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Abstract

Gradient Domain Imaging (GDI) has gained a high importance and provoked numerous powerful applications
over the last decade. It employs a workflow of creating an inconsistent gradient field (GF) from one or more
images using different non-linear operations and finally it determines an image with a consistent, integrable GF
that falls near to the prescribed inconsistent one. However, the result is not really predictable, often suffers from
halo-effects and other local distortions at higher frequencies as well as from uncontrollable far-effects arising
from local gradient-contradictions. The unfolding of these artifacts culminates in an undesired overall image ap-
pearance. None of the common GDI solvers can overcome these side-effects as they utilize the same local isotropic
’coefficient-pattern’ in a sparse matrix description and they differ only in the numerical solution techniques.
We present a powerful GDI method solving the problem completely in the gradient domain with gradient-variables
and using spatially varying metrics that depends only on the starting inconsistent gradient field. After obtaining the
nearest consistent gradient field with the pre-defined metrics we return into the image space by double integration
that yields the wanted pixel intensity values. Our method delivers a great aesthetic enhancement by eliminating
halo effects and saving small details, furthermore providing a realistic and pleasant overall light distribution at
lower frequencies. By significantly extending the range of allowed inconsistency in the prescribed gradient field,
it also allows for solving a large class of problems that proved hopeless beforehand.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

Gradient Domain Imaging (GDI) has been an emerging field
of digital imagery with growing importance and numerous
practical applications in the last decade. It grants new possi-
bilities for image manipulation that cannot be solved in fre-
quency or spatial domain, nor with wavelet or multiresolu-
tion processing. Its development looks to be definitely in-
terrelated with digital photography and the simultaneously
emerging computational photography.

Let us recall some important and interesting applications
of GDI without fulfilling an exhaustive survey. For high dy-
namics range imaging [FAT02] suggested a multi-resolution
construction of a modified gradient field (GF). The image
of reduced dynamic range was computed by solving a PDE
with the Poisson solver resulting in an image, which has a

GF near to the prescribed non-conservative one. We call a
GF ’non-consistent’ throughout this paper, which cannot be
obtained as the GF of any image. [PGB03] and [SJTS04]
proposed different versions of seamless editing and matting
of images using the Poisson solver with appropriate bound-
ary conditions. Another way for cloning and replacing image
parts is suggested by [GEO04] through a modified gradient
concept. Numerous interactive methods are available in GD
for image editing, e.g. real-time painting [GWL*08], mat-
ting or creating photomontages [ADA*04]. Seamless im-
age stitching or mosaicing [LZPW04], [EUS06], or com-
positing an image set into a unified or panoramic picture
[AGA07] is another widely used field of GDI methods. The
first gradient-based color-to-grayscale conversion method
(Color2Gray) was suggested by [GOTG05], which often
leads to strongly inconsistent gradient fields. Another gra-
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dient domain method to compute the plausible grayscale
gradients can be found in [NCN07], which is based on the
Coloroid system. From among the numerous GDI appli-
cations we can mention different kinds of image fusion,
exposure fusion, or stylized, non-photorealistic image ma-
nipulation techniques. For example: context enhancement
in [RIJ04], an interesting multi-flash based depth edge de-
tection and its application for stylized rendering [RKF*04],
photography artifacts removal in [ARN*05], edge suppres-
sion in [ARC06]. The list is incomplete and is quickly grow-
ing by time.

All the above methods employ basically the same math-
ematical approach to obtain the final image from the pre-
scribed (manipulated or composed) gradient field: the over-
all quadratic error between the prescribed gradients and the
unknown gradients of the resulting image is minimized.
They apply everywhere the same weighting, which leads to
a spatially invariant isotropic Laplacian kernel in the equa-
tion system. The common solvers are the PDE based Pois-
son multigrid solver, the FFT-based Poisson solver [HOC65]
and different iterative techniques, like the conjugate gradient
method with adaptive preconditioning [SZE06]. All of these
techniques can also be realized on GPU.

Only a couple of papers mention varying weight factors
associated with gradient components and therefore they can-
not be solved using the Poisson solver. A framework of this
method family is described in [ARC06] that was applied
for surface reconstruction from gradient fields, based on
calibrated photometric stereo. It works with spatial-domain
variables, however, it also analyzes the main features of
the gradient domain, by appyling graph-theoretical meth-
ods like minimal spanning-tree for selecting ignorable gra-
dient elements in a binary weighting approach. Their so-
called ’M-estimator’ and ’Diffusion’ methods assign conti-
nous weights to spatial-domain variables, similarly to our
approach presented here except that we strictly confine to
gradient variables. Beyond this significant difference, the
weights in [ARC06] depend on the residual error dur-
ing iteration, that is in an unpredictable way. A similar
weighted technique is the ’gradient importance’ method
[NC06], where the motivation was HDRI whitout halo ar-
tifacts. Furthermore, [NC06] prescribes lower-upper con-
straints for the variables according to the allowed contrast
of the display device. This permits the control of the other-
wise not predictable contrast range in the GDI.

In this paper we will follow a fully different approach.
Instead of seeking the solution in the image domain, an
other straightforward mathematical possibility is working
with gradient variables and eliminating the inconsistency of
the GF which can be directly integrated to obtain the final
image. This basic idea was first suggested by Attila Neu-
mann in 2004 [NEU04], which was the basis of further de-
velopments which made us understand some features of the
GF and resulted in a very simple iterative orthogonal pro-

jection and over-projection technique utilizing gradient vari-
ables. The variations of this method employing solely equal
weights were presented in [NN05] and its application for the
Color2Gray problem in [NCN07].

The remainder of this paper is organized as follows. In
Section 2 we shortly describe the basics and interestingly
contradictory nature of GDI and the qualitative character of
the solution using gradient-variables and spatially varying
metrics. Section 3 is the central part of our paper dealing
with the relation of and switching between image and gra-
dient domains. Here we present two different solvers us-
ing gradient-variables and locally varying metrics leading
to the same solution. The first is a generalized orthogonal
projection method, while the second one utilizes a closed-
form sparse linear equation system with a new type of aux-
iliary variables introduced here, being neither luminance
nor gradient ones. Section 4 presents the capabilities of the
new method on problems, which involve the prescription of
strongly inconsistent GFs. In Section 5 and 6 we present our
conclusions and plans for future works, respectively.

2. The Nature of Gradient Domain and Gradient
Variables

The problem of GDI begins with a prescribed ill-posed gra-
dient field which cannot be obtained as the GF of any im-
age. We need to find a consistent GF what is near to the pre-
scribed one. The consistent GF has to preserve all salient fea-
tures and intended image contents, while it should be free of
artifacts, like the halo-effect. However, our efforts for solv-
ing this problem is inherently burden with a theoretical con-
tradiction, due to the fact that the starting, non-integrable GF
does not represent an image. For this reason it is difficult to
establish what sort of salient features and image characteris-
tics are conveyed in the prescribed GF and in what measure
they are preserved in the final image with its corrected GF.
The resulting consistent gradient field is only an approxima-
tion of the original inconsistent one, while it is impossible
to determine a visual difference between the two as the cor-
rected GF unambiguously corresponds to an image while the
incosistent GF not. The difference between them is only in-
terpretable in the gradient domain. Because of this contra-
dictory nature of the problem, it is challenging to character-
ize the result of gradient domain imaging a priori, given a
prescribed inconsistent gradient field. In fact, even the pre-
diction of the contrast range and possible artifacts remains
an issue.

In this paper we will show how the nearest consistent GF
can be determined in gradient domain. We will see that the
distance or metrics definition is a key element of the GDI.
We should use spatially varying metrics in order to have
more control over certain perceptual aspects and to elimi-
nate the typical problems occurring when using the Poisson
solver that is based on spatially uniform Euclidian metrics.
The new metrics depend on the lengths of prescribed gra-
dient elements and may also depend on the initial inconsis-
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tency values of the gradient-loops. In this way the proposed
new method prevents the noticeable sign changes (often oc-
curring in the case of Poisson solver) that would result oth-
erwise in halo effects, and limits the spatial spreading out of
errors by the correction of highly inconsistent loops. Further-
more, it approximately saves the relation among the lengths
of gradients. Since this essential behavior of the new algo-
rithm yields true also for any closed, non-elementary gra-
dient loops, the realistic and feature preserving nature with
the above mentioned positive effects of the new approach
appears at every spatial resolution. One can define highly
ill-posed local gradient-loops, of course, where none of the
tricks help, but at least we can impose a limit to the spread-
ing out of their local contradictions. In the worst case of ex-
tremely ill-posed GFs we may obtain at least a lower resolu-
tion image with an adequate appearance.

Our approach does not require the direct determination of
image luminance values. Instead, it delivers the components
of a consistent gradient field with an appropriately specified
’nearness’ with respect to the prescribed one. The final im-
age is then obtained by the double integral of this resulting
gradient field. The new method works approximately with
two-times more gradient-unknowns compared to the num-
ber of pixels, and in the same vector space where also the
prescribed inconsistent GF is given. Due to the huge free-
dom factor of this space we cannot establish an equation sys-
tem for the gradient variables directly as there are two times
fewer gradient-loop equations than unknowns. However, we
can determine the nearest point in the subspace of consis-
tent GFs to the prescribed starting one. It can be mathemat-
ically proven that in case the concept ’nearest’ means the
Euclidean metrics, we obtain the same results what common
solvers provide using luminance-variables directly in image
domain, only in a different style.

3. Solution with Gradient Variables
3.1. Inconsistency in Gradient and Image Domain

Let the gradient field of an image u (of height Y and width X)
be g, which is a consistent GF. The simplest finite difference
definition of vector g with Y·(X-1) +(Y-1)·X dimension is:

gx( j, i) = u( j, i+1)−u( j, i), j = 1, ...,Y, i = 1, ...,X −1
gy( j, i) = u( j+1, i)−u( j, i), j = 1, ...,Y −1, i = 1, ...,X (1)

Four neighboring pixels define an elementary gradient
loop. In a real image the gradient-sums starting from the (j,i)
until the (j+1,i+1) pixel through any of the 2-step elemen-
tary ways (moving clockwise or counterclockwise) must be
the same as the approprietaly signed sum of gradients along
every closed curve in the image is zero. In a manipulated,
inconsistent gradient loops these two ways yield different
sums and the difference of the two sums - what we call local
inconsistency - using the notation of (1) is:

E( j, i) = gx ( j, i)+gy ( j, i+1)−gx ( j+1, i)−gy ( j, i) ,
j = 1, ...,Y −1; i = 1, ...,X−1 (2)

Figure 1: (top) An originally strongly inconsistent ele-
mentary gradient loop with E=70-10=60 inconsistency (bot-
tom left) Result after correction with equal weights (bottom
right) Result after correction with varying weights. Notice
the sign change caused by the equi-weighted solution (Pois-
son approach), while the proposed weighting avoids it and
approximately preserves the relation among the lengths of
gradients.

The inconsistency vector E containing the E(j,i) com-
ponents row-wise has a dimension of (Y-1)·(X-1). A GF
computed from a real image retains zero local inconsisten-
cies over the whole field. In possession of the g vector of a
consistent GF we can simply return into the image space by
a double integral (i.e. summation in our case):

u( j, i) =
j−1
∑

m=1
gy (m,1)+

i−1
∑

n=1
gx (i,n)+C (3)

The double summation yields the same results regardless
of it being organized row or column-wise. One operation is
needed for each pixel. Similarly to direct image computing
methods this problem is undefined up to a free additive con-
stant C. Starting from an inconsistent GF the double integra-
tion gives a useless and disturbing image with typical arti-
facts.

Figure 2: (Top left) Illustrates the horizontal-vertical gra-
dient components of an inconsistent GF (in CIELUV color
space, where L = normalized gradient length, u= gx, v= gy)
. (Top right) Pattern of local inconsistency values across the
GF. Lightest parts show the highest inconsistencies, while
dark parts are nearly consistent. (Bottom left) The u(j,i) im-
age computed directly from the prescribed, inconsistent gra-
dient field with the double integral according to Eq. (5) re-
sulting in typical striped artifacts (Bottom right) Artifact-
free image obtained from the corrected gradient field
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3.2. The orthogonal projection method

In this paper we present two methods. Both determine the
nearest consistent GF to the starting inconsistent one. The
first method is an iterative orthogonal projection or over-
projection method, while the second one applies a closed
form linear equation system with auxiliary variables. The
orthogonal projection technique follows the one presented
in [NCN07] but with anisotropic weighting.

Figure 3: 2D illustration of the successive iteration steps
taken with the orthogonal projection method in Eucledian
metrics, converging from the inititial g(0) point into g(∗),
where the consistency requirement is fulfilled.

In each step we eliminate the inconsistency of a se-
lected elementary inconsistent gradient-loop. Four prede-
fined weight factors multiplied by an appropriate constant
d are added to each of the 4 selected gradient vector com-
ponents, respectively. In this way the given elementary loop
gets corrected, but at the same time the inconsistencies of
its 4 neighbors also change. However, the iterative process
will ensure that all elementary inconsistencies tend to zero,
while the gradient vector approximates the consistent one
being nearest to the starting inconsistent gradient vector (in
the specified metrics).

For the sake of a unified mathematical description, in this
paper the Y·(X-1) horizontal and (Y-1)·X vertical gradient
components of a given gradient field are put altogether into a
corresponding vector with a dimension of Y·(X-1)+(Y-1)·X,
so that it encompasses all x-components in a row-wise se-
quence, followed by all y-components in a column-wise se-
quence:

G = (Gx,Gy) = (Gx (1,1) ,Gx (1,2) , ...,Gx (Y,X−1) ,
Gy (1,1) ,Gy (2,1) , ...,Gy (Y −1,X)

Following this definition we call vector G the prescribed in-
consistent gradient field. All other gradient fields denoted
by vectors g(0), g(1), g(2), ..., g(∗) throughout this paper are
defined in the same way.

How the spatially varying weights can be assigned
to the gradient components? In general w = (wx,wy) =
f (Gx,Gy,E), where w, G, E are the weight vector, the pre-
scribed gradient vector and the vector of initial inconsisten-
cies depending on G, respectively. As each gradient com-
ponent is associated with a single weight, w has the same
dimension and index-sequence as gradient vector G. In our
approach weights do not change during the iteration, they
only depend on the starting gradient field G. We have a great

freedom in how weights are exactly defined. By applying
a weighting partly dependent on the initial inconsistencies
we can preserve the consistent or nearly consistent areas of
the prescribed gradient field. However, in this paper we con-
fine to a simple weight definition directly based only on the
G vector. According to our experiments the generally best
selection is the simplest weighting with the absolute val-
ues of G vector components (see Fig.1. for demonstration).
Also other monotonous functions of these weights, like sim-
ple power function of |G( j, i)|p gave acceptable results. In
this way we can mostly avoid sign changes of gradient com-
ponents that would lead to noticeable artifacts in the final
image. Small gradients are kept small and the ratios or in
very contradictory cases the signed relations of the gradient
lengths are approximately preserved Furthermore, we ap-
plied a simple clipping rule that ensures positive w values:

wx ( j, i) = max(|Gx ( j, i) ,ε|) ,wy ( j, i) = max(|Gy ( j, i) ,ε|) (4)

The selection of threshold ε> 0 is experimental. If ε is too
small it can cause slow-down in the convergence speed. Con-
versely, if ε is too high, we approximate the equi-weighted
case corresponding to Poisson solver. In the generalized or-
thogonal projection method a given elementary gradient-
loop (see eq. 4) is corrected by adding constant times the
generalized normal vector N(j,i) of the loop to the actual
gradient vector g(k) at the kth iteration step. This normal
vector contains the appropriate 4 weight factors wx ( j, i)
,wy ( j, i+1), −wx ( j+1, i), −wy ( j, i) according to eq.(4),
and following row- and column-wise sequence as in G:

N( j, i) = (0, ...,0,wx ( j, i) ,0, ...,0,−wx ( j+1, i) ,0, ...,0,
−wy ( j, i) ,0, ...,0,wy ( j, i+1) ,0, ...,0 (5)

Note that N(j,i) contains only 4 non-zero components. Ac-
cording to (1) we have Y·(X–1) + (Y–1)·X = 2YX – Y – X
≈ 2YX gradient variables and (Y-1)·(X-1) equations of the
gradient-loops with their normal vectors. The normal vec-
tors in (5) are evidently linearly independent for different
(j,i) index-pairs. Let us see the background of an orthogo-
nal projection with our generalized metrics. First we define

a new scalar product: 〈a,b〉w =
M
∑

k=1

akbk
wk

, where M is the di-

mension of a, b and w (weight) vectors. The vectors a and b
are orthogonal through this definition, if 〈a,b〉w = 0, which
in the Euclidean space, however, represent an obliquely re-
lated vector-pair. The new non-Euclidean metric is: ‖a‖w =√
〈a,a〉w. Using this norm any vectors can be normalized.

For the next algorithm let us define the unit vectors N0( j, i)
that will simplify the following derivations:

N0 ( j, i) = N( j,i)
‖N( j,i)‖w

, where

‖N ( j, i)‖w =
√

wx ( j, i)+wy ( j, i+1)+wx ( j+1, i)+wy ( j, i)

according to the definition of norm in the new metrics. The
E(j,i) inconsistency of the (j,i) gradient-loop described in (2)
with this notation is the generalized scalar-product of N(j,i)
and g(j,i) vectors: E ( j, i) = 〈g( j, i) ,N( j, i)〉w. We require
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this product to be zero for all (j,i) pairs in order to have a
consistent gradient field. For this purpose we can subsitute
vectors N(j,i) for the normalized ones N0( j, i), which makes
the consistency requirement:〈

g( j, i) ,N0 ( j, i)
〉

w = 0 (6)

In the iterative algorithm the elementary step is

g(k+1) = g(k) +d(k) ( j, i)N0 ( j, i) (7),
where g(0) = G. The factor (or distance) d(j,i) can be deter-
mined as:

d(k) ( j, i) =−
〈

g(k) ( j, i) ,N0 ( j, i)
〉

w
=

− E(k)( j,i)√
wx( j,i)+wy( j,i+1)+wx( j+1,i)+wy( j,i)

(8)

Convergence can be easily proven for the iteration pro-
cess where in each step the gradient loop with the maximal
|E(k)( j, i)| is selected, which requires the application of effi-
cient data structures (e.g. Fibonacci-heap). Fortunately, it is
easy to see that the convergence is guaranteed for any kind
of iterative traversing through all elementary loops that do
not necessarily require auxiliary data structure or extra stor-
age. Furthermore, convergence is also ensured in case we
apply ω · d(k) (0 < ω < 2) instead of d(k), which corre-
sponds to under- or over-projections in the gradient vector
space. In different applications we found that selecting ω =
1.6. . . 1.95 values speed up the iteration process. The equi-
weighted case, i.e. d = −1/2E provides an equivalent result
with the Poisson solver, while the d(j,i) factors mean Eu-
clidean distances. Let the consistent solution be g∗, then the
distance D between the starting G vector and g∗ solution
vector in the new norm is D =‖ g∗−G ‖ . During the itera-
tion we approach g∗ successively (see Fig. 3 for a simplified
illustration, where ω = 1). According to Pythagorean’s theo-
rem in the space of the new metrics the square of the actual
distance from the solution decreases after each step:

D2
(k+1) = D2

(k)−
(

d(k)
)2

(9)

Vector g∗−G is orthogonal to the linear subspace of consis-
tent GFs. The length of vector g∗−G is the shortest distance
between G and the ’consistent subspace’ by the generalized
metrics. This metrics expresses our importance criteria and
finally results in improved image quality.

3.3. The Closed Form Solution

In the description of the above method observe that in any
iteration step when a correction of a given (j,i) gradient-loop
is to be performed, it is done by spanning a distance always
along the same fixed line direction ±N0( j, i) within the gra-
dient vector space. From this it follows that for each (j,i)
loop there exists a d(j,i) scalar, signed total distance factor
that equals to the sum of the elementary d(k) ( j, i)distances
covered through an infinite number of iterations:

d ( j, i) =
∞
∑

k=1
d(k) ( j, i) (10)

If all the distances d(j,i) were known, the solution vector
g∗ of the nearest consistent GF could be straightforwardly
obtained by:

g∗ = G+
Y−1
∑

j=1

X−1
∑

i=1
d( j, i)N0( j, i) (11)

It follows that by definition the consistency-requirement〈
g( j, i) ,N0 ( j, i)

〉
w
= 0 holds for each (j,i) gradient-loop.

Now, substitute the expression (11) into these equations. Ac-
cording to the definition given in (5) observe that the normal
vector N0( j, i) of a given (j,i) gradient-loop is orthogonal
to those of all the other loops except to the normal vectors
N0( j− 1, i), N0( j+ 1, i), N0( j, i− 1), N0( j, i+ 1) of its di-
rect neighbors. This allows the restriction of double sum-
mation given in (11) to the neighbors of each (j,i) gradient-
loop when postulating the consistency-requirement, so that
we obtain the equations:

j+1
∑

n= j−1

i+1
∑

m=i−1
d (n,m)

〈
N0(n,m),N0( j, i)

〉
w =−

〈
G,N0( j, i)

〉
w (12)

for each (j,i), j= 1,. . . ,Y–1; i=1,. . . ,X–1, with the following
constraints: 1 ≤ n ≤ Y − 1 and 1 ≤ m ≤ X − 1. In this way
d(j,i) values can be directly determined as eq. (12) yields a
linear equation system with unknowns d(j,i) for all (j,i) pairs.
Each row of the equation system has 5 non-zero coefficients
(except for those corresponding to border-loops that contain
fewer), which build up an anisotropic Laplacian kernel de-
pending on local weight factors. The matrix of the equation
system is sparse, symmetric and positive definite. This al-
lows that the equation system be solved using the precon-
ditioned conjugate gradient method with low computational
cost. The sought consistent gradient field g∗ is then obtained
by calculating (11) with the resulting d(j,i) values.

The vector d that encompasses all d(j,i) values has (Y–
1)·(X–1) number of components, which is slightly less than
the Y·X dimension of the luminance vector. This shows an
interesting feature of the problem of finding the nearest con-
sistent gradient field to a prescribed inconsistent one, as it
can be formulated into an equation system of auxilairy vari-
ables d, the number of which is less than that of the pixels.

Finally we have to mention the possibility of a hybrid
method that consists of a ’warming-up” phase with the or-
thogonal projection until a given k number of iteration steps
and then continues with the closed-form solution. This hy-
brid technique delivers identical result to that produced by
the above algorithms, while it may speed up the solution pro-
cess.

4. Results and Applications

In this section we demonstrate how the proposed gradient
solver with spatially varying weights performs in terms of
image quality (elimination of artifacts, global light distribu-
tion, preservation of salient features, etc.) and how it com-
pares to the solution using equal weights that provides iden-
tical results with the commonly used Poisson-solver. For this
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purpose we have chosen some simple gradient field manipu-
lation techniques, which lead to prescribing highly incon-
sistent gradient fields. The applications shown in 4.2 and
4.3 are also of practical relevance, however, we strictly em-
phasize that these specific gradient manipulation algorithms
serve only demonstration purposes in our paper and do not
at all represent the only and best solution within the related
subfield of image processing.

In all of the shown examples the gradient field of log Y lu-
minance values of the image(s) were calculated and then ma-
nipulated, where Y is the luminance channel of XYZ color
space. Original hue and saturation values considered in the
CIELUV space were stored for all pixels and the new lumi-
nance values obtained from gradient manipulations (and af-
ter finding the nearest consistent gradient field to the initial
one) were associated with these hue and saturation values to
yield the final image. Spatially varying weights were set as
defined in (4), while for equal weights wx( j, i) = wy( j, i) =
1, for all (j,i) pairs.

4.1. Point-error in the gradient field

The definitive difference in results produced by the gradi-
ent solvers with different weightings can be already seen
by carrying out the most elementary gradient manipulation:
changing only a single gradient element, i.e. introducing a
point-error into the GF. Prescribing large gradients (relative
to surrounding ones) are often the cause of strong local in-
consistencies. We have set an arbitrarily selected gx horizon-
tal gradient component to +100 in the image and then sought
the nearest consistent gradient field with spatially varying
and equal weights, respectively. Fig. 4. shows the remark-
able difference between the two solution methods.

Figure 4: Comparison of images obtained by correction of
the GF containing a single point-error with (Left column)
Equal weights (Poisson approach), (Right column) Spatially
varying weights. Bottom row shows the magnified image
parts around the location of the initial point error

Since the commonly used equal weighting means that all
elementary gradients are considered equal in contributing to
inconsistency, the classical approach eliminates it by intro-
ducing substantial changes to untouched gradients, while not
reducing the point-error enough and letting it visible in the
final image. The result is an outspread, halo artifact around
the manipulated gradient. In contrast, the solution where

weights are determined by gradient lengths, i.e. large gradi-
ents are given more account for causing inconsistency, elim-
inates the introduced point-error completely and practically
restores the original image without any artifacts. This ele-
mentary example already demonstrates well that there is a
profound difference in the behavior of the two solution tech-
niques.

4.2. Illumination Fusion: Max-Gradient Selection

There are numerous approaches and methods known for uni-
fying differently illuminated images of the same scene from
the same view-point. We can mention some powerful tech-
niques which operate in the spatial domain, e.g. [ALK*03],
[MKvR09]. Both of them applies a multi-scale workflow.
As for gradient domain approaches, a simple algorithm was
suggested by [PGB03]: compose a gradient field, in which
the elementary gradients are set as the local maximum of
all input gradients, |G( j, i)| = maxk |Gk ( j, i)|. In this way
the fused image is intended to contain all the relevant local
details, which are varyingly revealed by different illumina-
tions throughout the image. However, these operations typi-
cally create a strongly inconsistent gradient field, which of-
ten leads to perceptually intolerable artifacts with common
solvers.

Figure 5 shows the results of this illumination fusion tech-
nique applied to a series of 16 images shot of a golden bowl
with variously oriented flash lights. Using the Poisson-solver
(or equal weighting in our gradient-domain-based solver)
clearly fails to produce a fused image with acceptable qual-
ity as it is compromised by the presence of extensive halo
artifacts, especially pronounced around the upper part of the
bowl. Our new gradient solver, however, proves success-
ful by creating an artifact-free, perceptually pleasant image
from the same gradient field, while preserving the maximum
amount of local details as it is intended by the gradient ma-
nipulation algorithm. It is also immediately apparent that
there is a significant difference between global light distri-
bution across the images obtained by the two solvers: this is
even more obviously depicted by the luminance difference
image calculated from the results. The desirable global be-
havior of the new solver is granted by the fact that avoiding
sign changes of and preserving the length relations of gra-
dients are realized at all spatial frequencies. As a curiosity,
in fig. 5. we also present the distribution of acquired d auxil-
iary variables as an image both for the equi-weighted method
and for the new one. There is no space for deeper analysis
here, but they nicely illustrate the difference between the two
methods in style, both at high and low frequencies, account-
ing for the use of difference metrics.

This example clearly shows that the proposed new gradi-
ent solver is capable of rendering a gradient domain method
usable, which previously unpredictably produced images
that suffer from disturbing artifacts. However, we should
note that prescribing the locally available maximal gradient
across the image does not guarantee that the fused image
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(a) (b) (c) (d) (e)

Figure 5: GDI-based lllumination fusion: Result using (a) equal weights [Poission approach], (b) spatially varying weights;
(c) Normalized absolute luminance difference of (a) and (b); Pattern of auxiliary variables d(j,i) in case of (d) Equal weights,
(e) Spatially varying weights, where red/green color denotes the sign of d(j,i) and luminance encodes its magnitude

will necessarily possess a realistic/pleasant global light dis-
tribution and also locally it may produce an unnatural look
where in either of the input images there were peak lights.
For this reason, a more sophisticated gradient-domain-based
exposure fusion method is needed if one wishes to match or
outperform state-of-the-art, non-gradient-based approaches.

4.3. Fast Solution of Gradient-Based Color2Gray

In this subsection we demonstrate the power of our new
method on a known gradient domain technique for con-
verting color images into grayscale [GOTG05]. Their basic
idea to express the local changes even between equiluminant
pixel-pairs with an appropriately signed color difference as
a local grayscale gradient is very elegant. However, the al-
gorithm has not been widely used due to its high demand on
computation time that is related with the problem of stipulat-
ing a strongly violated gradient field. The reason for this is
the highly discontinuous mapping of luminance and chromi-
nance differences into signed gradient values in the proposed
formula (there is an ’either luminance or chrominance’ se-
lection and another discontinuity by the particular way of
hue-circle splitting). Partly because their algorithm produces
a highly inconsistent gradient field, [GOTG05] could not ap-
ply the Poisson solver and had to suggest an other method
of O(N4) complexity instead. Here we show that using our
universal gradient solver good results can be achieved with a
significantly lower computation time solving our sparse ma-
trix equation system.

Figure 6 shows an example for Color2gray conversion
with the classical Poisson-approach and the new one with
spatially varying weights. The nearly equi-luminant geomet-
rical figure reveals that Poisson-solver in this case is com-
pletely useless as it introduces apparent artifacts all over the
image, while our new gradient solver provides a correct, vi-
sually pleasant grayscale image. In the case of a 1 Mpixel
image the computation time with our gradient solver was
10 seconds on an Intel Core2Duo 2.66 Ghz CPU (using only
single core). This demonstrates that using the proposed tech-

nique the Color2Gray algorithm becomes a practically us-
able method for images up from the Mpixel resolution range
without GPU acceleration.

Figure 6: Color2Gray example: (Upper left) Original color
image, (Upper Right) Solution with equal weights, (Bottom
Right), (Bottom Left) Normalized luminance difference be-
tween the two solutions
Here we should note that any exclusively gradient-based
Color2gray solution requires some kind of multi-scale ap-
proach to take far-effects into consideration in order to
avoid particular grayscale conversion artifacts (e.g. dis-
jointed patches of the same color may be transformed into
different gray tones).

5. Conclusions

We proposed a new approach and solution technique for
gradient domain imaging that solves the problem with
gradient-variables. The presented iterative orthogonal pro-
jection method as well as the closed-form linear equation ap-
proach determines a consistent, i.e. directly integrable gradi-
ent field that is nearest to the starting inconsistent one in the
introduced new metrics. The method is based on weighted
gradients which determine the spatially varying metrics in
the nearly 2 ·Width · Height dimensional gradient space.
The weights depend on the starting inconsistent gradient
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field and optionally also on the starting inconsistency val-
ues of the elementary gradient-loops. The metrics remains
fixed during the iteration and does not depend on the actual
residuum gradient field.

According to our experiments and mathematically based
expectations we obtained better feature-preserving images
with fine details at higher frequencies while eliminating dis-
turbing halo effects as compared to the results provided by
common GDI solvers. At the same time the global light dis-
tribution, that is, overall appearance at the low frequencies
is also often more pleasant due to the implicit multi-scale
nature of larger gradient-loops. The proposed new method
opens the way for solving problems with a pre-scribed gra-
dient field that is strongly inconsistent, which proved hope-
less with the commonly used solvers. Our technique delivers
a highly improved image quality for all existing gradient do-
main methods.

6. Future Works

In order to speed up our algorithm we plan to employ
a multi-grid-style solver that includes equations of non-
elementary gradient loops (e.g. the curves of quad-tree),
since the sum along any closed curves must equal zero in
the subspace of consistent gradient fields. Further investi-
gations are proposed for finding the application-dependent
optimal weighting strategy or other generalized metrics. It is
an open question whether it is beneficial to allow changing
of the metrics during the iteration process. We plan to submit
these questions to a detailed study, in order to find out which
techniques provide the perceptually most pleasant solution
or convey the most salient local features from the inconsis-
tent starting gradient field. Finally we need to find the fastest
stop criterion which ensures that the result of double integra-
tion is an image containing under noticeable artifacts only.
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