code (MAC). If not only privacy
but also authentication and integrity of graphics content is
needed then an authenticated encryption need to be used
since encryption does not provide authenticity in general.
A secure generic way to construct an authenticated encryp-
tion scheme from a secure encryption and a message au-
thentication code (MAC) schemes is to “encrypt-then-MAC”
[BN00]. More precisely, a sender encrypts the data, and ap-
pend to the ciphertext its MAC. The receiver first verifies
the MAC of the ciphertext and if it is correct decrypts the
ciphertext to get the data. During graphics processing, the
digital rights enabled graphics processing system fetches en-
crypted vertices (or a single vertex). Based on the binding
context, the cryptographic unit decrypts these vertices. Fur-
thermore, the authentication logic computes the correspond-
ing MAC digest for the encrypted vertices. Then the result
is compared with the MAC digest stored with the encrypted
vertices. If they match, the integrity of these vertices is not
compromised and verified.

Still, hackers could reconstruct a 3D model by dump-
ing out the content of the Z-buffer that stores depth val-
ues. [KB00] presents a re-mesh technique that allows a user
to reconstruct a mesh from the depth buffer. To tackle this
issue in a digital rights enabled GPU, Z-buffer or other tem-
porary result buffer should be encrypted in a way as shown
in Figure 5. The key for encrypting depth buffer or other
temporary results is generated by the digital rights enabled
graphics system and considered as part of a binding context.

��������	�

�	���

�������

������

�������
�	�����

��������	�

�	���

���

���

����

����

�������
������
�������
 �������

!�	�������
"����#

$��#�
������

%������	�

&���

Figure 5: Depth Buffer Protection

4.2. Graphics API Extension

For a graphics application, it would be unnecessary and too
restrictive to have all the graphics data protected. It is the
content provider’s discretion to make the judgment as to
what are vaaluable graphics data that require digital rights
protection. For example, if a content provider charges a fee
for advanced or customized ingame weapons and characters
in virtual space, then it has enough justification to have them
protected. Having all the graphics data protected indiscrim-
inately will be an overkill on creativity because protected
graphics data can only be understood and processed by the
digital rights enabled graphics processing system.

Today’s GPU is able to perform most of the graphics
processes such as transformation, lighting, clipping, textur-
ing, skeleton based character animation, vertex morphing,
simulation, using either fixed logic or programmable shader
units. Nevertheless, processes such as collision detection or
backface culling are mostly done by the CPU. Having geom-
etry data encrypted and protected may have impact on how
CPU carries out these tasks. To solve this issue, a content
provider may prepare two levels of detail (LOD) for each
protected geometry model using multi-resolution geometry
representations [HDD∗93,CVM∗96,KL05], namely, one
finer LOD model with digital rights protection and the other
coarser LOD models without protection. The resolution of
the coarse LOD data is substantially lower than that of its
finer LOD counterpart to prevent proprietary models from
being disclosed via the CPU. The CPU can use the coarse
LOD data to perform coarser level collision detection or
culling test and the finer LOD data can be used for actual
rendering. Based on our study and evaluation, introducing
digital rights enabled GPU should not cause any incompati-
bility.

glVertexAttribPointerPrivateARB()
Argument Attribute

index index of the generic vertex attribute
type data type of each component in the array

(must be Private{234}f)
normalized Same as glVertexAttribPointerARB
stride Same as glVertexAttribPointerARB
pointer Same as glVertexAttribPointerARB

Table 1: Defines an encrypted generic vertex attribute array

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

We use OpenGL to demonstrate our API extension. There
will be a new geometry data type to define protected vertex
data. As an example,Private{234}f can be used to denote en-
crypted vertex attributes comprising 2 to 4 floats. Note that
most standard ciphers conduct basic encryption operations
on a data unit of at least 64 bits or 128 bits long. If a vertex
attribute does not have enough number of bits, it has to be
padded or the encryption has to be carried out over a collec-
tion of vertices. Also note that this new data type is platform
independent and is not affected by the endianness of the host
CPU. In accordance with this new data type, a user program
can declare vertex buffers ofPrivate{234}f and create a ver-
tex attribute array of encrypted data. Figure6 shows an ex-
ample of declaring vertex buffers to store encrypted vertex
data and setting up vertex array pointers usingPrivate{234}f.
The example uses OpenGL API with encrypted vertex for-
mat extension. It specifies monster vertex attribute arrays us-
ing glVertexAttribPointerPrivateARB that is an extension
of glVertexAttribPointerARB . The new API shown in Ta-
ble1 allows users to specify vertex array format as encrypted
floats.

A typical way to store the licenses of graphics data
is to store them as arrays of data byte. Similar to the
case of geometry data, a new encrypted texel format,
Private_R8G8B8A8, is defined to represent the encrypted
r8g8b8a8 texture format. Note that encrypted texture format
may treat a tile of texels as one unit and encrypt them as
a whole. One reason of using tiles is that in many cases,
the size of one texel is much smaller than the required
data size of an encryption cipher. Using tile is also com-
patible with how GPU fetches texture data from memory
into its texture cache. Figure6 also shows how to declare
an encrypted texture asPrivate_R8G8B8A8 using extended
OpenGL texture API. The program calls extendedglTexIm-
age2D. It specifies that the monster skin’s data format isPri-
vate_R8G8B8A8 and the data type isPrivate_BYTE, which
indicates the texture’s data values are encrypted bytes.

In addition, a digital rights enabled graphics driver defines
the following new API calls in Table2 to support binding
context for graphics application developers.

API

GenBindingContext(int size, int* ptr_to_handles)
ConfigBindingContext(int handle, enum type,

int data_handle, unsigned char* license)
type = PRIVATE_VERTEX_ATTR0..15
type = PRIVATE_TEXTURE0..7
type = VERTEX_SHADER
type = PIXEL_SHADER
type = GEOMETRY_SHADER
...
data_handle = handle to vertex buffer,

texture, or shader
license = license byte array

EnableBindingContext(int handle)
DisableBindingContext(int handle)
DeleteBindingContext(int handle)

Table 2: Graphics API Extension Based on OpenGL

The way a binding context is created, destroyed or used is
similar to other OpenGL objects. As shown in Table2, the
user program can callGenBindingContext to create an ar-
ray of binding contexts whereinsize is the number of bind-
ing contexts andptr_to_handles is a pointer to an array of
binding context handles filled in by the underlying API im-
plementation. To delete a binding context, the user program
calls DeleteBindingContext using the binding context’s
handle as input.EnableBindingContext(context_handle)
will set the bind context referenced bycontext_handle the
current binding context. Graphics drawing commands such
as commands of drawing a vertex array will consult the
current binding context for digital rights information such
as decryption keys for encrypted vertices and textures.
DisableBindingContext(context_handle)will disable the
binding context referenced bycontext_handle if it is the cur-
rently enabled context. The user program uses theConfig-
BindingContext API call to configure the current binding
context.

Figure6 illustrates how to create a binding context and
configure the binding context comprising monster vertices,
monster texture coordinates and monster skin. For each
ConfigBindingContext, the user program specifies the type
of graphics data, handle to the graphics data, and pointer to
the data’s license.ConfigBindingContext will trigger a se-
quence of processing:

(a) Setup memory references to all the required informa-
tion such as the pointer to encrypted vertex buffer/texture
buffer/binary shader image and the pointers to the license
and the like by the software driver;

(b) Inform the digital rights enabled graphics processing
system to verify the configuration and licenses;

(c) Check the integrity of the referenced graphics data by
the digital rights enabled graphics processing system and au-
thenticate the involved licenses;

(d) Verify that the binding of graphics data is consistent
with the license requirement;

(e) Fill out an internal data structure comprising decryp-
tion key and IDs of the graphics data bound by the binding
context.

The digital rights enabled graphics system should protect
the confidentiality of the binding context. The system may
store current binding contexts in an on-chip SRAM and en-
crypt the binding contexts when they are stored in system or
video memory. Furthermore, a digital rights enabled graph-
ics processing system considers binding context as volatile
data.

Global information such as content provider’s certificate,
certified root name and root decryption key for all graph-
ics data of an application are considered as environment set-
tings. As an example, user program callsSetLicenseEnvi-
ronment(unsigned char* license)with content provider’s
certificate as input. A digital rights enabled graphics process-
ing system verifies the license’s authenticity and extracts
keys from the license.

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

// vertices and texture coordinates
unsigned char* geometry_license; // geometry license
unsigned char* private_monster_vertices; // vertex data
int monster_vertex_buffer; // vertex buffer handle
unsigned char* private_monster_tex_coords; // tex coords
int monster_tex_coord; // tex coord buffer handle

// texture
unsigned char* skin_license; // tex license
unsigned char* private_monster_skin; // tex data
int monster_skin; // tex handle

int binding_context;

// load encrypted geometry data
glGenBuffersARB(1, &monster_vertex_buffer);
glBindBufferARB (GL_ARRAY_BUFFER_ARB, monster_vertex_buffer);
glBufferDataARB (GL_ARRAY_BUFFER_ARB,

SIZE_OF_MONSTER_VERTICES,
private_monster_vertices, GL_STREAM_DRAW);

glVertexAttribPointerPrivateARB (0, PRIVATE4f,
GL_FALSE, 0, 0); //encrypted 4f vertex coordinates

...

glGenBuffersARB(1, &monster_tex_coord);
glBindBufferARB (GL_ARRAY_BUFFER_ARB, monster_tex_coord);
glBufferDataARB (GL_ARRAY_BUFFER_ARB,

SIZE_OF_MONSTER_TEX_COORDS,
private_monster_tex_coords, GL_STREAM_DRAW);

glVertexAttribPointerPrivateARB (8, PRIVATE2f,
GL_FALSE, 0, 0); //encrypted 2f texture coordinates

...

// load encrypted texture
glGenTextures(1, &monster_skin);
glBindTexture(GL_TEXTURE_2D, monster_skin);
glTexImage2D(GL_TEXTURE_2D, 0, PRIVATE_R8G8B8A8,

WIDTH,HEIGHT,
0, PRIVATE_R8G8B8A8, PRIVATE_BYTE,
private_monster_skin);

...

// create binding contexts for monster
GenBindingContext(1, &binding_context);
ConfigBindingContext(binding_context, PRIVATE_VERTEX_ATTR0,

monster_vertex_buffer, geometry_license); //vertex coordinates
ConfigBindingContext(binding_context, PRIVATE_VERTEX_ATTR1,

monster_tex_coord, geometry_license); //tex coordinates
ConfigBindingContext(binding_context, PRIVATE_TEXTURE0,

monster_skin, skin_license);

...

// rendering setup
glEnableVertexAttribArrayARB (0); //use monster vertex data
glEnableVertexAttribArrayARB (8); //use monster tex coords
glBindTexture(GL_TEXTURE_2D, monster_skin);
EnableBindingContext(binding_context);

// draw array command
glDrawArrays (GL_TRIANGLES, 0, VERTEX_COUNT);

Figure 6: Example Program Using DRM Extended OpenGL API

4.3. Content Distribution

The presented digital rights protection technique also com-
prises a distribution method of protected graphics data. Dis-
tributing protected graphics data along with their licenses
through a communication network is straightforward. Sim-
ilar to many digital rights systems, a content distribution
server can authenticate the receiver’s graphics processing
system and generate required licenses specifically for the tar-
geted graphics system. The protected graphics content along
with the software can also be distributed through regular re-
tail service and stored in a regular digital storage medium
such as CD-ROM or DVD. The simplest solution is to ask
users to register purchased graphics application online to a
registration server. The server will generate root license for
the user’s digital rights enabled graphics system and return
it to the user.

There are several more advanced and flexible ways to dis-
tribute decryption keys and licenses of protected digital con-
tent using tamper-proof IC such as smart card. It is not the
main objective of this paper to give a thorough treatment
of this issue because the problem is general to all types
of digital content and has been heavily studied. [AG99]
describes a secure and flexible way for distributing digital
rights licenses using smart card. The techniques applies to
both online based and retail service based license distrib-
ution. [UKKK04] also presents a solution for distributing
protected digital content and usage licenses in a more user
friendly way also using smart card. Those techniques can
be applied directly or with little adaptation to the presented
digital right model for graphics data. The smart card based

solutions also allow a user to redistribute the digital content
or upgrade their GPUs. Note that it is not possible for a user
to replicate smart card and the key or licenses stored inside.

5. Implementation and Performance Assessment

5.1. Implementation

The latency and throughput of decryption logic vary substan-
tially depending on many factors such as encryption mode,
cipher, authentication scheme, process technology, architec-
ture design, etc. To best justify our performance conclusions,
we use reference RTL implementations. In simulation study,
we conduct sensitivity studies to capture different variations
and design scenarios.

5.1.1. Cipher and Crypto Unit

The AES (Advanced Encryption Standard)cipher can
process data blocks of 128 bits by using key lengths of 128,
196 and 256 bits. It is based on a round function, which
is iterated 10 times for a 128-bit length key, 12 times for
a 192-bit key, and 14 times for a 256-bit key. However, AES
is often unrolled with each round pipelined into multiple
pipeline stages (4-7) to achieve high decryption/encryption
throughput [MM01, HV]. The total area of unrolled and
pipelined AES is about 100K - 400K gates to achieve 15-
50Gbit/sec throughput [MM01,HV]. Based on verilog RTL
implementation and synthesis results, each decryption round
of pipelined AES takes around 2.5nsec using 0.18µ stan-
dard cell library. The design can operate at 400MHz with

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

����

����	
���
�������

�	�	�����	

���
�����	
����	� �������

����

����	
���
�������

�	�	�����	

���
�����	
����	��� ����������

���

 	!
"�����

�����
���

 	!
"�����

�����
���

���
 	!
"�����

�����
���

���

��!
"��	�

 �����
���

��!
"��	�

 �����
���

���
��!
"��	�

 �����
���

#�$

��	��%
	�&	�!��'���(�	��%
	���!�	

�	�	�����	�!��
�����	

&	�!�����
	���

!��!%������(

���
	����
����������

)	*�
"�'���

+�������	
��!	

	�!
"��	���	�	��

,
����!�

)	*�
"

	�!
"��	��

�	�	��

,
����!�

)	*�
"���

-�����������	�� �	!
"������.	"

Figure 7: Content Decryption Block Diagram

area cost of around 400K gates and over 40Gbis/sec through-
put. The simulated GPU comprises four independent mem-
ory partitions, each with its own crypto unit. Each crypto
unit contains two AES blocks. This allows peak decryption
throughput of 40GB/sec. The total area cost is 3200K gates,
which is negligible compared to the size of the state-of-the
art GPU , which typically has transistor count of hundreds
of millions.

5.1.2. Integrity Verification

Integrity verification based on MAC is often a standard
operation. But variation of different MAC approaches can
have significant impact on verification latency. In the ref-
erence implementation, we use standard HMAC [BCK96]
for protecting integrity of graphics data blocks and shader
programs. The default size of MAC is 96 bits. The refer-
ence HMAC uses standard SHA-256 algorithm [NISa] with
MAC truncated to 96 bits (HMAC-SHA256-96 [FK]). Sim-
ulation study is based on Verilog implementation of SHA-
256, synthesized using Synopsys. This design is totally asyn-
chronous and has a gate count of 19,000 gates. The latency
for this design is 74ns for 512 bits of padded input (padding
with the required padding in SHA-256).

5.1.3. Content Decryption

There are multiple possible implementations of content de-
cryption logic depending on the design choices of cipher,
encryption mode, content protection algorithm, etc. Here we
illustrate two choices of content protection design. One is
based on straight forward application of standard encryption
modes such as CBC encryption mode (cipher block chain-
ing) and CMAC [NISb] as recommened by NIST for in-
tegrity protection. During decryption, an AES decryption
key will be set as part of the binding context. When CBC is
employed, encryption is conducted on n 128-bit data chunks
(n>=1). Each CBC encryption unit may comprise multiple
vertices or texels. One main advantage of using standard en-
cryption mode is its simplicity. However, many standard en-

cryption modes such as CBC increase the overall memory
fetch latency by adding decryption latency to the memory
fetch latency.

Anther design choice is to use counter mode [DH79] for
graphics data encryption and decryption. One of the advan-
tages of using counter mode is significantly reduced latency
overhead as it allows pre-computation of decryption pads or
overlapping of some of decryption processing with commu-
nication latency or data fetch latency. To encrypt with the
counter mode, one starts with a plaintextP, a countercnt,
a block cipher E, and a key. An encryption bitstream of the
form E(key, cnt)|| E(key, cnt+1)|| E(key, cnt+2) ...|| E(key,
cnt+n-1) is generated. This bitstream is XORed with the
plaintext bit string P, producing the encrypted string cipher-
text C. To decrypt, the receiver computes the same pad used
for encryption based on the same counter and key, XORs
the pad with C, then restores the plaintext P. Security holds
under the assumptions that the underlying block cipher is
a pseudo-random function family (this is conjectured to be
true for AES) and that a new unique counter value is used for
each chunk of encrypted data. For graphics data, texel coor-
dinates or vertex indices are all valid choices as counters.

Figure7 is a block diagram showing our content decryp-
tion design.In our design, protected graphics data such as
texture tiles, depth buffer tiles, or collection of geometry at-
tributes are encrypted with pseudo-random bits via bit-wise
XOR operation. Decryption comprises simple XORing of
the encrypted content with the same pseudo-random bits.
The pseudo-random bits can be computed using standard ci-
phers such as AES by taking texture tile coordinate or depth
buffer tile coordinate as input. This will generate unique
pseudo-random bits for each texture tile or depth buffer tile.
AES cipher takes 128-bit input and outputs a 128-bit pseudo-
random bit string. When a tile of graphics data contains mul-
tiple of 128-bit blocks, inputs to the AES will comprise sub-
tile coordinates or sub-tile offsets as shown in Figure7. Fur-
thermore, when the size of inputs is less than 128-bit, they
will be padded. During decryption, the pseudo-random bit
strings or pads used for decryption can be pre-computed in
parallel with memory fetch when the texture tile coordinate
or depth buffer tile is ready. This significantly reduces the
decryption latency overhead. In addition, the design supports
integrity protection using HMAC over the encrypted graph-
ics data. When HMAC is applied, it uses a different MAC
key from the AES key used for decryption. Both keys are
part of a binding context as shown in Figure4.

Note that HMAC could also be combined with CBC based
content protection. We did not explore this choice in our
evaluation. It is worth pointing out that here we use texture
as an example. The scenario and design for geometry and
depth buffer are similar.

5.2. Simulation Environment

Our performance evaluation environment is based on Qsil-
ver, a cycle-time model for state-of-the-art GPU architecture
[SLS04]. Qsilver comprises a front-end based on modified
Chromium [HHN∗02] to capture OpenGL command and

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

 30

 40

 50

 60

 70

 80

 90

 100

q3dm
1

q3dm
7

q3dm
17

q3tourney

average

N
or

m
al

iz
ed

 F
ra

m
e

R
at

e
%

CBC CoordinateCounterMode

Figure 8: Impact of Content Decryption on Quake 3D Frame
Rate Under Different Decryption Schemes

data traces, and a detailed cycle based architecture simu-
lator back-end that models the flow of data and computa-
tion through each state of a GPU pipeline, which includes
vertex processing, rasterization, fragment processing, frame
buffer and depth buffer updates, etc. We modified and in-
strumented Qsilver with simulation of our digital rights pro-
tection mechanism in order to examine the potential impact
of graphics data decryption on rendering performance. Sim-
ulation parameters are configured as close as possible to
the commercial Geforce 4 GPU product line. Our Qsilver’s
memory model is based on GDDR3 standard. Memory para-
meters and latencies are set based on realistic GDDR3 per-
formance data [Joh02].

We used open source Quake 3 Arena as evaluation work-
load. Protected and encrypted graphics data include static
geometry data (skinned characters and mesh objects) and
textures including mipmap textures. In the default protec-
tion setting, depth buffer is protected through encrypting of
depth buffer tiles. We collected Quake traces under four dif-
ferent level maps. Each trace was collected after the user got
into the representative part of the game.

5.3. Performance Results

First, we evaluated the impact of digital rights protection and
graphics data decryption on frame rate. Figure8 shows nor-
malized frame rate results under two decryption designs. The
frame rate is normalized to a baseline condition of no dig-
ital rights protection and data decryption. Figure7 com-
pares two different decryption schemes, one based on di-
rect encryption of graphics data blocks using CBC mode
and CMAC, the other one based on counter mode encryption
with HMAC. As suggested by the figure, using counter mode
decryption incurs only small performance overhead because
it hides most of the additional decryption latency with graph-
ics data fetch.

Decryption latency plays an important role in the overall
rendering performance of protected graphics data. Though
our default simulated decryption latency is based on realis-
tic implementation, it is still necessary to perform sensitiv-
ity studies to show the impact of content decryption under
different decryption latencies. Figure9 shows normalized
frame rate under the default 27.5ns decryption latency and a

 30

 40

 50

 60

 70

 80

 90

 100

q3dm
1

q3dm
7

q3dm
17

q3tourney

average

N
or

m
al

iz
ed

 F
ra

m
e

R
at

e
%

CoordinateCounterMode(27.5ns)
CoordinateCounterMode(40ns)

Figure 9: Impact of Content Decryption on Quake 3D Frame
Rate Under Different AES Latencies

 30

 40

 50

 60

 70

 80

 90

 100

q3dm
1

q3dm
7

q3dm
17

q3tourney

average

N
or

m
al

iz
ed

 F
ra

m
e

R
at

e
%

Baseline Medium High

Figure 10: Content Decryption on Quake 3D Frame Rate

hypothetical 40ns decryption latency setting. It is clear that
with the increase of decryption latency, the rendering perfor-
mance decreases.

Another factor that might affect graphics rendering per-
formance under content protection is memory throughput re-
quirement. With the increase of the amount of graphics data
fetched by a GPU, so is the pressure on content decryption.
We studied how sensitive the rendering performance is to the
increase of memory fetch workload by varying the texture
cache and depth buffer miss rate. Figure10 shows the nor-
malized frame rate results. Texture cache and depth buffer
miss rate are about 10% in the medium memory pressure
setting and around 20% in the high memory pressure setting.
Results in Figure10 indicate that as memory fetch through-
put demand and content decryption workload increases, ren-
dering performance decreases.

6. Conclusion

This paper presents a hardware-based digital rights solution
for protecting real time graphics assets and graphics applica-
tion. It integrates digital rights functionalities with GPU to
provide a strong content protection mechanism. The paper
addresses hardware design issues, API extensions, and other
details from the aspects of GPU design, graphics processing,
and content protection and distribution.

c© The Eurographics Association 2006.

W. Shi & H.-H. S. Lee & R. M. Yoo & A. Boldyreva / A Digital Rights Enabled Graphics Processing System

7. Acknowledgment

This research was supported by NSF Grants CCF-0326396
and CNS-0325536 and a DOE Early CAREER PI Award.
The authors would like to thank Dihong Tian for his signifi-
cant contributions for coming up the idea of graphics binding
contexts.

References

[AG99] AURA T., GOLLMANN D.: Software license man-
agement with smart cards. InProc. USENIX Workshop on
Smartcard Technology(1999), pp. 75–85.

[BCK96] BELLARE M., CANETTI R., KRAWCZYK H.:
Keying hash functions for message authentication.Lec-
ture Notes in Computer Science 1109(1996).

[BCK∗99] BLOOM J. A., COX I. J., KALKER T., LIN-
NARTZ J.-P., MILLER M. L., TRAW B.: Copy protection
for dvd video. Proc. of the IEEE, Special Issue on Iden-
tification and Protection of Multimedia Information 7, 87
(1999), 1267–1276.

[Ben99] BENEDENS O.: Geometry-based watermarking
of 3d models.IEEE Comput. Graph. Appl. 19, 1 (1999),
46–55.

[BN00] BELLARE M., NAMPREMPREC.: Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm. InASIACRYPT(2000),
Okamoto T., (Ed.), vol. 1976 ofLecture Notes in Com-
puter Science, Springer, pp. 531–545.

[CVM∗96] COHEN J., VARSHNEY A., MANOCHA D.,
TURK G., WEBER H., AGARWAL P., BROOKS F.,
WRIGHT W.: Simplification envelopes. InSIGGRAPH
’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques(New York, NY,
USA, 1996), ACM Press, pp. 119–128.

[DGM02] DUGELAY J.-L., GARCIA E., MALLAURAN

C.: Protection of 3-D object usage through texture wa-
termarking. InProceedings of the 11th European Signal
Processing Conference, Vol. III(2002).

[DH79] DIFFIE W., HELLMAN M.: Privacy and Authenti-
cation: An Introduction to Cryptography. InProceedings
of the IEEE, 67(1979).

[FK] FRANKEL S., KELLY S.: The HMAC-SHA-256-
96 algorithm and its use with ipsec. Internet draft,
http: //www3.ietf.org/proceedings/02mar/I-D/
draft-ietf-ipsec-ciph-sha-256-00.txt .

[FvDFH95] FOLEY J. D., VAN DAM A., FEINER S. K.,
HUGHESJ. F.:Computer Graphics: Principles and Prac-
tice in C. Addison-Wesley Professional, 1995.

[HDC] HDCP: High-bandwidth digital content protec-
tion. http: //www.digital-cp.com/home/ .

[HDD∗93] HOPPEH., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Mesh optimization. InSIG-
GRAPH ’93: Proceedings of the 20th annual conference
on Computer graphics and interactive techniques(New
York, NY, USA, 1993), ACM Press, pp. 19–26.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P. D., KLOSOWSKI

J. T.: Chromium: a stream-processing framework for in-
teractive rendering on clusters.ACM Trans. Graph. 21, 3
(2002), 693–702.

[HV] HODJAT A., VERBAUWHEDE I.: Speed-area trade-
off for 10 to 100 Gbits/s. In37th Asilomar Conference on
Signals, Systems, and Computer, Nov. 2003.

[IIP] IIPA:. http: //www.iipa.com/ .

[Joh02] JOHNSON C.: The future of memory: graph-
ics DDR3 SDRAM functionality. Designline 11, 4
(4Q2002).

[KB00] KOBBELT L., BOTSCH M.: An interactive ap-
proach to point cloud triangulation. InProceedings of the
Eurographics(2000), vol. 19, pp. 479–487.

[KL05] KOLLER D., LEVOY M.: Protecting 3d graphics
content.Communication of the ACM 48, 6 (2005).

[LPC∗00] LEVOY M., PULLI K., CURLESS B.,
RUSINKIEWICZ S., KOLLER D., PEREIRA L., GINZTON

M., ANDERSON S., DAVIS J., GINSBERG J., SHAD J.,
FULK D.: The digital michelangelo project: 3d scanning
of large statues. InProceedings of SIGGRAPH(2000).

[MM01] MCLOONE M., MCCANNY J. V.: High perfor-
mance single-chip FPGA Rijndael algorithm implemen-
tations. InProceedings of the Third International Work-
shop on Cryptographic Hardware and Embedded Systems
(2001), Springer-Verlag, pp. 65–76.

[NISa] NIST: FIPS PUB 180-2: SHA256 Hashing Algo-
rithm.

[NISb] NIST: Recommendation for block ci-
pher modes of operation: The CMAC mode for
authentication. Special Publication 800-38B,
http: //csrc.nist.gov/CryptoToolkit/modes/
800-38_Series_Publications/SP800-38B.pdf .

[PHF99] PRAUN E., HOPPEH., FINKELSTEIN A.: Ro-
bust mesh watermarking. InProceedings of SIGGRAPH
(1999), pp. 49–56.

[SLS04] SHEAFFER J. W., LUEBKE D., SKADRON K.:
A flexible simulation framework for graphics architec-
tures. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware (New York, NY, USA, 2004), ACM Press, pp. 85–
94.

[SVP] SVP: Secure video processor alliance.http: //
www.svpalliance.org/ .

[UKKK04] UENO M., KANBE M., KOBAYASHI T.,
KONDO Y.: Digital rights management technology using
profile information and use authorization.NTT Technical
Review 2, 12 (2004).

[WDS99] WOO M., DAVIS, SHERIDAN M. B.: OpenGL
Programming Guide: The Official Guide to Learning
OpenGL. Addison-Wesley, 1999.

[Wit02] WITTEMAN M.: Advances in smartcard security.
In Information Security Bulletin(July 2002).

c© The Eurographics Association 2006.

