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ABSTRACT 

 This paper examines the role that subdivision processes can have in the production of form. It explores how subdi-
vision processes can generate complex geometries from very simple input meshes. In a first step, this paper presents 
modifications to the established subdivision processes’ weighting schemes. In a second step, this paper considers 
formalized and extended methods for applying these schemes. Finally the paper presents forms generated with these 
modified processes. 
 
I.3.5 [Computational Geometry and Object Modeling]: Curve, surface, solid, and object representations 

 

1. Introduction 

Subdivision processes have traditionally been used in 
computer graphics to generate smooth surfaces from a 
coarser polygonal mesh. They are currently used exten-
sively in 3D modeling and in character animation. This 
paper examines these processes and explores to what extent 
they can be used specifically as generators of complex 
geometrical form.  

As a generative mechanism, subdivision processes have 
the appeal that they are not additive processes. While addi-
tive processes frequently rearrange (and scale, translate, 
rotate) pre-defined components in a combinatorial manner, 
subdivision processes represent a purely operations-based 
approach. Rather than studying the possibilities in combin-
ing numerous primitives, they allow the exploration of 
form inherent in a single primitive (represented as the input 
mesh) given changes in the process parameters.  

This paper presents modifications to two established 
subdivision algorithms. In a first step, the weighting 
schemes are adapted to incorporate additional parameters. 
In a second step, the manner and context in which these 
schemes can be applied is formalized and extended. Forms  
generated with these schemes are presented in the appen-
dix.  

1.1 Subdivision Explained 

Subdivision processes take as an input a polygonal mesh. 
They recursively apply a subdivision scheme to this mesh 
to produce a denser, generally smoother, output mesh. 
Subdivision schemes have two parts: topological rules and 

weighting rules. The topological rules specify how to ob-
tain the graph of the refined mesh from the graph of the 
input mesh by generating new vertices, edges and faces. 
The weighting rules specify how to calculate the positions 
of these new vertices based on interpolation between verti-
ces of the input mesh.  

Two of the most established subdivision schemes are the 
Catmull-Clark process [Cat74][CC78] and the Doo-Sabin 
process [Doo78][DS78]. Both of these processes generate 
smooth rounded forms when using their standard weighting 
rules.  

2. Expanding the Subdivision Schemes 

  By altering the Catmull-Clark and Doo-Sabin proc-
esses, non-rounded forms with highly diverse attributes can 
be produced. Using a simple hexahedron as an input mesh 
can yield forms with features as diverse as concavity and 
convexity, the appearance of branching, porosity, and frac-
talization – just to name a few.    

The proposed modification of the schemes consists en-
tirely of additions to the weighting rules, while the topo-
logical rules remain unchanged. The weighting rules are 
amended by introducing parameters that allow a variable 
positioning of new vertices. These parameters are hence-
forth referred to as weights.  

Traditionally both schemes’ weighting rules calculate the 
position of new vertices strictly as an interpolation of pre-
vious-generation vertices. These rules are amended to al-
low the extrusion of vertices along face, edge and vertex 
normals. The two modified schemes are described in detail 
below.  
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2.1 Extended Catmull-Clark Scheme 

The Catmull Clark process generates k new quadrilateral 
faces for each face in the input mesh, where k is the num-
ber of vertices of the face. The following is a step-by-step 
explanation of the process using the example of a hexahe-
dron as an input mesh: 

 

Figure 1: Subdivided Catmull-Clark hexahedron: input 
mesh and first iteration mesh 

1. For each face, generate a new face point that is an av-
erage of the face’s vertices. This point can be extruded 
along the face’s normal vector nf using weight w10. The 
normal vectors can be scaled by the face’s perimeter.  

  

! 

" F 1 = (P1 + P2 + P3 + P4 ) /4 +
! 
n f #w10  (1) 

2. For each edge, generate an edge midpoint that is a 
weighted interpolation of the new face points adjacent to 
the edge with the edge’s endpoints. This edge midpoint can 
be extruded along the edge’s normal vector ne (defined as 
an average of the normal vectors of the attached faces) 
using weight w11. 

  

! 

" E 1 = ((F1 + F2 )(1+ w1) + (P1 + P4 )(1#w1)) /4 +
! 
n e $w11 (2) 

 3. For each initial vertex of the mesh, generate a new 
vertex point that is a weighted interpolation of the average 
F of all i face points touching the vertex with the average E 
of all edge midpoints for edges touching the vertex. The 
original vertex P factors into the equation when i exceeds 
3. This new vertex can be extruded along the previous ver-
tex’s normal vector np using weight w12. 

  

! 

" V 1 = (F(1+ w2 ) + 2E(1#w2 /2) + (i # 3)P1) /i +
! 
n p $w12. (3) 

4. Each new face point is connected to the new edge points 
of edges that made up the original face. Each new vertex 
point is connected to the new edge points of the original 
edges incident on the original vertex. The weights intro-
duced above can be integrated into weighting stencils for 
the new face, edge, and vertex points. 

 

 

Figure 2: Catmull-Clark stencils for face points, edge 
points, and vertex points with the introduction of weights in 
the latter two stencils. (Possible extrusion not shown) 

After one iteration of this subdivision algorithm, vertices 
produced can be distinguished as deriving from face mid-
points, edge midpoints, or previous vertices. Thus addi-
tional weights can be added to equation (1) to control the 
placement of subsequent midpoint: 

  

! 

" " F 1 = (( " V 1(1+ w3 ) + " F 1(1#w3 ))(1+ w4 ) + ( " E 1 + " E 2 )(1#w4 )) /4
+
! 
n f $w10

 (4) 

 

 

Figure 3: Catmull-Clark face point stencil for use after 
first iteration 

2.2 Extended Doo-Sabin Scheme 

The standard Doo-Sabin algorithm is modified in a simi-
lar manner to the Catmull-Clark algorithm. Weighting rules 
are amended by introducing parameters to control the posi-
tion of vertices for each type of generated face. New verti-
ces can be extruded along face and vertex normals.  The 
process is as follows:  

 

Figure 4: Subdivided Doo-Sabin hexahedron – input 
mesh and first iteration mesh 

1. For each face, generate a new vertex point for each 
vertex of the face. This vertex’s position is an interpolation 
of the face’s midpoint and the original vertex position. 
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Formulas (5) and (6) are for quads and triangles respec-
tively. 

  

! 

" P 1 = (P1 # (2.25 + 2w1) + (P2 + P4 ) # (.75$w1) + .25P3 ) /4 +
! 
n f #w10 (5) 

  

! 

" P 1 =
2
3

P1(1+ w1 /2) +
1
6

(P2 + P3 )(1#w1) +
! 
n f $w10 (6) 

 

Figure 5: Modified Doo-Sabin stencils for quads and 
triangles using variable weights.  

2. New faces are then formed in three steps. First, the 
new vertices within each face are connected to create a 
smaller, offset version of the face. Second, for each original 
vertex, the new vertices that have been generated in the 
faces incident to the vertex are connected. Finally, for each 
original edge, new vertices that have been generated in the 
faces adjacent to the edge are connected.  

After one iteration of the algorithm, each new face can 
be distinguished as deriving from an original face, from 
connected edges, or from connected vertices. Distinct 
weights analogous to w1 and w2 can thus be introduced for 
these three groups of faces in subsequent generations.  

The Doo-Sabin scheme can further be expanded to use 
additional weights for cases in which the valence of a ver-
tex is not equal to the number of faces incident to it. (See 
the four rightmost configurations in figure 8 for examples 
of these cases.) In addition, conditional weights can be 
introduced to distinguish between internal and external 
edges. 

2.3 Vertex Representation 

Depending on the form of the input mesh and the 
weighting values, it is possible that two or more vertices 
are generated at identical positions. One has the option of 
treating these as either separate vertices, or of combining 
them into one vertex.  

In the latter case, the linear relationship between changes 
to subdivision weights and changes to the subdivided out-
put is disrupted for subsequent generations. The output 
takes on unexpected forms at certain weighting values. 
This effect can also be induced by specifying a minimum 
distance beneath which generated vertices are fused. 

 
 

 

Figure 6: Subdivision of a hexahedron, with values for 
w1 in the first iteration of 2.99 and 3.0. The latter value 
causes the edge points to converge in the center, forming 
one single vertex and therefore significantly altering the 
shape. 

Further non-linearities can be introduced by limiting the 
number of edges (and thus faces) that can be attached to a 
vertex – particularly those vertices that have been fused. 
This can create porosity in the subdivided form. 

3. Configuring the Subdivision Schemes 

The previous section presented modifications to the sub-
division schemes, primarily though the introduction of 
weighting parameters. This section presents ways in which 
these schemes can be applied to an input mesh. Specifically 
this section considers methods of specifying and using non-
stationary and non-uniform weights to increase the scope of 
generatable forms.  

3.1 Non-Stationary Weights 

Non-Stationary weights imply that a weight can assume 
a distinct value at each iteration of the subdivision process. 
The nomenclature for these weights will be as follows: wi

n,  
where n is the weight number (for either the Catmull-Clark 
or Doo-Sabin processes respectively), and i is the iteration 
starting at number 1. Either discrete values can be assigned 
to certain iterations, or a linear or exponential trend can be 
specified. For example: 

! 

wn

i
= a + b(i "1)q  (7) 

where a is an initial value and b represents an incremental 
change. 

In addition to changing the weights from iteration to it-
eration, it is possible to change the subdivision scheme 
used at each generation. As the output from one scheme 
can serve as the input of the other, a single form can be 
produced by any combination of the Catmull-Clark and 
Doo-Sabin schemes. 

3.2 Non-Uniform Weights 

Non-uniform weights imply using distinct weighting 
values at different parts of the input mesh within one sub-
division iteration. Weights are thus location-specific. Three 
methods of setting non-uniform weights are presented: 

1. Variation based on position in the mesh’s environment 
2. Variation based on the mesh’s topology and motives 
3. Variation based on tagging vertices and faces  
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3.2.1 Variation Based on Position in the Mesh’s Envi-
ronment. This involves placing points that represent sets 
of subdivision weights in space, either at locations directly 
on a mesh or within the mesh’s environment. For each face 
the distances to the sets are calculated to determine the 
sets’ levels of influence. These levels of influence are 
themselves weighted values. The subdivision weights con-
tained in each set are then weighted according to the sets’ 
levels of influence at each face. This concept is shown in 
figure 7. 
 

 

Figure 7: 2D example showing four weight sets placed 
in the environment of a mesh and their effect on face 1. The 
curved lines represent the weight sets’ level of influence c, 
with the bold lines indicating a weighted value of 0.9.  

The level of influence weight ca of a set a is calculated as 
shown in equation (8), where the dist function returns the 
distance between a set and the face, h is the strength of the 
set, n is the total number of sets, t is a ‘tightness’ control 
exponent greater than 1, and the maximum possible dis-
tance of two points is assumed to be 1. The subsequent 
calculation of a weighting value wx based on values con-
tained in the sets wx,a and the sets’ level of influence 
weights c is shown in equation (9). 

! 

c
a

=
(1" dist(pos

face
, pos

set.a ))t # h
a

(1" dist(pos
face

, pos
set.i))

t # h
i

i=1

n

$

 (8) 

! 

w
x

= (w
x,i

i=1

n
a

" # c
i
) (9) 

In a simplified version of this scheme, once can assign 
two sets of weights to positions along an x, y, or z axis. 
Values are interpolated linearly if the face’s corresponding 
coordinate falls between the sets, and otherwise the value 
of the closest set is used.  In both cases, translation, scaling 
and rotation of the input mesh modifies the position of 
vertices relative to the weight sets and thus leads to 
changes in output. 

 
3.2.2 Variation Based on the Mesh’s Topology and Mo-
tives. Rather than placing weight sets in the mesh’s envi-
ronment, it is possible to vary weights according to the 
mesh’s topology – specifically the vertex valence and the 
number of faces that a vertex is part of. Based on either one 

of these factors, or a combination of the two, one can 
assign attractor/deflector values to each vertex. Alternati-
vely these values can be assigned to specific face/edge 
configurations and to motives commonly found in the input 
mesh or to those that get produced during the subdivision 
iterations. 

 
Figure 8: Sample face/edge motives 

The assigned attractor/deflector values can be incorpora-
ted in the Catmull-Clark and Doo-Sabin subdivision equa-
tions. In the Catmull-Clark process, they can be combined 
with two additional weights to control the placement offace 
points and edge points. The two equations below are 
applied in the subdivision process after equations (1) and 
(2). U is the attractor/deflector value of a point based on its 
classification, and n is the number of points in a face. 

! 

" F Attracted = " F 1 + w6 # (Pi $ " F 1
i=1

n

% )uP
i

. (10) 

! 

" E Attracted = " E 1 + w7 # ((P1 $ " E 1)u p1
+ (P2 $ " E 1)u p2

) . (11) 

3.2.3 Variation Based on Tagging Vertices and Faces. A 
further method to incorporate non-uniform weights is 
through tagging of vertices and faces in the input mesh. 
Each vertex can be assigned to a vertex group, and each 
face can be assigned to a face group. Sets of subdivision 
weights can then be specified per group. Edge weights are 
determined by averaging the weighting values of the 
groups to which their vertices are assigned.  

The assignment of vertices and faces to groups also ena-
bles the locking of certain parts of the input mesh. The 
positions of vertices (and by extension edges) belonging to 
a certain group can be locked throughout the subdivision 
process, or for a number of starting iterations. This allows 
for the generation of hard edges and creases. A similar 
scheme was used in the animated film Geri’s Game 
[DKT98]. 

 

Figure 9: 7th generation subdivision of a hexahedron with 
the bottom right edge of its input mesh locked, where Le 
specifies the number of iterations during which the edge 
remains locked. 

4 Conclusion 

By adding degrees of freedom to both the subdivision 
weighting schemes and to how the schemes are applied, the 
scope of forms that can be generated increases greatly. The 
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attached illustrations always take the simplest input meshes 
– the platonic solids – yet generate forms that exhibit and 
astounding complexity.  

Unlike forms generated through typical additive proc-
esses, these form are not explicable through reductionism. 
Rather the subdivision processes can be used to generate 
forms for which it is difficult to discern their source, much 
less the exact nature and parameters of the processes ap-
plied.  

Despite this irreducibility, the processes behave largely 
linearly. Small changes in the parameters lead to gradual, 
traceable changes in the output. Forms can be modified 
through a subsequent tweaking of their parameters. Though 
they are not entirely predictable, the processes are determi-
nistic and they are reproducible.  

Rather than simply providing a mechanism to smoothen 
a mesh, subdivision processes can enrich these meshes with 
an astounding degree of complexity.  
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Results 
 

 
Illustration 1:  Two 8th-generation subdivisions of a hexahedron using only the Catmull-Clark process. Weights are non-
stationary but uniform. The figure on the right relies heavily on the use of surface-normals extrusion for vertices.  

 

 
Illustration 2:  Two 10th generation subdivisions of a dodecahedron and hexahedron. Both forms use combinations of the 
Catmull-Clark and Doo Sabin processes. Weights are non-stationary but uniform.  The figure on the right has several non-
linearities in its process to due vertex fusing.  
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Illustration 3: Two subdivisions of three vertically stacked hexahedrons. Forms are in their 8th and 9th generation and have 
up to 11 million faces. Both the Catmull-Clark and Doo-Sabin processes are employed, and weights are non-stationary and 
non-uniform. In the right figure porosity occurs on several levels due to limited vertex valence.   
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