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Figure 1: Sphere covering examples of surface filling curves: Spherical mesh surfaces in (a) and (b) are converted to a closed
3D curves which follow the shapes of the original spheres.

Abstract

In this work, we present the concept of surface covering curves that can be used to construct wire sculptures or
surface textures. We show that any mesh surface can be converted to a single closed 3D curve that follows the
shape of the mesh surface. We have developed two methods to construct corresponding 3D ribbons and yarns from
the mesh structure and the connectivity of the curve. The first method constructs equal thickness ribbons (or equal
diameter yarns). The second method creates ribbons with changing thickness (or yarns with changing diameter)
that can densely cover the mesh surface.
Since each iteration of any subdivision scheme results in a denser mesh, the procedure outlined above can be
used to obtain a denser and denser curve. These curves can densely cover a mesh surface in limit. Therefore, this
approach along with a subdivision scheme provides visual results that are similar to space filling curves that are
created by fractal algorithms. Unlike space filling curves which fills a square or a cube, our curves cover a surface,
and henceforth, we called them "surface covering curves". Space covering curves also resemble TSP (traveling
salesmen problem) art and Truchet-like curves that are embedded on surfaces.

1. Introduction and Motivation

In this work, we provide a simple approach to create aes-
thetic curves in 3-space. Our approach is based on convert-
ing mesh surfaces to closed 3D curves that follow the shapes
of the given mesh surfaces. Our work is based on Gabriel

Taubin’s work on constructing Hamiltonian triangle strips
on quadrilateral meshes [Tau03].

In graph theory, a Hamiltonian path is a path in an undi-
rected graph that visits each vertex exactly once. A Hamil-
tonian cycle (or Hamiltonian circuit) is a Hamiltonian path
that is a cycle. For any graph Hamiltonian cycle may not

c© The Eurographics Association 2012.

DOI: 10.2312/COMPAESTH/COMPAESTH12/107-114

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH12/107-114


Q. Xing & E. Akleman & G. Taubin & J. Chen / Surface Covering Curves

Constant diameter Variable diameter Variable diameter
Sparse Dense

Figure 2: Dense covering of surfaces using ribbons with changing diameter. The parts of the curves that are occluded by
original surfaces are not drawn for cleaner images.

necessarily exist. Hamiltonian triangle strips are defined in
dual of triangular meshes. Taubin show that it is always pos-
sible to construct a triangular mesh from any given quadri-
lateral mesh such that the dual of the triangular mesh has
an Hamiltonian cycle. Moreover, he presented simple lin-
ear time and space constructive algorithms to construct these
triangle strips, His algorithms are based on splitting each
quadrilateral face along one of its two diagonals and link-
ing the resulting triangles along the original mesh edges.
With these algorithms every connected manifold quadrilat-
eral mesh without boundary can be represented as a sin-
gle Hamiltonian generalized triangle strip cycle. Based on
these algorithms to construct a closed curve is also straight-
forward. One can simply connect centers of triangles in the
triangle strip to obtain a control polygon in 3D. Resulting
control polygon can be turned into a smooth curve using

a parametric curve such as B-Spline as shown in Figure 1
and 3.

Since the shape of any given surface can be approximated
by a wide variety of meshes, designers of these curves have
significantly large number of aesthetic possibilities. Two ex-
amples that show the effect of underlying mesh are shown in
Figure 1. Moreover, even for a given mesh there are expo-
nentially many ways to form these curves since with proba-
bility 1, there are 2F−1 Hamiltonian cycles for any given M
where F is the number of faces of mesh M (see [XACG10]
for a related problem). This property provides additional aes-
thetic possibilities since designers can have additional con-
trol over the shapes of the curves. We prefer curves with
multiple points of inflection (wavy curves) since they resem-
ble space filling curves [Man82] or TSP (traveling salesmen
problem) art [KB05] embedded on surfaces.

Since curves are on surfaces, it is also easy to convert
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(a) A spherical mesh (b) Curve constructed from (c) Another spherical mesh (d)Curve constructed from
the mesh in (a) the mesh in (c)

Figure 3: More sphere filling curves: Spherical mesh surfaces in (a) and (b) are converted to a closed 3D curves which follow
the shapes of the original spheres. Back-faces in meshes and back-face parts of the curves are not drawn for cleaner images.

them to 3D structures that can be shaded, rendered and even
eventually 3D printed. We have developed two methods to
construct corresponding 3D ribbons and yarns from given
curves as extruded lines and polygons along the curves.
The first method, called constant-diameter, simply turns the
curves constant thickness ribbons or equal diameter yarns.
The second method, which we call variable-diameter, cre-
ates ribbons with varying thicknesses (or yarns with chang-
ing diameters) that can densely cover the mesh surface. We
have developed a system that converts polygonal meshes to
surface filling curves, ribbons and yarns. All the images in
this paper are direct screen captures from the system. They
were created in real-time.

Figure 2 shows an example obtained by using con-
stant and variable diameter methods. Our variable diameter
method guarantees that the sizes are relative to the under-
lying triangles. Therefore, the actual widths of ribbons are
different in different parts of the mesh. Fig 8 shows visual
effects of constant vs. variable and ribbon vs. tread for the
same spherical mesh.

2. Previous Work

Space-filling curves, which are discovered by Giuseppe
Peano [Pea90] by his construction of a continuous mapping
from the unit interval onto the unit square, are a mapping
from one-dimensional space to a multi-dimensional space.
A space filling curve is like a thread that passes through ev-
ery cell element in the multi-dimensional space so that ev-
ery cell is visited at least once. Space filling curves have
became very well-known among mathematician/artists af-
ter Benoit Mandelbrot’s seminal work on Fractal Geome-
try [Man82]. In his book, he categorized space filling curves
as fractals since they can be constructed using a replacement
algorithm starting from a simple shape. Mathematician and
artist Douglas McKenna [McK78], who also created many
images in Mandelbrot’s Fractal Geometry of Nature, also
discovered one space-filling curve. McKenna [McK78] later

enumerated over 20 million new space-filling recursive de-
signs. Most of existing examples of space filling curves are
in 2D. A remarkable exception is Carlo Sequin’s stainless
steel and bronze sculpture called Hilbert Cube 512 [Séq06].
This sculpture is a closed (thickened) curve that fills the vol-
ume of a cube.

Robert Bosch and Adrianne Herman invented another re-
lated artwork. called TSP (traveling salesmen problem) art
[BH04, BH04]. In TSP art a set of points that we can think
of as cities. A traveling salesman who reside one of the cities
want to visit each of the other cities exactly once and then re-
turn home. The salesman would like to visit the cities in an
order that will minimize the total length of his tour. Bosch
and Herman noticed that for interestingly placed city loca-
tions, the piecewise curve that show salesman’s itinerary
looks artistic. To create original artwork, they used points
on a grid. This method was simple but required many dots
to produce a decent picture since the dots tended to clump
together. Bosch and Kaplan [KB05] used weighted Voronoi
stippling to control positions of the cities. By distributing
cities with a density that locally approximates the darkness
of a source image, and passing the cities to a program that
finds a TSP tour, they have produced TSP-art that resembles
the source image.

Another related work is Truchet tiles, which was origi-
nally introduced by Sebastien Truchet as all possible pat-
terns formed by tilings of right triangles oriented at the four
corners of a square [Tru04]. The work related to ours is in-
troduced by Clifford A. Pickover [Pic89] as a single tile con-
sisting of two circular arcs of radius equal to half the tile
edge length centered at opposed corners . The two possible
orientations of this tile, and tiling the plane using tiles with
random orientations gives visually interesting curves called
Truchet curves [Bro07]. Truchet curves separates the plane
into two regions and therefore it is used to create planar art-
works [Bro08].

In this paper, we show that it is always possible to ob-
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(a) Initial (b) After application of (c) Triangles obtained (d) Curve control (e) Curve obtained
mesh dual of Simplest with original Edges vertices from control vertices

(f) Resulting curves (g) An old edge (h) Old edge flipped (i) Combined curve (j) Final result
selected New control vertices

Figure 4: Visual presentation of the Hamiltonian cycle construction and curve generation algorithm.

tain a single closed curve that covers a surface similar to
TSP art and space filling curves. In terms of visual aesthet-
ics, our curves resemble the most to Truchet curves. In fact,
if our method is applied a planar grid, the result will be a
single Truchet curve. Although our curves covers space sim-
ilar to space filling curves, they are not strictly self-similar,
i.e. fractals. However, our results exhibit similarities that are
visible in our examples. These similarities are just result of
structure of underlying mesh and initial choices.

3. Overall Framework

Our approach can be considered a 2-step process: (1) iden-
tify a Hamiltonian cycle that connects vertices of dual of a
given mesh, (2) use the 3D positions of vertices (i.e. face-
centers of the original mesh) as control vertices of a smooth
curve. The resulting curve is guaranteed to be closed and
follow the overall shape of the surface. We point out that
it is NP-hard to find an Hamiltonian cycle for even cubic 3-
connected planar graphs [GJT76]. It is also known that exist-
ing exponential-time algorithms for Hamiltonian cycles are
not sufficient to find single strips for triangular meshes more
than 100 triangles [Epp03]. Fortunately, many researchers
observed that the hardness of finding Hamiltonian cycles can
be simplified by minor variations of the problem statement.
For example, by adding a few new triangles, it is possible to
significantly simplify the Hamiltonian cycle problem with-
out changing the input geometry and visual quality [GE04].

Taubin showed that from a quadrilateral manifold mesh, it
is possible to construct a triangular mesh with an associated
Hamiltonian cycle in linear time. The construction algorithm
simply splits each quadrilateral into triangles and flip edges
until the triangles are ordered into a single strip [Tau03]. The
process is especially simple if the vertices of initial quadri-

lateral mesh is 2-colorable. Such 2-colorable quadrilateral
meshes can be obtained by some subdivision schemes such
as Catmull-Clark [CC78] and dual of Simplest [PR97] sub-
divisions.

4. Methodology

Our algorithm consists of two stages: (1) Hamiltonian cycle
construction for curve generation, (2) Conversion of curves
to varying-diameter ribbons or yarns. For curve generation,
we use a variation of Taubin’s method for fast computations
Hamiltonian cycles. To convert curves to varying-diameter
ribbons and yarns, we use a variation of projection method,
which is presented to obtain weaving structures [ACXG09].

Un-weighted average Weighted average

Figure 5: The effect of weighted average that favors one ver-
tex of triangle.

4.1. Curve Generation

The curve generation consists of 6 steps:

• Initial Mesh: Initial mesh can be any manifold mesh sur-
face of arbitrary topology. Although, we do not have any
restriction, it is better to have only convex faces for aes-
thetic results. See Figure 4(a) where the original edges are
drawn in red color.
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• Dual of Simplest: To get initial quadrilateral, mesh we ap-
ply the subdivision scheme, which is the dual of Simplest
subdivision. This subdivision can be obtained as two op-
erations: (1) Simplest subdivision, the (2) dual operation.
After this subdivision, each original edge of the initial
mesh turns to a quadrilateral (see Figure 4(b) where newly
created edges are drawn in black color.)

• Initial Triangulation: We insert old edges to turn all
quadrilaterals to triangles as shown in Figure 4(c). Now,
every triangle have two black edges and one red edge.

• Control Vertex Position Computation: For each triangle,
we compute a center point as a weighted average of its
vertex positions. Let p0,0 = p0,1 denote the position of the
vertex that is in the intersection of two black edges, and
p1,0 and p1,1 denote the positions of the other two ver-
tices. In other words, we treat the triangle as a quadrilat-
eral of which two consecutive vertices share the same po-
sition. Based on this idea, control vertex position is com-
puted as follows:

pcv =
p0,0 + p0,1 + p1,1 + p0,1

4

Since p0,0 = p0,1, this computation is a weighted average
of vertex positions of triangle as follows:

pcv =
2p0,0 + p1,0 + p1,1

4

These points, which serve as control vertices of surface
filling curve, are shown in Figure 4(d).
Remark 1: Using weighted average helps to avoid higher
frequency components when the connections do not sup-
posed to create high frequencies as visually shown in Fig-
ure 5. Weighted average moves the control vertex to the
middle of triangle height along the curve direction.

• Initial Curves: We construct a control polygon by
connecting center points. For this purpose, if two vertices
share a black edge, which is created by dual of Simplest
subdivision, we connect these two vertices with an edge.
After this operation, each original face is replaced by a
closed curve as shown in Figures 4(e) and 4(f).

• Combining Curves: We, now, randomly choose an origi-
nal edge (i.e. red edges in the Figures 4) and flip it if it is
between two separate curve (see Figure 4(g)). After the
flip, we recalculate triangle centers again and reconstruct
the curve. As shown in Figure 4(h) this operation connect
the two curves into one. We continue this operation until
we obtain one curve as shown in Figure 4(j).
Remark 1: Twisted edges form a spanning tree for the
dual of the initial mesh. In other words, this spanning tree
connects all faces of the initial mesh as it can be seen in
Figure 4(j).
Remark 2: After the flip operation, each triangle still have
two black edges and one red edge.

(a) (b) (c)

Figure 6: Computation of the trapezoid inside of the trian-
gle.

4.2. Geometry Conversion

By the curve generation algorithm, we create a single control
polygon that passes from control points in 3 space. To obtain
a smooth curve, the control polygon can be approximated
or interpolated using a parametric curve such as B-Spline
or Catmull-Rom curve [BBB87]. Since these curves do not
have a solid shape, it is better to convert these control poly-
gons to 3D structures such as ribbons (extruded lines alon
the curves) or yarns (extruded polygons along the curves).
For aesthetic purposes, the resulting 3D structures must look
smooth and must not self-intersect. We have developed two
methods for converting curves to smooth ribbons and yarns.
We call these constant and variable diameter methods.

(a) (b) (c)

Figure 7: Connecting the trapezoids with quadrilaterals.

Constant diameter method is simply a line or a polygon
extruded along the curve. On of our goals is to create dense
covering in such a way that the ribbons or the yarns cover
the surface without leaving large gaps. Constant diameter
method provides nice thin and smooth curves but cannot
densely cover the surface without self-intersection. We have
introduced variable diameter method to provide dense cov-
ering. Our variable diameter method is related to projection
method introduced for creating weaving cycles [ACXG09].

The variable diameter method consists of three steps.

• Create a trapezoid inside of each triangle using two size
parameters: As we have discussed earlier, each triangle
has one red (original or twisted original) and two black
edges. Let p0,0 = p0,1 denote the position of the vertex
that is in the intersection of two black edges, and p1,0 and
p1,1 denote the positions of the other two vertices (see
Figure 6(a)). In other words, we again treat the triangle as
a quadrilateral of which two consecutive vertices share the
same position. Based on this idea, it is easy to compute the
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Constant diameter ribbon Variable diameter ribbon

Constant diameter tread Variable diameter tread

Figure 8: An example that shows the visual effects of con-
stant vs. variable and ribbon vs. tread for the same mesh.
Back-face parts of the ribbons/yarns are also shown.

positions of corners of a trapezoid that is drawn inside of
this triangle simply using bilinear equation. Let v0,0, v0,1,
v1,0, v1,1 denote the positions of four corners of quadrilat-
eral drawn inside of the triangle (see Figure 6(b)). Then

vm,n =
1

∑
i=0

1

∑
j=0

(1− (−1)is)(1− (−1) jt)
4

pi+m, j+n

where t and s are two parameters between 0 and 1; and the
summations i+m and j + n are in modulo 2. Remark 1:
For s = t = 0 the bilinear equation gives weighted average
we have already used for computing control vertices.
Remark 2: Rotation order of vertices for trapezoid is im-
portant since it must give the same normal direction as the
triangle. The bilinear equation guarantees the consistency
of rotation order.
Remark 3: To create yarns, we simply extrude each trape-
zoid inside triangle in normal direction to obtain a trape-
zoidal prism.

• Connect trapezoids in two consecutive triangles using a
quadrilateral connector: This operation simply insert two
edges to form connectors as shown in Figure 7(b). In fig-
ure, the newly inserted edges are colored in darker blue.
This operation turns initial triangular strip into quadri-
lateral strip. Remark 1: Rotation order of vertices for
connectors must also be consistent with two neighboring
trapezoids. Since we start with a manifold mesh, the orig-
inal triangles always have consistent rotation order to start
with.

Remark 2: This operation also guarantees that if a part
of the original triangle strips forms a parallelogram, the
same part of the resulting quadrilateral strips also form a
parallelogram. In other words, if original data is not wavy,
the resulting ribbon is guaranteed not to be wavy.
Remark 3: To create yarns, we connect trapezoidal prisms
using hexahedral connectors, which are 3D versions of
connectors in ribbon case. As a result, we obtain a gen-
eralized toroidal shape.

• Smooth the quadrilateral strip using a subdivision
scheme: For smoothing resulting quadrilateral strips we
use Catmull-Clark subdivision, which gives B-spline sur-
faces for regular structures such as quadrilateral strips
[CC78]. As a result, variable diameter method provides
almost the same shapes for thin ribbons. However, even
for thicker ribbon it does not self-intersect until it cov-
ers the underlying surface with almost no gap. Remark 1:
To smooth yarns, we simply smooth generalized toroidal
shape, which can again be smoothed using Catmull-Clark
subdivision. The result is the same as B-spline surface
since toroidal shape consists of only quadrilaterals and 4-
valent vertices [CC78].

Constant diameter ribbon Variable diameter ribbon

Constant diameter Variable diameter
Constant diameter tread Variable diameter tread

Figure 9: An example that shows the visual effects of con-
stant vs. variable and ribbon vs. tread for the same mesh.
Back-face parts of the ribbons/yarns are also shown.

5. Implementation and Results

We have developed a system that converts polygonal meshes
to surface filling curves. We provide s and t parameters
to control the size of trapezoids. A user can interactively
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Sparse Dense Sparse Dense

Figure 10: Buddha model covered with sparse and dense ribbons. These images are obtained by using variable diameter
method. Back-face parts of the ribbon are not drawn for cleaner images. The original quadrilateral mesh is obtained by wave-
based anisotropic quadrangulation.

Thinnest Thin Thick Thickest

Figure 11: A Bunny quadrilateral mesh covered with constant diameter yarns. Note that if all faces of the original mesh are
approximately same size as in this example constant diameter method can densely cover the surface without significant self
intersection. Back-face parts of the yarns are shown. The original quadrilateral mesh is obtained by Quadcover method.

change the thickness of ribbons and yarns by changing the
parameters s and t. A very dense covering ribbon is obtained
with value s ≈ 1 and t ≈ 1. Small values of s and t pro-
vide sparse covering. All the images in this paper are direct
screen captures from the system; they were created in real-
time. Our variable diameter method guarantees that the sizes
are relative to the underlying triangles. Therefore, the actual
widths of ribbons are different in different parts of the mesh.

If mesh models are created by a good quadrangulation
scheme such as Quadcover method [KNP07] Mixed-integer
quadrangulation [BZK09] wave-based anisotropic quadran-
gulation [ZHLB10], then even constant diameter method can
cover the surface without significant gaps as shown in Fig-
ures 10, 11 and 12. This is mainly because such quadrangu-
lation methods creates almost-regular quadrilaterals. More-
over, there are only limited number of non-4-valent ver-
tices. Constant diameter method can also cover triangular

meshes densely if triangles are regular and vertex valences
are mostly 6.

6. Conclusions and Future work

In this paper, we presented the concept of surface filling
curves, which are constructed from manifold mesh surfaces.
We presented an algorithm that can convert any manifold
mesh surface to a closed 3D curve that follows the shape of
the surface. We have developed two methods to construct
corresponding 3D yarns, which can be turned to physical
sculpture by using 3D printers. Since 3D prints of such yarns
will use much less material than original 3D shapes and 3D
printing charges are based on volume of the printed object,
3D printing these yarns can be much more economical than
3D printing original models. For further applications to be
used for sculptors, there is a need for simpler user interfaces
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Thinnest Thin Thick Thickest

Figure 12: Another quadrilateral mesh covered with constant diameter yarns. Note that if all faces of the original mesh are
approximately same size as in this example constant diameter method can densely cover the surface without significant self
intersection. Back-face parts of the yarns are shown. The original quadrilateral mesh is obtained by mixed-integer quadrangu-
lation.

that allow sculptors to design surface curves. It is also pos-
sible to color the different portions of the curve to obtain
texture mapping effect.

There are two ways to obtain different curves for a specific
shape: (1) To use a different quadrilateral mesh that approxi-
mate the shape and (2) for a given quadrilateral mesh to use a
different Hamiltonian cycle. As discussed earlier, even for a
given mesh there are exponentially many ways to form these
curves since with probability 1, there are 2F−1 Hamiltonian
cycles for any given M where F is the number of faces of
mesh M [XACG10].
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reviewers for their helpful suggestions. This work partially
supported by the National Science Foundation under Grant
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