
EUROGRAPHICS 2011/ R. Laramee and I. S. Lim Poster

Accelerated 5D Ray Tree construction on the GPU

Ravi P. Kammaje†1,2 and Benjamin Mora2

Abstract
Ray tracing random rays has been a challenge. Due to their reduced coherence, the normal methods of accel-
eration like packet tracing that make use of coherence of the rays do not work well. These random rays are
encountered in global illumination methods. 5D ray classification, first introduced by Arvo and Kirk [AK87], can
classify these rays into coherent groups. We introduce a method that builds a hierarchical structure identifying
coherence in random rays very quickly using the increased processing power of the GPU.

Categories and Subject Descriptors (according to ACM CCS): Comp. Graph. [I.3.6]: Methodology & Techniques—

1. Introduction
Coherence is used frequently to accelerate Ray Tracing.
Several recent methods involve utilizing coherence, both in
the object itself and in the rays to make ray tracing faster.
Unfortunately, coherence occurs only in primary rays and
maybe partially in shadow, reflection and refraction rays. For
even basic global illumination and for methods like ambi-
ent occlusion, real incoherent rays are necessary to be traced
through the model and recent methods like packet tracing
[WS01] and MLRTA [RSH05] are not as effective. Thus,
the aim of our work is – to quickly identify a hierarchical
structure of coherent rays amongst random rays in order to
make the acceleration methods more effective.

2. Ray Tree
5D classification – whereby the rays are classified into
groups of most coherent rays – was introduced by Arvo and
Kirk [AK87]. It is believed that using this method over ran-
dom rays can produce enough coherence to accelerate their
ray tracing. Additionally, this method affords itself to ac-
celeration on the GPU. Recently some researchers have ad-
dressed the problem of incoherent rays using similar meth-
ods. Roger et al. [RAH07] use 5D classification and show
impressive results for shadow and reflection rays. Garanzha
and Loop [GL10] use a sorting method to create a flat struc-
ture of rays, but address only secondary rays and not the truly
incoherent rays.

Each ray is considered as a 5D point – the origin con-
tributing (x,y,z) coordinates and the direction contributing
two further coordinates – (u,v). Initially, the rays are classi-
fied into six root nodes based on their direction’s dominant
axes – −X , +X , −Y , +Y , −Z and +Z. The dominant axis

† Chairman Eurographics Publications Board

is the maximum component in the normalized direction vec-
tor of the ray. The ray direction vector can be considered as
a line starting at the origin hitting one of the faces of a unit
cube centered at the origin. The 2D coordinates on the cube’s
face where the unit direction vector intersects gives the (u,v)
coordinates of the ray. Using these 5 coordinates each ray is
classified into one of 32 sub groups or nodes of the tree. This
classification is repeated until each group contains less than
a small number of rays (determined by the user) or when a
node is at a pre-determined maximum depth. The tree thus
built is analogous to an octree, but in 5D instead of 3D and
exposes the coherence in random rays – i.e. each node con-
tains coherent rays.

3. GPU Ray Tree building

The modern GPU with its multitude of cores can process
several operations in parallel. However, GPUs do not handle
recursion very well. Thus, tree building, which is essentially
a recusive process has to be performed using a breadth first
method. In addition, for efficiency reasons, the tree will be
represented as an array of nodes. The ray tree building using
a breadth first algorithm would be as follows.

• Identify the root nodes of the ray tree

– Find dominant axis of rays, i.e. longest component of
normalized ray direction. The dominant axis indicated
by 0,1,2, ..5 for −X , +X , −Y..+ Z is the node to
which the ray belongs to

– Sort the rays to ensure that rays of a node are together
in the array

– Count the number of rays in each node
– The range of the five dimensions is now - Xmin −Xmax,

Ymin −Ymax, Zmin −Zmax, U(−1,1), V (−1,1)

• Build the lower levels of the ray tree

c© The Eurographics Association 2011.

45

http://www.eg.org
http://diglib.eg.org


Ravi P. Kammaje & Benjamin Mora / Accelerated 5D Ray Tree construction on the GPU

(a) All the random rays (b) Top Level of tree (c) Node at Level 1 of tree (d) Node at Level 2 of tree

Figure 1: The different levels of the ray tree.

Figure 2: Determining the bits for presorting the rays

– Find mid point of each active node (five dimensional
hypercube) – (Xmid , Ymid , Zmid , Umid , Vmid)

– Classify each ray based on its 5D representation, using
5 bits to represent this classification.

– Sort the rays to ensure that rays of a node are together
in the array

– Count the number of rays in each node
– If any node contains fewer than lea f NodeRays, make

it a leaf node. i.e. do not divide it further
– Continue until all nodes are leaf nodes

It can be observed from the above steps that there is an ex-
pensive sort operation involved at each iteration of the tree
building process. The rays can be pre-classified to as many
levels as needed before the tree building process begins. 3
bits are necesary to indicate the ray’s root node and 5 bits to
indicate a ray’s classification. A 32 bit integer, can thus indi-
cate 5 levels of the tree nodes as shown in Figure 2. Similarly
another 32 bit integer can indicate a further 6 lower levels.
These integers are stored in a two arrays – L1 and L2. These
arrays and rays are sorted to get these rays in their node or-
der. Just two fast radix sorts [SHG09] are necessary to build
the entire tree.

4. Results

To benchmark the results, we use a PC with a Core2 Quad
2.4GHz processor with 4GB of RAM and an Nvidia Quadro
FX5800 with 4GB of video memory. CUDA and C++ are
used to implement the tree building on the GPU and CPU
respectively. It is to be noted here that the GPU algorithm is
still a work in progress and needs to be further optimized.

1024× 1024 random rays are generated and a tree is built
out of these rays using both the CPU and the GPU.

To build a ray tree – with a maximum of 64 rays in the leaf
node – using the CPU takes around 450 ms whereas to build
the same tree using the GPU takes around 21 ms. Figure 1
shows the coherence produced.

5. Conclusion
As can be inferred from the results, the GPU can be used to
effectively identify coherence in random rays. An effective
algorithm that utilizes this coherence and traces these rays
to produce realistic global illumination effects at interactive
frame rates is being pursued.

References
[AK87] ARVO J., KIRK D.: Fast ray tracing by ray classification.

SIGGRAPH Comput. Graph. 21 (August 1987), 55–64. 1

[GL10] GARANZHA K., LOOP C.: Fast ray sorting and breadth-
first packet traversal for gpu ray tracing. Computer Graphics
Forum 29, 2 (2010), 289–298. 1

[RAH07] ROGER D., ASSARSSON U., HOLZSCHUCH N.: Whit-
ted ray-tracing for dynamic scenes using a ray-space hierarchy
on the gpu, jun 2007. 1

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-
Level Ray Tracing Algorithm. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2005) 24, 3 (2005), 1176–1185. 1

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing
efficient sorting algorithms for manycore gpus. Parallel and Dis-
tributed Processing Symposium, International 0 (2009), 1–10. 2

[WS01] WALD I., SLUSALLEK P.: State of the Art in Interactive
Ray Tracing. In State of the Art Reports, EUROGRAPHICS 2001.
EUROGRAPHICS, Manchester, United Kingdom, 2001, pp. 21–
42. 1

c© The Eurographics Association 2011.

46




