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Figure 1: Duotone surfaces consist of two regions that are bounded by a single curve that covers the surface. These are examples
of sphere shaped duotone surfaces. The meshes in (a) and (b) are Catmull-Clark subdivided dodecahedrons, and the meshes in
(c) and (d) are subdivided octahedrons.
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Abstract

In this paper, we present a method to divide any given surface into two regions with two properties: (1) they are
visually interlocked since the boundary curve covers the whole surface by meandering over it and (2) the areas of
these two regions are approximately the same. We obtain the duotone surfaces by coloring these regions with two
different colors.

We show that it is always possible to obtain two such regions for any given mesh surface. Our approach is based on
a useful property of vertex insertion schemes such as Catmull-Clark subdivision: If such a vertex insertion scheme
is applied to a mesh, the vertices of resulting quadrilateral mesh are always two colorable. Using this property,
we can always classify vertices of meshes that are obtained by a vertex insertion scheme into two groups. We show
that it is always possible to create a single curve that covers the whole surface such that all vertices in the first
group are on one side of the curve while the other group of vertices are on the other side of the same curve. This
single curve serves as a boundary that defines two regions in the surface. If the initial distribution of the vertices
on the surface is uniform, the areas of the two regions are approximately the same.

We have implemented this approach by appropriately mapping textures on each quadrilateral. The resulting
textured surfaces look aesthetically pleasing since they closely resemble planar TSP (traveling salesmen problem)
art and Truchet-like curves.

Categories and Subject Descriptors (according to ACM CCS): 1.3.m [Computer Graphics]: Miscellaneous—yvisual
arts; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Fractals
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Figure 2: Fertility and Stanford bunny as duotone surfaces.

1. Introduction and Motivation

The Jordan Curve Theorem states that any simple closed
curve in the plane separates the plane into two regions: the
part that lies inside the curve, and the part that lies outside
it [PW12]. Although the theorem seems to be very intuitive,
the proof is complicated since closed curves can be com-
plicated sometimes such as fractal curves. Many artists ob-
served this property to create artworks over plane by creat-
ing interesting curves such as Fractal art, Traveling salesmen
problem(TSP) art and Truchet-like curves. Interestingly, Jor-
dan’s theorem is only correct for planes. Any single curve on
a surface with positive genus does not necessarily separate
the surface into two regions.

Recently, Xing et al. [XATC12] developed a method to
construct a single curve that covers a given surface. This
work is based on Gabriel Taubin’s work on constructing
Hamiltonian triangle strips on quadrilateral meshes [Tau03].
With this algorithm every connected manifold quadrilat-
eral mesh without boundary can be represented as a single
Hamiltonian generalized triangle strip cycle. To construct a
single closed curve from this connected triangular strip cy-
cle, one can simply connect centers of triangles in the trian-
gle strip to obtain a single closed curve in 3D. However, this
simple closed curve may not necessarily separate the surface
into two as indicated by Jordan’s Curve Theorem.

In this paper, we present a simple approach to construct
simple closed curves that can separate surfaces into two re-
gions (see Figures 1 and 2). We have implemented our ap-
proach using Truchet tiles where the boundary curve is not
explicitly constructed but appears as the boundary of two
regions formed by Truchet tiles. Therefore, our implementa-
tion can be considered as an embedding of duotone Truchet
tiles over surfaces [Bro0O8a]. We therefore call our textured
surfaces duotone surfaces. However, unlike duotone Truchet
tiles our duotone surfaces guarantee only two regions sepa-
rated by a single curve.

There are two ways to control aesthetic possibilities for
duotone surfaces:

e The shape of any given surface can be approximated by
a wide variety of meshes. Starting from different meshes,

one can obtain different textures. Examples that show the
effect of the structure of the underlying mesh on a spheri-
cal shape are shown in Figure 1.

e Even for a given mesh there are exponentially many ways
to form these curves. This property provides additional
aesthetic possibilities since designers can have additional
control over the shapes of the curves.

2. Previous Work

Duotone coloring of plane using Jordan curve theorem is
an artistic technique to create planar art using compli-
cated curves. In artistic applications, the most widely used
examples of such complicated curves are fractal curves
[Man82]. Duotone images using fractal curves are very well-
known among mathematicians/artists after Benoit Mandel-
brot’s seminal work on Fractal Geometry [Man82]. Mandel-
brot created many examples of duotone art especially using
space filling curves. Mandelbrot also discovered a simple
way to treat open space filling curves as closed by assum-
ing they were drawn on a sphere (See Figure 4).

Giuseppe Peano [Pea90] discovered space filling curves.
Mathematician and artist Douglas McKenna [McK78], who
also created many images in Mandelbrot’s Fractal Geome-
try of Nature, enumerated over 20 million new space-filling
recursive designs. Ken Knolton [Kno02] created a portrait
of Douglas McKenna using one of the first space filling
curves McKenna discovered. The main aesthetical advan-
tage of space filling curves over other fractal curves for creat-
ing duotone art is that they result in indistinguishable inside
and outside structures as shown in Figure 4.

Robert Bosch and Adrianne Herman invented another
curve generation method resulting in interesting duotone
plane art, called TSP art [BHO4, BHO4]. In TSP art we cre-
ate a set of points representing cities. A traveling salesman
who resides in one of the cities wants to visit each of the
other cities exactly once and then return home. The salesman
would like to visit the cities in an order that will minimize the
total length of his tour. One of the most well known and well-
studied problems in mathematics, computer science, and op-
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Figure 3: Buddha as a duotone surface.
(© The Eurographics Association 2012.
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Figure 4: An example of Mandelbrot’s duotone space filling
curve art. This particular sequence of images are created by
Alexis Monnerot-Dumaine under the pseudo-name Prokofiev
in 24 January 2010.

erations research is determining an optimal itinerary for the
salesman in an instance of TSP.

Bosch and Herman noticed that for interestingly placed
city locations, the piecewise curve showing the salesman’s
itinerary looks artistic. They used points on a grid to create
an original artwork. This method was simple but required
large number of dots to produce a decent picture because
the dots tended to clump together. Craig S. Kaplan [KB05]
used weighted Voronoi stippling to create positions of the
cities. With weighted Voronoi stippling, using substantially
fewer dots, it is possible to obtain a more organic appear-
ance. Another advantage of the optimal tours is that they are
guaranteed to be closed simple curves. Therefore, TSP art
are always colored using two colors to create duotone plane
art.

Another related work is Truchet tiles, which was origi-
nally introduced by Sebastien Truchet as all possible pat-
terns formed by tilings of right triangles oriented at the four
corners of a square [Tru04]. The work related to ours was in-
troduced by Clifford A. Pickover [Pic89]. He created various
artworks using a single tile consisting of two circular arcs of
radius equal to half the tile edge length centered at opposite
corners. The two possible orientations of this tile, and tiling
the plane using tiles with random orientations gives visu-
ally interesting curves called Truchet curves [Bro0O8b]. Mul-
tiple Truchet curves are also used to create duotone colored
plane artworks [BroO8a]. This method is not based on Jor-
dan’s curve theorem, but instead it uses a property of Truchet
curves to obtain multiple regions that can still be colored us-
ing only two colors.

In this paper, we introduce duotone surfaces that can be
considered as embedding duotone plane art such as TSP or
Truchet art to surfaces. Our approach is based on the con-
struction of a single curve on a surface that can separate the
surface into two regions. With this property, resulting sur-
faces can always be colored by two colors. In terms of visual
aesthetics, our results most resembles duotone Truchet pla-
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nar art. On the other hand, there are also strong visual simi-
larities with TSP and fractal art. For instance, although they
are not strictly self-similar, our curves cover the 2-manifold
surfaces in similar manner as the space filling curves cover
the planes. Unlike TSP art, our duotone surfaces do not guar-
antee to provide the shortest route, but they visually resem-
ble random TSP art.

Our approach is based on the fact that it is always possi-
ble to construct a triangular mesh with an associated Hamil-
tonian cycle in linear time from a quadrilateral manifold
mesh. The construction algorithm simply splits each quadri-
lateral into triangles and flip edges until the triangles are
ordered into a single strip [Tau03]. The process is espe-
cially simple if the vertices of initial quadrilateral mesh are
2-colorable. Such 2-colorable quadrilateral meshes can be
obtained by some subdivision schemes such as Catmull-
Clark [CC78] and dual of Simplest [PR97] subdivisions. 2-
colorable meshes are also key to obtain duotone surfaces. In
the next section, we provide our methodology.

o Q o

o '}

(a) Initial Mesh (b) Two Colored Quad Mesh

Figure 5: Conversion of a given mesh into a 2-colorable
quadrilateral mesh by using a subdivision schemes such as
Catmull-Clark.

3. Methodology

Our algorithm for generating duotone surfaces consists of
four stages.

(1) Convert the input mesh to a 2-colorable quadrilateral
mesh.

(2) Color the quadrilateral mesh with two colors and assign
textures to its faces.

(3) Connect the disconnected regions on the surface.

(4) Convert the modified two-colorable mesh into a subdivi-
sion surface to obtain G' continuity.

The formal and more detailed structure of our algorithm is
given in Algorithm 1.

3.1. Conversion to a 2-colorable Quadrilateral Mesh

To obtain duotone surfaces, we need 2-colorable quadrilat-
eral meshes. Fortunately any given mesh can be converted
into a 2-colorable quadrilateral mesh through remeshing as
mentioned earlier. In this paper, we use Catmull-Clark sub-
division to obtain 2-colorable quadrilateral meshes. Figure 5

Algorithm 1 Two Region Duotone Surface Construction.

1: Convert input mesh into a 2-colorable quadrilateral
mesh, G = (V,E), by using a subdivision schemes such
as Catmull-Clark.

2: Color the vertices in V to either BLUE or YELLOW
such that no edge exists in £ whose end vertices have
same color. Say, Uy = {v € Vand color = BLUE} and
U, = {v € Vand color = YELLOW }.

3: Assign a Truchet tile(texture) to each quadrilateral face
of G such that the texture is consistent with vertex colors

. if All faces in G are now like 6(b) then

Mark the mesh indicating the same.

. else if All faces in G are now like 6(c) then

Mark the mesh indicating the same.

end if

: while Any disconnected vertices in Uy or U; do

10:  Pick a face which is not of target triangula-
tion(marked in previous step).

11:  Assign the other Truchet tile to this face such that the
texture map is consistent with its new vertex colors.

12: end while

13: Convert the polygonal mesh into a subdivision surface

to obtain G' continuity using Maya for final rendering.

(a) A quad (b) Triangulation 1

Figure 6: Triangulations of a quad face.

illustrates the remeshing scheme of Catmull-Clark subdivi-
sion, called vertex insertion. As shown in figure, the ver-
tex insertion scheme preserves original vertices of the mesh,
which we call vertex-vertex, subdivide each edge by insert-
ing a new vertex in the middle of each edge, which we call
edge-vertex, and insert a vertex in the middle of each face,
which we call face-vertex. It also inserts edges between ev-
ery face-vertex and its edge-vertices. In the figure, edge-
vertices can be labeled with dark blue color and rest of the
vertices can be labeled with yellow color.

3.2. Texture Map Assignment

The underlying graph of a 2-colorable quadrilateral mesh is
bipartite [Weil2]. In other words, the vertices are now di-
vided into two disjoint sets Uy and U; such that every edge
connects a vertex in Uy to one in U;. Moreover, the diagonal
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Texture 2

Texture 1

Figure 7: Texture maps that can cover vertices as defined in
triangulations 1 and 2. These particular textures are called
Truchet tiles which are used to create duotone planar art.

vertices of each quadrilateral of the mesh are in the same set,
i.e. they have the same label as shown in Figure 6(a).

Our goal is to cover this mesh with a texture in such a
way that vertices in Uy will be colored yellow and vertices
in U; will be colored blue. For every quadrilateral, there are
two possible ways to assign a texture: there can be a con-
nection either between two yellow vertices or two blue ver-
tices. These two possible cases can be conceptualized as two
possible triangulations of a quadrilateral as shown in Fig-
ures 6(b) and 6(c). The choice of triangulation of a given
quadrilateral uniquely defines how to texture map that par-
ticular quadrilateral by using textures such as the ones shown
in Figure 7.

If we randomly triangulate all quadrilaterals and apply
textures based on triangulations, we most likely obtain a
two-colored surface that consists of disconnected regions
(see some examples in Figure 8). Such random triangula-
tions correspond to the embedding of duotone Truchet pla-
nar art to surfaces. Our goal in duotone surfaces is to connect
all disconnected regions in the same color. The next section
presents how to obtain such duotone surfaces.

Figure 8: Duotone surfaces with disconnected regions. Our
goal is to make all regions to be connected.

3.3. Combining Disconnected Regions

Note that it is possible to view the triangulated mesh as a
graph that consists of three subgraphs: (1) The original bi-
partite graph; (2) the yellow graph that connects all vertices
in Up, e.g. the graph that consists of only yellow edges; (3)

(© The Eurographics Association 2012.

the blue graph that connects all vertices in Uy, e.g. the graph
that consists of only blue edges. If both blue and yellow
graphs are connected, the corresponding texture map will
consists of two completely connected regions as we want.
On the other hand, if only one of them is connected, there
will be disconnected regions in the other one. For instance,
Figure 9(a) illustrates an extreme case in which the yellow
graph is connected allowing the yellow region to be con-
nected, but the blue graph consists of isolated vertices which
resulted in isolated blue regions.

For the surface of a 2-colorable quadrilateral mesh to have
only two regions, we require both blue and yellow graphs to
be completely connected. This means that neither of these
graphs can have a cycle since a cycle in one graph makes the
other one disconnected. Thus, both graphs must be spanning
trees covering all yellow and blue vertices respectively. If
one of these graphs is a spanning tree, the other one is also
a spanning tree[1]. Therefore, it is straightforward to obtain
duotone surfaces as shown in Figure 9(b).

(a) (b)

Figure 9: Two duotone surfaces that exhibits completely dif-
ferent behavior. In (a) yellow graph is completely connected,
therefore yellow region is connected. On the other hand, blue
graph consists of only disconnected vertices, therefore it pro-
duces individual circles on surface. In (b) both yellow and
blue graphs are trees resulting two connected regions.

Theorem 1 For a given bipartite graph, say Uy and U, are the
two edge disjoint vertex sets and Y, B are Yellow and Blue
graphs respectively. If one of the Y/B graph is a spanning
tree, then the other is also a spanning tree.

Proof Assume B is not a spanning tree when given that Y is a
spanning tree. B is not a spanning tree =  at least one cycle
in B. A cycle in B = 3 a set of connected edges which is C
E(Y) but are isolated. Existence of a set of isolated edges in
Y contradicts our given hypothesis that Y is a spanning tree.
Hence, proved. Similarly, the converse is also true.  []

In practice, constructing Hamiltonian triangle strips on
quadrilateral meshes is sufficient to construct both yellow
and blue trees. Taubin [Tau03] presents a simple linear time
and space constructive algorithm, where each quadrilateral
face is split along one of its two diagonals and the resulting
triangles are linked along the original mesh edges. The tri-
angles are flipped until we obtain a Hamiltonian strip. The
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Genus-2

Genus-3

Genus-6

Figure 10: Positive-genus duotone surfaces.

Hamiltonian strip is actually the representation of the curve
that serves as the boundary of blue and yellow regions. The
diagonal edges in the resulting triangulation consists of two
spanning trees. This hamiltonian strip is not unique. In fact,
there are 2F~! Hamiltonian cycles for any given M where
F is the number of faces of mesh M with probability 1
(see [XACG10] for a related problem). Using this property,
we can control the resulting surface coloring by altering the
number of branches. We prefer high branch count for both
yellow and blue trees which result in more wavy boundary
between two regions [Tau03, XATC12].

3.4. Conversion to Subdivision Surface

One final issue is that direct texture mapping of polygo-
nal meshes results in G' discontinuities since a polygonal
mesh is not G! continuous across the edges. We simply turn
the polygonal mesh into a subdivision surface. Note that
Catmull-Clark subdivision surfaces are already G? contin-
uous everywhere except extraordinary vertices. As our tex-
ture maps have same color around vertices, discontinuous re-
gions around extraordinary vertices cannot be visible. On the
other hand, the original Truchet textures are only G' contin-
uous in edge boundaries i.e. the two circles boundaries meet
in the same point with the same tangent, but the centers of

the circles are not the same (see Figure 7). Thus, we obtain
only G' continuous texture map although the surface itself is
G? continuous in edge boundaries. As shown in the figures
11, it can be seen that G' continuity is sufficient to obtain
good looking results.

4. Implementation and Results

To obtain duotone surfaces, we have only implemented tex-
ture mapping as a stand alone software using C++. The ini-
tial Catmull-Clark subdivision is done using publicly avail-
able software. The resulting mesh is exported as a non-
textured .obj file. Our texture mapping software reads this
.obj file and assigns appropriate texture and texture coordi-
nates to each quadrilateral of the 2-colorable quadrilateral
mesh. Now the textured mesh is exported as .obj file. We
then import this textured mesh into Maya [Aut10] and turn
it to a subdivision surface since Maya provides good quality
subdivision surface in realtime [Sta98]. All images in this
paper are rendered in Maya as subdivision surface using de-
fault lighting. Figure 10 shows several examples of duotone
surfaces that are obtained by this process and rendered by
Maya. To obtain higher frequency images, we simply obtain
denser polygonal meshes using subdivision as shown in Fig-
ure 10. We assume that the meshes do not have high aspect-
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Figure 11: The top row shows four possible tiles that can be used to obtain more colorful versions of duotone surfaces. Duotone
surfaces in each column are created using these tiles.
(© The Eurographics Association 2012.
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ratio or concave quadrilaterals. Such quadrilaterals might re-
sult in visually uninteresting results. Since we could not find
references to any methods doing similar work, we could not
compare the results against existing standards.

4.1. More Colorful Examples

Strict Truchet tiles are not the only one that can be used for
texturing duotone surfaces. It is in fact possible to create a
wide variety of aesthetic results using more colorfully de-
signed tiles such as the ones shown in Figure 11.

5. Conclusions and Future work

In this paper, we presented the concept of duotone surfaces,
which can be obtained from any manifold mesh surface by
first subdividing and then texture mapping appropriate tiles.
Our duotone surfaces consists of two regions that are vi-
sually interlocked. Their boundary curve covers every part
of the surface by meandering over the surface. Moreover,
the areas of these two regions are approximately the same.
We have implemented this approach by texture mapping the
two texture maps appropriately on each quadrilateral. The
duotone surfaces can also provide sculpting opportunities.
For instance, the two regions on the duotone surface can be
obtained by cutting the surface into two 2-manifolds with
boundaries. To create a sculpture, these two manifold with
boundaries can be turned to solid shapes which can be inter-
locked together to form the original shape.

Authors would like to thank Wenping Wang, Li Yupei,
Muyang Zhang, Jin Huang, Xinguo Liu, Hujun Bao, David
Bommes, Henrik Zimmer and Leif Kobbelt for providing
good quality quadrilateral models. We would also like to
thank all the anonymous reviewers for their invaluable sug-
gestions. This work was partially supported by the National
Science Foundation under Grant No. NSF-CCF-0917288.
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