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Abstract

Given the start positions of a group of dancers, a choreographer specifies their end positions and says:
“Run!” Each dancer has the choice of his/her motion. These choices influence the perceived beauty (or
grace) of the overall choreography. We report experiments with an automatic approach, SAMBA, that
computes a pleasing choreography. Rossignac and Vinacua focused on affine motions, which, in the
plane, correspond to choreographies for three independent dancers. They proposed the inverse of the
Average Relative Acceleration (ARA) as a measure of grace and their Steady Affine Morph (SAM) as
the most graceful interpolating motion. Here, we extend their approach to larger groups. We start with
a discretized (uniformly time-sampled) choreography, where each dancer moves with constant speed.
Each SAMBA iteration steadies the choreography by tweaking the positions of dancers at all interme-
diate frames towards corresponding predicted positions. The prediction for the position of dancer at a
given frame is computed by using a novel combination of a distance weighted, least-squares registra-
tion between a previous and a subsequent frame and of a modified SAM interpolation. SAMBA is fully
automatic, converges in a fraction of a second, and produces pleasing and interesting motions.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Line and Curve
Generation—I.3.7 [Computer Graphics]: Animation—I.2.10 [Image Processing and Computer Vision]:

Motion—

1. Introduction

Our long-term goal is to devise: (1) a mathematical for-
mulation that measures the beauty (or grace) of a chore-
ography and (2) a practical algorithm for computing the
most beautiful choreography, given a set of constraints
or choreographer’s directives. In the present paper, we
focus on a specific sub-problem: iteratively improving
the beauty of a planar motion of a small group of par-
ticles, given a time interval and their initial and final
positions. These particles may represent the instanta-
neous positions of a small group of dancers, hence,
we will use a terminology derived from this metaphor,
even though we have not validated the benefit of our
approach for this application domain.

We consider a group of n dancers, each represented
by a point on the plane. Let P denote the position of
dancer i at time t. Note that we use a preceding super-
script to identify a time or frame. Without loss of gen-
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erality, we assume that t varies between 0 and 1. We
are given the start position %; and the end position p;
of each dancer i. We wish to compute their motions.
The term choreography will refer to the combined set
of these motions.

Our algorithm discretizes the choreography, repre-
senting it by a set of frames at evenly spaced time sam-
ples. Each frame is associated with a time 7 and defines
the instantaneous positions P; of each dancer. Continu-
ous motions may be obtained by computing an interpo-
lating spline or subdivision curve for each dancer.

The perception of beauty of a choreography is
clearly subjective and often influenced by expertise
(being a dancer versus a computer programmer), prim-
ing (watching modern dance versus soccer), and con-
text (accompanying music). Still, objective guidelines
for designing beautiful motions have been offered by
members of the artistic community.
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The first guideline of interest states that straight-line,
constant-velocity motions should be avoided [TJ95,
WNS*10]. This may be seen as an extension of
early guidelines proposed by Hogarth, who stated that
“straight lines ... signify stasis, death, or inanimate
objects” [Hog53]. The second guideline, voiced by
Chekhov in a letter to Maxim Gorky claims that grace
is inversely proportional to the amount of superfluous
movement: “When a person expends the least amount
of motion on one action, that is grace” [Che76].

Combining these two guidelines, we seek a chore-
ography that is the simplest (in some sense), and yet
not made of linear motions. When the group has a sin-
gle dancer, these two guidelines seem incompatible and
a linear interpolation appears to be the only natural
choice, as seen in fig. 1a. For a pair of dancers at con-
stant distance a possible choice would be a circular mo-
tion, which in general is uniquely defined by the start
and end poses (fig. 1b).

@

Figure 1: For one dancer, a linear motion (top) is
the natural choice. For a group of two dancers at con-
stant distance of each other, we advocate a pure rota-
tion (second from top). When the distance between the
dancers is different at the start and end frames, we ad-
vocate a logarithmic spiral (third from top). For three
dancers, we advocate a SAM (bottom). Each of these
motions in uniquely defined by the placement of the
dancers.

To gain some insight and appreciation of the prob-
lem at hand, let us focus on a group of two dancers and
compare three choreographies that interpolate the same
set of constraints: LINEAR choreography (fig. 2 top),
DyNAMIC (fig. 2 middle), and SPIRAL (fig. 2 bottom).
These are also compared in the accompanying video.

LINEAR minimizes travel distance and moves each
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Figure 2: Comparison I of the three motions. LINEAR
(top), DYNAMIC (middle), SPIRAL (bottom).

Figure 3: Comparison 2 of the three motions. LINEAR
(top), DYNAMIC (middle), SPIRAL (bottom).

dancer with constant velocity:
Pi= (-0 +1'P )

Unfortunately this solution is often unacceptable, for
example, animators abhor straight-line and uniform-
speed motions (as mentioned above).

DyYNAMIC produces an interpolating motion that
preserves linear and angular momenta. In our
metaphor, this choreography simulates a two-body mo-
tion free from external forces and torques, but where
the two dancers pull or push on each other to change the
distance that separates them. For simplicity, we have
chosen to vary that distance linearly, but other options
could be explored. We include it in this comparison, be-
cause physical plausibility is a natural option for defin-
ing optimal choreographies. We discuss below some of
its aesthetic drawbacks.

SPIRAL computes a fixed point of the similarity
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transform that maps the start frame to the end frame
(fig. 1c) and uses a synchronized constant angular
speed rotation with an exponential scaling, both about
the fixed point, which may be computed as a solution
of a linear system of two variables [WNS*10]. Loga-
rithmic spirals appear to provide an accurate model of
numerous phenomena observed in nature, such as the
growth processes and patterns of vegetation, arrange-
ments of stars in galaxies, and swirls of fluids. We in-
clude the SPIRAL option in this preliminary discussion,
because it captures the spirit and some of the advan-
tages of the proposed solution, which caters to larger
groups.

These three choreographies look very different from
each other (especially on video). Let us point out more
formally the similarities and differences between them.

The distance between the dancers varies linearly in
DYNAMIC, exponentially in SPIRAL, and possibly non-
monotonically in LINEAR. The latter is probably the
most important drawback of LINEAR (fig. 3 top).

The midpoint (center of mass) of the dancers moves
with constant velocity in LINEAR and DYNAMIC. This
linear motion of the center of mass violates the artistic
principle discussed above. SPIRAL moves the center of
mass along a more pleasing arc.

LINEAR is often unacceptable, because the straight
line motion of each dancer appear too mechanical and
because it portrays a rather selfish choreography, where
each dancer appears uninterested in the behavior of
other dancers.

DYNAMIC may be the proper choice when the
dancers hold each other and are swirling on the dance
floor or on ice (without skates). But the overall motion
of (the center of mass of) the couple is uninterestingly
linear and the choreography seems passive, lacking de-
termination and energy.

Assume that the line segment drawn between the two
dancers represents their arms (as if they were holding
hands) or the direction of their gaze towards each other.
Notice that the angle between this line segment and
the instantaneous velocity of each dancer varies in both
LINEAR and DYNAMIC, but remains constant in SPI-
RAL. Also note that the orientation of the line segment
between the dancers rotates at constant speed in SPI-
RAL, slows down as distance increases in DYNAMIC,
and can be more chaotic (non-monotonic) in LINEAR.
For these reasons, we believe that SPIRAL is perceived
as being more harmonious than the other two.

The advantage of SPIRAL over the other two ap-
proaches becomes even more obvious if one translates
the two end positions so that the start and end positions
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of one dancer (say A) coincide. In that case (as shown
in fig. 3 and accompanying video), LINEAR leaves A
in place, while moving the other dancer (say B) along
a straight line, which may pass close to A. DYNAMIC
moves both A and B, and the motion of B seems unnec-
essarily complex. SPIRAL leaves A in place and moves
B along a spiral at a constant angular speed around A. In
fact, if the distance between the two dancers is the same
in the start and end frames, it remains constant through-
out the SPIRAL choreography and B moves along a cir-
cular arc (1 b). We conjecture that this behavior would
be viewed by most observers as the most natural of the
three.

In the remainder of this paper, we extend this SPI-
RAL behavior to larger groups of dancers.

‘We claim three novel contributions:

1. We propose to measure the grace of the choreog-
raphy by the integral over time (approximated by
the normalized sum over all intermediate frames
and dancers) of a local measure of steadiness. This
new measure is an extension (to non-affine mo-
tions) of the steadiness measure originally proposed
in [RV11], which was restricted to affine motions
(fig. 1d). We provide a precise definition for this ex-
tended measure of steadiness.

2. We propose a novel formulation of the local, instan-
taneous approximation of the choreography around
any given dancer at an intermediate frame. We call
it the Local Instantaneous Steady Affine Motion
Approximation (LISAMA) and define is using a
Steady Affine Morph (SAM) or a Steady Loga-
rithmic Spiral Morph between a preceding and a
succeeding frame (not necessarily the previous and
next). LISAMA extends the classical model of an
instantaneous velocity approximation of the motion
of a single point to the instantaneous affine motion.

3. We propose a novel approach, called SAMBA,
which starts with an initial choreography (possi-
bly modified by the choreographer) and improves
its steadiness through a series of steadying steps.
A steadying step first estimates the position of each
dancer in each intermediate frame using LISAMA.
Then it moves these positions (half-way by default)
towards their estimates. Successive passes increase
the steadiness of the choreography and may be exe-
cuted with increasing (temporal) locality (narrow-
ing the time interval between preceding and suc-
ceeding frames) to accelerate convergence. We say
that SAMBA produces a steadied choreography that
morphs between two frames of a group of dancers.

Several stages of a typical SAMBA process and the re-
sulting steadied choreography are shown in figure 4.
Our steadiness measure is only one dimension of the
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Figure 4: Given the initial (left) and final (right) key
frames defining the start and end positions of a group
of dancers in the plane, SAMBA computes the inter-
mediate frames of an interpolating morph using an it-
erative process that strives to increase steadiness. We
show dancers’ positions at evenly time-spaced frames
(black dots along each trajectory). We used 30 interme-
diate frames during this computation (even though only
5 dots are shown per trajectory). The whole process
took 23 milliseconds to complete. We show the result
(from top to bottom) after one SAMBA pass, after 100,
1000, and 3000 passes (bottom). We also show in light
grey line segments between selected pairs of dancers,
as if each dancer were holding hands with immediate
neighbors. Notice how increasing steadiness increases
the smoothness and regularity of these grey curves.

beauty of a motion, and its usefulness depends upon the
application domain. It may prove useful as an analysis
tool by making it possible to factor out the steady part
of a motion so as to accentuate or stylize the unsteady
characteristics.

In the remainder of the paper: (1) we define our no-
tation more precisely and summarize prior work on
steady motions, (2) we review relevant prior art, (3)
we provide the details of LISAMA, (4) we present the
SAMBA algorithm, and (5) we show results and dis-
cuss limitations.

2. Notation and Background

We are interested in choreographies that exhibit a cer-
tain degree of continuity in the time evolution of a local
arrangement of nearby dancers. Hence, we propose to
measure the quality of a choreography by its steadi-
ness. The concept of steadiness has been defined for
affine motions [RV11]. We extend it here to non-affine
choreographies.

The motion of a group of points is affine if there ex-
ists a continuous function that maps time t to an affinity
A such that 'P; = ’AOP,- for all points.

The motion is steady if an affinity A exists such that

A=A )

Here ¢ is a real number between 0 and 1 and the nota-
tion A’ defines the non-integer power (also called root)
of an affinity. Closed-form solutions in two and three
dimensions that compute a real matrix A’, when it ex-
ists, from the matrix representation of affinity A have
been proposed in [RV11]. In the rare situations where a
real matrix A" does not exist, one must use an unsteady
alternative. In this case we default to a SAM between
two affinities, which are related by a similarity trans-
form.

Given the start and end positions of a group of 3
dancers, the Steady Affine Morph (SAM) proposed by
Rossignac and Vinacua [RV11] computes an interpo-
lating steady motion (fig. 1d).

To compute the position of the three dancers at time
t, SAM computes the affinity B that brings the points
(0,0),(1,0),(0,1) to their corresponding positions in the
start frame and the affinity C that brings the same points
to their corresponding positions in the end frame. Then
it computes A = CB~!and finally ‘A as A'B .

An example of a SAM choreography is shown in fig-
ure 1d, which also illustrates that SPIRAL, pure rota-
tion, and pure translations are special cases of SAM.

A measure of steadiness was introduced by
Rossignac and Vinacua [RV11] as the inverse of the
Average Relative Acceleration (ARA). They define
ARA as the integral over space and time of the acceler-
ation with respect to a local frame. In the present con-
text, lacking such a local frame, we measure ARA as
the 2-norm of the difference A — A’. Hence, for a steady
motion, ARA = 0.

The difficulty of using ARA to define steadiness of
a choreography of dancers in a larger group is that the
choreography of a group is in general not affine. Hence,
our solution uses LISAMA to compute a predictor ‘Q;
of the location of each dancer 'P; in an intermediate
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frame from the positions of this same dancer and its
neighbors in the previous and next frames, and returns
(as a measure of steadiness) the sum of the squared de-
viations ('0; —'P;)?.

3. Prior Art

Several computer vision techniques developed for
video compression or segmentation and for shape or
camera tracking [MV98, Mod04, GKB*07] compute
affine displacement maps (registration) [KC96, KC98,
Kru98] that maximize color or gradient correspon-
dence between one portion of the image in one frame
and a portion in a subsequent frame. As such, they
build a local affine approximation [BA96] or hierar-
chies of these [ACM™10] of the choreography between
two frames. The problem addressed in this paper is
somewhat orthogonal to these computer vision prob-
lems: In our case correspondence is given (as pairs of
initial and final positions of particles) and the goal is
not to produce a local affine map (that part is stan-
dard [BLCD02, SMWO06]), but to compute the detail
of the interpolating choreography, i.e., the intermedi-
ate (non affine) trajectories for all the particles. Our so-
lution may be of interest and potentially applicable to
computer vision for producing smooth slow motions,
i.e., generating inter-frame images.

Several morphing techniques have been studied,
where the particles are samples of a lower-dimensional
manifold, i.e., vertices of a curve in 2D or of a surface
in 3D. Some of these techniques establish correspon-
dence from the orientation of the manifold [KR92],
from proximity [ESE06], or from both [CLRW10].
Other techniques assume a given correspondence
[SG92,SGWMBI3]. Some morphing techniques use lin-
ear trajectories. The ball morph [WR09, WR10] gener-
ates circular trajectories that are orthogonal to the ini-
tial and final manifolds. BetweenIT [WNS*10] gener-
ates logarithmic spirals or blends of such spirals. Some
approaches are focused on the evolution of the shape
and of its orientation, but not on the actual motion
followed by the shape during the morph [SGWMO93,
Kor02]. We cannot directly benefit from these solu-
tions, because our group of particles are not samples
of a manifold and hence do not remain aligned along a
curve or surface throughout the motion.

Several morphing techniques establish a triangu-
lar or rectangular lattice that either connect the par-
ticles [ACOLOO] or surrounds them [MHTGOS5, RJO7,
SDC09]. They endow these full dimensional cells (tri-
angles or quads) with stiffness or other rigidity proper-
ties and evolve them from their initial configuration to
their final configuration while striving to keep them as-
rigid-as-possible [IMHOS5] or to make them each evolve
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in a continuous manner. These techniques are most ef-
fective when the initial and final configuration have
a common triangulation [SGO1] or quadrangulation,
and when the desired deformation is free from self-
overlaps. We are interested in supporting more general
choreographies, where this may not be the case.

Particle based fluid simulation techniques
[MSKGOS5] advect the particles striving to simu-
late an incompressible viscous flow. For that, they
compute accelerations from local measures of particle
density and friction. The flow is the result of a forward
dynamic simulation. Hence, these techniques cannot
be used directly to solve our morphing problem,
although we plan to explore using SAMBA for artistic
design of fluid flows.

Tools for designing animations of crowds [JCP* 10,
THL*04], flocks [Rey87], or schools [TT98] may ben-
efit from SAMBA in situations where the initial and
final positions of all of the particles, or at least of some
“leader” particles, are either provided by the artist or
captured from sensors or cameras. A particularly effec-
tive solution for designing such animations was pro-
posed by Kwon et al. [KLLTO8]. They build a (pos-
sibly different) Delaunay triangulation of the particles
at each frame, but allow the artist to edit the result-
ing “formation edges” interactively. They connect each
particle of an intermediate frame to the corresponding
particle in the previous and next frame, hence link-
ing successive per-frame triangulations through these
“motion edges”. Then they let the user deform this
multi-frame graph by moving and pinning any ver-
tex of that graph. They use the As-Rigid-As-Possible
shape manipulation technique [IMHOS5] to minimize
the distortion from the original graph while satisfy-
ing the “pinned” constraints. Their approach mini-
mizes a distortion metric that sums the squares of
the differences between the current and initial loca-
tions of each particle, expressing these locations in
a local frame defined by three neighboring particles.
They solve for the new configuration using a con-
strained least square optimization. They also propose
further improvements (scale-free Laplacian and post-
processing scale-compensation) to reduce undesirable
effects of local scaling and distortions near degener-
ate triangles. Their approach is particularly effective
when it is desired to maintain the relative (local) for-
mations of nearby particles throughout the choreogra-
phy. Our SAMBA solution does not rely on instanta-
neous triangulations, and hence does not suffer from
artifacts that may occur when the connectivity (forma-
tion edges) changes from one frame to the next. Fur-
thermore, it does not require the choreographer to spec-
ify the original graph. (In our case, the trajectories are
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computed automatically from the initial and final loca-
tions.)

The continuum crowds method [TCP06] produces
crowd motion by tracing particles through an evolv-
ing potential field generated from user-defined goals,
scalar cost field, and the positions and velocities of
other agents. The potential field is stored on a grid and
computed by the fast marching method per group of
agents that share a common goal.

The SAMBA solution proposed here builds upon
ideas from these different fields, but differs signifi-
cantly from them. In particular, it does not assume or
compute a connectivity graph.

4. LISAMA

Our Local Instantaneous Steady Affine Motion Ap-
proximation (LISAMA) computes a steady motion that
approximates the choreography near the position BPi of
a given dancer P; at time B € [0,1] of an intermedi-
ate frame. In what follows we use a, b, c, ... to refer to
frames (numbered from 0 to m), and o, B, Y, . . . for their
respective times.

First, we compute weights Bwik for each other dancer
Py that are inversely proportional to the distance be-
tween BP,- and ﬁPk as follows:

wir =max(0, (1 - Pp—PR/r?) 3

Here r is a radius of influence, chosen globally for the
group. It may be used by the choreographer to enhance
the locality of the behavior: a relatively small value
of r will prevent a sub-group of nearby dancers from
being influenced by a sub-group that passes at a dis-
tance. The resulting weights are non-zero only within
a circle of radius r around BP,-, localizing the effects of
LISAMA. In the figures and accompanying video, we
use r =150 pixels. The blending kernel (3) is a com-
mon polynomial spline [FMO03]. Finally, we normalize
these weights, dividing each one by their sum.

Let us consider two other frames, a and ¢, with cor-
responding time values satisfying o < § < 7. The def-
inition of LISAMA does not impose other constraints
on these frames, but in practice, during the first pass of
SAMBA, we chose oo = 0 and y= 1. Hence, we com-
pute the approximating choreography from the initial
and final frames. In subsequent passes, a and c are se-
lected closer to b, when possible. In the final passes, a,
b, and c are three consecutive frames.

We compute an affinity A that maps *P; to "P; and
also minimizes the weighted quadratic error for the
other dancers. Specifically, we compute a 2 X 2 ma-
trix L of a linear transformation that minimizes the

quadratic norm

2
Zﬁwik (P ="P)) —L(°P,—°P)) “
This quadratic form may be solved trivially, as dis-
cussed in [SMWO06,Xie95], but here, instead of the cen-
troids, we use *P; and "P,.
Using *V;, for “P, — *P; and "V for "P, —"P,, setting
the derivative of the above expression to zero yields

Zﬁwik (Wi — L") -V =0 (5)
which leads to
Y Pwai- v = Y Puwal(V) - ©)

and one finally obtains

L= (W) (Thoa i)

We then define the affinity A as the composition of
the linear transformation L with a translation by vec-
tor "P; — “P;. The LISAMA motion from *P; to "P; is
A'(*P;). A typical result is shown in figure 5.

o
o @
o o® ©
" o

Figure 5: The steady motion of a given dancer is com-
puted from a modified affine registration or, in cases
where no SAM exists, a similarity registration between
a preceding frame (left) and succeeding frame (right).

When the matrix L has a real logarithm, we com-
pute the SAM A’. When L has no real logarithm, no
SAM exists. In this case we find a similarity trans-
form that minimizes (4) as in [SMWO06], and use its
SAM, which always exists. Both SAMs may be com-
puted using closed form expressions by the EAR algo-
rithm [RV11] or using the numeric approach proposed
in [Ale02].

5. SAMBA

The main step of SAMBA computes a target location
BQ,v for a dancer BP,- of an intermediate frame from the
LISAMA of PP, as

P, = a"(°P,) ®)
B o

where the time u = =

The first SAMBA pass sets o = 0 and y =1 for
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all intermediate frames and computes these target lo-
cations for all dancers in the intermediate frames us-
ing BPi = BQ,: Since during this initial pass, we do not
have positions for the intermediate frames, we compute
weights from the initial and final frames and average
them.

Hence, each one of these initial trajectories is steady.
A typical result is shown in figure 4 top.

During each pass, we execute Algorithm 1.

Algorithm 1

1 for each intermediate frame b {
2 a = max (0,b-d);

3 c = min (f+1,b+d);

4 u = (b-a) / (c-a);

5 for each dancer P; {

6 A = LISAMA(i,a,c);

7 Po = At Cm;

8 }

9 for each dancer Pi {

oo PR PRy 0sc PO - PRy
11 }

12 d = spread(stepnum) ;

The function spread controls a trade-off between
local (small spread) and global (large spread) motion
predictions. We achieve faster convergence by applying
a gradually diminishing spread. Figure 6 shows a naive
“Fixed Spread” strategy (where the spread is always 1)
compared with our preferred “Halving Spread” strat-
egy that starts with the largest possible spread (half the
intermediate frames) and reduces this by half at each
iteration. Once the spread is reduced to 1 we stop halv-
ing and keep a fixed spread until we reach our error
threshold and terminate the process. In the figures and
accompanying video, we use a halving spread, starting
with d = 8. Using a larger starting spread produces a
more globally steady motion, which is often, but not
always desirable.

Note that this process is similar to a pyramidal
Laplace smoothing of a polygonal curve, except that,
instead of using a linear interpolation, we are using
LISAMA.

Since steady motions have predictable, stabilizing
properties (they vary area monotonically and use min-
imal acceleration), the resulting smoothing provided
by SAMBA inherits these characteristics inasmuch as
possible (different dancers may establish contradicting
goals for the choreography, and SAMBA must then

(© The Eurographics Association 2012.

SAMBA Convergence
1E+01

1E+00
1E-01

1E-02

Normalized Error

1E-03

1E-04

1E-05

500 1,000 1,500 2,000 2,500 3,000
Iterations

— Fixed Spread Halving Spread

Figure 6: Error plot for SAMBA iterations using a
fixed I spread smoothing (blue), and a variable spread
smoothing (orange) that repeatedly halves the spread
size.

adopt a compromise, parameterized by the kernel ra-
dius r, and expressed by making nearby trajectories
mutually agreeable.

6. Results and discussion

In this section, we summarize the results of our experi-
ments with SAMBA.

To demonstrate the benefit of subsequent SAMBA
passes, we use a configuration where the initial po-
sitions of the dancers in the group have two distinct
clusters. Although the two clusters are clearly dis-
joint in both the initial and final frames, their trajec-
tories produced by the first pass of SAMBA result in
a temporary “interpenetration” of the two clusters dur-
ing the choreography. Figure 7 shows how subsequent
SAMBA passes resolve this interpenetration, delay-
ing the rightward-moving dancers by pushing their tra-
jectories upward and accelerating the leftward-moving
dancers at the beginning of their journey.

In the accompanying video, we include several ex-
ample, showing a LINEAR choreography and the stead-
ied one produced by SAMBA. Our experiments sug-
gest that SAMBA produces pleasing and interesting
choreographies, which are sometimes very different
from the linear interpolation.

6.1. Limitations

SAMBA uses a local search/optimization approach,
therefore it may fail to converge to the global optimum
or may converge to a solution that the choreographer
dislikes.

The choreographer can alter dancers’ positions in the
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Figure 7: The first SAMBA pass (top) shows a collision
between the two clusters. We show the result after 1000
SAMBA passes (bottom).

start and end keyframes of the group, but small changes
in these initial or final positions may result in qualita-
tively different overall choreographies. Hence, restrict-
ing the choreographer’s interaction to the editing of the
start and end frames may not provide sufficient flexibil-
ity for precise design, even though it may be a valuable
automation tool when the choreography is working at a
high-level.

Because changes to the initial choreography from
which SAMBA starts may lead to qualitatively differ-
ent solutions, we also provide a semi-automatic option,
which allows the choreographer to edit the initial so-
lution by adding intermediate constraints to be inter-
polated by a specific dancer. This is done simply by
clicking on a path to pick a dancer i and a time ¢ and by
dragging to a new location to establish a constraint for
.

For each dancer, we compute a smooth motion that
interpolates all such constraints. We use a gradient de-
scent method to smoothen the location of the uncon-
strained positions. The technique works in realtime and
the choreographer can directly manipulate the path and
see sampled positions. Then, SAMBA is used to steady
the resulting motions.

6.2. Future Work

We are preparing to conduct a study to evaluate the per-
ceived beauty of SAMBA motions. Our subject pool
will consist of choreographers and dancers who will be
asked to rate motions created by linear interpolation,
LISAMA, and SAMBA. We will also ask the subjects
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what they like and do not like about the motions and
have them judge whether the SAMBA solution may be
useful to them.

If these preliminary evaluations indicate that
SAMBA may be of value for choreography design, we
will seek a partnership with a dance company, so as to
install a ceiling-mounted camera that tracks dancers’
motions and a projector that guides their motions by
shining a colored dot in front of each dancer. With
this set-up, we will be able to capture and analyze
choreographies and explore improvements based on
SAMBA.

7. Conclusions

We have presented a technique for generating a har-
monious choreography of a group of dancers, given
only their start and end positions. The technique uses
an iterative local smoothing, in the spirit of Lapla-
cian smoothing, estimating dancer motion based on the
relative configurations of neighboring dancers. Local
neighborhoods are defined by a kernel function with
finite support, which enables realtime performance of
the SAMBA smoothing.
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