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Abstract
Classic perspectives, i.e., central projections onto a plane, are extremely common in our days. Photos, movies,
computer generated animations almost exclusively use this technique. They are linear since straight lines in space
appear as straight lines in the image. Nevertheless, humans and animals of all kind have a more complicated
method to develop images in their brains. They measure angles, not lengths. Together with nonlinear projections
onto curved surfaces, impressions are transformed into spatial imagination.
When it comes to 2D-reproduction of such processes, we need nonlinear perspectives in 2-space. They usually
look like fisheye-images, i.e., projections of space onto a plane via a not symmetric, extremely refracting spherical
lens. Similar distortions occur when we look out of still water or into reflecting spheres. In fine Arts, the angle
measuring was intuitively applied by artists. In geometry, the inversion at a circle (sphere), several models of
non-Euclidean geometries and the stereographic projection onto the plane or mappings of the sphere respectively
lead to comparable results. We call the latter transformations “secondary” nonlinear perspectives.
Finally, realtime algorithms are presented that transform primary nonlinear perspectives like special refractions
into classic perspectives. Therefore, we work with Taylor series (or, if possible, with accurate formulas) and – for
speed reasons – with precalculated tables.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Nonlinear projections, 3D
view deformation, Methodologies and Techniques;

1. Introduction

In this survey paper, we will explain what we mean by “non-
linear perspectives”, where they occur and how they can be
applied in order to fulfill certain tasks. We will distinguish
between primary and secondary perspectives ( [Gla05]).

Primary perspective images derive from the intersection
of light rays through a projection center with an arbitrary
projection surface. The perspective is only linear when we
project onto a plane and the rays are not reflected or re-
fracted. Secondary perspectives derive from primary per-
spectives, e.g., when we project such perspectives from an-
other viewpoint or when we map them onto other surfaces
including planes. Even secondary perspectives can be linear
in special cases (photos of photos).

Other approaches to nonlinear images of 3-space, e.g.,
the “multiperspective linear cameras” ( [YM04], [RB98]),
are not taken into account in this context. A classification of
some of those perspectives can be found in [SGN03].

2. Central projections onto planes

In geometry, a central projection of space pointsP onto an
image planeπ is also called aperspective. The artists of the
Renaissance (Brunelleschi, Dürer, Piero della Francesca) de-
veloped this kind of depicting reality. In this paper, we will
call such images “classic perspectives”.

Figure 1: Classic central projection onto a plane.

Even if it is not immediately to be seen: Photographic im-
ages can be explained as almost exact central projections
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(Figure 2 right): All light rays emitted by space pointsP
that hit the front lens are after a detour bundled in an im-
age pointPc (in the ideal case on the light sensitive chip)
such that the straight linePPc runs through a fixed point on
the optical axis, called the “focus of the lens system”. There-
fore, photography is in the ideal case a linear (and primary)
perspective – after several refractions that annul each other.
Thus, the lens system works like a pinhole camera. Note that
natural vision cannot produce linear perspectives, since the
light rays hit the curved retina (Figure2 left).

Figure 2: The eye and the projection by means of a camera.

Classic perspectives have the advantage that they arelin-
ear: Straight lines appear as straight lines. The order of a
space curve equals the order of its image. Circles, e.g., ap-
pear as conics (Figure3 left). Therefore, the contour of a
sphere (a small circle of the sphere) also appears as a conic
silhouette.

Figure 3: Central projection of circles and spheres.

Especially the latter may turn into a drawback. Since the
projection onto our retina is non-linear, extreme distortions
of sphere silhouettes appear unnatural. We would rather like
to see a circle as the silhouette: When we look at a sphere,
we immediately try to focus its center, and then the silhou-
ette is a circle. There is only one case when we completely
agree with an extreme perspective like in Figure3 right. That
is when our “secondary position” with respect to the object
is relatively speaking the same as the “primary position” of
the photography. (If the image is small like in this publica-
tion, we have to beveryclose and position one eye above the
principal point. If the image is very large – like in a cinema
– this task is easier to fulfill. You should probably sit in the
middle of the first row.)

Artists sometimes work with extremely skewed secondary

perspectives. Figure4 (Hans Holbein the Younger,The Am-
bassadors) reveals some macabre detail when it is viewed
from an extreme position to the lower left.

Figure 4: Some extreme secondary views.

3. Central projections onto concentric spheres

All projections into a lower dimension are not reversible,
i.e., without any further information one cannot reconstruct
space from one image only (Figure1).

Figure 5: We measure the angles, not distances

We now consider a central projection onto a sphere around
the projection center. Figure5 shows the projection of some
objects – in this case the stars ofursus majorthat lead to the
big dipper. The projection sphere is the “sky sphere”. No
viewer on earth can judge the actual distances of the single
stars – even brightness is no criterion. The only thing we can
measure, are the angles of the light rays.

Figure 6: The sphere is not developable . . .
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Figure7 illustrates that, when we stay steady and can only
roll our eye balls, measuring angles is the only estimation we
can do. Then two parallel lines (e.g.,AA0 andBB0) will have
different “distances”, and their images will be curved: On the
projection sphere, we have two parts of great circles.

Figure 7: Different angles for equal distances

Since the sphere is not developable (Figure6), it is now
more ore less a matter of taste how we map the contents of
the spherical image into 2-space. In any case, we then get a
secondary nonlinear perspective. (For dozens of samples see
http://www.geometrie.tuwien.ac.at/karto/.)

Figure 8: Degas paints the interior of a small room.

Edgar Degas did it in his paintingIntgerior at Menil-
Hubert(Figure8) like Guido Hauck suggested it from a sci-
entific point of view some years later ( [Hau10], [PPC97]):
The Cartesian coordinates in the drawing plane are the
spherical coordinates, i.e., angles (Figures9 and29 right).

Figure 9: A small room via computer.

If we project classically onto a plane in between the space
points and the projection center, we get a perspective that
is related to the curved projection onto the sphere around
the projection center. In fact, if the viewer is located in the
projection center, no difference can be seen between the two
perspectives, since all angles that can be measured are equal.

Figure 10: Curved perspectives can be stitched together.

Hauck’s transformation can be used successfully in order
to stitch several photographs together (Figure10right). This
only works perfectly, however, when we know the absolute
value of one angle (e.g., the filed-of-vision-angle). When the
main projection ray is horizontal, vertical edges of the scene
will appear as vertical lines (Figure10left), whereas general
straight lines will appear as curves.

4. Central projections onto arbitrary surfaces

Figure 11: Central projection onto an arbitrary surface

Instead of projecting onto a plane or a sphere around the
center, we can project space on arbitrary surfaces. We can
also do that as follows: First we create a classic perspective,
i. e., a photo, and then we project that photo from the same
center onto the curved surface. The fact that a (single-eyed)
viewer can only measure angles, allows to create illusions.
When a viewer comes close to the original projection center,
his or her view of the curved perspective will converge to the
view of the photo (Figure11).

c© The Eurographics Association 2005.

125



G. Glaeser / Nonlinear Perspectives in Science, Art and Nature

Figure 12: Pozzo projected a planar grid.

In that way, the baroque artist Andrea Pozzo painted per-
fect curved perspectives on the curved ceilings of huge halls.
For a viewer who stands in the center of the hall, these
paintings appear like classic perspectives of a virtual reality
(sky, angels, huge columns, etc.). In order to get the correct
painting, Pozzo worked with an auxiliary planar grid in the
“photo” (Figure12left) of the virtual scene. He materialized
this grid with cords which he projected onto the ceiling by
means of candle light from the viewer’s position (Figure12
right).

Figure 13: The kind of projection surface plays little role.

For the viewer down in the hall, it was then hard to dis-
tinguish, what kind of surface the ceiling is. The “photo”
suggests a virtual space (Figure13).

Figure 14: How the Nazcas may have painted their images.

The huge sand carvings (“paintings”) of the aboriginal
people in Peru (the Nazcas) may have been done as indi-
cated in Figure14: A person standing on a tower (left) gives
commands to some helpers in the landscape, directing them
until all the angles to the stones they drop equal the angles to
the points of the image in his hand. In a second step (right),
the dropped stones are moved along straight lines from an
arbitrary centerC. The new distance from the center is a con-
stant multiple of the original distance. After these two steps,
a person on a virtual tower of multiplied height (e.g., in a
plane or a balloon) will see the image as the person on the
tower saw both his sketch and the dropped stones. In reality,
however, we deal with a curved perspective in a landscape.
Thus, from the “wrong” point of view, the image will appear
skewed.

Figure 15: Projection on a discontinuous surface.

An experiment to again explain this fact may be the fol-
lowing: A beamer projects a classic (in the ideal case again
primary) perspective onto the wall. Viewers close to the
beamer will acknowledge this secondary perspective as real-
istic. When now tiny paper sheets fall down from the ceiling
(Figure15), the image will be projected on a discontinuous
surface. The viewer very close to the beamer will, however,
still claim that the perspective is OK.

Figure 16: Measuring angles may lead to perfect 3D-vision.

Figure16 illustrates how insects measure angles via hun-
dreds ofommatidia(narrow cones as parts of their complex
eyes). The outer surface of the eyes need not be spheres –
the result is always the same. Together with the second com-
plex eye, the animal has partly perfect 3D-vision in the close
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neighborhood in front: Many of the cones’ axes intersect at
fixed points in space that are stored “via hardware”.

Human eye balls roll spherically in order to focus on a
space point. The different “roll angles” allow to reconstruct
the point in space. This requiresfirmware– and thus brain
work. However, the principle is the same.

5. Refractions as nonlinear primary perspectives

Photos usually come as close to classic perspectives as pos-
sible. This is – technically speaking – a complicated pro-
cedure that requires a whole lens-system (Figure2 right).
Sometimes we need (or want to) use different lenses. This
immediately leads to curved perspectives.

Figure 17: Fisheye-photographs.

Figure 17 shows “fisheye perspectives”, created by a
strongly spherically curved objective (the image to the right
is stretched). Such a perspective stems from a classic per-
spective and is then skewed radially from the principal point.
Thus, straight lines that intersect the principal ray will still
appear as straight lines. Circles with the principal ray as axis
will also appear as circles.

The word fisheye perspective is perfectly suitable for the
latter perspectives: When a fish looks out of still water, sim-
ilar distortions occur (Figure18), although the light rays are
refracted at a plane. Due to total reflection, the whole image
of the outside space fits into a limiting circle (Figure19 left
and middle, [Gla05]).

Figure 18: Refraction and total reflection on the surface.

By the way, the spherical curvature of the fishes’ cornea
is a method to diminish additional refraction on the cornea.
Fishes that hunt at the surface (Figure19 right, four-eyed
fish) need therefore two differently curved corneas.

Generally speaking many living beings work primarily

Figure 19: “Real” fisheye perspectives.

with refraction at the cornea. Minor corrections then occur
at the lens inside the eye (Figure20). Thus, the images sent
from the retina to our brains are distorted anyway.

Figure 20: Refraction at cornea and eye lens.

6. Reflections as primary perspectives

Reflections in planes produce ordinary (classic) perspec-
tives. The reflected light rays from space pointsS through
the eye pointE (Figure 21 left) run through the reflected
point S∗, which may be interpreted as part of the reflected
(and of course virtual) space.

Figure 21: Reflections in curved surfaces.

Reflections in any other surfaceΦ will lead to skewed im-
ages, which we can count to nonlinear primary perspectives.

Special cases (reflections in a sphere or in a cylinder of
revolution) lead to perspectives like in Figure21 right and
22. Escher and Dalí, e.g., worked with such “anamorphoses”
( [Sec04]).
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Figure 22: Reflections in a cylinder and a sphere.

7. Secondary nonlinear perspectives

So far we have spoken about perspectives that depict space
objects into image surfaces – via direct projection, refraction
or reflection.

A second group of nonlinear perspectives is generated in-
directly from primary perspectives: First, space is projected
onto a surface. Second, the points on this surface are either
projected or transformed into the drawing plane by means of
formulas respectively.

Figure 23: Linearly transformed “well known objects”

A very simple example of this is a photo of a photo. Since
both transformations are linear, the secondary result is linear
as well. However, in general it does not originate from an
existing object in space. Reversely, under certain conditions
we may fit linearly transformed objects into the secondary
viewing rays (Figure23). This is used in theater architecture
or art.

7.1. Projections and other transformations of the sphere

We project space again onto a sphere around the projection
center. When we view the spherical image from the center
of the sphere, we cannot tell any difference to the situation
in space. We could call the projection aspherically curved
perspective.

In order to get a planar image corresponding to the curved

Figure 24: The spherical projection of the sphere.

perspective we now apply a linear projection. Two well
known projections of the spherical image lead to remark-
able results: Thestereographic projectionfrom a point on
the sphere onto a plane parallel to the tangent plane in the
projection center (Figure24) and thegnomonic projection
from the center onto any plane (Figure26).

Figure 25: Special projection of a spherical perspective.

The spherical projection creates secondary nonlinear per-
spectives of space, where the silhouette of a sphere is always
a circle (Figure25). Straight lines in space first convert to
small circles on the projection sphere (they run through the
projection center) and finally are projected into circles in the
drawing plane. Thus, such a secondary perspective is non-
linear. We will later see that it is an idealized special case of
fisheye perspectives – and therefore is “almost primary”.

Figure 26: The gnomonic projection of the sphere.

As an application, Buckminster Fuller developed a map
of the earth by means of projecting the sphere onto several
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planes – the sides of a cuboctahedron (Figure27). In the cor-
responding map, flight routes appear partly as straight lines.

Figure 27: Gnomonic projections onto a cuboctahedron.

The perspective produced by gnomonic projection is triv-
ially an ordinary linear perspective and still a primary per-
spective. It is, however, a useful tool to get maps of the earth,
where the shortest distances are straight lines (Figure26).

Figure 28: Normal projection of the sphere.

As a final special case, one can project the contents of the
sphere orthogonally onto a plane. Figure28shows such pro-
jections for two alleged completely different kinds of eyes
that work with a similar principle.

Figure 29: Winkel’s and “simple” model of the sphere

Among the dozens of mathematical methods to map a
sphere into the plane, we mention two: The first is to simply
interpret the longitude and the latitude angle as Euclidian
coordinates (“cylindrical equidistant mapping”, Figure29
right), the second is named after its inventor O. Winkel
(1914) and comes with complicated formulas. The drawback

of the simpler mapping is that objects at the edges areex-
tremelyskewed, whereas Winkel’s method leads to optically
satisfying results and is therefore often to be found in atlases.

7.2. Models of Non-Euclidean Geometries

When we do not accept the “parallel axiom” in geome-
try, we get two new kinds of non-Euclidean geometry. For
Euclidean-thinking people like us, these geometries are very
unusual and hard to imagine. Nevertheless, they play an im-
portant role in modern physics. We can only work withmod-
elsof such geometries, and these models are nonlinear, even
if they can be interpreted as primary perspectives (ordinary
central projections).

Figure 30: Elliptic geometry

Figure30 shows how the elliptic plane can be projected
gnomonically onto a sphere. Then, sphere geometry can be
applied as usual (e.g., one can measure angles or distances
on the sphere).

Figure 31: One model of hyperbolic geometry

If we project the hyperbolic planeπ orthogonally onto
the sphereΦ (Figures31) and then stereographically back
onto the plane (centerC), we also can deduct and apply
some rules of sphere geometry. It is even better to project
the hyperbolic plane gnomonically (Figure32 left) onto a
two-sheeted hyperboloidΦ (centerE) in order to measure
angles and lengths (left).

In any case, straight lines are transformed and therefore
the models of non-Euclidean planes always look somehow
like nonlinear perspectives. Thus we will classify such mod-
els as “nonlinear perspectives in a wider sense”. A stereo-
graphic projection of the geometry on the hyperboloid (Fig-
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Figure 32: Hyperbolic geometry, parqueting (J. Wallner)

ure32right, bluish: projection planeσ, projection centerC)
can even be interpreted as aprimaryperspective ofπ.

7.3. Inversion

Figure 33: Inversion in 2-space, spatial interpretation

Two-dimensional inversion at a circle can be interpreted
via a stereographic projection onto a sphere. Straight lines
and circles are in general transformed into circles (Fig-
ure 33). (This is why we also have circle-models of non-
Euclidean geometries.)

Figure 34: Inversion at and reflection in a sphere

Inversions can also be applied in space (inversion at a
sphere). Then, planes and spheres are in general transformed
into spheres. Figure34 illustrates, how spatial inversions (in
this case of a torus) can look very similar to reflections in

spheres, and therefore we also count perspectives of inverted
space to the nonlinear perspectives in a wider sense.

8. Realtime conversion of certain nonlinear perspectives

We earlier mentioned that stereographic projections of space
projection onto a sphere are idealized special cases of fish-
eye perspectives. In [GG99] realtime algorithms for render-
ing scenes in that projection are given. Here we want to “re-
construct” such projections.

Figure 35: Projection of the sphere onto the plane

We need a short calculation in a meridian plane (Fig-
ure35): We identify the optical axis with they-axis, the im-
age planeπ ⊥ y with the x-axis. We letΣ be a unit sphere
with centerE(0/1) andp be a projection ray with polar an-
gle α. The intersectionP1 = p∩π (the central and primary
projection of arbitrary points onp) has radial distancer1
from the axis. The intersection pointP = p∩Σ has the coor-
dinatesP(sinα/1−cosα). Now we choose a centerC(0/c)
on the optical axis. When we projectP from C onto π, we
get the secondary projection pointP2. We have

r1 = tanα and r2 : sinα = c : (c−1+cosα).

This leads to a function

r2 = (c sin arctanr1)/(c−1+cos arctanr1) = f (r1)

that allows to calculate the secondary radial distance directly
from the primary distance via a functionf . Reversely, when
the secondary projection (r2) is given, we can convert the
corresponding primary perspective by means of the inverse
functionr1 = f−1(r2) = g(r2) (with some effort the explicit
formula can be written down). Since one can proof thatf is
strictly monotonous growing, we can be sure thatg is unique
for any value. The converted image is the primary classic
perspective.

In the case of stereographic projection, we havec = 2.
The formula, however, covers any position ofC. Idealized
fisheye lenses will in fact come close to this formula with
valuesc > 2. For largec we have the typical distortions of
ultra wide angle lenses at the borders (even expensive lenses
have some “cushion effect” which corresponds to largec-
values).
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Therefore, attempts to undistort cushion effects in ordi-
nary photos and even fisheye photos turned out to be amaz-
ingly successful ( [ZB95]). Let g̃≈ f−1(r1) be a function of
the radius that does the job of diminishing lens errors best.

Then the question is: How can we describe ˜g? Here Taylor
series expansion comes in handy. We always have

g̃(r1) =
∞

∑
k=0

ak rk
1.

Since distortion in the center of the image will be close to
zero, we have ˜g(r1) = r1 for smallr1, i.e.,a0 = 0 anda1 = 1
and therefore

g̃(r1) ≈ r +a2 r2
1 +a3 r3 +a4 r4

1 +a5 r5 . . .

By interactively choosing values for those coefficients,
smaller lens errors can be well eliminated. The result comes
very close to classic linear perspective.

Figure 36: The quadratic grid in a plane helps

Figure 36 shows how even fisheye perspectives can be
undistorted successfully this way in many cases. A “proof”
can only be given when one can detect several straight lines
in the image that must not coincide with the center (else, they
are straight even in the fisheye perspective). In this case, the
quadratic grid on the floor was useful. Once the best coef-
ficients are found, they can be used for the calibration of a
lens.

Figure 37: Vanishing points

More extreme distortion (Figure37) may require the co-
efficientsa6 and a7 (depending on the focus). Again, it is

always helpful to observe vanishing points of parallel lines.
For larger distances from the center, the new distance then
raises with the powers of 7, i.e., points will disappear from
the new image. That goes well together with the fact that
fisheye lenses are extremely “contracting”, whereas classic
perspectives with very small focus tend to “explode” at the
borders. In fact, this is a strong argument to use fisheye
lenses for extreme views.

The above mentioned inverse functionr1 = f−1(r2) plays
an essential role in the whole conversion process. In order to
speed up the algorithms, one should definitely work with ta-
bles. Then, for every pixel of the new image, we can look for
the corresponding pixel in the skewed image, which lies on
the radial ray through the principal point. We can also work
with symmetries in order to speed up the calculations. With
all optimizations implemented, it is possible to reconstruct
new images very quickly (images with resolutions up to a
million pixels in realtime).

Nonlinear secondaryperspectives in general cannot be
transformed by means of radial functions. Here we need
much more information. Figure29 shows a typical exam-
ple: Given the skewed image to the left, how can we “re-
construct” the right image which can then be efficiently be
applied for mapping onto the sphere (middle) and/or the cre-
ation of “photos from the orbit”?

Winkel gave of course (complicated) formulasx= x(u, v),
y = y(u, v) for his transformations, whereu andv are lon-
gitude and latitude on the sphere. For all the pixels of the
new image with corresponding coordinatesu,v in a centered
Cartesian coordinate system, we now apply the formulas,
which leads to a pixel in the skewed image, corresponding to
x- andy-values. If we apply the algorithm many times, it is
worth creating a table where we store the(x, y)-coordinates
for each pair(u, v). (In fact, firmware in our brains probably
also works with such precalculated tables in order to “rec-
tify” the spherically curved perspective on the retina.)

Figure 38: Almost artwork. . .

Figure38 shows a scene that cannot be depicted reason-
ably with any wide-angle lens. The “reconstruction” to the
right thus only shows parts of the room, and much infor-
mation is lost. Since the higher coefficients were a bit too
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large, straight lines “bend the other way round”. The image
reminds somehow of non-Euclidean models.

Figure 39: Non-Euclidean stays non-Euclidean

Figure39applies the earlier described radial conversion to
such a non-Euclidean model. Since a parqueting of the hy-
perbolic plane is done, one might expect congruent elements
for well chosen coefficients. This is, however, impossible,
since we deal with completely different metrics: It is not the
same task to plaster the Euclidean plane and, e.g., the sphere
or a hyperboloid (else such parquetings could easily be cre-
ated by applying a function to all the pixels of a Euclidean
drawing).

9. Conclusion

We call a perspective the result of the projection of 3-space
onto a plane or a curved surface. We may distinguish be-
tween primary perspectives (where only one projection is
necessary) and secondary ones (they originate from primary
perspectives by means of another projection or any mathe-
matical mapping). Primary perspectives are the classic per-
spective projection (it is linear) and projections via refraction
or reflection (both are nonlinear).

Curved perspectives are natural – in contrast to “classic
perspectives” – and therefore are probably more aesthetic.
Extreme wide-angle perspectives can (and should) be “nor-
malized” in real time by means of curved perspectives. This
can preferably be done by means of stereographic projection
of the corresponding spherical curved perspective or (with
similar results) with a fisheye lens.

Reflections in spheres, refractions at planes or spheres and
non-Euclidean metrics produce curved perspectives of space
that are similar to fisheye photographs. They can be “recti-
fied” in real time by similar algorithms.
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