
Computational Aesthetics in Graphics, Visualization and Imaging (2005)
L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors)

A Generative Model For Dynamic Canvas Motion

Matthew Kaplan and Elaine Cohen

Abstract
We present techniques for constructing realistic canvas and paper models and for enabling interactive dynamic
canvas motion. Dynamic canvas motion means that there is a correspondence between the motion of canvas
features and the motion of the models in the scene. Our artificial paper is created by simulating the physical
process of creating paper with many individual fibers. To enable canvas motion, fibers are associated with each
of the models in the scene. At runtime, the fibers associated with visible portions of the models and background
fibers are used to construct a 2D canvas. Because fibers are “tied” to the models, the motion of canvas features
corresponds to the motion of each model. This allows us to match the motion field of our dynamic 2D canvas to
that of the the 3D scene exactly.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Non-Photorealistic Ren-
dering, Canvas Synthesis, Dynamic Canvas Motion, Artistic Rendering

1. Introduction

Non-photorealistic rendering has expanded the bounds of
traditional media by providing the ability to animate media
that were traditionally static, such as pen and ink and pencil.
This has introduced a number of artifacts peculiar to ani-
mated media, especially those pertaining to temporal coher-
ence. Temporal coherence artifacts typically occur because
marks that are meant to appear two dimensional and static(as
on a typical flat drawing surface) are being matched to ob-
jects being animated in three dimensions. Difficulties often
appear when attempting to ensure that the motion, shape and
relevant media properties of marks appear consistent from
frame to frame. As pointed out in [CTP∗03], there are two
solutions that are typically applied, neither one of which is
ideal. First, marks are made in the two dimensional space of
the image and warped to the 3D motion of the objects. This
often results in the “shower door” effect where objects slide
over the background. Second, marks may be applied to the
surface of the 3D object and moved with the surface of the
object. In this case the marks can appear plastered onto the
surface of the object and often seem unrealistic in motion.

While much attention is paid to fixing the temporal co-
herence of foreground strokes, temporal coherence of the
background canvas has been largely overlooked (except by
[CTP∗03]). When motion cues between the canvas and the
foreground models is disjoint the sense of immersion in the
environment is broken and the foreground and background
seem to lie in separate planes as objects “slide” over the can-

vas. Motion in a 3D environment results in a complex op-
tical flow that the flat quality of the 2D background cannot
match. A motion field represents the time derivative of the
2D projection of a 3D point. This has been shown to be a
critical motion cue for observers. Figure 1 shows examples
of motion fields of a sphere in front of a plane under transla-
tion and rotation. This problem of attempting to match a 3D
motion field with a 2D transformation is difficult because of
the severe discontinuities at silhouette edges of objects and
because objects under animation may have opposing direc-
tions. The non-uniform quality of the flows cannot be simply
expressed as a 2D transformation. Because of this motion
parallax, a fundamental tension exists between any mapping
from a 2D surface to a 3D environment.

Two specific goals motivated this work when considering
the canvas in such a context. First, we would like to be able
to produce realistic paper and canvas models. Second, we
would like to be able to achieve accurate dynamic motion
that establishes a correspondence between the canvas model
and the foreground objects.

Typically, such background canvases are created by either
scanning existing paper or canvas models or by using Perlin
noise functions [Per85, CAS∗97] to create varying height
fields. While these methods work well, it would be optimal
for the user to be able to obtain arbitrary canvases with ap-
propriate level of detail in grain, tooth, roughness, color, etc..
To this end we propose a simple model that simulates the

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org


(a) (b)

Figure 1: a)Motion field of a forward translation of a sphere
in front of a plane. b)Motion field of the same scene under
rotation.

way paper and canvas are constructed and gives a realistic
approximation of canvas and paper.

When animating scenes with both a canvas background
and foreground objects, we would like the motion of the can-
vas to correspond with the all visible objects so as to main-
tain the immersive illusion of our NPR environment. Such a
dynamic canvas should have the following properties: First,
snapshots of the canvas model should appear to be a plausi-
ble canvas simulation across the entire visual field. Second,
features of the canvas model should follow the objects to
which they appear to correspond on the image. Third, the
model should be variable in resolution since, as pointed out
by [CTP∗03], we may need to zoom infinitely. Fourth, the
canvas texture in any position should be reproducible (i.e.
if we rotate away from a view point and then rotate back,
an identical canvas model should appear). Finally, the dis-
tortion of canvas elements should be kept to a minimum so
as to avoid distracting the viewer. We propose an interactive
solution that attempts to meet these five criteria by generat-
ing a new canvas image from any given viewpoint based on
the position of paper fibers which are tied to the models in
the scene.

Our paper offers the following contributions:

• Realistic Canvas Synthesis - We demonstrate a technique
for producing realistic canvas and paper models based on
simulations of canvas and paper construction using layers
of fibers.

• Dynamic Canvas Motion - We show a method for map-
ping fibers to models in the scene. At runtime we con-
struct a plausible canvas from all the fibers in all visible
polygons. Because fibers are “tied” to the polygons, the
movement of canvas features correspond to the movement
of the objects in the scene. Finally, we give a method for
enabling an infinite zoom.

2. Related Work

Most canvas models in computer graphics work have been
created by one of two methods. Most commonly, a scanned
image of a canvas is read in and a height field is created
based on the intensity of each pixel [SB99]. Alternatively,
Perlin noise is often used to build random height fields
[Per85, CAS∗97, CTP∗03]. Both of these models can work
well but both have problems. The first model is limited to im-
ages that the user has scanned. The second allows the user to
obtain canvases of arbitary resolution and quality but it re-
ally only works well on the limited subset of paper and can-
vas models that Perlin noise represents well. Furthermore, it
has not been shown how to embed structured elements in a
canvas generated with Perlin noise. We propose a solution
to the canvas generation problem by simulating the physi-
cal process of canvas construction to allow multiple canvas
and paper models to be generated in a single framework as
a function of several user-defined parameters. A good refer-
ence on the subject of papermaking can be found in [Toa83].

There has been significant work in the area of map-
ping the motion of strokes of various traditional me-
dia such as paint, pen and ink, pencil and char-
coal. [Mei96, Dan99, SB99, KGC00, PHWF01]. The meth-
ods presented in this paper can be viewed as a projection into
2D from 3D elements that are attached to the surface of ob-
jects thus obtaining temporal coherence in a manner similar
to [Mei96, KGC00]. However, our fibers are used in com-
bination to form a cohesive structure rather than represent
individual strokes.

We have found only one significant piece of work dealing
with dynamic canvas motion [CTP∗03]. They demonstrate a
variety of techniques for mapping the 2D motion of a back-
ground canvas as closely as possible to the 3D motion of the
animated scene. Unfortunately, these mappings are limited
by the fundamental tension between 2D and 3D motion. In
translation, the differential in motion between objects at dif-
ferent distances from the camera is significant and the map-
ping does not hold. In rotation, their spherical warp does a
reasonable job when objects are at a distance but approxi-
mately 1/2 of each object in the foreground has an opposite
motion field to that of the background. A static 2D model
simply cannot accurately match the motion of a 3D environ-
ment. For this reason, we propose a model that moves canvas
elements in 3D and reconstructs the canvas in 2D. This maps
the motion field from 3D to 2D exactly for any camera mo-
tion. In addition, these authors give a model for an infinite
zoom of the canvas background in order to approximate for-
ward translations. Their method works well but suffers from
significant blending artifacts between different levels of res-
olution. Our model for enabling infinite zoom actually has a
different function and is entirely different in methodology.

c© The Eurographics Association 2005.

M. Kaplan, E. Cohen/ A Generative Model For Dynamic Canvas Motion50



3. Realistic Canvas Synthesis

3.1. Generating Canvas Models

When describing background models, the words canvas and
paper are generally used interchangeably in NPR. While
their purpose and appearance are often similar, the physi-
cal processes used to create them are very different. Paper
is a surface created by pressing paper fibers in a binding
medium. The fibers are generally made from cellulose which
is found in plant fibers. The plant fibers are ground into wood
pulp and dumped in acid to generate the cellulose. We ig-
nore issues of what kind of binding medium and/or sizing is
used. Those elements usually affect absorption rates which
this model does not consider. The orientation of the resultant
cellulose fibers is usually random and it is the size and qual-
ity of the fibers that gives each paper its own tooth, grain
and feel. Canvas is a surface created of vertical and hori-
zontal interwoven threads. While some weaving processes
are very consistent, most interesting woven canvas surfaces
contain many variations in the prominence and color of indi-
vidual elements. The prominence of each thread is local be-
cause of the interaction with other threads. Moreover, many
of the patterns are too small to be viewed as a consistent
thread running the entire course of the canvas. This leads to
the observation that many interesting canvas models can be
simulated with small, local threads.

We define a fiber as the base element of our canvas model.
A paper fiber is typically a randomly oriented small, rectan-
gular or oblong piece of wood pulp. Paper is built up through
the composition of many fibers. In our system, a fiber is
modeled as a small, randomly positioned and oriented rect-
angular shape. Since we typically use fiber lengths between
20-40 pixels and widths between 1 and 3 pixels this shape
can also be viewed as a line of variable thickness. To build a
paper model, each rectangular shape is drawn into a height
field which represents the canvas. The height is incremented
for every location within the fiber shape. A color texture for
the canvas is computed after the height field is created with
the minimum height being mapped to black (or some muted
dark color) and maximum height being mapped to white.
Mutiplying the color texture by a user defined scale in rgb
allows us to produce differently colored canvases. A basic
algorithm to create a canvas is shown in Algorithm 1.

Here, the height is the height field of the canvas and
color is the color map for the canvas. κ is the user de-
fined base color of the canvas. MaxFibers is the total num-
ber of fibers in our canvas simulation, which we typically
set between 200,000 and 400,000 for a 512x512 canvas.
GenerateRandomFiber() is a function which produces a
random position and direction for the fiber, as shown in
Algorithm 2. Here, unitRand() is a function that returns
a random number between 0 and 1 and makeUnitVector()
is a function that normalizes a vector. FiberWidth and
FiberLength are values set by the user. Altering these val-
ues allows the user to vary the tooth and grain of the paper,

Algorithm 1: CreateCanvas()

for count = 0 to count < MaxFibers do
GenerateRandomFiber()

end for
for i = 0 to i < CanvasWidth do

for j = 0 to j < CanvasHeight do
color[i][j] = (height[i][j] - HeightMin)/(HeightMax -
HeightMin)
color[i][j] *= κ

end for
end for

Algorithm 2: GenerateRandomFiber()

fiber.position.x = unitRand() * CanvasWidth
fiber.position.y = unitRand() * CanvasHeight
fiber.direction.x = unitRand()
fiber.direction.y = unitRand()
fiber.direction.makeUnitVector()
fiber.direction *= FiberLength
fiber.width = FiberWidth
DrawFiberIntoHeightField(fiber)

with wide fibers being useful for producing simulations of
heavy papers such as those used in watercolor and charcoal
and narrow fibers being useful for more delicate, even, fine
grained papers. After the fiber is generated, the height field
is incremented in the area occupied by the new fiber with
the DrawFiberIntoHeightField() function. Results of this
algorithm are shown in Figure 2.

We can simulate canvas with this model as well, using the
observation made above that local elements are sufficient to
emulate long threads due to the artifacts inherent in weaving
and the small quality of the characteristic canvas texture pat-
terns. The only change in Algorithm 2 is that we orient the
direction of the fibers manually. Because canvas models are
typically woven in only horizontal and vertical directions,
this simplifies our direction choice to the four cardinal di-
rections which we can choose from randomly at runtime or
allow the user to choose various options for weighting ver-
tical versus horizontal threads. As shown in Figure 2, these
produce fairly realistic results for a variety of canvas models.

The canvas is displayed as a texture mapped quadrilat-
eral. Canvas and paper models produced in this fashion are
suitable for most media simulation techniques or simply for
background textures.

3.2. Canvas impurities and additions

Often, artifacts will occur on canvas or paper models due
either to impurities in the paper production or to the inclu-
sion of additional materials the paper maker may use dur-

c© The Eurographics Association 2005.

M. Kaplan, E. Cohen/ A Generative Model For Dynamic Canvas Motion 51



(a) Paper - Fine Grain (b) Paper - Rough Grain

(c) Canvas - Horizontal - Fine (d) Canvas - Horizontal - Rough

(e) Canvas - Vertical - Fine (f) Canvas - Vertical - Rough

(g) Canvas - Interwoven - Fine (h) Canvas - Interwoven - Rough

Figure 2: Canvas examples: (color scale = 1,1,.7) Various
canvas models produced with our system. Line widths for
fine grains are 1 and for rough grains are 3.

Figure 3: An example of impurities added into our paper
model

(a) Pencil (b) Paint

Figure 4: Examples of media simulations using canvas mod-
els generated with our system. a) shows pencil on paper and
b) shows paint on paper. Note the patterns produced by the
grain of the canvas, especially on the pencil simulation.

ing paper creation such as glitter, leaves, nutmeg, cinammon,
grass, flower petals, metal flakes, essential oils, food color-
ing and coffee grounds. The motion of these artifacts may
provide strong visual cues since they are distinct in the visual
field. Often artists will add materials to create such artifacts
in order to personalize their materials. To simulate this, we
allow the user to specify artifacts to use with each paper and
the artifact density. We store a canonical set of artifacts as
tiny images. At each pixel in these images is stored a height
and color value. We generate a random set of artifact posi-
tions and draw them during the paper creation process into
the height and color field. See Figure 3 for an example.

4. Dynamic Canvas Motion

4.1. Interactive Canvas Construction

There are two problems associated with the canvases pre-
sented in section 3.1. First, the model is mapped to a flat sur-
face and second, it is not generated in real time. Because of
these reasons, it isn’t suitable for solving the dynamic canvas
motion problem. Ideally, we would like a canvas model that
isn’t flat, but that maps to a flat surface uniformly. Also, we
would like to be able to perform walkthroughs at interactive
rates. While interactivity isn’t vital in presenting a general
solution to the dynamic canvas problem it is useful in pro-
ducing a tool that is useable for interactive and real-time ren-
derings. To achieve this, we associate individual fibers with
each object in the scene (including a background model).
Each object in our system is a piecewise linear triangle mesh.
At runtime, a canvas is constructed from fibers placed on the
surface of every visible object.

c© The Eurographics Association 2005.

M. Kaplan, E. Cohen/ A Generative Model For Dynamic Canvas Motion52



The major cost of constructing the canvas model is com-
puting positions and direction vectors for each fiber and cal-
culating the height field. We can compute an approximate
version of this construction by pre-computing fiber values
and then rendering each fiber as an alpha-blended line in
OpenGL. By precomputing the average contribution of each
fiber in the original canvas, we derive a reasonable alpha
value to draw the fibers with. The color of each fiber is just
the κ color value defined in Section 3.1.

In the original canvas model, fibers were placed randomly
within the canvas. When the canvas is in motion, however,
static placement of fibers in a background field may be prob-
lematic. For our interactive model, the system places fibers
randomly on the surface of each triangular face of each
model in the system. Rather than store an actual position
in world coordinates, we represent each fiber position using
barycentric coordinates. The barycentric coordinates of any
fiber allow its position to be reconstructed using the coordi-
nates of the face it lies on. Therefore, as each face is trans-
formed in world space, its fibers will occupy a consistent
position within the spatial domain of its 2D projection.

Our initial distributions of random barycentric coeffi-
cients were quite bad leading to obvious clumps of fibers
near the center of triangles. It is clear that achieving a
uniform distribution of random barycentric coefficients is
very important. See [Tur90] for a method of uniformly
generating barycentric coefficents. At runtime we compute
fiber positions using the precomputed barycentric coordi-
nates and the current position of the face. The other end-
point that defines the fiber is computed by representing the
fiber is given by newposition + (direction ∗ FiberLength)
where (direction ∗ FiberLength) is the (precomputed) di-
rection vector multiplied by the user defined fiber length.
Barycentric coordinates also allow us to handle model defor-
mation, which is useful for animation. Even having obtained
an even distribution of fibers in object space, we cannot guar-
antee that our distribution will be even in screen space due
to perspective projection. As triangles approach grazing an-
gles they may distort and overly weight the end closest to
the viewpoint. In practice however, this effect was rarely
seen and seemed to have little impact, possibly due to the
quantity of triangles used and the relatively small amount of
screen space each one occupied on average.

We scale the number of fibers that each triangle draws
based on its area, measured in screen space. We obtain this
measurement by projecting each vertex onto the screen plane
and solving for the area of each visible triangle. The number
of fibers to draw for each triangle to match the target canvas
tone is FibersToDraw = FibersPerPixel ∗ TriangleArea
where FibersPerPixel = MaxFibers/(CanvasWidth ∗

CanvasHeight). Here, FibersPerPixel is the average num-
ber of fibers drawn per unit area of screen space (defined to
be 1 pixel in our system) and FibersToDraw is the number

of fibers to draw for the triangle. This lets us match the tone
of the canvas model we want to reproduce.

Our system generates a list of N sets of random barycen-
tric coefficients, where N is usually between 5,000-10,000.
We generate a random index into the list for each triangle
which is used as the first fiber to draw. This ensures that each
triangle draws a different set of fibers in order to minimize
repeated patterns in the canvas. Otherwise, each triangle in
the model draws similar sets of fibers, leading to visibly re-
peated patterns over each face which can be visually disori-
enting.

Though we have calculated the correct number of fibers
to draw for each triangle, we will end up with tones that
are too light where one face occludes another if both draw
all of their fibers. Because of this problem, we only display
fibers that sit on a visible portion of a triangle. An ID image
(also known as an item buffer) is rendered that determines
which triangular face is visible in each pixel of the screen.
To control the tone of the canvas, we compare the starting
position of each fiber to be drawn with the ID image. Fibers
are only drawn in pixels that show their parent face. The
effect of this is that only visible geometry will produce fibers
to be drawn. Since fibers are drawn in 2D, each fiber takes
up a constant amount of image space.

Handling fibers at the silhouettes of objects is problem-
atic and we present two methods for doing so, each with
advantages and disadvantages. In the first method, the fibers
are allowed to overlap the edges of object boundaries. This
has the effect of blending adjacent shapes and maintaining
canvas continuity with the tradeoff that a discontinuity may
appear at the boundary during animation due to the contrary
motion of overlapping fibers. These discontinuities are less-
ened with smaller fiber lengths. The second method uses the
stencil buffer to restrict drawing of fibers to the object that
owns them. This method sacrifices canvas continuity at sil-
houette edges in order to get rid of the contrary motion dis-
continuities apprarent in the first method. Also, by drawing
our ID image directly into the stencil buffer, we get a sig-
nificant speedup since we don’t have to read the ID image
buffer during every render.

At runtime, we do the following: 1) Update all camera and
model transformations, 2) Create an ID image, 3) Render our
final image beginning with the dynamic canvas background,
4) Render the models. In our animations, we have rendered
the models and silhouettes with an alpha value of .4 to sim-
ulate the semi-transparent nature of actual media (such as
colored pencil or pastel). The light is positioned at a con-
stant distance from the viewpoint. The accompanying ani-
mations show several paper and canvas models under trans-
formations, using both stencil buffer and ID buffer methods
for drawing silhouette fibers.

The result of these techniques is a canvas model whose
constituent elements motion matches exactly the motion of
the various surfaces in the scene. The significant features

c© The Eurographics Association 2005.

M. Kaplan, E. Cohen/ A Generative Model For Dynamic Canvas Motion 53



Figure 5: Triangles that take up too much of the visual field
are subdivided and new fibers are added using the barycen-
tric coordinates based on the vertices of the child triangles.

“stick” to the models under any type of canvas motion. Ex-
amples of this are shown in Figure 6. Because these results
are designed to work in an animated environment, we refer
the reader to the accompanying videos for a more accurate
demonstration of the results of this paper. Note that the can-
vas seen when any of the animations are paused at any point
is completely plausible.

4.2. Infinite Zoom

To give the user freedom to perform arbitrary camera trans-
formations, the ability to handle an infinite zoom must be
provided. Because all of the fiber values are precomputed,
after the maximum number of fibers, N, have been displayed
on any face, there are no new fibers to display. If that trian-
gle takes up too much of the visual field there will start to
appear large gaps in the canvas where there are not enough
fibers. Note that while [CTP∗03] perform zooms to approx-
imate translation, our model approximates translation auto-
matically since it exists in 3D. Infinite zooms enable accurate
level of detail at any scale.

To handle the infinite zoom, any triangle that requires
more than N fibers is subdivided into four sub-triangles, as
seen in Figure 5. Note that the positions of the triangle ver-
tices are not changed as in many subdivision schemes. New
vertices are added at the midpoint of existing edges. Then,
new fibers are added based on the barycentric coordinates
of the sub-triangles. This allows the continuous generation
of new fibers in any area of the screen where more detail is
needed. The fibers generated with this technique are consis-
tent and reproducible. Furthermore, this method is fast since
generally only a very small number of triangles needs to be
subdivided.

4.3. A Background Model

The canvas model presented in Section 3.1 mapped the tex-
ture to a quadrilateral that filled the visual field completely.
[CTP∗03] showed that rotations of a background field are
matched by warping canvas motion to a cylinder or sphere;
the canvas is esentially mapped onto the sphere of directions
around the viewpoint. As the viewpoint rotates, the spheri-
cal mapping matches the motion fields one would expect to

(a)

(b)

(c)

(d)

Figure 6: Screen shots from several of our dynamic canvas
animations. Each image has different user-defined optionds
applied to the paper/canvas model. While the animations
need to be viewed for the full effect, notice that the canvas
model is completely plausible for each snapshot.

c© The Eurographics Association 2005.

M. Kaplan, E. Cohen/ A Generative Model For Dynamic Canvas Motion54



see of a background field. For this reason, we load a spher-
ical triangular mesh and map the canvas directly onto it. In
our model, the sphere always sits at a constant distance from
the viewpoint (i.e. the center of the sphere is always trans-
lated to the viewpoint) emulating a background at an infinite
distance from the viewer. The canvas sphere is rotated with
the viewpoint, giving the impression of correct background
motion fields under rotation. An error occurs when trans-
lating left/right/up/down since the background stays fixed.
This may be acceptable since we’re approximating a back-
ground at infinity which won’t move much relative to us in
any case. This can be fixed by using a very large sphere that
does move under translations, with the tradeoff that the cam-
era may move outside the background model due to some
transformations.

5. Results

In this paper, we have shown a variety of techniques for con-
structing and animating realistic canvas models.

In Section 3 we presented a model for realistic can-
vas/paper synthesis. Our canvas model gives visually real-
istic results for a variety of paper and canvas types such as
linen, watercolor paper, charcoal paper, drawing paper, can-
vas, various forms of cotton duck and has the potential to ac-
curately simulate many other types of canvas/paper as well.
Though we did not model any surfaces with large repeat-
able structures (such as the lines of a sheet of writing paper),
there is no reason that these could not be included in this
model. Expanding this static model to include larger struc-
tures and more types of complex fiber patterns would prob-
ably be the most relevant area for future work here. Because
our dynamic canvas model relies on many local elements,
very large structures (such as the graph lines on graph pa-
per) may be difficult to achieve using this model.

The 2D generated canvases take about 1-3 seconds to gen-
erate on a 2 Ghz mobile Pentium 4 using unoptimized code.
We typically generated between 200,000-500,000 fibers with
fiber lengths set between 15-45 pixels. Our model is physi-
cally motivated rather than a full physical simulation of pa-
per and canvas creation. Therefore, we feel there is future
work to be done in creating complete phyical simulations of
canvas and paper creation proceses.

The dynamic canvas model presented in Section 4 and us-
ing the ID buffer runs at about 3-5 frames a second on a mo-
bile Pentium 4 2 Ghz using a ATI Radeon IGP 345M with
64 megabytes of shared graphics memory and unoptimized
code. The stencil buffer version runs roughly 2-3 times as
fast since there are no screen buffer reads involved in the
rendering. We believe there are significant speedup gains to
be made by combining our techniques with graphics hard-
ware acceleration, though we have made no tests to support
this claim.

6. Discussion

Because the results in NPR are so often subjective, we eval-
uate the success of our techniques in relation to the criteria
laid out in Section 1. First, any snapshot position of the can-
vas appears to be a plausible canvas simulation. The distribu-
tion of fibers and the tone across the visual field are consis-
tent in both foreground models and background. While the
dynamic canvases did tend to be visually convincing, their
quality was typically not quite as good as the static 2D ver-
sion. Second, motion fields of the canvas and the objects in
the scene are matched exactly. The features of the canvas
appear to “stick” to the surface of the models. This provides
important visual cues to the viewer and does not suffer from
the shower door effect previously described. Third, we have
shown how to view such canvases at any resolution by de-
scribing a fast robust technique for an infinite zoom. Fourth,
every canvas is reproducible. Because the constituent ele-
ments of our canvas model move with scene objects, then
a scene viewed from the same position twice will be repro-
duced no matter what camera motions have previously oc-
cured. This error happened in previous research when the
canvas was stored separately from the scene - because move-
ment of the background did not always match movement of
the foreground or camera, background canvases would be in
different positions for identical scenes.

The final metric, the distortion of canvas elements, is the
hardest to judge. Distortion occurs when the motion of the
background canvas does not match the motion of the fore-
ground objects. Therefore we can measure the distortion as
the difference between motion fields of the canvas and the
scene between any two frames. Our motion fields match
match nearly identically, which is a significant improvement
over previous research, but there are problems where fibers
overlap silhouette boundaries. Because of the the contrary
motion of fibers lying on either side of the silhouette the mo-
tion fields of the opposing fibers may appear to cancel each
other out thus leaving a halo of distortion around objects.
This effect increases with longer fiber lengths. Some users
reported that this effect wasn’t noticeable whereas some
stated that they couldn’t concentrate on anything else during
the animations. This effect is obvious when a single model
is on the screen but seems to be diminished greatly when
viewed in the context of several objects. Using the stencil
buffer solution at sihouettes solved this problem. Since fibers
no longer overlap at silhouettes, there was no disturbance in
the visual field at object boundaries. The tradeoff with this
technique is that the continuity of the canvas at the silhou-
ettes is broken. This may be acceptable especially if silhou-
ettes are drawn as solid lines (as is common in pen and ink
and pencil rendering styles).

Having created a novel dynamic canvas it is relevant to
ask: In what situations should it be used? Is it superior to pre-
vious techniques? While the animations show that the canvas
features move with the models, it is precisely this emphasis

c© The Eurographics Association 2005.

M. Kaplan, E. Cohen/ A Generative Model For Dynamic Canvas Motion 55



on the 3D quality of the models that may not be desireable
in some situations. While these motion cues may be impor-
tant for complex scenes, many NPR techniques that incor-
porate background canvases are essentially 2 1/2D or make
use of simplistic ’toon models. In such cases, emphasizing
the 3D nature of the system may be undesireable and dis-
tracting. In those instances, the work of [CTP∗03] may be
more appropriate since the canvas itself never changes. Our
dynamic canvas seems to be more appropriate for complex
NPR walkthroughs that are fully 3D in nature. The depth
cues that it provides are important in such environments and
do not break the immersive sensation as much as the shower
door effect of previous methods. This implies that there is
a tradeoff between the shower door effect and the 3D em-
phasis of our method, either of which may be appropriate
depending on the application.

Overall, the results of this paper seem to satisfy our initial
goals and criteria, allowing us to generate realistic canvases
simulating the way canvas/paper is actually constructed and
to generate such canvases dynamically in order to match the
motion fields of scenes exactly. We believe this will be a
useful tool for media simulations and in developing NPR an-
imations and walkthroughs that do not break the immersive
sensation due to opposing motion fields of models and back-
ground elements.

References

[CAS∗97] CURTIS C. J., ANDERSON S. E., SEIMS J. E.,
FLEISCHER K. W., SALESIN D. H.: Computer-generated
watercolor. Computer Graphics 31, Annual Conference
Series (Aug. 1997), 421–430.

[CRE01] COHEN E., RIESENFELD R., ELBER G.: Geo-
metric Modeling With Splines. A K Peters, LTD., 2001.

[CTP∗03] CUNZI M., THOLLOT J., PARIS S., DEBUNNE

G., GASCUEL J.-D., DURAND F.: Dynamic canvas
for immersive non-photorealistic walkthroughs. In Proc.
Graphics Interface (june 2003), A K Peters, LTD.

[DAJ∗97] D.N.WOOD, A.FINKELSTEIN, J.F.HUGHES,
C.E.THAYER, D.H.SALESIN: Multiperspective panora-
mas for cel animation.

[Dan99] DANIELS E.: Deep canvas in disney’s tarzan. In
ACM SIGGRAPH 99 Conference abstracts and applica-
tions (1999), ACM Press, p. 200.

[GG01] GOOCH B., GOOCH A.: Non-Photorealistic Ren-
dering. AK Peters, Ltd., 2001.

[GS94] G.WINKENBACH, SALESIN D.: Computer-
generated pen-and-ink illustration. In SIGGRAPH (1994).

[HP00] HERTZMANN A., PERLIN K.: Hertzmann, a., and
perlin, k. painterly rendering for video and interaction.
proceedings of npar 2000, 7–12. In Painterly rendering
for video and interaction (2000).

[KGC00] KAPLAN M., GOOCH B., COHEN E.: Inter-
active artistic rendering. In Proceedings of NPAR 2000
(2000), pp. 67–74.

[Mei96] MEIER B. J.: Painterly rendering for animation.
In SIGGRAPH (1996), vol. 30, pp. 477–484.

[MSAB94] M.SALISBURY, SALESIN D., ANDERSON S.,
BARZEL R.: Interactive pen-and-ink illustration. In SIG-
GRAPH (1994).

[Per85] PERLIN K.: An image synthesizer. In Proceedings
of the 12th annual conference on Computer graphics and
interactive techniques (1985), ACM Press, pp. 287–296.

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKEL-
STEIN A.: Real-time hatching. In SIGGRAPH 2001,
Computer Graphics Proceedings (2001), Fiume E., (Ed.),
pp. 579–584.

[SB99] SOUSA M. C., BUCHANAN J. W.: Computer-
generated graphite pencil rendering of 3D polygonal
models. In Computer Graphics Forum (Eurographics
’99) (1999), Brunet P., Scopigno R., (Eds.), vol. 18(3),
The Eurographics Association and Blackwell Publishers,
pp. 195–208.

[Toa83] TOALE B.: The Art of Papermaking. Sterling Pub-
lishing, 1983.

[Tur90] TURK G.: Generating random points in triangles.
In Graphics Gems I, Glassner A., (Ed.). Academic Press,
1990.

c© The Eurographics Association 2005.

M. Kaplan, E. Cohen/ A Generative Model For Dynamic Canvas Motion56


