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Abstract

In this paper we describe a computational method for producing aesthetically pleasing distributions of disks on
a canvas. The positions of the disks are initially given at random and are moved into interesting configurations
by means of a local optimization routine. The configurations are computed by a Voronoi-cell based optimization
algorithm (Lloyd’s relaxation method). We extend this method in a way that not only evenly spaced but also
clustered point sets can be produced. This is done by inverting the iterative step of the optimization algorithm.
We define an energy term and show that for a certain amount of energy interesting configurations appear. This is

evaluated in a small user study.

1. Introduction

Distributing simple objects such as disks on a canvas is an
introductional task in art and design, it is part of many text
books and has inspired many artists for creative solutions.
Though there exist many rules of thumb for such placements,
computational methods are rarely known. In this work we
try to find quantitative measures for aesthetically distributed
disk sets - a very simple special case of the general object
placement problem: given a set of points that are represented
by disks with an uniform radius and color, we create aes-
thetically pleasing distributions on a rectangular canvas by a
simple optimization algorithm.

We use a Voronoi-cell based local optimization scheme
for moving the points that are initialized at random po-
sitions. This optimization, the so-called Lloyd’s method,
moves the points towards the center of gravity of their as-
sociated Voronoi cells and creates more and more even point
distributions. In the stationary case this often results in a
quasi hexagonal distribution which is quite uninteresting in
the eyes of the average viewer.

We will see later that aesthetically interesting point distri-
butions have a certain amount of irregularity, of clustering.
To introduce irregularity we extend the Lloyd’s Method by
allowing the points also to move into the opposite direction
- away from the center of gravity - thus inverting the opti-
mization. Doing so, the points form small sets of clusters.

Figure 1 shows typical disk sets. An initial distribution
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is shown in (a), the stationary configuration after a number
of optimization steps is given in (b), subfigure (c) shows a
clumped configuration while in (d) a set is shown that is a
compromise between regularity and clustering.

In a small user study we show that for a certain amount
of irregularity and clustering aesthetically pleasing sets are
created. It has to be noted that this is only one very special
method for creating such clusters, many others can be found.
However, our algorithm has the advantage allowing the user
modifying the amount of clustering by changing just a single
energy parameter. Aesthetics in this special case is maintain-
ing a certain energy level for the point distributions.

After reviewing related work from graphics and arts we
will describe Lloyd’s relaxation method and our extension.
The formulation of the tension energy is given and the re-
sulting sets are evaluated. A number of examples are given.

2. Related Work

Distributing elements is a basic task in design. Visual weight
and the related rules play a major role in text books on art,
design, architecture (see, i.e., [Lau99]). Unfortunately, the
mechanisms of placing elements are usually described qual-
itatively and not in the form of quantitative values or mea-
sures. This is due to the relation of design to Gestalt Theory,
which is rather nonlinear and also not defined by quantitative
rules [EKO00, Saw00].
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Figure 1: Some distributions: a) initially given points; b) stationary state after optimization; c) clumped distribution achieved
with inverting the optimization; d) an "interesting" distribution as the result of an intermediate level of clustering.

An inspiring work on analyzing art work mathematically
was presented by Dodgson [DodOS8]. The author analyzes
abstract design works of Bridget Riley by measuring the
needed amount of randomness for an aesthetic form. This
is one of the rare approaches to computationally describe art
with random functions.

In the following we will work with so-called Centroidal
Voronoi Tessellations. The necessary details are given later;
however, a good reference was presented by Du et al.
[DFG99] which give a detailed overview. Some important
findings regarding interesting configurations of such tes-
sellations and corresponding energy levels are given by
[Ger79,New82].

Centroidal Voronoi Tessellations are already used for
creating artistic point distributions like stipple patterns
[DHvOSO00, Sec02]. Here, a random point set is wanted but
the nearest neighbor distances should be as uniform as pos-
sible. Another application for such sets is sampling [KCOD-
Loc] and numerical integration [SB80,Smi74]. In both cases
their unique spectral properties (blue noise characteristics)
are the reason for their usage.

3. Voronoi Tessellations and Lloyd Relaxation

Let S = s1, .., s, be n points in R2. The Voronoi region V(si)
(also called Voronoi cell) of a point is the area in R? in which
each point is closer to V (s;) than to any other point in S. The
regions form a tessellation of R? in that they are pairwise
distinct and jointly covering the entire R?. The tessellation
is called the Voronoi diagram VD(S) of S. Since a tessellation
of the entire R? has open Voronoi regions for some points,
we close such regions by intersecting these regions with a
rectangular frame that encloses the given points. This frame
is our canvas on which the points are distributed.

An ordinary Voronoi Tessellation is a tessellation that uses
the Euclidian metric as a distance function. Many other dis-
tance functions are possible. However, for the purpose of this
work the Euclidian distance is sufficient since it is a "natural”
distance function with an intuitive relation between value
and perceived distance.

A Centroidal Voronoi Tesselation (CVT) is a (in our case
ordinary) Voronoi Tessellation with the additional property
that every point s; lies in the centroid of its Voronoi region
V (s;). Such a tessellation is shown in Figure 2(a). The points
are still almost at random but now with much less variance
in their point to point distances.

Such a tessellation and corresponding distribution of
points can be achieved by applying the Lloyd relaxation to
the points. In each step of this iterative algorithm, each point
is moved into the centroid of its Voronoi region. If ¢; is the
centroid of a Voronoi Region the movement is given by

sE’H) = sl@ +o (CEI) fsl(r)) , (1)
where o € (0,1] determines the convergence. The iteration
is repeated until the movement of the points is below a given
threshold. Figure 2(b) visualizes the movement during such
a relaxation.

(@ (b)

Figure 2: a) Voronoi Diagram; b) Movement of points dur-
ing relaxation.

The CVT minimizes the following energy function that
measures the compactness of the Voronoi Regions (see
[DFG99]):

n
F(S,V(S)) = Z/ |l — si][2dx. @)
i=1/V(S)
This energy function sums up the integral of all quadratic
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distances of the points in a Voronoi Cell towards the cor-
responding point s;. This is minimal for compact regions
with almost uniform aspect ratio, thereby approximating
hexagons [DFG99]. Furthermore, it implies an almost uni-
form distribution of point-to-point distances since these dis-
tances are maximized for compact regions.

F is depending from the number of points [DFG99]. Since
in our experiments we want to compare sets with various
sizes we use a normalized value which is constant for all
sizes of sets:

F =S| F. 3

The Lloyd relaxation minimizes Eq. (2) and therefore can
be used as a local optimization method for F'. It moves the
points into a distribution with almost uniform point-to-point
distance which often converges to a hexagonal distribution.
This can be seen in Figure 1(b).

Interestingly, the inverse operation results in a clustered
point distribution. In Eq. (2), the parameter o is now set to a
value a € (0, —1], pushing the points s; away from the cen-
troids of their Voronoi regions.

4. An Extension of Lloyds Relaxation

The central statement of this work is that point distributions
are aesthetic or at least "interesting" to the users if they have
a certain amount of clustering, of irregularity. The classical
Lloyd relaxation always ends up in an almost uniform point
distribution —as stated above— which is aesthetically not very
interesting. We therefore extend the relaxation in a way that
a given amount of irregularity is maintained and can be ad-
justed by the user. This enables us to evaluate the needed
amount for aesthetic distributions.

In our tool the relaxation is performed continuously
throughout the whole evaluation by the user, however with a
varying o € [—1, 1] that in our case can also be negative. The
value is chosen in dependency to F' from Eq. (3). The user
selects a desired energy value E and the value o is cmputed
by

with w, being a weighting factor (wq € [0.25..1]). The above
formula results in negative values for o if the desired energy
is larger than the system and therefore the points are moved
apart from the centroids of their Voronoi regions. In any case
we ensure o € [—1,1] to avoid over-relaxation.

In the case of E < F' the conventional Lloyd relaxation is
performed, the points are moved towards the centroids of the
Voronoi Regions and the whole distribution is transformed
into a more evenly spaced one. The small values for o reduce
the movement of the points if 7' comes close to the intended
energy value E. The same holds for E > F. In this case the
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points are moved away from the centroids with a speed that
is also reduced if F' approximates the intended energy.

To obtain a better interpretation for the values of F and E,
we present all energy values in the following as a percent-
aged value in the interval between the minimal and maxi-
mal energy that is possible for the system on the unit square
(x,) €10,1].

According to [Ger79, New82] the minimal energy Fp is
achieved for a hexagonal point distribution and is given by

n
2 5
Fin = / x — si||“dx = —— =~ 0.1604.
e 1221 V(s) [Fe=sill 18V3
Please note that the above authors use a unit square (x,y) €
[—1,1] and therefore find a value F, ;) = % which is 16

times our value.

The maximal energy Fnax is achieved if all points are
placed one above the other in one corner of the unit square.
In this case all Voronoi regions are empty except one region
which now covers the whole unit square. This value is not
depending to the number of points and can be obtained by:

al 1 2
Fnax = / / [|x— s,-||2dxdy ==
0 Jo 3

The energy level E,F are now expressed as a percentage
within the interval [Fyin, Finax].

5. Implementation and results

For the visual display, the points S are represented by filled
disks with a given size. This size is adapted by the system if
the number of points is changed by the user. We ensure that
the area of the discs is always a fixed fraction of the overall
area.

The size of the visual representation must be integrated
into the relaxation since the Voronoi Regions might shrink
below the size of the disks which causes touching points that
are visually distracting. In the implementation we avoided
this by adding a force that pushes points away from each
other if their disks touch.

Figure 3 shows typical point sets for a low energy level
of E = 15% values. All systems are stable and are created
within a few relaxation steps. Figure 4 shows sets of the
same size for a high energy level of E = 45%. In this case
the point sets are more clustered, if higher energy levels are
used the points tend to cluster too much.

A value E € [30..45]% seems to produce nice point dis-
tributions for sets with a wide range of sizes. Some of the
produced systems can be seen in Figure 5. These systems
are stable and can be computed interactively with the ac-
companying applet. However, it has to be noted that these
results are only valid if the size of the disks is related to the
overall area (see below). If the size is changed manually the
sets visually tend to be more regular or clustered.



126 Oliver Deussen / Aesthetic placement of Points

) ° P e o o° o o o° .. ® ®ves , o.
® ° © o o ®° ° .o.o: oo © 0 40°%0
[ [ ® o° o ®e
° oo o oo o ® °
Y [ ] ) [ ] Y [ ] P )
. ° .. .. o [ ] ...
) °® o ® ®e o, ® o000 o,
[ [ [
Y ) e ©® ® o o ° LI °. o o
Figure 3: Point distributions with E < 15% tend to be too regular (13, 25, 53 points)
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Figure 4: Point distributions with E > 45% tend to be too clustered (13, 25, 53 points)

6. Is This Aesthetic?

We tried to evaluate the aesthetic quality of the point sets
by a small user study. First a number of printouts were pre-
sented to the test persons and they had to order them accord-
ing to their aesthetic quality. For each of the energy levels
E =15,30,45% the subjects were given three different disk
sets. One group received disk sets with 21 points, another
31 and one group 53 disks each. A total of nine individuals
was used for this test, all of them were computer animation
experts with an aesthetic knowledge and feeling.

The users in 75% of the cases liked the energy level of
45% most and selected these level at the top three positions.
In 20% of the cases E = 30% was selected. This result is
stable for all sets sizes. In 80% of the cases the energy level
of E = 15% was among the last positions, especially for the
disk sets of 21 and 31 points. For 53 points the results are not
as clear, here we had one low energy set among the top po-
sitions and two high energy sets (45%) among the last three
positions (for four test persons).

As mentioned above, an energy level of about E €
[30..45]% seems to be preferred by users since higher levels,
especially when disks touch each other, are too clustered.
However, the variance of the little test we performed was
quite high and sometimes users preferred highly clustered
sets, especially for larger point sets.

To analyze these visual effects, Figure 6 shows a point
set with increasing energy. An esthetic configuration seems
have a relation between the regularity that has to be main-
tained and the clustering that is needed in order to have some

visual structure. We tried to justify these findings by geomet-
ric measures and computed the ratio of nearest and second
nearest distances for all disks. By averaging this value over
all disks we tried to find a measure for the relation between
clustering and regularity. However, this measure varies too
much for different point sets that are perceived as visually
similar.

Another effect that has to be taken into account is the vi-
sual dependence of the point set from the sizes of the repre-
senting disks. Figure 7 shows how the perception of the set
changes when the disks are enlarged manually. The config-
urations tend to cluster in this case. This is due to the effect
that distances between the points are perceived as distances
between the borders of the representing disks.

We tried to incorporate this effect by computing the
Voronoi Diagram of the disks instead of taking only the
points. In this case the Voronoi Regions are shaped slightly
different and not convex any more. The Lloyd relaxation
converges still converges in this case, though in some rare
cases oscillations can occur.

While the maximum energy for such configurations
changes only slightly, the minimum energy F;,;, decreases
with increasing circle radius. This is due to Eq. (2) in which
the squared distance is decreased due to the increasing ra-
dius. Figure 8 shows a sample of a Voronoi Diagram for
disks and the values F,;,, for different circle radii.

Unfortunately, in this more general case there is no sin-
gle energy level that creates aesthetically pleasing sets, at
least not if the disk size is changed. If the size is increased,
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Figure 5: Point distributions for E = 30% show a compromise between regularity and clustering.
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Figure 8: Voronoi Diagram of a set of disks and values of
FEyin for different disk radii.

the overall energy level is again reduced due to Eq. (2). To
maintain a given level E, the systems pushes the disks away
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from the centroids and therefore causes a stronger cluster-
ing. This behavior is contradictory to what one would ex-
pect since when disk radii are increased the set is already
perceived as to be more clustered. Instead of balancing out
this effect, the shrinking energy level increases it. So far, we
do not have a simple solution to this problem.

7. Conclusion

In this paper we described a computational method for cre-
ating aesthetic point distributions on a square canvas. We
presented an extension of Lloyds relaxation mechanism that
enables us to create a variety of point distributions with dif-
ferent characteristics.

If the area of the disks that represent the points are a
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Figure 7: Point set with increasing size. The configuration tends to cluster when radii grow.

constant fraction of the overall area of the canvas and are
adapted accordingly, we were able to define an energy func-
tion that allows us to create aesthetic distributions with a cer-
tain amount of clustering and regularity. Though we know
that this is only one method for creating such sets, the rela-
tively constant values of the energy function E for aesthetic
sets of different size might be a hint for a general rule.

So far we are not able to extend this simple measure to
point sets with varying disk radius. This has to be left for
future work. Also we want to study other methods of dis-
turbing regular point sets in order to find a balance between
regularity and clustering. And last but not least so far no per-
ceptual validation was given why the selected distributions
are perceived to be aesthetic.
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