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Abstract
Human motion is of high articulation and correlation.When a human motion sequence is represented by a matrix,
the matrix will be approximately low-rank. This low-rank property has been used by previous manifold-based
approaches such as PCA and GPLVM. Encouraging results yielded by those approaches show that the low-rank
property is of interest and importance for animating human motion. However, none of those approaches explicitly
exploits it for motion capture data processing. In this paper, we propose to deal with motion capture data based on
recently developed low-rank matrix completion theory and algorithms. Unlike previous approaches, the proposed
method relies on low-rank prior instead of motion prior. To verify it effectiveness for dealing with motion capture
data, we show that incomplete human motion can be effectively reconstructed. We also demonstrate that a noise-
corrupted motion can be nicely recovered.

Categories and Subject Descriptors (according to ACM CCS): I.7 [Computer Graphics]: Computer Graphics—
Animation

1. Introduction

A well-known truth about human motion is that it is artic-
ulated: the entire motion is described by the movement of
joints which are connected by inflexible bones. The move-
ment of one joint is correlated with that of another. If we
record the trajectories of all joints and represent them as a
motion matrix, this correlation is completely contained in
the matrix. The problem is how to extract and model the
correlation from the matrix. When the correlation is lin-
ear, the best property to be used will be the rank, which
by definition measures the linear dependence of the rows
(or columns) of a matrix. The higher the correlation is, the
lower the rank will be. In this paper, we apply a low-rank
matrix completion algorithm referred to as Singular Value
Threshold(SVT) [CCS10] to motion capture data process-
ing. By presenting two experiments on dealing with human
motion(namely, completion and denoising), we demonstrate
that the low-rank property of motion sequences can be ex-
ploited as a prior effectively in an explicit way different from
previous approaches.

Related work Previous work concerning linear correla-
tion of human motion is mostly based on linear dimension

reduction [SHP04, LWS02, CH07, etc]. Non-linear correla-
tion has also been considered and modeled by latent variable
models [WFH08,GMHP04] and other non-linear dimension
reduction methods [LE06]. Given some keyframing infor-
mation and motion capture data, Pullen and Bregler [PB02]
proposed to compete(fill in) the missing degrees of free-
dom based on correlation analysis of joint angles . Lou and
Chai [LC10] proposed a method for motion capture data de-
noising and missing value completion. They first construct a
set of bases from clean motion capture data, and then given
a noisy motion signal, the denoised motion is estimated by
trading off between reconstruction error from the bases and
the observation likelihood. Chai and Hodgins [CH05] pro-
posed an online local linear model for incompletion motion
reconstruction. Performance of the proposed method is com-
pared with and claimed superior to global PCA, GPLVM
and LLM(see reference therein). Their approach relies on a
large data set for constructing motion prior.Notice that most
data-driven approaches including the aforementioned ones
use motion capture data as a prior(motion prior), see also
[LC10, CH07] for examples. Other than what we discussed
above, previous work related to motion capture data process-
ing includes compression [TWC∗09, Ari06], segmentation
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and classification [LFAJ10,LE06], etc. On the other side, re-
search on low-rank matrix completion theory and algorithms
has become booming since a recent introduction of (non-
smooth but convex) nuclear norm approximation to solve the
originally NP-hard problem [Faz02]. It can be shown that
under some conditions, incomplete low-rank matrix can be
recovered exactly using such approximation [CR09]. Many
algorithms have been and are being developed, trying to
solve the matrix completion problem as fast and as accurate
as possible [MGC09, CCS10, etc]. Applications related to
low-rank matrix completion can be found in realm of com-
puter vision and image processing, see [JLSX10] for exam-
ple. To our knowledge, however, there is no previous work
on application of low-rank completion theory to human mo-
tion modeling.

Our work is similar to [LC10] and [CH05]. However, the
approach taken is quit different since we use rank prior in-
stead of motion prior. In others words, we do not need any
motion capture data as training sets. Experimental results
show the effectiveness of the low-rank prior for human mo-
tion completion and denoising.

The rest of this paper is organized as follows. In section 2,
we first briefly introduce the SVT algorithm and discuss the
low-rank property of motion capture data as well as how to
make use of it. We then provide two preliminary applications
of this property in section 3 followed by the conclusion and
discussion of future work in section 4.

2. Overview of the proposed method

Low rank matrix completion considers the optimization
problem P0 : minX{ Rank(X) : X ∈ C}, where C is some
known constraint set usually described by linear equalities
and convex inequalities. SVT is one of the many algorithms
designed to solve such a problem. It is based on the fact
that truncating the singular values of Y by threshold λ is the
solution to the problem P1 : minX{ 1

2 ||X−Y||2F +λ||X||∗},
where ||X||∗ is the nuclear norm for approximating the rank
of X. Instead of solving P0 directly, SVT solves P1 as an ap-
proximation. To handle the constraint X ∈ C, it iteratively
projects X between objective and the set C. When applied to
motion capture data, we can see SVT as consisting of two
terms, namely likelihood and prior. The likelihood term is
measured by the Frobenius norm, and the prior is just the
low-rank property. Since the prior plays an important role,
we would like to make sure the correctness of this prior for
all kinds of motion sequences, despite the fact that many pre-
vious approaches have adopted this assumption.

We use Y = [y1, ...,yn] to represent a motion sequence,
where each yi ∈ Rm represents a frame. We assume that
n > m. To check that whether a motion Y has a low-rank
structure, we can find the spectrum of YT Y and observe how
fast it decays. To do so, we collect 112 motion sequences,
each from one of the 112 subjects in CMU mocap database.
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Figure 1: Normalized spectrum of various motion sequences

The subjects cover various motion styles including walking,
jumping, running, dancing, etc. For each motion, its eigen-
values (denoted by s ∈ Rm) are calculated and normalized
such that ||s||1 = 1. The normalized spectrum is showed in
figure 1, from which we can see that the spectrum concen-
trates in the bottom-left area and decays very rapidly, imply-
ing the correctness of the low-rank prior.

3. Applications

We now adopt low-rank matrix completion theory to exploit
this low-rank prior explicitly. To our knowledge, this adop-
tion is the first time in computer animation domain. Different
from previous approaches which are based on linear or non-
linear dimension reduction, our method directly works on
the original (high dimensional) space and does not require
extra training data.

Our experiments are based on CMU mocap database, in
which human skeleton model is described by the acclaim
asf file. The skeleton consists of 31 joints including the root
joint. The degrees of freedom (DOF) for each joint vary from
1 to 3. There are totally 62 DOF’s for a skeleton. The mo-
tion data are stored in the acclaim amc file, which contains
the recorded data for the DOF’s.We use Matlab and a mo-
cap toolbox [Law] for decoding asf/amc files and for dis-
playing motion. Each motion sequence is represented by an
m× n matrix, where m = 31× 3 = 93. Although other mo-
tion sequences also work well, for consistence, the motion
used for the following experiments is trial 1, subject 7 which
is a walking sequence.

Reconstructing missing joints We first consider the situ-
ation when some entries of the motion Y are missing. Given
only such an incomplete motion, and with no physical in-
formation(e.g. joint limit, bone length) or training set avail-
able, how can we recover the unknown entries? We solve
this problem by using SVT. Following the notional conven-
tion in [CCS10], a projection operator PΩ is defined such
that it extracts the entries of a matrix indexed by Ω and re-
shapes them as a vector. Now the reconstructed motion is
given by the solution to the following optimization problem
with variable X:

minimize Rank(X)

subject to PΩ(X) = PΩ(Y) (1)

Figure 2 shows a recovery of 50% randomly selected miss-
ing joints(marked in red) from an incomplete motion(blue)
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with mean square error of 0.0253. The recovered mo-
tion(green) is of rank 16. Note that the motion is shown at
every 50 frames
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Figure 2: Reconstructing an incomplete motion

We can see that the even though up to 50 percent of mo-
tion data are missing, we can still recover the motion very ef-
fectively, and the resulting motion is of low-rank. We expect
that potential applications related to this preliminary exam-
ple can range from mocap data processing, motion editing
to interactive motion synthesis. For instance, in one applica-
tion, the animator sketches the positions of some joints, the
computer then automatically competes the rest joints(similar
to [CH05]). This will greatly help reduce tedious and bur-
densome labor work. In another application, a novice anima-
tor modifies (nearly randomly) an originally smooth motion.
Fortunately, the computer discovers that the low-rank struc-
ture is destroyed. Then it automatically modifies the motion
again to trade off between the low-rank constraint (so that
the motion is not invalid) and the intention of the novice an-
imator. In this case, the assumption is that for a motion to be
good(in the sense of physically valid and well-coordinated),
it must first satisfy the low-rank constraint.

Motion capture data denoising Here we provide an-
other example showing how to exploit the low-rank prop-
erty for recovering human motion corrupted by noise. Dif-
ferent from the denoising given in [LC10], our method does
not require motion prior. Given a single noise-corrupted mo-
tion Ỹ , a straightforward denoising approach will be to use
SVD directly. If we assume that all entries are unknown
and contaminated by noise, and Y has a fast decaying spec-
trum, the best estimate of Y is U1:rΣ1:rVT

1:r, where U,V
and S are singular vectors and singular values (all in ma-
trix form) of Ỹ respectively. In fact, it is the solution of the
optimization problem P2 : minX{||X−Y||2F ,Rank(X)≤ r},
where || · ||F represents Frobenius norm. Another way to
look at this problem is to reformulate it equivalently as
P3 : minX{||X−Y||2F + λRank(X)} for some λ depending
on r. When the noise is large, r should be set to a small value
to remove more (corrupted) singular values. This is of course
assuming that the noise is not so large that all singular values
are corrupted. On the other hand, λ should be set to a large
number when r is small according to duality theory. In this
case, we trust the low-rank prior more that we trust what we
have observed. Since the problems P2 and P3 are equivalent
and the latter is in fact similar to the idea behind SVT(i.e.,
P1), one may argue that denoising by truncated SVD is better

than SVT due to complexity issue of the latter. We remove
this doubt from the perpestive that SVD can not handle par-
tially corrupted motion capture data while SVT is designed
to do so. This is verified by the following experiment.

We first generate a zero-mean Gaussian noise G with stan-
dard deviation denoted by σ. Given a motion Y, we then ob-
tain the corrupted motion by Ỹ = Y+G. Based on Ỹ and a
rough guess of standard deviation denoted by σ̂, we estimate
the original motion by solving the following optimization
problem with variable X:

minimize Rank(X)

subject to APΩ(X)≤ b (2)

PΩc(X) = PΩc(Y) (3)

where A ∈ Rk×mn, b ∈ RK are problem data, Ω
c is com-
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Figure 3: Recovering a noise-corrupted motion

plement of Ω. Constraint (2) provides a confidence interval
for each entry of X indicated by the set Ω. Constraint (3)
is the ordinary vector equality that restricts Xi j to be Yi j for
(i, j) ∈ Ω

c. For our experiment, the constraint (2) is imple-
mented as −σ̂+Yi j < Xi j < Yi j + σ̂ for (i, j) ∈ Ω. we set
σ = 3, σ̂ = 2σ, and Ω contains randomly generated indexes
covering 30% entries(i.e., 70% corrupted). This problem is
solved by SVT and and the result is shown at every 50 frames
in figure 3. From the figure we can see that compared to
the contaminated motion(top), the denoised motion(bottom,
of rank 34) is visually much better, proving that proposed
method is effective. Result obtained by SVD truncated at
rank 3, which is the best among all truncations, is also plot-
ted(middle) for comparison. The mean squared errors for
SVT and truncated SVD are 0.0804 and 0.4499 respectively.
If we remove the constraints (2) and (3)(e.g., set σ̂ to a very
large value), and set the parameter λ in SVT to a proper
value, then SVT will converge to the solution given by trun-
cated SVD. In this case, truncated SVD is better only in the
sense of lower complexity. However, with the constraints in
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place, SVT outperforms truncated SVD. For computer aided
animation, we expect the confident interval (3) to provide
useful information such as that physical constraints an user
constraints provided by animators.

4. Conclusion

This paper presents our recent work on dealing with human
motion capture data. We provided two preliminary exam-
ples which prove the effectiveness of exploiting the low-rank
property. Although the motion sequence used is the walk-
ing sequence, similar results are expected if experiments are
conducted on other sequences. This is supported by figure
1, which shows that human motion sequences are low-rank.
Notice that the completion and denoising processes do not
rely on any motion prior. Also notice that there is no physi-
cal information or auxiliary training sets involved in the two
examples. We believe that if we can incorporate physical
models or training sets into the optimization problem, much
better results in the two experiments can be obtained. For
instance, if we know the bone length, we can constrain the
position of a missing joint to obtain a better estimate. This
can be done by, for instance, forming an convex inequality
constraint extracted from physical model to replace the con-
straint in (2). We leave this extension to future work.

One limitation of using the low-rank prior might be the
complexity issue. For the motion completion experiment, it
takes about 10 seconds to estimate 50 percent of missing
entries for the motion of length 316 on a modern PC. One
reason for that is, although what we have shown is a pre-
liminary problem, it is still very challenging. However, we
believe this limitation can be tackled either by the fast ad-
vancing optimization technique, or by other adjustment and
assistance in real applications.

Another limitation is inherited from low-rank matrix com-
pletion theory, which states that when a whole row or col-
umn is missing, it is impossible to recover the incomplete
matrix. This is not difficult to understand: to recover such
a low rank matrix, one solution will be to fill the missing
row(or column) with all zeros. Without any additional in-
formation(e.g. axillary data, physical constraints or training
set), it is very difficult not to arrive at this trivial and use-
less solution. Even with such information in hand, how to
make use of it is another problem. Our future research will
mainly focus on solving this problem by using additional in-
formation and applying it to more sophisticated applications
in computer animation .
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POPOVIĆ Z.: Style-based inverse kinematics. ACM Transactions
on Graphics (TOG) 23, 3 (2004), 531. 1

[JLSX10] JI H., LIU C., SHEN Z., XU Y.: Robust video denois-
ing using low rank matrix completion. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on (2010),
IEEE, pp. 1791–1798. 2

[Law] LAWRENCE N.: Mocap toolbox for matlab. Available on-
line at http://www. cs. man. ac. uk/neill/mocap. 2

[LC10] LOU H., CHAI J.: Example-Based Human Motion De-
noising. Visualization and Computer Graphics, IEEE Transac-
tions on 16, 5 (2010), 870–879. 1, 2, 3

[LE06] LEE C., ELGAMMAL A.: Human motion synthesis by
motion manifold learning and motion primitive segmentation.
Lecture Notes in Computer Science 4069 (2006), 464–473. 1,
2

[LFAJ10] LI Y., FERMULLER C., ALOIMONOS Y., JI H.: Learn-
ing shift-invariant sparse representation of actions. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on (2010), IEEE, pp. 2630–2637. 2

[LWS02] LI Y., WANG T., SHUM H.: Motion texture: a two-level
statistical model for character motion synthesis. In Proceedings
of the 29th annual conference on Computer graphics and interac-
tive techniques (2002), ACM New York, NY, USA, pp. 465–472.
1

[MGC09] MA S., GOLDFARB D., CHEN L.: Fixed point and
Bregman iterative methods for matrix rank minimization. Math-
ematical Programming (2009), 1–33. 2

[PB02] PULLEN K., BREGLER C.: Motion capture assisted ani-
mation: Texturing and synthesis. ACM Transactions on Graphics
(TOG) 21, 3 (2002), 508. 1

[SHP04] SAFONOVA A., HODGINS J., POLLARD N.: Synthe-
sizing physically realistic human motion in low-dimensional,
behavior-specific spaces. In ACM SIGGRAPH 2004 Papers
(2004), ACM, p. 521. 1

[TWC∗09] TOURNIER M., WU X., COURTY N., ARNAUD E.,
REVERET L.: Motion compression using principal geodesics
analysis. In Computer Graphics Forum (2009), vol. 28, Wiley
Online Library, pp. 355–364. 1

[WFH08] WANG J., FLEET D., HERTZMANN A.: Gaussian pro-
cess dynamical models for human motion. IEEE transactions on
pattern analysis and machine intelligence 30, 2 (2008), 283–298.
1

c© The Eurographics Association 2011.

48


