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Abstract
We propose a system for arranging images from a database into a collage that resembles some target image. These
collages exploit large scale visual correspondences between the target image and the images in the database. We
ensure that images of multiple sizes are used and are combined so that boundaries between images are not imme-
diately apparently; as a result, the final collage consists of irregularly shaped image sections. The final collages
contain a dynamic mixture of textures, images, and shapes that is in contrast to the geometric and regular charac-
ter of many photomosaic techniques. In service of these tasks, we propose a fast scale-based method for querying
an image library, a novel method for composing multiple images using geodesic distance Voronoi tesselations, and
a novel base/detail method for shifting the colors of the final collage so that the target image is more accurately
represented.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture and Image
Generation—

1. Introduction

Photomosaics have been a powerful and fascinating tool for
artists, combining multiple images into a single image that
itself has a unique and coherent interpretation. Photomo-
saic creation involves arranging a set of images, usually on
a regular grid or some other tessellation, so that the entire
arrangement of images resembles some large target image.
Correspondences between images may be used to add addi-
tional context and additional layers of meaning: it is possible
to induce narrative effects such as irony, and to evoke viewer
reactions such as surprise, confusion, or humor.

We propose an alternative form of assemblage which we
term “photocollage”, in which images are arranged irreg-
ularly, with content-sensitive boundaries, smooth blending
between smooth image regions, and a high degree of both
accuracy to the target image and discernibility of individ-
ual elemental images. As in photomosaics, individual im-
ages are combined in such a way as to suggest the features of
the target image. However, we use larger images and recal-
culate regions of the collage where large images are insuffi-
cient to accurately represent the target image. Also, we seek
large-scale structural matches between collage elements and
the target image: in particular, strong edges in the target im-

age should correspond with edges within collage elements,
rather than boundaries between them.

The physical medium of collage in art uses an impressively
diverse array of elements and composition techniques; ele-
ment images vary widely in size, shape, and content [Hut68].
In particular, artists such as Dave McKean and Nick Bantock
have explored a wide space of possibilities for expression
and representation within the collage art form. Distinct from
photomosaics, our system allows non-expert artists to com-
pose textures and gradients that interact in visually complex
ways, through smooth blending and content-sensitive seam
finding. These photocollages consist of dynamic composi-
tions of textures, colors and tones; the results are not the
clean-cut, mechanical grids that we expect to see in photo-
mosaics, but have a roughness and chaotic quality that brings
them to life.

A photomosaic is an image with some large scale global
interpretation composed of smaller images, each with their
own local interpretation. Oliva and Torralba [OTS06] note
that the property of an image having simultaneous global and
local interpretations is distinct from the property of multiple
global interpretations. Seckel [Sec04] uses the term double
image to refer to any image that has two distinct global in-
terpretations; that is, when viewed as a whole, these images
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may be assigned two distinct interpretations by the viewer.
For instance, some sixteenth century artists such as Matthaus
Merian created anthropomorphic landscapes that at first ap-
pear to be simple landscape paintings but contain the hidden
shape of a human face [Sec04] . However, since our photo-
collages often use large images to represent large portions
of the target image, it is useful to merge the ideas; that is, if
we have a large portion of the target image represented by
a single image in the collage, this collage exhibits weaker
localization of images than the typical photomosaic.

After Silvers and Hawley published their picture book of
photomosaics [SH97], Finkelstein and Range [FR98] pub-
lished a formal treatment of the subject. Jacobs et al. [JFS95]
and Zhang [Zha02] improved the efficiency of library
queries by using content based image retrieval and low di-
mensionality signatures. Di Blasi et al. [DGP06] additionally
extended the technique to create photomosaics with variable
sized tiles according to a quad-tree partition of the target im-
age. Orchard and Kaplan [OK08] extended the technique to
handle arbitrary partitions and non-binary tile regions, and
sped up the process of the exhaustive library search by us-
ing spectral techniques inspired by image registration meth-
ods. These techniques made feasible the use of optimal sub-
images from the image library or optimal rotations. The col-
lages of Rother et al. [RBHB06] do not attempt to represent
any secondary image, but images within each collage blend
from one to the other without disturbing important image
features. Similarly, the puzzle-like collages of Goferman et
al. [GTZM10] pack irregularly shaped image regions into
a collage so that they are arranged efficiently around each
other. Kim et al. [KP02], Di Blasi et al. [DGM05], Gal et
al. [GSP∗07], and Huang et al. [HZZ11] all use individ-
ual object shapes rather than entire images as the match-
ing primitives. Tong et al. [TZHM11] use edge-map match-
ing and Poisson editing to hide secondary images in a pri-
mary image, similar to our method for post-processing. Cor-
rea and Ma [CM10] compose multiple scenes from a video
sequence into an image which summarizes the narrative.
Scenes are arranged linearly by time with continuous transti-
tions, using graph cuts, from one scene to the next. Barnes
et al. [BGSF10] accomplish a similar task, using an im-
age retargeting method, but focus more on visual navigation
through a video sequence.

Orchard and Kaplan identify the two primary, and some-
times conflicting, goals of the image mosaic process as accu-
racy and discernibility. Accuracy characterizes the efficacy
of the mosaic in representing the target image; discernibility
refers to the clarity and perceptual fidelity of the individual
images within the collage. Orchard and Kaplan emphasize
accuracy by using fragments of each image in the mosaic,
rather than the complete images, thereby increasing accu-
racy. Orchard and Kaplan argue that more accurate matches
allow them to use larger tiles, thereby increasing discerni-
bility. However, their use of incomplete and fragmentary
subimages simultaneously reduces discernibility.

We seek to achieve simultaneously high accuracy and high
discernibility. Like Orchard and Kaplan, we also use a sub-
region of each image rather than the entire image. We adjust
the balance between discernibility and accuracy as a function
of position within the image. Some regions of the image do
not require as much accuracy as others, and thus we are free
to focus on discernibility in these regions. For example, an
image region containing something like an empty blue sky,
devoid of detail, does not demand a close match; rather, we
may quickly find an approximate image match in the library
and represent it as discernibly as possible.

To find the best region of an image to use for a given sec-
tion of the collage, we propose a fast hierarchical match-
ing process in which several matching passes are performed,
each with a more detailed set of features and each within
a reduced image library. Methods of signature matching, as
demonstrated by used by Di Blasi et al. [DGP06], while ex-
tremely fast, have not been extended to handle subregions of
images, and can be inaccurate in some cases. Orchard and
Kaplan recognize these shortcomings and provide a solu-
tion; however, their method is still time-consuming. We have
achieved competitive speed by exploiting the multi-scale na-
ture of images to find high quality matches between sub-
image regions.

Finally, we propose a novel color correction scheme. Or-
chard and Kaplan proposed a tile-wise color correction
scheme, shifting luminance and chrominance uniformly
across each tile to better match the target image. This method
sometimes shifts the colors in unconvincing ways, produc-
ing improbable colorings such as the orange skies seen in
figure 5 (or blue cows, visible here if one looks closely).
The Jigsaw Image Mosaic and Puzzle Image Mosaic sys-
tems use color correction on the object level, shifting the
colors of each object towards the colors of the target image.
This approach is appealing for our application, but since we
perform matching on the image level, we find a way to ap-
proximately isolate image objects, by using a base and detail
layer decomposition [BPD06, FFLS08]. Even when applied
to arbitrary textures, not necessarily photocollages, our color
correction can create fascinating double images.

2. Algorithm

The inputs for the algorithm are: a target image, to be recre-
ated as a collage; an image library consisting of many im-
ages to be used as collage elements; and values for various
parameters. For the target image, any image may be used
but we have found that results are more attractive for high
contrast images with a few clearly discernible objects. Like-
wise, most images are suitable to be included in the library,
although we have found that images with more interesting,
dynamic content provide more visually appealing results.

Our algorithm for synthesizing image collages uses six main
steps:
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1. Preprocessing We preprocess the library images to ob-
tain data used to accelerate and inform match calcula-
tions. The contrast of the target image may be increased
to increase the likelihood of interesting matches.

2. Partitioning The target image is partitioned into tiles via
a centroidal Voronoi diagram process. Several partitions
of varying coarseness are computed.

3. Matching Each tile is matched with a fragment of some
image from the library. Matching is performed in stages,
from coarse to fine, paring down the size of the library
with each pass until a final match is selected. For each
image, multiple comparisons are made between the im-
age and the tile, one for each valid translation of the im-
age against the tile.

4. Compositing Once an image fragment has been chosen
for each tile, the Voronoi partition is recomputed using
the same centroids, but with geodesic distance rather than
Euclidean distance, so that the content of the images can
adjust the shape of the seams between images.

5. Error Accounting The error density within each tile in a
finer partition is calculated, and the tiles with the highest
error density are recomputed.

6. Color Correction Using a base/detail approach, the tar-
get image and initial collage are combined into a final col-
lage which is even more accurate but still contains clearly
discernible collage images without the appearance of any
imposition of the raw target image on the collage.

We next discuss each step at greater length.

2.1. Preprocessing

We preprocess the library images to extract histograms and a
pyramid of weight maps. The histograms are used as signa-
tures for an initial image rejection step and the weight maps
are used to refine later match calculations. We also gener-
ate downsampled versions of each library image at several
resolutions.

The purpose of the weight maps is to inform match calcu-
lations with local features. The critical features are the in-
tensity edges. Counterintuitively, we recommend assigning
near-zero weight very close to an edge, then a high weight at
a slightly greater distance, and low but nonzero weights far
from the edges. Our suggested shape for the weight function
F is illustrated in Figure 1.

A weight map with this shape allows us to balance between
accuracy and discernibility. Given a finite library, we are un-
likely to be able to match exactly all edges: a mismatch near
an intensity edge is likely to have quite high error. We plan
to subdivide tiles that contain excessive error, but we prefer
to use large tiles rather than always split tiles near edges.
Relaxing our error tolerance on edges will allow us to use
larger tiles, hence promoting discernibility.

The weight map F is based primarily upon a large-scale gra-
dient magnitude edge map F1 =∇Gr(T ) (where GR(.) indi-
cates a Gaussian convolution of radius R), with some modi-
fications. Particularly, we invert the gradient magnitude edge
map (1−F1) so that non-edge regions have value 1 and edge
regions fall toward 0. In order to enforce the falloff of the
map toward some small value c in regions far away from
edges, we blur the gradient magnitude edge map F1 by some
large radius R > r to obtain F2 = GR(|∇Gr(T )|). By multi-
plying F1 and F2 and ensuring a minimum value c in empty
regions, we obtain a map F with the desired properties:

F = (1−F1)
[
F2(1− c)+ c

]
, or (1)

F = |1−∇Gr(T )|
[
GR(|∇Gr(T )|)(1− c)+ c

]
, (2)

where T is the target image and GR(.) indicates a Gaussian
convolution of radius R > r.

Figure 1: A one-dimensional cross-section of F . The map
falls to a neutral value c in empty regions of the image.

2.2. Partitioning

We next partition the target image into a set of tiles; each
tile will eventually contain some image from the library. We
intend to place tiles so that important image edges are con-
tained therein, attempting to promote interesting correspon-
dences between the image objects and the portions of the
target image they represent.

We use a centroidal Voronoi tesselation with centroids gen-
erated randomly. In practice, we calculate a sequence of tes-
selations, starting with a coarse tesselation with few tiles;
each subsequent tesselation in the sequence has a greater
number of smaller tiles. With a typical image library, accu-
rate collages generally cannot be made using coarse tilings.
However, the inaccuracies in such a collage are often very
localized, in which case the inaccurate regions can be recal-
culated using a finer partition. For the density function, we
use a coarse gradient magnitude map from the target image.
The overall process produces tiles that are centered on strong
edges in the target image, convex in shape, and roughly uni-
form in size.

2.3. Matching

Having obtained a partition of the target image, we match
each tile in the partition with an image from the library. For
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each tile, we perform a sequence of evaluation passes to de-
termine match fidelity between the tile (or the target image
therein) and some set of images in the library. After each
evaluation pass, we reduce the library to some subset of im-
ages likely to be good matches, until, after the final step in
the sequence, the library contains just one matching image.
Note that this process begins with a large number of low-
resolution, fast comparisons but progresses in later iterations
to a small number of detailed comparisons.

In the first pass, we compute a coarse histogram for each
image in the library and discard the images that have an in-
sufficient number of pixels in the bin corresponding to the
mean luminosity of the current tile. We then compare every
translation of every image in the reduced library with each
tile. This comparison pass is repeated several times at dif-
ferent scales, increasing the resolution with each pass. Typ-
ically, two scales are sufficient; in this case, we perform a
pixel-wise comparison of each image at some low resolu-
tion, reduce the library to the best matches from that pass,
and then repeat the process at a higher resolution to choose
the final match.

For each translation of each image in the library we evaluate
the quality of the match with the tile by summing the match
score of each pair of pixels between the image and tile. We
evaluate the absolute difference between the luminosity and
chrominance values of the pixels, and multiply this value by
a feature map. For each library image I, for each translation,
and for a given channel n = {l,c}, representing luminance
and chrominance, a match score is computed in the follow-
ing way:

En = ∑
(x,y)∈A

F(x,y)M(x,y)|In(x,y)−Tn(x,y)|, (3)

where A = I∩T is the rectangular region of intersection be-
tween image I and target image T . F is the weight map from
section 2.1. The function M ∈ [0,1] represents the tile mask,
where M(x,y) = 1 indicates that the pixel (x,y) is inside the
tile, M(x,y) = 0 indicates that the pixel (x,y) is outside the
tile.

For an image I and a given translation, the final ranking is
then determined from the following quantity:

E = wlEl +wcEc, (4)

where ~w = (wl ,wc) are parameters chosen by the user to in-
fluence the fidelity of the collage in matching the colors of
the target image. We weight the luminance term wl higher
than the chrominance term wc to improve perceptual accu-
racy.

Before comparing each image with the current tile, we first
rescale it to some proportion of the largest dimension of the
tile. A scaling factor of 1 indicates that the tile just fits in-
side the image without room for translation. A larger scaling
factor indicates that the image is larger than the tile and thus
several options exist for matching a subimage of the current

image with the tile. Larger scaling factors may result in more
accurate matches at the expense of longer processing times
and less discernible collage images.

2.4. Compositing

We wish to fit the images in the collage together so that
important image content is preserved and boundaries be-
tween images do not cut through important edges. To this
end we compute another Voronoi partition with the original
centroids, but using a geodesic distance rather than a Eu-
clidean metric [CSRP10]. The geodesic weight of each pixel
is determined by taking the maximum of all gradient mag-
nitude edges of all collage images overlapping at that pixel.
( note that gradient magnitude edges are weighted to fall off
as a function of distance from the boundaries of the original
Voronoi tiles–this is to ensure that the new tile boundaries
do not deviate too far from the old ones.) More formally:

ecost(T,x,y) = Max({|∇(Ii(x,y))| · vi(x,y)}), (5)

for all library images Ii and where vi(x,y) =
GR(TileBoundaryi(x,y)) ∈ [0,1] is proportional to the
distance from a boundary in the original Voronoi tesse-
lation, with greater weight closer to the boundary. Note
that TileBoundary(x,y) ∈ [0,1] is a binary map with tile
boundaries = 1, and R is a size parameter.

When compositing the final collage, boundaries between im-
ages are feathered with width inversely proportional to the
strength of the image edges at the current position. A narrow
feathering preserves hard edges when needed, and a wide
feathering smoothly transitions between smooth image re-
gions.

2.5. Iteration

As mentioned in section 2.2, we iterate the photocollage pro-
cess in order to increase accuracy where necessary. Wher-
ever the accuracy of the collage is insufficient after iteration
n, we recalculate certain tiles in iteration n+ 1. The newly
calculated tiles are smaller than the tiles in the previous it-
eration, to facilitate accurate matching. We recalculate only
those areas of the image that have the highest error; we use
the L1 norm for error, but L2 or other error metrics are pos-
sible.

Following collage composition, an error density is calculated
for each tile in the tessellation for the next refinement pass.
The tiles with the highest error density are activated for pro-
cessing in the next iteration. For most of the results we re-
port, we recalculate a fixed proportion of 33% and 25% of
the total number of tiles for the second and third passes re-
spectively, or approximately 50% when one refinement pass
is used.
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2.6. Color Correction

After all iterations have been completed, we seek to increase
the accuracy of the collage by doing a final color correc-
tion pass. For the examples in this paper, we reduce pro-
cessing time by processing each collage at half resolution
and then reintroducing high frequency data from the orig-
inal collage. We create a base layer PB that contains large
scale features from the target image and compose it with a
higher-frequency detail layer PD that contains details from
the collage. Additionally, we compose another detail layer
P0 to represent the details from the target image that may
have been poorly represented by the collage process.

We create the base layer PB by performing a cross-bilateral
filter on the target image T using the collage as the cross
image. More specifically, we use a version of the collage
image that has had textures removed through some edge-
preserving abstraction operation, for we wish to create a base
layer without excess detail.

PB = Bcross(T,CB,R), (6)

where Bcross(., .,R) represents the cross-bilateral filter of ra-
dius R and CB = Abstract(C,R′) represents an abstracted
version of the collage C computed with some scale R′, pos-
sibly distinct from R. We choose R to be approximately the
scale of the collage tiles or image objects.

For the function Abstract(·), any existing abstraction process
could be used. We propose our own abstraction method in
section 2.7.

The process of equation 6 effectively blurs the target im-
age everywhere except across boundaries between objects
and edges in the collage image, resulting in object-coherence
within the base layer.

The base and detail layers are combined as follows:

P = PB +(C−Abstract(C,R′)) (7)

= PB +PD. (8)

An overview of the color correction process so far is shown
in Figure 2.

This process may still omit some salient details from the tar-
get image. To capture these, we create another detail layer
P0 by first repeating the process used to obtain PB, but with a
smaller filter radius r (proportional to the scale of the details
we wish to represent). We then take a Gaussian highpass of
the result to extract the details. We want to avoid adding ex-
tra detail to smooth regions of the collage, so we multiply the
result by a map τ representing the contrast of textures in the
collage image. In section 2.7 we describe the texture contrast
map τ in more detail. Additionally, it is useful to multiply the
result by a large scale gradient magnitude map D from the

target image to prevent the over-emphasis of edges:

P0 = D · τ(C)

[
Bcross(T,C,r)−Gr(T )

]
. (9)

The final collage is then expressed as follows:

Pfinal = PB +PD +P0. (10)

Figure 2: A schematic diagram of the color correction pro-
cess, before the detail layer P0 is applied. Notice that the
base layer PB is informed by both the target image and the
collage image.

2.7. Image Abstraction

Many edge-preserving smoothing and image abstraction
processes have appeared in the literature [TM98, FAR07,
FFLS08, CM02, OBBT07]. For the function Abstract(·), we
propose a bilateral filter with the intensity distance modu-
lated by a texture contrast map τ(I); that is, for pixels with
low texture contrast, weak filtering occurs, whereas for pix-
els with high texture contrast aggressive filtering occurs.
This modified bilateral filter smooths even high contrast tex-
tures while preserving edges. Conceptually, this method is
similar to the work of Su et al. [SDA05] in de-emphasizing
regions of high texture activity.

For the texture contrast map τ(I) we use an operation in-
spired by the textureness map of Bae et al. [BPD06]. Bae
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Figure 3: A face image is combined with a highly textured
image.

et al. measure the textureness of an image I by taking a
highpass filter H(I) and then filtering its magnitude |H| us-
ing a cross-bilateral filter against I. However, this texture-
ness map spuriously highlights edges, which should be dis-
tinct from textures, and shows poor homogeneity in certain
texture regions. As the contrast of the textures being mea-
sured increases, the homogeneity of the textureness map de-
creases, since the bilateral filter becomes less effective in
smoothing. However, one can construct a similar filter by
replacing the Gaussian highpass filter |H| = |I−G(I)| with
the filter |Hm| = |I−M(I)| (where M(I) is the median fil-
ter of I) and completing the operation with a median fil-
ter rather than a cross-bilateral filter. Thus Textureness =
τ(I) = M(|I−M(I)|). The resulting texture contrast map is
smoother and is not contaminated by edges; the median filter
suppresses line edges and smooths out textures regardless of
contrast. The disadvantage is that some spatial precision is
lost, due to the propensity of the median filter to obliterate
corners and other fine-scale features.

We have observed that with repeated iteration of this texture-
ness process, the magnitude of the resulting map decreases.
This property allows us to create a series of textureness
maps, with decreasing magnitude but increasing precision
(decreasing filter radius). Each term in this sum, being more
precise than the previous, fills in the attenuated details from
the previous term; in this way, we are able to create a tex-
tureness map τ(I) that is smooth, respects image edges and
corners, and is spatially precise. Figure 4 shows two terms in
this series and the final result, as well as a comparison of our
textureness map with the methods of Bae et al. and Carson
et al. [CBGM99].

We have also observed that performing N iterations of the
function In = |In−1−M(In−1)| where I0 = the original im-
age, the resulting map seems to highlight salient features

such as edges and corners while suppressing smooth or reg-
ularly textured features (we use N=7). We have used this it-
erated process to remove non-texture edges from our weight
map F , so that textured regions are not falsely identified as
belonging to object edges.

3. Evaluation and Conclusion

Accuracy. Figure 5 shows a comparison between a collage
created through our method and a mosaic from Orchard and
Kaplan [OK08]. The contrast of the target image was in-
creased to promote interesting matches and the original con-
trast was reapplied in colour correction. We compared the
accuracy of these collages in representing the original target
image by computing the average per-pixel Structural Simi-
larity value for the luminosity channel. Following Wang et
al. [WSB03], we computed the SSIM measurement at sev-
eral scales. While our results have a lower MSE value over
all scales (lower MSE indicating a better match) and higher
structural similarity at coarse scales (higher SSIM indicating
a better match), at fine scales the results from Orchard and
Kaplan have better SSIM scores.

Table 1: MSE and SSIM

MSE
scale (finest to coarsest) 1 2 3 4
Our result 432 330 242 144
Orchard and Kaplan 540 499 435 336
SSIM
scale (finest to coarsest) 1 2 3 4
Our result 0.41 0.45 0.57 0.71
Orchard and Kaplan 0.45 0.43 0.49 0.62

Overall, we can say that these two results have similar accu-
racy, especially when also considering visual inspection and
visual comparison with the target image. It may even be ar-
gued that our result has higher accuracy when considering
the fidelity of the reproduction of the salient features of the
farmer’s face.

Discernibility. Figure 5 shows a detailed comparison of sev-
eral sections from the collage and mosaic, for the purpose of
judging discernibility. In figure 5f we see that a house and a
family are immediately discernible in our result and in figure
5e we immediately discern a map and train yard; in the previ-
ous results more prolonged inspection is required to discern
comparable details. Also, rather than filling empty areas of
the image with many empty photographs, our algorithm has
chosen a few large representative images as we see in fig-
ures 5d and 5e. Figure 6 shows some especially discernible
examples. In figure 6a we see clearly in the detailed section
a sailor (top) and welder (bottom) and in figure 6b we see
clearly a woman in a white shirt (top) and a man in a hat
looking toward the camera (bottom). Also notice the edge
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(a) Original zebra image (b) A textureness map
by Bae et al.

(c) A texture contrast
map by Carson et al.

(d) Our texture contrast
map

Figure 4: Each successive term increases in detail but decreases in magnitude. The rightmost image shows the sum of the terms.

matching: for example, the woman’s white shirt approxi-
mately matches the edge of the pilot’s headgear silhouetted
against the sky.

Color Correction. As with the method of Orchard and Ka-
plan, our color correction algorithm dramatically increases
the accuracy of a collage. Even a collage that initially ex-
hibits very poor accuracy may be repaired in this way. How-
ever, we have been able to avoid the appearance of strangely
colored objects and distracting false details from the target
image. Figure 5 shows an overall comparison of our method
with that of Orchard and Kaplan.

Parameters. The large parameter space of our system may
lead to difficulties in finding a set of parameters that produce
good results for a large set of inputs. We provide recom-
mended parameter settings, empirically generated, suitable
for an image of size approximately 1000×1000. We suggest
two or three levels of refinement, with each level contain-
ing between 3 and 6 times more tiles than the previous level.
The radius of the coarsest tiles is approximately 150 pixels.
We weight the influence of luminance approximately 3 times
greater than chrominance in matching: (wl ,wc) = (1,0.3).
For color correction, we use a filter radius of about the same
radius as the smallest tiles, or approximately 25 pixels, po-
tentially varied by up to a factor of 2. For the scale factor S,
we recommend a value of 1.3 for higher discernibility or 2.0
for higher accuracy.

Timing and Efficiency. For a target image of size 1400 ×
945 pixels, with a database of 79 images, each of size 655×
500± 50 pixels, we measured a time of 17.0 minutes for de-
termining all matches not including the calculation of edge
maps, compositing, and color correction. The preprocessing
step took a total of 50 seconds for all images. Calculating the
time for two more databases (of size 53 and 27 images) we
found that the average rate of matching was 13 seconds per

file. The per-image rate of matching should be sub-linear for
an optimized implementation. This test was conducted with
two additional refinement passes after the first and a uniform
scaling factor of S = 2.0. The proportion of tiles calculated
was 33% and 25% for each of the two refinement passes
respectively. The computer used to perform these tests was
a Dell XPS 420, with the Intel Core 2 Duo 3.00Ghz pro-
cessor and 3.00Gb of RAM. Our implementation has been
programmed in Java 6.0.

Limitations. Our refinement scheme, which processes new
tiles based on error density, often damages the discernibility
of the collage image by partially covering previously dis-
cernible images. Figure 7 shows the success of a collage
in which most regions of refinement were hand-picked by
a user. While using our system in an artistic context we have
noticed that it is often necessary to manually remove the ef-
fects of color correction from faces, indicating that face de-
tection may be useful, as in Autocollage.

Sometimes the color correction will reverse dark/light rela-
tionships between image objects in order to better mimic the
target image, damaging discernibility. Techniques to miti-
gate this effect have been proposed by others, particularly
Bae et al. [BPD06].

We consider repetition of images to be aesthetically damag-
ing. In our system tile size variability ameliorates this some-
what, but it still may pose a problem in some cases. Particu-
larly, for a target image that is dominated by a narrow band
of tones, there may not be a wide array of choices within the
library to represent these tones. This could possibly be mit-
igated by some policy for histogram equalization and local
contrast adjustment in the target image. Similarly, for image
libraries that contain a large number of images with similar
mean luminance, the algorithm may choose the same image
repeatedly. Through experience we have found that libraries
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(a) (b)

(c)

(d)

(e)

(f)

Figure 5: A detailed comparison of our collage with Orchard and Kaplan’s photo mosaic. Each detailed section corresponds to
the section of the target image with the identically colored border.

often lack sufficient numbers of very light and very dark im-
ages. Techniques to mitigate this include some randomiza-
tion of choices or management of the mean luminance of the
library images in a library-wise fashion.

4. Conclusion

We have described a system to produce a collage with an ac-
curate global interpretation and discernible local interpreta-
tion using large images that smoothly flow into one another.
Additionally, our system produces collages that are richly
textured, consisting of images varying widely in shape and
size. In figure 7 we show that a user may assist in the se-
lection of collage elements in order to guide the process to a
more attractive result. In figure 6 we show conversely that an
automatic result may also be sufficient to represent the target

image. Our system is able to produce a collage of accuracy
approximately equal to that produced by previous systems
in a short amount of time using fewer and larger component
images with higher discernibility. Furthermore, the seamless
composition of images and use of interesting large scale cor-
respondences between images lends itself to an entirely dif-
ferent and broader style of artistic creation. We hope that
artists will be able to use this system to increase their pro-
ductivity and experiment with new ideas regarding double
images.
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Figure 6: Two photocollage examples demonstrating high
discernibility. Both collages have been tuned to favor the
chrominance of the target image.
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(a)

(b)

Figure 7: This collage (figure 7b) has been created by an
artist from four image collages (figure 7a), each created
with different parameters. The artist has erased the detail en-
hancement layer near faces, in order to improve discernibil-
ity, and applied some bilateral filter-based detail enhance-
ment. Also, chrominance from the target image has been
blended into the final collage to improve perceptual accu-
racy.
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