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Abstract
Untrained observers readily cluster paintings from different art periods into distinct groups according to their
overall visual appearance or “look” [WCF08]. These clusters are typically influenced by both the content of
the paintings (e.g. portrait, landscape, still-life, etc.), and stylistic considerations (e.g. the “flat” appearance
of Gothic paintings, or the distinctive use of colour in Fauve works). Here we aim to identify a set of image
measurements that can capture this “naïve visual impression of art”, and use these features to automatically
cluster a database of images of paintings into appearance-based groups, much like an untrained observer. We
combine a wide range of features from simple colour statistics, through mid-level spatial features to high-level
properties, such as the output of face-detection algorithms, which are intended to correlate with semantic content.
Together these features yield clusters of images that look similar to one another despite differences in historical
period and content. In addition, we tested the performance of the feature library in several classification tasks
yielding good results. Our work could be applied as a curatorial or research aid, and also provides insight into
the image attributes that untrained subjects may attend to when judging works of art.

1. Introduction

Judging and understanding a painting is a complex process
[GH89]. A trained expert is able to draw on knowledge of
related works of art, consideration of technique, historical
context and an understanding of the allegorical meanings of
specific objects, people and their arrangements to come to a
deep understanding of an artwork. However, there are some
visual attributes of paintings that are equally accessible to
all observers with normal vision. The distributions of lights
and darks, the spatial complexity or sparsity of the painting
style, and the overall composition of the work are examples
of attributes that form part of the artist’s aesthetic vision of
the work of art, but which do not necessarily need special-
ist knowledge to appreciate. Together these attributes are re-
sponsible for the overall visual appearance or “look” of a
painting, the initial perceptual ‘gist’ [OT06] or impression
that even untrained observers immediately apprehend. It is
interesting to ask which image features are responsible for
this “naïve” visual impression of art.

In previous work [WCF08], we asked naïve subjects to
cluster works of art according to their historical period or
style. While subjects performed well with some style periods

(e.g. successfully separating abstract paintings from other
styles), many of the clusters produced by the subjects ap-
peared to be based on a grouping by visual similarity. For
example, it was common for subjects to group dark portrait
paintings together irrespective of whether they were painted
in renaissance, baroque or romantic periods. We also found
little correlation of several, low-level computational features
with the perceptual data. In this paper we therefore try to
identify image measurements that can be used for clustering
artworks into distinct visual classes much like the untrained
subjects in our previous experiments.

The specific goals are twofold. First, to create a system
that takes as input a database of images of paintings, and
returns as output a clustering of those images according
to their visual similarity. This could have applications in
‘appearance-based’ image retrieval in general, or as an aid to
curators seeking to create a comparative exhibition in which
paintings are organized according to their visual likenesses
as opposed to historical or thematic considerations. Second,
by emulating human performance, we hope to learn some-
thing about the types of image measurements that observers
might use when making judgements about works of art.
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The general approach we take is to start with a database
of images that span a range of artistic styles. We take each
image in the database and apply a barrage of image analy-
sis methods intended to capture aspects of the work’s colour
properties, spatial scale properties, composition and content.
The outputs of these analyses are represented in a compact
feature vector or ‘signature’ for each image in the database.
We then take these signatures as input to unsupervised clus-
tering methods, to return a set of clusters derived from the
similarity between image signatures.

The rest of the paper is organized as follows. In Section
2, we summarize the various image features used to create
the image signatures. In Section 3, we describe how these
signatures can be used to form groups of similar images us-
ing standard unsupervised clustering methods. In Section 4,
we evaluate the system’s classification performance both in
unsupervised and supervised clustering tasks. In Section 5
we discuss the limitations of the method and speculate about
potential improvements and future applications.

2. Feature Extraction

The visual appearance of a painting depends on many factors
including the pigments available to the artist, brush tech-
nique, compositional considerations, and of course the su-
jet of the work. To capture such a wide range of attributes
necessarily involves applying a wide range of features, each
designed to measure a different aspect of the image. In this
section, we organize the features we use by the kinds of at-
tributes that they are meant to measure, with a general pro-
gression from simple, low-level image features to more com-
plex features that are intended to capture aspects of compo-
sition and semantic content. However, as our implementa-
tion uses more than 200 features, not all are described in
complete detail. Many of the features represent the overall
distribution of a certain characteristic using summary statis-
tics (mean, variance, skewness, kurtosis). Other features cap-
ture the spatial layout of a given attribute in a low-resolution
map. These maps were reshaped to a square aspect ratio to
ensure that all image signatures were the same length. Exam-
ples of some the features derived from one image are shown
in Figure 1.

2.1. Image Database and Pre-Processing

We developed and applied our method using the image
database 10.000 Meisterwerke der Malerei (“10,000 Mas-
terpieces of Painting”), which is available as part of the
Yorck project from: http://wiki.directmedia.
de/index.de/index.php/The_Yorck_Project.
†. This contains JPEG images of paintings from a wide
range of historical periods, along with style labels that

† Note that this is a different database from the one used in our
previous experiments. This was due to requiring higher resolution

we used to evaluate the unsupervised clustering. From
this database we selected 772 images from the following
eight periods ranging from C11th to early C20th: Gothic,
Renaissance, Baroque, Classicism, Romanticism, Impres-
sionism, Post-impressionism and Art Nouveau. Each set
contained 100 images, except for the Art Nouveau class,
which contained 72. Prior to the extraction of the image
features, the images were down-sampled so that the shorter
dimension was 512 pixels.

a) b)

c) d)

Figure 1: Example features from one image. a) low-
resolution version of the image; b) entropy map; c) output
of the Viola-Jones face detector; d) orientations of the seg-
ments in the image.

2.2. Colour Distributions

Colour usage is one of the most important characteristics of
a painting. Artists select and combine colours to achieve par-
ticular effects: for example, using a narrow palette to achieve
a hazy appearance in a landscape, or applying bold hues to
drapery to draw attention to an important figure. We capture
the distribution of colours using summary statistics (mean,
variance, skewness, kurtosis and entropy) applied to each
colour channel in RGB, HSV, Luv and Lab colour spaces.
Although simple to compute, when applied to typical pho-
tographs, colour histogram features such as these are known

images, and the desire to exclude abstract paintings, which are often
too trivial to distinguish from other works
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to be quite powerful predictors of perceived image similar-
ity [WCF08] and are commonly used in content-based im-
age retrieval [BPvdH07, IGSb, IGSa]. We therefore believed
these would be useful features for clustering artworks too.

Additionally, to represent the dominant colours in the
painting, we cluster the pixel values in Luv colourspace and
retain the coordinates of the first 4 centres of mass. To cap-
ture the primary sources of variation in colour space for each
image, we apply PCA to the RGB pixel values, and use the
orientations of the 2nd and 3rd eigenvectors and the ratios of
the first 3 eigenvalues. Together these features are intended
to summarize the ‘palette’ of the work.

2.3. Textural Properties, Spatial Scale and Orientation
Structure

Depending on the brush technique and the content of the im-
age, different paintings tend to be dominated by features at
different spatial scales. For example, a pointillist landscape
is densely populated with small features, while a gothic
painting often contains large near-homogeneous regions. To
distinguish these types of paintings we need features that
measure the ‘textural’ qualities of the image. Similarly, cer-
tain structures within the depicted scene tend to produce
characteristic orientations in the painting. For example, a
landscape with a pronounced horizon will contain more hor-
izontal energy, while a painting of a church facade will tend
to contain more vertical energy. To capture these properties
of images, we used the following measures.

Entropy maps Entropy is a measure of how much unpre-
dictable variation is present in a signal and has proven help-
ful in describing variations in artistic style in Van Gogh’s
paintings, for example [RFS08]. We computed the local
pixel entropy across the image with a sliding window. The
resulting entropy maps for each colour channel were down-
sampled to 25 x 25 pixels. We also computed summary
statistics for each entropy map.

Structure tensor features Another useful measure of local
image structure is the structure tensor [HBS92]. This opera-
tor effectively performs PCA on the local image gradients to
yield an estimate of the dominant local orientation and con-
trast at each point in the image. We derived 3 quantities from
the output of structure tensor:

1. local orientation: the orientation of the dominant eigen-
vector,

2. local isotropy: the ratio of eigenvalues and
3. local gradient magnitude: the mean of the eigenvalues.

For each of these quantities we included in the image signa-
ture a low-resolution spatial map of the feature and summary
statistics for each colour channel.

Amplitude spectra We represented the global spatial fre-
quency and orientation content of the images using fea-
tures derived from the Fourier spectrum. The images were
Hanning-windowed prior to application of the FFT. It is
well known that for natural images, energy falls off approx-
imately proportionally to 1/ f (see [GF07] for an interest-
ing application of this idea to art as well as [TMJ99] for an
analysis of Pollock’s paintings). [vdSvH96] have shown that
differences in the fall-off between images can be captured
by fitting a suitable function to orientation slices through the
amplitude spectrum. In our case, this fit yields two parame-
ters for each of 226 slices.

We also fit a second 7 parameter model that we have de-
veloped to represent the orientation content of natural image
spectra. The model is based on Lamé curves (superellipses),
and is designed to capture the fact that anistropic natural
spectra typically have a small number of clearly dominant
orientations. The parameters of the model allow us to repre-
sent the dominant orientations, how dominant they are and
the fall-off as a function of spatial frequency.

We employed one other measure of the variations in am-
plitude spectra between images, which was based on a PCA
decomposition of the spectra of all images in the database.
For each image we stored the first ten coefficients of the pro-
jection of the spectrum onto the decorrelated basis set. This
is a particularly compact representation of how a given im-
age deviates from the mean spectrum.

2.4. Segmentation and Composition

Textural statistics of the variety just described are good for
capturing the ‘granularity’ of images, but they are blind to
the larger scale organization of images. Both the natural
world and paintings are typically arranged into discrete units
that are organized by natural and aesthetic forces into mean-
ingful shapes and configurations. In order to summarize the
mid-level structural and compositional statistics of the paint-
ings in our dataset we applied a number of features derived
from segmentation algorithms. We obtained similar results
with two standard segmentation methods: k-means cluster-
ing [Bis06], and normalized cuts [SM97].

Number and sizes of segments One simple summary of
the structure of the images can be derived from the number
of segments and the distribution of their sizes. For example,
a landscape scene with a large open sky will produce fewer
and larger segments on average than a crowded battle-scene.
We therefore measure the following properties related to the
size and number of segments returned by the segmentation
algorithms:

1. Summary statistics of the distribution of segment sizes
2. low-resolution map of spatial distribution of segment

sizes
3. low-resolution map of spatial distribution of number of

segments per area
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Segment shapes In addition to the number of segments and
their spatial arrangement, we also require a method for rep-
resenting their characteristic shapes. We applied several dif-
ferent methods for representing the shape properties of the
extracted image segments:

1. Fourier shape descriptors For each segment, we compute
the Fourier spectrum of the boundary coordinates, to cap-
ture the scales present in the segment’s outline. We sum-
marize this with the mean amplitude and phase spectrum
across all segment shapes in the image

2. the compactness of the segments is defined by the differ-
ence in the length of its perimeter from a circle that en-
closes the same area. We stored summary statistics com-
puted from the compactness of all segments in the image

3. the principal axis of the segment is a representation of
the orientation and elongation of each segment, which
is computed by applying PCA to the coordinates of the
perimeter. We stored summary statistics of the principal
orientation and elongation across all segments in the im-
age, as well as a low-resolution map of the spatial distri-
bution segment orientations

Extended edges The presence of extended edges in images
can also be highly diagnostic. We therefore applied a stan-
dard connected components algorithm to the gradient fields
that are produces in the pre-processing stages of the segmen-
tation algorithms. The lengths and orientations of the edges
that survived the connected-components pruning were stored
in a low-resolution map.

2.5. Semantic Content

Human vision is exquisitely adapted to recognizing objects
and scenes. It is well known that with even extremely brief
presentation, we are able to recall subsequently whether we
have seen a particular scene before, or detect the presence of
a particular object class (e.g. animals) [TFM96]. We there-
fore need some measures that correlate with aspects of the
semantic content of the image. Note, however, that we do
not need to be able to label the precise contents of the im-
age, but rather to measure similarity in content between pairs
of images. We used the following set of measures.

Template Matching and Aspect Ratio Due to composi-
tional constraints, in many cases, images of similar scenes
correlate on a pixelwise basis. For example, portraits tend to
have a bright central face with a dark surround, while land-
scapes tend to have a bright sky above a darker ground. This
means that the raw image data itself can be a useful pre-
dictor of similarities in semantic content. Accordingly, we
included a reshaped, low-resolution (25 x 25 pixel) version
of the image as one of our features.

Another very simple feature that correlates to some de-
gree with content is the aspect ratio of the image. Indeed, in

common parlance, vertically oriented images are called ‘por-
trait’ format, while horizontal images are called ‘landscape’
format. This is only a very coarse classification, of course, as
still-lives and group scenes are also usually painted in land-
scape format, and some styles (particularly Art Nouveau)
favoured extreme aspect ratios. Nevertheless, we found the
ratio of the horizontal to vertical edge length to be a useful
feature for grouping images by visual similarity.

Scene Gist A more detailed scene classification scheme is
the ‘gist’ operator [TMFR03], which represents the spatial
variations in the spatial frequency and orientation content.
Torralba and colleagues have shown that this is remarkably
effective at distinguishing between different common classes
of scene (such as beach scenes versus street scenes). We ap-
plied this operator to our dataset.

Face Detection Given the importance of human figures in
Western art, another useful source of information about the
content of an image is the number, sizes and locations of
faces within the painting. Still-lives and open landscapes
contain no faces, standard portraits contain usually exactly
one face that fills the middle third of the image, while group
portraits usually contain several smaller faces. To capture
this, we applied the Viola-Jones face detector [VJ04] to the
image, and stored the number of faces found along with a
low-resolution map to capture their location and sizes. When
applied to paintings, the face detector does not work as well
as when applied to photographs. Nevertheless, the feature
values were a useful additional indicator of probable scene
content.

3. Clustering

Taken together, the features described in the previous sec-
tion form a ‘signature’ (feature vector) for describing the ap-
pearance of each image. This effectively embeds the dataset
in a high-dimensional space (although lower than the origi-
nal image space). The goal is to take this abstract summary
of the visual appearance of the images, and cluster the im-
ages based on their similarities, i.e., their proximity in this
feature space. To do this, we measure the differences be-
tween images in this feature space using the Euclidean norm.
From these distances, we can define a similarity matrix by
transforming the Euclidean distances with a Gaussian ker-
nel function. To achieve equal weighting of all features, dis-
tances were normalized by the maximum distance for each
single feature. We use the resulting similarity matrix as in-
put to standard unsupervised clustering methods. An exam-
ple similarity matrix for one feature (entropy map) is shown
in figure 2.

Spectral Clustering Having defined the image features and
a way to measure similarities one can now look into the dis-
crimination powers that lie within each candidate feature. To
get a first impression of what a particular feature is good at
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Figure 3: Example images from the extremes of two features, as revealed by spectral clustering. Top: distribution of straight
lines. Note the gothic images with prominent extended edges. Bottom: spatial entropy map. The portraits all contain a large
central entropy maximum.

Figure 2: Example similarity matrix for the entropy map fea-
ture. The matrix contains one row and one column for each
image in the dataset, and they are ordered by the style labels
arranged chronologically. Blue values have low similarity,
red have high similarity. Early and late paintings are most
similar in terms of their spatial entropy distributions.

measuring, one typically wants a bipartitioning of the whole
dataset that places the extremes—defined by each feature—
at opposite ends of each partition. Spectral clustering [Bis06]
provides a straightforward way for achieving this based on
a similarity matrix. Examples images from the extremes of
two features are shown in figure 3.

Kernel PCA and K-means Although the separation of the
data-set along single features is promising, no single feature
from our feature-set can capture all of the ‘visual similar-
ity’ of two images. Therefore we need to combine features
to achieve a global clustering that takes into account all the
measured attributes of an image. The dimensionality of the
feature-space is high and many of the features correlate to
some extent with one another. Taking the similarity matri-

ces as input, the kernel PCA algorithm [Bis06] produces
new representations for the images in a decorrelated feature
space. To reduce the dimensionality, the first 8 novel dimen-
sions were taken into account (8 being the number of style
labels in the dataset). The result of this procedure is a point
cloud in 8 dimensional space that represents the whole im-
age dataset. We then use K-means clustering to infer struc-
ture from it and obtain the output groups according to the
new properties.

Example results are shown in the collages in figure 4 for
three out of the 8 clusters. Despite differences in both the
style and content between images within a cluster, the im-
ages share a certain visual ‘look’: pastel-shaded, pastural im-
ages; dark portraits; and flat, geometrical church paintings
can be grouped together automatically with the features we
have presented here. The remaining five clusters ranged in
quality: some overlapped clearly with these clusters (e.g. an-
other cluster also contained many dark portraits), although
others were more heterogeneous such that it is difficult to
verbalize what the images have in common. We observed
that this grouping is far better in coherence than the ones cre-
ated by the simple, low-level measures in [WCF08] which
were much more heterogeneous.

4. Relationship to Style labels

Having clustered the images using features intended to cap-
ture the overall ‘look’ of the painting, it is interesting to ask
how this relates to the stylistic period in which the work was
painted. On the one hand, conventions related to the intended
appearance of the work are one of the defining characteris-
tics of a given period (e.g. visible brushstrokes in impres-
sionist paintings), so we might expect a strong correlation.
On the other hand, certain qualities are universal (e.g. por-
traits against a dark background), so we might expect the
clustering to cut across style boundaries. Using the clusters
obtained in the previous section together with the ‘ground
truth’ labels of the art periods in the database, we can there-
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Figure 4: Collages showing the images in three of the eight
clusters.

fore evaluate how well unsupervised methods correspond to
historical art periods. Complementing this, we can also ask
how supervised methods would perform: since we have the

class labels and feature vectors for each painting, we can
directly train classifiers on a subset of the database to dis-
criminate between different art periods.

4.1. K-means cluster evaluation

In table 1, we show the discrimination ability of the clusters
regarding the original style labels. Specifically, we report the
frequency of images of a specific style within each cluster.

In general the clusters cut across styles rather than rigidly
adhering to them with the exception of Cluster 8 which al-
most exclusively contains Gothic paintings. Reading the ta-
ble column-wise we observe that a large percentage of Art
Nouveau is concentrated in Cluster 6 (which also contains
Gothic) images. These results make sense as the content
varies greatly within a style, and we know from our previ-
ous experiments that this also plays a major role in the ‘ap-
pearance’ of a work [WCF08]. In future work, it would be
interesting to use a dataset that also has ground-truth labels
for content classes to look into content-based clustering for
which our features might be better suited.

4.2. SVM classification

After having performed unsupervised classification, we also
trained a support vector machine based on the “style” ground
truth labels.

Feature selection For the classification, we first needed to
find good feature vectors in our collection of features which
were able to discriminate between classes. In order to do
this, a class contrast function CC was introduced:

Ki Similarity/Kernel matrix for feature(-combination) i
S Samples
SA Samples class A
SB Samples class B
Ki(SA,SB) ∑sa∈SA ∑sb∈SB

simi(sa, sb)

Ki(SA,SB)
Ki(SA,SB)
|SA| · |SB|

CC(A,B) =
0.5 ·

(
Ki (SA,SA)+Ki (SB,SB)

)
−Ki (SA,SB)

Ki
(1)

CC determines how well feature i separates classes A and
B from each other. The best results of CC across all features
are given in table 2. The features that provide the highlighted
contrast values are almost exclusively provided by the statis-
tical colour descriptor testifying to the importance of colour
in separating different categories of art. We can also observe
that the Renaissance, Baroque, and Impressionist periods all
have rather low values across the board indicating that the
discriminative power of our features is not good enough to
really separate them.
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Gothic Renaissance Baroque Romanticism Classicism Impressionism Postimpressionism Art Nouveau
Cluster 1 0 2 13 32 6 25 11 2
Cluster 2 0 6 17 26 25 4 1 8
Cluster 3 14 8 8 8 9 23 39 3
Cluster 4 20 20 17 7 28 4 3 6
Cluster 5 11 21 8 8 17 30 16 13
Cluster 6 16 4 4 4 1 8 12 34
Cluster 7 16 31 31 12 14 5 15 4
Cluster 8 11 2 2 3 0 1 3 2

Table 1: Table showing how many images in each of the 8 clusters fall into one of the 8 style labels. Numbers in bold indicate
strong contributions of the particular cluster.

Gothic Renais. Baroque Classicism Romanticism Impr. Postimpr. Art N.
Gothic 0 0.2983 0.4322 0.6347 0.5161 0.2916 0.4622 0.5577
Renais. 0.2983 0 0.1128 0.1996 0.2196 0.2910 0.4303 0.2857
Baroque 0.4322 0.1128 0 0.1191 0.1529 0.3557 0.4559 0.2597

Classicism 0.6347 0.1996 0.1191 0 0.1137 0.3233 0.4948 0.2749
Romanticism 0.5161 0.2196 0.1529 0.1137 0 0.1793 0.5308 0.2404

Impr. 0.2916 0.2910 0.3557 0.3233 0.1793 0 0.2436 0.2870
Postimpr. 0.4622 0.4303 0.4559 0.4948 0.5308 0.2436 0 0.5936

Art N. 0.5577 0.2857 0.2597 0.2749 0.2404 0.2870 0.5936 0

Table 2: Class-contrast function CC showing the best values across all features. Numbers in bold indicate strong contrasts
which should lead to good discrimination performance.

Classification performance On the basis of this function
for each class combination, the single best feature was de-
termined and a new similarity (kernel) matrix K was created
using a linear combination of all similarity matrices. In this
study, equal weights were used so that an average kernel ma-
trix K of the best individual features was created. For future
work, variable weights could be introduced to enhance clas-
sification performance. We used 550 of our images as train-
ing examples and tested on 222. As SVMs are inherently
designed for a two-class classification problem, we trained
several SVMs on different bipartitions of the dataset in or-
der to perform a multi-class classification. The winning class
was then selected by a group vote of all SVMs.

Chance performance of the combined SVMs for 8 classes
is 1

8 . The best performance that was achieved after training
was 0.45 meaning almost half of the test images were well
classified and the other part misclassified. This pattern, how-
ever, is critically dependent on the art period in question:
as table 3 shows, the Gothic period, for example, is classi-
fied very well, followed by Classicism and Postimpression-
ism, whereas performance is rather weak (although above
chance) for the Baroque, and Romanticism periods.

Figure 5 shows the confusion matrix for the classification
results as a color-coded representation. Baroque images are
often identified as Classicism and Romanticism, Gothic as
Renaissance, Romanticism as Classicism and Impressionism
as Romanticism. It is interesting to note that the performance
with which different periods are discriminated using our fea-
tures is related to their historical proximity as well as their
intuitive visual similarities. Note also, that the SVM classifi-
cation cannot be fully predicted from table 2 alone: we found
high values of CC within the Art Nouveau period, for ex-

Figure 5: Ratio of false positives - (Row-)Class A is falsely
classified as (Column-)Class B. The axes follow the histori-
cal progression from Gothic to Art Nouveau from top to bot-
tom, and left to right, respectively.

ample, even though the final classification performance was
rather weak. Overall, however, our results are very encour-
aging given the difficult nature of the classification task.

5. Conclusion

We have presented a method for automatically clustering im-
ages according to the overall visual appearance or “look”,
much as untrained observers do. Because the appearance of
paintings is complex and spans many aspects ranging from
colour content to semantics, we argued for using a large
number of features, each of which is insufficient to capture
appearance on its own, but which when taken together can
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Gothic Renaissance Baroque Classicism Romanticism Impressionism Postimpr. Art Nouveau
0.7144 0.3079 0.2116 0.5865 0.2415 0.3582 0.5636 0.2642

Table 3: Classification performance per art period

parse a database of images into visually meaningful groups.
We have shown that such an “appearance-based” clustering
is affected by, but is not the same thing as a clustering based
on distinct artistic periods or styles. Much like human ob-
servers, the system confounds style and content when as-
sessing the similarity of two images.

The method is far from perfect. Some of the clusters have
a very intuitive visual quality (e.g. dark portraits or hazy
landscapes, see figure 4). However, other clusters are more
heterogeneous, containing images whose principal shared
attribute is not belonging to one of the other well-defined
classes. Interestingly, in our previous experiments [WCF08],
some subjects reported forming ‘miscellaneous’ groups to
classify images that did not belong with the others. Thus
these failures may reflect a key aspect of the data, and in the
near future we will correlate the perceptual data with our col-
lection of features. Nevertheless, our work here represents a
significant step forward in terms of capturing higher-level
features and concepts along which participants might group
works of art compared to the clustering obtained, for exam-
ple, in [WCF08].

We also tested the ability of the features for classifying
paintings into the historical art periods both in an unsuper-
vised and a supervised fashion. Performance in both cases
was well above chance with clear variations in discrimina-
tion across art periods: paintings from the Gothic period,
for example, were easy to separate (a result which agrees
well with the perceptual data found in [WCF08]). As we
did not specifically work on efficient methods for integrat-
ing the features that we implemented, this represents a large
area for improvement of classification performance (see, for
example, [DvdLB06])—we expect different features to be
important for separating different art periods.

One of the more obvious features that is missing from
the current implementation is a representation of the relative
‘importance’ or ‘saliency’ of different regions in the image.
Another obvious respect in which the method could be im-
proved would be to define better representations of the com-
position and content of the image, particularly by improved
segmentation or object detection schemes.

We believe that by refining the features used to measure
intermediate and high-level image properties, a system in the
spirit of the approach we have presented here may be able to
perform complementary clusterings according to style and
content. This would be a particularly useful tool for archiv-
ing and image retrieval.
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