
Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

UberFlow: A GPU-Based Particle Engine

Peter Kipfer, Mark Segal, Rüdiger Westermann

Computer Graphics & Visualization, Technische Universität München† , ATI Research‡

Abstract

We present a system for real-time animation and rendering of large particle sets using GPU computation and
memory objects in OpenGL. Memory objects can be used both as containers for geometry data stored on the
graphics card and as render targets, providing an effective means for the manipulation and rendering of particle
data on the GPU.
To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform particle
manipulation are essential. Our system implements a versatile particle engine, including inter-particle collisions
and visibility sorting. By combining memory objects with floating-point fragment programs, we have implemented
a particle engine that entirely avoids the transfer of particle data at run-time. Our system can be seen as a
forerunner of a new class of graphics algorithms, exploiting memory objects or similar concepts on upcoming
graphics hardware to avoid bus bandwidth becoming the major performance bottleneck.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

From a conceptual point of view, a particle engine consists
of a set of connected components or modules responsible for
the creation, manipulation and rendering of particle prim-
itives [Ree83, LT93, BW97, McA00, Sim90]. In computer
graphics, particle engines are most commonly used to gener-
ate volumetric effects like fire, explosions, smoke or fluids,
based on simple physical models. More elaborate particle
engines are employed for physically based dynamics sim-
ulation (e.g. Smoothed Particle Hydrodynamics [Mon88],
Boltzmann models [Boo90, Doo90]). Such systems usually
integrate particle-particle interactions as well as more com-
plex physical models to describe particle dynamics.

In current particle engines, the dynamics module is run on
the CPU. The rendering module sends particle positions and
additional rendering attributes to the GPU for display. This
conventional assignment of functional units to processing
units reveals the capabilities of early generations of graphics
processors. Such processors were solely optimized for the

† kipfer@in.tum.de, westermann@in.tum.de
‡ segal@ati.com

rendering of lit, shaded and textured triangles. Nowadays,
this design is abandoned in favor of programmable func-
tion pipelines that can be accessed via high level shading
languages [MGAK03, Mic02]. On current GPUs, fully pro-
grammable parallel geometry and fragment units are avail-
able providing powerful instruction sets to perform arith-
metic and logical operations. In addition to computational
functionality, fragment units also provide an efficient mem-
ory interface to server-side data, i.e. texture maps and frame
buffer objects.

Both in conventional particle engines and in engines that
exploit parallel computations and memory bandwidth on the
GPU, updated particle positions have to be transferred to
client memory before they can be used as input for the ge-
ometry engine. Then, bandwidth is becoming a major perfor-
mance bottleneck, and with the ability to do more operations
per time interval on the CPU or the GPU, the bandwidth re-
quired will grow substantially. Consequently, for high res-
olution particle sets the transfer of these sets for rendering
purposes has to be avoided.

OpenGL memory objects and similar concepts, i.e. texture
access in vertex shaders using PixelShader 3.0, provide this
functionality. A memory object is a block of data in graph-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

ics memory that can be used simultaneously as vertex buffer
and render target. This mechanism allows one to direct the
output of a fragment program into such objects, and to feed
the data into the geometry engine as an array of vertex po-
sitions or additional per-vertex attributes. Consequently, the
benefits of fragments programs, i.e. random access to tex-
tures, parallelism and memory bandwidth, can be combined
with the ability to render large sets of geometric data from
graphics memory. In this work, we present an efficient real-
ization of such memory objects on the latest ATI card, the
Radeon 9800.

To fully take advantage of this mechanism, efficient GPU
realizations of algorithms used to perform particle manipula-
tion are essential. In this paper, we present novel approaches
to carry out particle simulation in the fragment units of pro-
grammable graphics hardware. At the core of these tech-
niques, we present an optimized sorting routine that is far
faster than previous approaches. Built upon this implemen-
tation, we have implemented inter-particle collision detec-
tion and visibility sorting including hundreds of thousands
of primitives. In combination with OpenGL memory ob-
jects we present the first particle engine that entirely runs on
the GPU and includes such effects. This is a significant ex-
tension of previous approaches, i.e. [KvdDP03, GRLM03],
where the GPU was only exploited to either account for col-
lisions with implicitly defined surfaces or to perform the
broad phase in collision detection between polygonal ob-
jects.

The remainder of this paper is organized as follows. In
the following, we first review related work in the field of
GPU programming. In Chapter 3 we introduce the concept
of OpenGL SuperBuffers, and we describe their realization
on recent ATI cards. The use of parallel fragment units for
collision detection and visibility sorting is subject of Chap-
ter 4. Here, we also outline the conceptual design of a par-
ticle engine on programmable graphics hardware. In Chap-
ter 5 we show timing statistics for different scenarios includ-
ing collisions and front-to-back sorting. We conclude the pa-
per with a detailed discussion, and we show further results
of our approach.

2. Related Work

To take full advantage of new graphics chip technolo-
gies, considerable effort has been spent on the develop-
ment of algorithms amenable to the intrinsic parallelism
and efficient communication on such chips. In many ex-
amples, programmable GPUs have been explored to speed
up algorithms previously run on the CPU. The compu-
tational power and memory bandwidth on such proces-
sors has been exploited to accelerate the simulation of
both local as well as global illumination effects (e.g.
[PDC∗03, DS03]). Besides its use for the realistic render-
ing of geometric data, programmable graphics hardware has
also been harnessed for the rendering of volumetric data sets

[RSEB∗00, EKE01, KPHE02]. The acceleration of image
based modeling and rendering techniques on GPUs has been
considered for example in [YWB03, LMS03, HMG03].
Recently, a number of researchers have demonstrated
the benefits of graphics hardware for the implemen-
tation of general techniques of numerical computing
[HBSL03, LKHW03, SHN03, MA03, KW03, BFGS03].

The results given in many of these examples show, that
for compute bound applications as well as for memory band-
width bound applications the GPU has the potential to out-
perform software solutions. However, this statement only
holds for such algorithms that can be compiled to a stream
program, and which then can be processed by SIMD ker-
nels as provided on recent GPUs. On the other hand, execu-
tion speed is not the only concern when mapping algorithms
to graphics hardware. Another concern is to avoid any data
transfer between the CPU and the GPU. As we have to deal
with increasing scene and model complexity, bandwidth re-
quirements become an ever more important issue in a graph-
ics application. By trying to keep both the application pro-
gram and the rendering module on the graphics subsystem,
bandwidth limitations can be avoided thus achieving supe-
rior frame rates even when execution speed is not signifi-
cantly higher.

3. OpenGL SuperBuffers

Our method relies on computing intermediate results on the
GPU, saving these results in graphics memory, and then us-
ing them again as input to the geometry units to render im-
ages in the frame buffer. This process requires application
control over the allocation and use of graphics memory;
intermediate results are “drawn” into invisible buffers, and
these buffers are subsequently used to present vertex data or
textures to the GPU.

Our implementation exploits a feature of recent ATI
graphics hardware that allows graphics memory to be treated
as a render target, a texture, or vertex data. This feature is
presented to the application through an extension to OpenGL
called SuperBuffers. The interface allows the application to
allocate graphics memory directly, and to specify how that
memory is to be used. This information, in turn, is used by
the driver to allocate memory in a format suitable for the
requested uses. When the allocated memory is bound to an
attachment point (a render target, texture, or vertex array),
no copying takes place. The net effect for the application
program therefore is a separation of raw GPU memory from
OpenGLs semantic meaning of the data. Thus, SuperBuffers
provide an efficient mechanism for storing GPU computa-
tion results and later using those results for subsequent GPU
computations.

c© The Eurographics Association 2004.



Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

4. GPU-based Particle Engine

Since we aim at developing a particle engine that entirely
runs on the GPU, there is a dire need to reinvent modules of
the engine in regard to the particular target architecture. Only
then can we expect such a system to achieve significantly
better performance rates than a software solution. In the fol-
lowing, we describe the most relevant modules responsible
for the state of our system. The state is updated on a per
time step basis, where a single time step is comprised of the
following events:

• Emission
• Collisionless motion of particles
• Sorting of particles
• Pairing of collision partners
• Collision response
• Enforcement of boundary conditions
• Particle rendering

4.1. Emission

Initially, by any suitable scheme particle positions, r(t), are
distributed over the 3D domain, and they are encoded in the
RGB components of a server-side 2D RGBA texture map
of size n× n. As particles are usually released in different
time steps of an animation, each gets assigned a time stamp
that is stored in the A-component of this texture. The num-
ber of unique time stamps depends on the life time of parti-
cles in the animation. As we can only use a fixed number of
particles, this life time effectively determines the maximum
number of particles to be released per time step. A second
texture contains for every particle its current velocity, v(r, t).
Initially, this velocity is set to a constant value.

To perform any modifications on particle attributes, a view
plane aligned quad covering n × n fragments is rendered.
Both textures are bound to that quad, thus enabling a frag-
ment program to access and to modify these attributes. Uni-
form attributes for all particles can be specified in additional
texture coordinates of the quad. Updated values are simul-
taneously rendered to separate texture render targets using
the ATI_draw_buffer extension. In the next pass, these
targets become the current containers to be processed.

4.2. Collisionless Particle Motion

In the current implementation, each particle is first streamed
by its displacement during time interval dt. The displace-
ment is computed using an Euler scheme to numerically in-
tegrate quantities based on Newtonian dynamics:

v(r, t +dt) = v(r, t)+ vext(r, t)+
F
m

dt (1)

r(t +dt) = r(t)+
1
2
(v(r, t)+ v(r, t +dt))dt (2)

Here vext is an external wind field used to model particle
movement, F is an external force, and m is the particle mass.

The wind field is stored in a 3D texture, and it can thus be
sampled in the fragment program by using particle positions
as texture coordinates.

4.3. Sorting

Once collisionless motion of particles has been carried out,
the engine performs either of the following tasks: it resolves
inter-particle collisions and renders the particles as opaque
primitives or it sorts particles according to their distance
to the viewer and renders the particles as semi-transparent
primitives. Both scenarios rely on the sorting of particles.
Therefore, a sorting key to be considered in the sort has to
be specified.

In the latter scenario, the sorting key is the distances of
particles to the viewer. In the former scenario, particle space
is assumed to be divided into the cells of a regular lattice
of mesh size g0, and grid cells are uniquely enumerated in
ascending z-, y-, x-order. The index of the cell containing a
particle is associated with that particle, and it is used further
on as sorting key.

4.3.1. Sorting Keys and Identifiers

Sorting keys are computed once at the beginning of the sort.
In a single rendering pass, the fragment program either com-
putes the distance of particle positions to the viewer or it cal-
culates the grid cell floating point index by x/g2

0 + y/g0 + z.
In addition, to every particle a unique identifier is associ-
ated. Sorting keys and identifiers are rendered into the R-
and G-components of a 2D texture render target, which is
then sorted in row-major order. After finishing the sort, con-
tainers for particle positions and velocities are rearranged
according to the arrangement of identifiers.

Care has to be taken when computing identifiers on a chip
supporting limited integer or floating point precision. Recent
ATI graphics hardware only provides 24 bit internal floating
point format. With a 16 bit mantissa and a 7 bit exponent we
get 216 = 65536 distinct values in the range [2h−1 . . .2h]. As
we want to animate far larger particle sets of up to 1 million
particles, a different enumeration scheme needs to be devel-
oped.

When we let the exponent h take positive values from 1 to
24, we get 220 distinct but not equally spaced values. These
values can be pre-computed on the CPU and stored in as-
cending row-major order into a texture map. If we assume
220 particles to be processed per frame, a texture of size
210

× 210 is sufficient to serve as container for these values.
To get a unique identifier for each particle, a fragment pro-
gram simply has to look up the respective identifiers from
this container.

At the end of the sorting procedure, from 1D identifiers
the initial 2D texture coordinates have to be decoded in
order to rearrange particle positions and velocities accord-
ingly. Since we know that values within consecutive sets of

c© The Eurographics Association 2004.



Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

216/210 rows are equally spaced, for every identifier we only
need to determine in which of the 24 = 16 sets it is posi-
tioned. This is done by successively subtracting the range
[2i . . .2i−1] of each set from the identifier until it becomes
smaller than zero. Then, the identifier is contained in the ith

set, and a final division and modulo operation by the spac-
ing in that set times the number of entries per row yields
the appropriate texture address. This address is used to fetch
corresponding particle positions and velocities, which are fi-
nally output by the fragment program.

4.3.2. Bitonic Sort

To perform the sorting procedure efficiently, we account for
the architecture of todays graphics processors. Recent GPUs
can be thought of as SIMD computers in which a number of
processing units simultaneously execute the same instruc-
tions on their own data. GPUs can also be thought of as
stream processors, which operate on data streams consist-
ing of an ordered sequence of attributed primitives like ver-
tices or fragments. Considerable effort has been spent on the
design of sorting algorithms amenable to the data parallel
nature of such architectures. Bitonic sort [Bat68] is one of
these algorithms. Bitonic sort first generates a sequence nec-
essary as input for the final merge algorithm. This sequence
is composed of two sorted subsequences, where the first is in
ascending and the other in descending order. Bitonic merge
finally merges both subsequences in order to produce a glob-
ally ordered sequence.

Purcell et al. [PDC∗03] proposed an implementation of
the Bitonic sort on a graphics processor, i.e. the nVIDIA
GeForceFX graphics accelerator. It was used to sort photons
into a spatial data structure, yet providing an efficient search
mechanism for GPU-based photon mapping. Comparator
stages were entirely realized in a fragment program, includ-
ing arithmetic, logical and texture operations. The authors
report their implementation to be compute limited rather
than bandwidth limited, and they achieve a throughput far
below the theoretical optimum of the target architecture.

In the following, we present an improved Bitonic sort rou-
tine that achieves a performance gain by minimizing both the
number of instructions to be executed in the fragment pro-
gram and the number of texture operations.

4.3.3. The Sorting Pipeline

To explain our implementation, let us put emphasis on some
of the characteristics of Bitonic sort when used to sort a 2D
texture. As we can see from figure 1, as long as the texture is
to be sorted along the rows, in every pass the same instruc-
tions are executed for fragments within the same column.
Even more precisely, in the kth pass

• the relative address or offset 4r of the element that has to
be compared is constant

• this offset changes sign every 2k−1 columns

• every 2k−1 columns the comparison operation changes as
well.

The information needed in the comparator stages can thus
be specified on a per-vertex basis by rendering column-
aligned quad-strips covering 2k

× n pixels. In this way, the
output of the geometry units can be directly used as input
for the fragment units, thus avoiding most of the numerical
computations in the fragment program.

In the kth pass n/2k quads are rendered, each covering
a set of 2k columns. The constant offset 4r is specified as
uniform parameter in the fragment program. The sign of this
offset, which is either 1 or -1, is issued as varying per-vertex
attribute in the first component (r) of one of the texture co-
ordinates. The comparison operation is issued in the second
component (s) of that texture coordinate. A less than com-
parison is indicated by 1, whereas a larger than comparison
is indicated by -1. In a second texture coordinate the address
of the current element is passed to the fragment program.
The fragment program in pseudo code to perform the Bitonic
sort finally looks like this:

Row-Wise Bitonic Sort
1 OP1 = T EX1[r2,s2]
2 sign = r1 < 0 ? -1 : 1
4 OP2 = T EX1[r2 + sign∗4r,s2]
5 output = OP1.x∗ s1 < OP2.x∗ s1 ? OP1 : OP2

We should note here that the interpolation of per-vertex at-
tributes during scan-conversation generates a sign value be-
tween 1 and -1. Consequently, in line 2 the 1 or -1 values
must be reconstructed.

To perform row-wise sorting of texture elements,

∑log(n)
i=1 ∑i

j=1 quads have to be generated up front. Each set
of quads to be rendered in one pass is stored into a separate
display list. Once the texture has been sorted along the rows,
another log(n) stages have to be performed. In the ith stage, i
additional passes are executed to merge 2i consecutive rows.
Finally, row-wise sorting is performed as described. Since
sets of rows are always sorted in ascending order from left
to right and from top to bottom, every other set of 2i rows has
to be rearranged to generate a descending sequence required
by the Bitonic sort. This operation is implicitly realized in
the first pass of each stage.

As one can see from figure 2, the same approach of ren-
dering geometry in order to pass information from the geom-
etry units to the fragment units can be used in the merging of
rows as well. The only difference is, that quads now have to
be transposed to produce constant values along rows instead
of columns.

The final optimization results from the observation that
the graphics pipeline as implemented on recent cards is
highly optimized for the processing of RGBA samples. As
a matter of fact, we pack 2 consecutive entries in each row –
including sorting key and identifier – into one single RGBA
texture value. This approach is extremely beneficial, because

c© The Eurographics Association 2004.



Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

Pass 1 Pass 1 Pass 2

Stage 1 Stage 2

Pass 1

Stage 3

Pass 2 Pass 3

=> => => =>< < <<
=> => => =>< < <<

=> => => =>< < <<

=> =>=> => << < <
=> =>=> => << < <

=> =>=> => << < <

=> =>=> => << < <
=> =>=> => << < <

=> =>=> => << < <

=>=> => =>< < < <
=>=> => =>< < < <

=>=> => =>< < < <

=> => => =>< < < <
=> => => =>< < < <

=> => => =>< < < <

=> => => =>< < < <
=> => => =>< < < <

=> => => =>< < < <

Figure 1: Bitonic sort of rows of a 2D field. In one row, equal colors indicate elements to be compared. For each element, the
operation it has to perform is shown as well.

2 3 4 5 6 7 81
2 3 4 5 6 7 81

2 3 4 5 6 7 81
8 7 6 5 4 3 2 1

2 3 4 5 6 7 81
8 7 6 5 4 3 2 1

1 2 3 41 2 3 4
88775 665

row
swap

mergerow

row
sort

Figure 2: Bitonic sort of consecutive rows. Every other row
is reversed and then merged with its predecessor. Finally,
each row is sorted separately, producing a sorted set of ele-
ments in every pair of rows.

it effectively halves the number of fragment operations that
have to be performed. In addition, in the first pass of ev-
ery sorting stage the second operand does not need to be
fetched at all. On the other hand, the fragment program only
becomes slightly longer because the conditional statement
now has to be executed twice. Just at the end of the sorting
process is one additional rendering pass required to decode
packed texture entries and to rearrange particle positions and
velocities according to the arrangement of sorting keys.

4.4. Collision Detection

The collision detection module simultaneously computes for
each particle an approximate set of potential collision part-
ners. Only the closest one is kept and used as input for the
collision response module. In situations involving multiple
collision, resolving these events in parallel can lead to wrong
results. Although time-sequential or simultaneous process-
ing of collision events as proposed in [Hah88, Bar89, Mir00]
yields correct results, such techniques are not appropriate for
the implementation on current graphics architectures.

From the sorted 2D texture, each fragment now fetches
the current particle position, and it also fetches a number of
particle positions to the left and to the right of this position.
Of all these positions the one closest to the current one is
kept, and the respective texture coordinate is output to an
additional texture render target. Upon completion of colli-
sion detection this target is comprised of texture coordinates
of the closest potentially colliding partner for every particle.

Although the presented approach provides an effective

means for detecting many of the occurred collisions, it has
some weaknesses that are worth noting. First, depending on
the cell size g0 many more particles may reside within one
cell than can be checked for in the fragment program. Fur-
thermore, because particles are sorted according to cell index
only, the closest partner might be the furthest in one row. As
a matter of fact, this partner will not be detected. Second, if
colliding partners within one cell are arranged in consecutive
rows they can not be detected. Third, due to the enumeration
of grid cells collisions between particles in adjacent cells can
not be detected in general. Fourth, depending on the integra-
tion time step and the speed of particles, collisions that occur
between successive frames might be missed.

The first drawback can be accounted for by letting the
size of grid cells being small enough to only allow for a
fixed number of particles in each cell. By considering the
same number of potential partners in either row direction, it
is guaranteed that collisions within cells are detected.

To overcome the last drawback we essentially sort the set
of particles twice. We first build a second set of sorting keys
and identifiers from a staggered grid as shown in figure 3. By
selecting the closest partner from both grids, only those pairs
separated by cell faces in both grids can not be detected. The
vast majority of collisions, however, can be determined and
resolved.

1 2 3 4 5 6 7 8 9
1

10
2 4 5 6 7 8

9

3

Figure 3: Initial (orange) and staggered (black) grid used
for particle enumeration are illustrated in 2D. For the shown
particle pairs, collisions can not be detected in the initial
grid. Only collisions between particles colored black will be
missed in the staggered grid.

c© The Eurographics Association 2004.



Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

4.5. Collision Response

The output of the collision detection module is used as input
for the fragment program that simulates collision reactions.
Of the potentially colliding partners both position and veloc-
ity can be accessed thus providing the information required
to compute these reactions. Assuming sphere-like particles
with a fixed radius, the fragment program computes the dis-
tance between both spheres and tests for a collision. If a col-
lision is ascertained, both particles are backed up in time
until the first point of contact is reached.

From conservation of linear momentum and energy, new
momentum and thus velocity of the current particle is com-
puted. Spherical rigid bodies can be modeled as well by us-
ing additional containers for angular momentum and rota-
tion, and by updating these quantities according to external
forces and collision impulses. Updated velocities are used to
displace the current particle position according to the time
interval that was taken for backtracking. Each fragment fi-
nally outputs its position and velocity into the respective tex-
tures.

4.6. Boundary Conditions

Once the changes in particle positions and velocities due to
inter-particle collisions have been computed, particles are
tested for collisions with static parts of the scene. Since di-
rect collision detection between large particle and polygon
sets is not feasible in general, we first scan-convert the origi-
nal scene into a signed distance representation. The distance
field is stored in a 3D texture map, thus enabling the frag-
ment program to determine the distance of particles to scene
geometry by interpolation in this field.

Although this approach is fairly simple to implement and
only needs a single dependent texture operation to access
the distance field, for high detailed models it comes with a
significant overhead in texture memory. On the other hand,
the method is well suited for simulating particle flow over
height fields. This scenario only requires a 2D RGBA tex-
ture map to store surface normal and height. Once a par-
ticle falls below the height field, its position is reset to
p0 + d0/(d0 + d1) ∗ (p1 − p0). In this formula, p0, p1 and
d0,d1 are the previous and the current particle positions, and
their distances to the surface, respectively. At the updated
point position, the normal h is interpolated and the reflection
vector r to model the collision response is computed.

4.7. Rendering

Once particle positions have been updated and saved in
graphics memory, these positions are sent through the GPU
again to obtain images in the frame buffer. Therefore, up-
dated particle positions are rendered into a vertex array
memory object, which is then processed by the geometry
engine in a fixed order. The sorting order that has eventually

been computed can thus be maintained. In addition to vertex
geometry, attributes like color or texture coordinates can be
specified in graphics memory as well.

By evaluating the time stamps of particles in a vertex pro-
gram, the injection of particles can be controlled and parti-
cles can be deleted once their life time is expired. Particles
that have not yet been born, i.e. their time stamp is larger
than the current time step, are discarded by placing these ver-
tices outside the view frustum. Once the particle time stamp
modulo the current time step is equal to zero, all particle at-
tributes are reset thus starting a new life cycle.

5. Performance Evaluation and Discussion

To verify the effectiveness of the described particle engine,
we investigate its throughput in a variety of different scenar-
ios. All our experiments were run under WindowsXP/Linux
on a Pentium 4 2.0 GHz processor equipped with an ATI
9800Pro graphics card.

The proposed stream model for sorting on GPUs achieves
a considerable speed up compared to previous approaches.
Besides minimizing the number of texture operations, it ex-
ploits both the computational power of geometry and frag-
ment processors. By hard-coding information that is re-
quired repeatedly in the sorting stages, computational load
in the fragment units can be minimized.

Let us now analyze the performance of the sorting routine
by sorting differently sized 2D texture maps. To sort a tex-
ture of size n×n, log(n2) · (log(n2)+1)/2 rendering passes
are required. In each pass, sorting keys and identifiers of re-
spective operands are accessed, compared and rendered. In
the table below, we compare different implementations of
the Bitonic sort on recent ATI hardware (including the com-
putation of sorting keys and identifiers as well as the rear-
rangement of particle containers): FP implements the entire
sort in a fragment program, GP/FP exploits geometry units
to pass hard-coded information to the fragment program, and
GP/FP Packed packs consecutive sorting keys and identifiers
in one texture element.

Table 1: Timings (fps) for sorting 2D texture maps.

1282 2562 5122 10242

FP 22 3.5 1 0.2

GP/FP 40 10 3 0.4

GP/FP Packed 148 43 10 2

We see a significant performance gain due to the proposed
optimization schemes. Overall, the ultimate implementation
computes about 600 MPixels per second, thus almost reach-
ing the theoretical optimum of the graphics card. Even more,
by restricting the sorting to only a few sets of consecutive

c© The Eurographics Association 2004.



Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

rows we can flexibly select the appropriate frame rate re-
quired by the particle engine. Especially in animations where
particles are released in time-sequential order this feature
enables real-time animations, yet considerably reducing the
number of missed collisions. By holding in the same row all
particles that are released in one time step, these particles can
usually be sorted without sacrificing speed. Although colli-
sions between sets of particles having different time stamps
won’t be detected, as long as these sets do not mix up en-
tirely, the number of missed collision will be small.

Next, we give timing statistics for the rendering of sets of
2562, 5122 and 10242 particles. Corresponding screen shots
are shown in the color plates below. We analyze the perfor-
mance of the engine with regard to the simulation of differ-
ent effects: collisionless particle motion (E1), collisions with
a height field (E2), collisionless motion including front-to-
back sorting and rendering (E3) and full inter-particle colli-
sions (E4). Inter-particle collision detection includes sorting
along texture rows only, and testing a set of 8 particles to the
left and to the right of each particle in the fragment program.
To compare our system to CPU-based particle engines, (E5)
lists the timings for an implementation optimized for CPU
processing that uses data-dependent sorting (quick-sort) for
front-to-back rendering and is thus equivalent to the GPU
experiment (E3).

Table 2: Animation times for large particle sets (fps).

E1 E2 E3 E4 E5

2562 640 155 39 133 7

5122 320 96 8 31 2

10242 120 42 1.4 7 0.4

Timings in column E1 essentially show the throughput of
the geometry engine combined with OpenGL SuperBuffers.
Particles are rendered with associated colors and disabled z-
test. A considerable loss in performance can be perceived
when using memory objects smaller than 10242 – an indica-
tion that the graphics card can handle large chunks of data
much more efficiently.

As can be seen, even when combining visibility sorting
and particle-scene collision detection we are still able to run
a real-time animation with about 10 frames per second for a
quarter of a million particles. Obviously, animating a million
particles puts some load on both the geometry and the frag-
ment subsystem. On the other hand, by restricting the sort
to texture rows, we can still perform dynamic simulation of
this number of particles with some frames per second.

6. Conclusion

In this paper, we have presented the first particle engine that
entirely runs on programmable graphics hardware and in-
cludes effects such that inter-particle collision and visibility

sorting. To fully take advantage of OpenGL memory objects,
efficient GPU realizations of algorithms used to perform
particle manipulation have been developed. By combining
memory objects with floating-point vertex and fragment pro-
grams, the system enables real-time animation and render-
ing of particle dynamics. At run-time, CPU-GPU transfer is
completely avoided.

We believe that our work is influential for future research
in the field of computer graphics due to several reasons:
First, for the first time it has been shown that geometry data
can be created, manipulated and rendered on the GPU. By
combining vertex and fragment units, it is now possible to
simultaneously use the GPU as numerical number cruncher
and render server. As this approach allows avoiding any kind
of data transfer between the CPU and the GPU, it will signif-
icantly speed up applications where numerical computation
and rendering of large geometry data is paramount. Second,
the particle engine as implemented allows integrating any
physical model that requires access to adjacent particles to
update particle dynamics. Thus, a variety of grid-less meth-
ods to computational simulation of physics based effects can
be mapped to graphics hardware. Third, because sorting is
at the core of many applications in computer graphics, e.g.
occlusion culling, global illumination, unstructured grid ren-
dering, scene graph optimization, the efficient implementa-
tion of a sorting algorithm on the render server is extremely
beneficial and can be directly used to accelerate a variety of
different applications.

References

[Bar89] BARAFF D.: Analytic methods for dynamic
simulation of non-penetrating rigid bodies. In
ACM Computer Graphics (Proc. SIGGRAPH
’89) (1989), pp. 223–232. 5

[Bat68] BATCHER K.: Sorting networks and their
applications. In Proceedings AFIPS 1968
(1968). 4

[BFGS03] BOLZ J., FARMER I., GRINSPUN E.,
SCHRÖDER P.: Sparse matrix solvers on the
GPU: Conjugate gradients and multigrid. In
ACM Computer Graphics (Proc. SIGGRAPH
’03) (2003), pp. 917–924. 2

[Boo90] BOON J.: Lattice Gas Automata: A New Ap-
proach to the Simulation of Complex Flows.
Plenum Press, 1990. 1

[BW97] BARAFF D., WITTKIN A.: Physically based
modeling: Principles and practice. ACM Sig-
graph ’97 Course Note, 1997. 1

[Doo90] DOOLEAN G. (Ed.): Lattice Gas Methods for
Partial Differential Equations. Addison Wes-
ley Longman, 1990. 1

[DS03] DACHSBACHER C., STAMMINGER M.:

c© The Eurographics Association 2004.



Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

Translucent shadow maps. In Proceedings
Eurographics Symposium on Rendering 2003
(2003). 2

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-
quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware (2001). 2

[GRLM03] GOVINDARAJU N., REDON S., LIN M.,
MANOCHA D.: Cullide: Interactive collision
detection between complex models in large
environments using graphics hardware. In
Proceedings ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware (2003). 2

[Hah88] HAHN J.: Realistic animation of rigid bod-
ies. In ACM Computer Graphics (Proc. SIG-
GRAPH ’88) (1988), pp. 173–182. 5

[HBSL03] HARRIS M., BAXTER W., SCHEUERMANN

T., LASTRA A.: Simulation of cloud dy-
namics on graphics hardware. In Proceedings
ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware (2003), pp. 12–20. 2

[HMG03] HILLESLAND K., MOLINOV S.,
GRZESZCZUK R.: Nonlinear optimiza-
tion framework for image-based modeling on
programmable graphics hardware. In ACM
Computer Graphics (Proc. SIGGRAPH ’03)
(2003), pp. 925–934. 2

[KPHE02] KNISS J., PREMOZE S., HANSEN C., EBERT

D.: Interactive translucent volume render-
ing and procedural modeling. In Proceedings
IEEE Visualization (2002). 2

[KvdDP03] KNOTT D., VAN DEN DOEL K., PAI D. K.:
Particle system collision detection using
graphics hardware. In SIGGRAPH 2003
Sketch (2003). 2

[KW03] KRUEGER J., WESTERMANN R.: Linear al-
gebra operators for GPU implementation of
numerical algorithms. In ACM Computer
Graphics (Proc. SIGGRAPH ’03) (2003),
pp. 908–916. 2

[LKHW03] LEFOHN A., KNISS J., HANSEN C.,
WHITAKER R.: Interactive deformation
and visualization of level set surfaces using
graphics hardware. In Procceedings IEEE
Visualization (2003). 2

[LMS03] LI M., MAGNOR M., SEIDEL H.-P.:
Hardware-accelerated visual hull recon-
struction and rendering. In Proceedings of
Graphics Interface (2003), pp. 12–20. 2

[LT93] LEECH J., TAYLOR R.: Interactive modeling

using particle systems. In Proc. 2nd Confer-
ence on Discrete Element Methods (1993). 1

[MA03] MORELAND K., ANGEL E.: The FFT
on a GPU. Proceedings ACM SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware (2003), 112–119. 2

[McA00] MCALLISTER D.: The design of an api for
particle systems, 2000. 1

[MGAK03] MARK W., GLANVILLE R., AKELEY K.,
KILGARD M.: Cg: A system for programming
graphics hardware in a C-like language. In
ACM Computer Graphics (Proc. SIGGRAPH
’03) (2003), pp. 896–907. 1

[Mic02] MICROSOFT: DirectX9 SDK.
http://www.microsoft.com/ DirectX, 2002. 1

[Mir00] MIRTICH B.: Timewarp rigid body simula-
tion. In ACM Computer Graphics (Proc. SIG-
GRAPH ’00) (2000), pp. 193–200. 5

[Mon88] MONAGHAN J.: An Introduction to SPH. cpc
48 (1988), 89–96. 1

[PDC∗03] PURCELL T., DONNER C., CAMMARANO

M., JENSEN H., HANRAHAN P.: Pho-
ton mapping on programmable graphics
hardware. In Proceedings ACM SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware (2003), pp. 41–50. 2, 4

[Ree83] REEVES T.: Particle systems - a technique
for modelling a class of fuzzy objects. ACM
Computer Graphics (Proc. SIGGRAPH ’83)
(1983). 1

[RSEB∗00] REZK-SALAMA C., ENGEL K., BAUER M.,
GREINER G., T. E.: Interactive volume ren-
dering on standard pc graphics hardware us-
ing multi-textures and multi-stage rasteriza-
tion. In Eurographics Workshop on Graphics
Hardware (2000), pp. 109–119. 2

[SHN03] SHERBONDY A., HOUSTON M., NAPEL S.:
Fast volume segmentation with simultane-
ous visualization using programmable graph-
ics hardware. In Procceedings IEEE Visual-
ization (2003). 2

[Sim90] SIMS K.: Particle animation and rendering us-
ing data parallel computation. In Computer
Graphics (Siggraph ’90 proceedings) (1990),
pp. 405–413. 1

[YWB03] YANG R., WELCH G., BISHOP G.: Real-
time consensus-based scene reconstruction us-
ing commodity graphics hardware. In Pro-
ceedings of Pacific Graphics (2003), pp. 23–
31. 2

c© The Eurographics Association 2004.



Peter Kipfer & Mark Segal & Rüdiger Westermann / UberFlow

Figure 4:
LEFT IMAGE: Dense snow falling down on a landscape. Includes detection of ground contact.
RIGHT IMAGES: Effect of inter-particle collision (off at the top, on at the bottom).

Figure 5: Tracing large numbers of particles including particle-scene collision detection and front-to-back sorting to model
natural phenomena. The point primitives can be rendered using any OpenGL functionality available.

c© The Eurographics Association 2004.


