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Abstract

Demand for high-quality 3D content has been exploding recently, ow-
ing to the advances in 3D displays and 3D printing. However, due
to insufficient 3D content, the potential of 3D display and printing
technology has not been realized to its full extent. Techniques for
capturing the real world, which are able to generate 3D models from
captured images or videos, are a hot research topic in computer graph-
ics and computer vision. Despite significant progress, many methods
are still highly constrained and require lots of prerequisites to suc-
ceed. Marker-less performance capture is one such dynamic scene
reconstruction technique that is still confined to studio environments.
The requirements involved, such as the need for a multi-view camera
setup, specially engineered lighting or green-screen backgrounds, pre-
vent these methods from being widely used by the film industry or
even by ordinary consumers.

In the area of scene reconstruction from images or videos, this thesis
proposes new techniques that succeed in general environments, even
using as few as two cameras. Contributions are made in terms of re-
ducing the constraints of marker-less performance capture on lighting,
background and the required number of cameras. The primary theo-
retical contribution lies in the investigation of light transport mech-
anisms for high-quality 3D reconstruction in general environments.
Several steps are taken to approach the goal of scene reconstruction in
general environments. At first, the concept of employing inverse ren-
dering for scene reconstruction is demonstrated on static scenes, where
a high-quality multi-view 3D reconstruction method under general un-
known illumination is developed. Then, this concept is extended to
dynamic scene reconstruction from multi-view video, where detailed
3D models of dynamic scenes can be captured under general and even
varying lighting, and in front of a general scene background without
a green screen. Finally, efforts are made to reduce the number of
cameras employed. New performance capture methods using as few
as two cameras are proposed to capture high-quality 3D geometry in
general environments, even outdoors.
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Kurzfassung

Die Nachfrage nach qualitativ hochwertigen 3D Modellen ist in letzter
Zeit, bedingt durch den technologischen Fortschritt bei 3D-Wieder-
gabegeräten und -Druckern, stark angestiegen. Allerdings konnten
diese Technologien wegen mangelnder Inhalte nicht ihr volles Poten-
tial entwickeln. Methoden zur Erfassung der realen Welt, welche 3D-
Modelle aus Bildern oder Videos generieren, sind daher ein
brandaktuelles Forschungsthema im Bereich Computergrafik und Bild-
verstehen. Trotz erheblichen Fortschritts in dieser Richtung sind viele
Methoden noch stark eingeschränkt und benötigen viele Vorausset-
zungen um erfolgreich zu sein. Markerloses Performance Capturing
ist ein solches Verfahren, das dynamische Szenen rekonstruiert, aber
noch auf Studio-Umgebungen beschränkt ist. Die spezifischen An-
forderung solcher Verfahren, wie zum Beispiel einen Mehrkameraauf-
bau, maßgeschneiderte, kontrollierte Beleuchtung oder Greenscreen-
Hintergründe verhindern die Verbreitung dieser Verfahren in der
Filmindustrie und besonders bei Endbenutzern.

Im Bereich der Szenenrekonstruktion aus Bildern oder Videos schlägt
diese Dissertation neue Methoden vor, welche in beliebigen Umgebun-
gen und auch mit nur wenigen (zwei) Kameras funktionieren. Dazu
werden Schritte unternommen, um die Einschränkungen
bisheriger Verfahren des markerlosen Performance Capturings im Hin-
blick auf Beleuchtung, Hintergründe und die erforderliche Anzahl von
Kameras zu verringern. Der wichtigste theoretische Beitrag liegt
in der Untersuchung von Licht-Transportmechanismen für hochwer-
tige 3D-Rekonstruktionen in beliebigen Umgebungen. Dabei werden
mehrere Schritte unternommen, um das Ziel der Szenenrekonstruktion
in beliebigen Umgebungen anzugehen. Zunächst wird die Anwendung
von inversem Rendering auf die Rekonstruktion von statischen Szenen
dargelegt, indem ein hochwertiges 3D-Rekonstruktionsverfahren aus
Mehransichtsaufnahmen unter beliebiger, unbekannter Beleuchtung
entwickelt wird. Dann wird dieses Konzept auf die dynamische Szenen-
rekonstruktion basierend auf Mehransichtsvideos erweitert, wobei de-
taillierte 3D-Modelle von dynamischen Szenen unter beliebiger und
auch veränderlicher Beleuchtung vor einem allgemeinen Hintergrund
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ohne Greenscreen erfasst werden. Schließlich werden Anstrengungen
unternommen die Anzahl der eingesetzten Kameras zu reduzieren.
Dazu werden neue Verfahren des Performance Capturings, unter Ver-
wendung von lediglich zwei Kameras vorgeschlagen, um hochwertige
3D-Geometrie im beliebigen Umgebungen, sowie im Freien, zu er-
fassen.
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Chapter 1

Introduction

In the last decades, computer generated content has become very popular in the

entertainment industry, e.g. films or video games. Especially for some dynamic

content, like virtual characters, these scenes are particularly important, but dif-

ficult to model. Traditionally, to create such content, an artist would need to

create the model manually, and then hand-craft the animation, the high-quality

surface detail and even the surface material properties, which are painstakingly

time-consuming processes. New techniques to improve both the quality of the

content as well as the ease of creation are in strong demand from the industry.

Therefore, the technology to create such content has been a hot research area in

computer graphics and computer vision for many years. Real world capture from

images or videos is one of the most important techniques able to create realistic

models for both static and dynamic scenes.

As one of the real-world capture methods for dynamic scenes, performance

capture has achieved great success in recent years, which can be generally dis-

tinguished into marker-based methods and marker-less methods. Marker-based

methods use actively placed fiducial markers to track the 3D positions of these

sparse scene points in order to estimate the coarse skeletal motion or a coarse

3D model. The requirement to use markers severely limits the range of use for

these methods. In comparison, marker-less performance capture methods are

able to capture much richer and far more expressive models from multiple video

recordings Bradley et al. (2010); de Aguiar et al. (2008); Gall et al. (2009); Vlasic

et al. (2008), since they are able to reconstruct detailed motion, dense dynamic

geometry and even rich surface appearance. However, these methods have not

yet found their way into many practical feature film productions. One of the

major reasons is that most existing methods are still limited to work in a studio
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1.1 Overview

environment, with controlled lighting, controlled background, and an expensive

and complicated multi-view camera setup, which makes these methods difficult

to deploy on set. The ability to capture detailed 3D models of dynamic scenes

in a natural and general environment, e.g. on the movie production set, rather

than in a separate stage in the studio, would have a variety of important benefits

and would pave the way for many relevant applications of marker-less perfor-

mance capture. Moreover, a performance capture method which works with just

a lightweight setup, i.e. using as few cameras as possible, would further make the

technique applicable not only for professional movie producers, but also as a tool

which can be generally employed by average consumers or home users to capture

myriad 3D content from their daily lives.

In this thesis, we propose new techniques in the area of scene reconstruction

from images or videos, especially new techniques in marker-less performance cap-

ture, that are able to capture high-quality 3D geometry without the requirements

for controlled lighting or controlled background, and that succeed even using a

very sparse camera setup. Insights are gained from inverse rendering, which tries

to infer lighting, geometry or reflectance from captured images. The main techni-

cal contribution of this thesis is to propose new algorithmic solutions for inverse

rendering at previously unseen complexity in general environments, and advance

techniques in 3D shape reconstruction, high-quality dynamic detail estimation

and skeletal motion tracking. An overview of these techniques is given next.

1.1 Overview

This thesis proposes new scene reconstruction methods which succeed in less

constrained or even general environments. By investigating mechanisms for light

transport in general environments, we are aiming to make high-quality perfor-

mance capture succeed for general scenes. We approach this goal in several steps.

We first prove that the concept of inverse rendering works for the reconstruction

of static scenes from multi-view input, where a high-quality shape reconstruction

method that succeeds under general unknown illumination is developed. We then

extend this concept to dynamic scene reconstruction, still indoors and using eight

or more cameras but under fewer constraints. Finally, we push towards reducing

the number of cameras required, using as few as two cameras for motion and

shape reconstruction in general environments, even outdoors.

2



1. INTRODUCTION

1.1.1 Static 3D Reconstruction from Multi-view Images
under General Illumination

In part I, we investigate the concept of inverse rendering for scene reconstruction

on static scenes, and propose a method for high-quality geometry reconstruction

from multi-view images by combining multi-view stereo and shape-from-shading

(SfS) under general and uncontrolled illumination. As is known from previous

literature, multi-view stereo reconstructs 3D geometry well for sufficiently tex-

tured scenes, but often fails to recover high-frequency surface detail, particularly

for smoothly shaded surfaces. Alternatively, shape-from-shading methods can

recover fine detail from shading variations. However, most shading-based esti-

mation methods only succeed under very restricted or controlled illumination,

and it is also non-trivial to apply SfS alone to multi-view data. In this part, by

assuming Lambertian surface reflectance with uniform albedo, inverse rendering

is exploited to develop a new method, which combines the stereo cue and shading

cue in an appropriate way, for high-quality 3D reconstructions under general and

uncontrolled illumination. The high quality results generated by this method

demonstrate the validity of our concept.

1.1.2 Performance Capture from Multi-view Video under
General Illumination

In part II, we extend the use of inverse rendering to dynamic scene reconstruc-

tion, specifically to full-body performance capture, using a multi-view camera

setup. Two steps are taken to reconstruct detailed models of dynamic scenes in a

general environment. At first, in Chapter 5, we exploit the inverse rendering for

high-frequency geometric detail estimation in a spatio-temporally coherent way

for Lambertian surfaces with spatially varying albedos. Previous performance

capture methods de Aguiar et al. (2008); Vlasic et al. (2008) show plausible de-

formations up to medium scale detail, but often lack true detail at the finest

level. In these methods, a static laser scan is usually deformed to mimic the

motion of the real scene, but any fine scale detail thus obtained appears baked

into the surface in the rest of the frames and does not capture the true surface

detail, e.g. soft wrinkles on clothes. In comparison, our method takes a step

forward by capturing the true fine-scale dynamic detail. Besides, the ability to

work under general and uncontrolled illumination also substantially relaxes the

constraint on specially engineered lighting, e.g. a light stage Vlasic et al. (2009),

3



1.1 Overview

for high-quality performance capture. However, our method still employs an

off-the-shelf performance capture method Gall et al. (2009) for low-frequency ge-

ometry reconstruction, which is constrained by the need for constant lighting and

a green-screen background.

Thus, in Chapter 6, we present a new performance capture method to work

wholly under general and varying illumination, and using a general background

without a green screen. This is achieved by analyzing shading information for

skeletal motion tracking and low-frequency geometry reconstruction, as well as

high-frequency geometry estimation. The main technical contribution is that,

by an analysis-through-synthesis framework, differential 3D human pose changes

from the previous time step can be expressed in terms of constraints on the

visible image displacements derived from shading cues, surface albedos and scene

illumination. By assuming the Lambertian model of reflectance, the incident

illumination at each frame is estimated jointly with pose parameters, enabling

the method to work under varying lighting, where the previous methods Gall

et al. (2009) would fail. In addition, the proposed method is independent of

image silhouettes, and is thus applicable in cases where background segmentation

cannot be easily performed. By combining it with a dynamic shape refinement

step, a new high-quality performance capture method is developed to work in a

general environment, even though a multi-view camera setup is still needed.

1.1.3 Binocular Performance Capture

Our new ability to estimate lighting, shape and motion from video in general

environments enables us to improve many elementary algorithmic aspects of per-

formance capture. In part III, we show how these algorithms help us to drastically

reduce the number of input cameras needed, while still being able to reconstruct

detailed 3D models in general unconstrained scenes, even outdoors.

In Chapter 7, a new binocular facial performance capture method is featured.

In this method, the dynamic 3D geometry of the facial performance is firstly

reconstructed on a coarse level by tracking the surface of a face template based

on scene-flow constraints. Then, an improved shape refinement algorithm, which

is tailored specifically for face capture, is introduced to obtain the fine-scale de-

tail. The proposed method can capture high-quality geometry of expressive facial

performances in an uncontrolled environment, even from a hand-held consumer

stereo camera under changing illumination outdoors.

4



1. INTRODUCTION

In Chapter 7, efforts are made to reduce the number of cameras needed to

capture full body performances in a general environment. In detail, we propose a

new full-body performance capture method that is able to track skeletal motion

and detailed surface geometry of one or more actors from footage recorded with

a stereo rig which is allowed to move. This method succeeds in general sets with

uncontrolled background and uncontrolled illumination. In this method, we also

generalize the Lambertian reflectance assumption to general surface reflectance,

which also models the non-Lambertian reflectance, to estimate the skeletal motion

and to refine the fine scale surface geometry. We also develop a new foreground

segmentation approach that combines appearance, stereo and pose tracking re-

sults to segment out actors from the background. Appearance, segmentation and

motion cues are combined in a new pose optimization framework that is robust

under uncontrolled lighting, uncontrolled background and very sparse camera

views. This is the first method able to achieve high-quality performance capture

under such unconstrained conditions, which approach typical movie production

sets.

1.1.4 Other Applications

In part IV, we introduce two applications which demonstrate the techniques pro-

posed in previous chapters. One is relightable performance capture, which also

captures the surface reflectance in addition to the dynamic geometry. The other

is to capture dynamic face geometry from only monocular video. As these two

applications contain techniques beyond the scope of this thesis, we will only focus

on the parts related to the thesis.

1.2 Contributions

The performance capture methods presented in this thesis have been presented

at international conferences and published in international journals Garrido et al.

(2013); Li et al. (2013); Valgaerts et al. (2012b); Wu et al. (2011a,b, 2012, 2013).

This thesis presents an extended version of these methods (Chapters 4- 9). To

sum up, the key contributions are:

� A new shape reconstruction method that combines multi-view stereo and

shape-from-shading under general and uncalibrated illumination to achieve

very high-quality 3D reconstructions, which is much better than the stereo
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1.2 Contributions

based approaches and rivals laser range scans (Chapter 4). Specifically, a

new multi-view shading constraint is presented. An adaptive anisotropic

smoothness term for preserving high-frequency details while filtering out

noise is proposed. In addition, an adaptive computation approach is devel-

oped to take the complexity of lighting and visibility estimates into account

at each surface point to achieve a good compromise between efficiency and

accuracy. This work has been published in Wu et al. (2011b).

� A new method for adding spatio-temporally coherent millimeter scale sur-

face geometry to coarse dynamic 3D scene models captured from multi-view

video under general and unknown illumination (Chapter 5). This is the first

method able to capture the true fine dynamic surface detail under general

and unknown illumination. The time-varying incident illumination, time-

varying and spatially varying surface albedo, and time-varying geometry

detail, are reconstructed without using specially engineered and calibrated

lights in the scene. The spatio-temporal information in the scene is ex-

ploited through soft temporal priors in a maximum a posteriori probability

inference framework, which improves reconstruction quality but permits

variations in the data. This work has been published in Wu et al. (2011a).

� A new theoretical formulation of performance capture that simultaneously

recovers human articulated motion, the surface shape and time-varying inci-

dent illumination, by minimization of shading-based error (Chapter 6). This

method is able to reconstruct both skeletal motion and finely detailed time-

varying 3D surface geometry for human performances that are recorded

under general and changing illumination and in front of a less constrained

background, where previous methods would fail. This work has been pub-

lished in Wu et al. (2012).

� A new passive facial performance capture method that is able to recon-

struct high-quality dynamic facial geometry from only a single pair of stereo

cameras (Chapter 7). The proposed method achieves detailed and spatio-

temporally coherent results for expressive facial motion in both indoor and

outdoor scenes, even from low quality input images recorded with a hand-

held consumer stereo camera. It is the first method to capture facial per-

formances of such high quality from a single stereo rig. This work has been

published in Valgaerts et al. (2012b).
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1. INTRODUCTION

� A new performance capture method which is able to capture full body

skeletal motion and detailed surface geometry of one or multiple actors us-

ing only a single stereo pair of video cameras, which is permitted to move

during recording (Chapter 8). It is the first method to apply knowledge

about the incident illumination and a detailed spatially-varying BRDF of

each actor in a scene for both skeletal pose estimation and for reconstruc-

tion of detailed surface geometry. It succeeds under uncontrolled lighting,

non-frontal body poses of the actors, scenes in which actors wear general

apparel with non-Lambertian reflectance, and it also succeeds in front of

general scene backgrounds where classical background subtraction would be

infeasible. This work has been published in Wu et al. (2013).

1.3 List of Publications

The work presented in this thesis has been published in the following papers:

Wu et al. (2011b) Chenglei Wu, Bennett Wilburn, Yasuyuki Matsushita,

Christian Theobalt. High-quality shape from multi-view stereo and shading

under general illumination. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 969-976, 2011.

Wu et al. (2011a) Chenglei Wu, Kiran Varanasi, Yebin Liu, Hans-Peter Sei-

del, Christian Theobalt. Shading-based dynamic shape refinement from

multi-view video under general illumination. In IEEE International Con-

ference on Computer Vision (ICCV), pp. 1108-1115, 2011.

Wu et al. (2012) Chenglei Wu, Kiran Varanasi, Christian Theobalt. Full

body performance capture under uncontrolled and varying illumination: a

shading-based approach. European Conference on Computer Vision (ECCV),

Part IV, LNCS 7575, pp. 748-761, 2012.

Valgaerts et al. (2012b) Levi Valgaerts, Chenglei Wu, Andres Bruhn, Hans-

Peter Seidel, Christian Theobalt. Lightweight binocular facial performance

capture under uncontrolled lighting. In ACM Transactions on Graphics

(Proc. SIGGRAPH Asia), 31(6), Article 187, 2012.

Wu et al. (2013) Chenglei Wu, Carsten Stoll, Levi Valgaerts, Christian Theobalt.

On-set performance capture of multiple actors with a stereo camera. In
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ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 32(6), Article

161, 2013.

Li et al. (2013) Guannan Li, Chenglei Wu, Carsten Stoll, Yebin Liu, Kiran

Varanasi, Qionghai Dai, Christian Theobalt. Capturing relightable human

performances under general uncontrolled illumination. In Computer Graph-

ics Forum (Proc. Eurographics), 32(2), pp. 275-284, 2013.

Garrido et al. (2013) Pablo Garrido, Levi Valgaerts, Chenglei Wu, Chris-

tian Theobalt. Reconstructing detailed dynamic face geometry from monoc-

ular video. In ACM Transactions on Graphics (Proc. SIGGRAPH Asia),

32(6), Article 158, 2013.
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Chapter 2

Preliminaries

In this chapter we introduce some fundamental concepts for the thesis, including

the mathematical description of forward and inverse rendering, the introduction

of scene flow and its estimation, the skeleton and the pose parameters, and the

surface skinning. Firstly, in Sec. 2.1, we describe the basic equation, i.e. the re-

flection equation, for rendering a scene, given the illumination, the geometry and

the reflectance. Then, in Sec. 2.1.1, we show how to simplify this equation by

parameterizing its components with some basis function, i.e. spherical harmonics

(SH), and by assuming the reflectance to be Lambertian. In detail, two simpli-

fied equations are derived, with applications to two inverse rendering problems,

i.e. lighting estimation and geometry estimation. After that, in Sec. 2.1.2 we in-

troduce the generalized form of the SH-parameterized reflection equation, which

extends the Lambertian assumption to a more general reflectance function. In

Sec. 2.2, scene flow, as well as how to estimate it, are explained. Then, in Sec. 2.3,

the skeleton for human motion capture and its pose parameters are explained.

Sec. 2.4 introduces the surface skinning.

2.1 Reflection Equation

In order to employ inverse rendering for scene reconstruction, we need to have

an understanding of the process of the light transport, namely how images are

generated. Fig. 2.1 illustrates a simple example for light transport, where a ray

of light hits the surface, gets reflected and is then captured by a camera. Fully

realistic images can be synthesized using the rendering equation Kajiya (1986).

While it is too complex to directly employ the rendering equation, assumptions

can be made to simplify it. By assuming all objects in the scene are non-emitters
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2.1 Reflection Equation

Figure 2.1: An example of light transport 1.

and the light sources are infinitely distant, the light transport can be described

by the reflection equation Cohen et al. (1993), which is described as:

B(q,ωo) =

∫
Ω

L(ωi)V (q,ωi)ρ(ωi,ωo) max(ωi · n, 0)dωi, (2.1)

where B(q,ωo) is the reflected radiance on the surface point q ∈ R3, and ωi
and ωo are the negative incoming light direction and the outgoing direction, both

defined in spherical coordinates with respect to the surface normal n. The sym-

bol Ω represents the domain of all possible directions, and L(ωi) represents the

incident lighting. V (q,ωi) is a binary function that defines whether light coming

from direction ωi is visible by point q. ρ(q,ωi,ωo) is the bidirectional reflectance

distribution function (BRDF), which defines how light is reflected on the sur-

face and takes the ratio of reflected radiance existing along ωo to the irradiance

incident on the surface from direction ωi. A general BRDF usually consists of

two components: the diffuse component and the specular component. The diffuse

component assumes uniform reflection of the light with no directional dependence.

1en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
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2. PRELIMINARIES

Figure 2.2: Diffuse component and specular component of BRDF. The left image
is the illustration of the diffuse component. The right image is the illustration of
the specular component. The red line is the incoming light. The blue lines are the
reflected irradiance, the length of which describes its intensity. n is the surface
normal. While the diffuse component reflects the light uniformly, the reflected
irradiance from the specular component is clustered.

The specular component is responsible for view-dependent reflection, e.g. glossy

reflection. If defining the incident direction ωi = (θi, φi) and outgoing direction

ωo = (θo, φo), Fig. 2.2 shows an example for the diffuse component and specular

component, respectively. Obviously, for the diffuse component, the reflected ra-

diance does not depend on the viewing direction. For the specular component,

the reflected radiance changes according to differing viewing angles.

As we are more interested in inverse rendering, the problem here is how to

make use of this equation to estimate each component, especially the geometry,

from the captured images. However, the integral computation in Eq. (2.1) and

the complexity of the BRDF make it prohibitive to directly employ it for inverse

rendering. To follow, we will introduce how to simplify the BRDF assumption,

and exploit some basis function to circumvent the integral computation.

2.1.1 Lambertian Objects

In order to simplify Eq. (2.1), here we assume the surface reflectance to be dif-

fuse and take Lambert’s law to represent the diffuse reflectance, i.e. the BRDF

ρ(ωi,ωo) = kd, where kd is a constant value and is called the diffuse albedo.

Based on these assumptions, the reflection equation can be simplified Basri &

Jacobs (2003); Ramamoorthi & Hanrahan (2001c). Thus, the reflection equation
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2.1 Reflection Equation

Figure 2.3: The first three orders of real spherical harmonics (l = 0, 1, 2) cor-
responding to a total of 9 basis functions. These images show only the front
of the sphere, with green denoting positive values and blue denoting negative
values. Ramamoorthi (2005)

for a Lambertian surface is described as:

B(q) = kd(q)

∫
Ω

L(ωi)V (q,ωi) max(ωi · n, 0)dωi, (2.2)

where the symbols have the same meanings as in Eq. (2.1).

To circumvent the integral computation, one way is to employ orthogonal basis

functions to represent each term inside the integral. One naive basis function is

the Fourier basis function, but it has been found that the Spherical Harmonics

(SH) basis function is more suitable to represent the function that is defined

with respect to spherical variables Ramamoorthi & Hanrahan (2004). As in

Ramamoorthi & Hanrahan (2001c), we are using the SH representation here. In

other words, any function defined in the spherical domain can be represented

using a series of SH functions, while the weight for each basis function is called

the SH coefficient. The first three orders of SH are shown in Fig. 2.3, where

Ylm(θ, φ) is the spherical harmonic basis function of the spherical coordinates θ

and φ. They can also be written as polynomials of the Cartesian components

12



2. PRELIMINARIES

x, y, z, with x2 + y2 + z2 = 1. The indices of the SH function obey l ≥ 0 and

−l ≤ m ≤ l. Thus, there are 2l + 1 basis functions for a given order l. In order

to use the orthogonality of SH, we define Lv(ωi) =L(ωi)V (q,ωi) as the visible

lighting, rewriting the reflection equation as

B(q) = kd(q)

∫
Ω

Lv(ωi) max(ωi · n, 0)dωi. (2.3)

Note that the function max(ωi ·n, 0) is rotationally symmetric around the surface

normal n, and the integral in Eq. (2.3) can be seen as a convolution between the

visible lighting term Lv(ωi) and the clamped cosine term max(ωi · n, 0). Then,

representing both terms with SH, and according to the Funk-Hecke theorem Groe-

mer (1996), the SH coefficients of B can be obtained as

Blm = kd glm ρ̂dl, (2.4)

where Blm, glm and ρ̂dl are the SH coefficients of the reflected irrandiance B(q),

the lighting term and the clamped cosine term. As the clamped cosine term is

known, its SH coefficients can be pre-computed. Fig. 2.4 shows the SH coefficients

for the first 20 orders. It demonstrates that the coefficients decay very rapidly

with increasing the order. From a signal processing perspective, the clamped

cosine function acts like a low-pass filter. This means that a low order of SH

representation for B(n) can achieve a very high representation accuracy, demon-

strating the efficiency of employing SH representation for the reflected radiance

B(n) on Lambertian surfaces. Then, with the SH coefficients Blm known, the

reflected radiance B(q) can be obtained as

B(α, β) = kd

ND∑
l=0

l∑
m=−l

Λl glm ρ̂dl Ylm(α, β), (2.5)

where (α, β) are the spherical angular parameters of n, ND is the SH order, and

Ylm is the SH basis function. Λl is a scalar and is defined as

Λl =

√
4π

2l + 1
. (2.6)

As explained, a low order ND is enough to obtain a high-accuracy representa-

tion using SH. Considering that the visible lighting term may have large high-

frequency components, we take ND = 4 in this thesis. Eq. (2.5) is much simpler

than the original reflection equation and is very favorable for inverse rendering.
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2.1 Reflection Equation

Figure 2.4: SH coefficients of the clamped cosine function. Note that odd terms
with l > 1 are equal to zero. As l increases, the coefficients decay rapidly. Ra-
mamoorthi (2005)

Given the visible lighting and the captured radiance from the images, the surface

normal orientation can be efficiently inferred using this equation. In detail, in

Chapters 4, 5, 6, and 7, we employ Eq. (2.5) to inversely estimate the surface

normal or the geometry of the scene from image or video input.

Another way to simplify the reflection equation in Eq. (2.2) is to define

T (q,ωi)=V (q,ωi) max(ωi ·n, 0), and to represent L(ωi) and T (q,ωi) with SH.

According to the orthogonality of the SH basis function, the reflection equation

becomes

B(q) = kd(q)

ND∑
l=0

l∑
m=−l

Llm Tlm(q), (2.7)

where Llm and Tlm(q) are the SH coefficients of L(ωi) and T (q,ωi). In this

equation, all the surface points share the same global lighting environment, which

is represented by a set of SH basis functions here. Thus, given the geometry
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and taking the captured image radiance as input, the lighting can be inversely

estimated using this equation. The inverse lighting using Eq. (2.7) is exploited

in Chapters 4, 5, 6, and 7.

2.1.2 General BRDF

General BRDF consists of not only a diffuse part, but also a specular part. As

the diffuse part is modeled as Lambertian reflectance, the specular part can be

represented by a bunch of different models Ngan et al. (2005). In this section, we

focus on the specular part of the BRDF, as the irradiance from the diffuse part

can be efficiently computed with simplified equations in Sec. 2.1.1. For specular

component, the Phong reflectance model Phong (1975) is widely used owing to

its simplicity. It is described as follows:

ρs(ωi,ωo) =
s+ 1

2π
(r · ωo)s, (2.8)

where s is the shininess value, and r = 2(n · ωi)n− ωi is the reflected direction

of ωi about the normal n.

Although the Phong model is widely employed in many computer graphics

applications, it is not physically accurate. The Torrance-Sparrow model, which

is derived by modeling physical reflection on the surface as many microfacet re-

flections, is more accurate when representing real materials Ngan et al. (2005).

The Torrance-Sparrow model usually consists of three terms, including the mi-

crofacet distribution term, the geometric attenuation term and the Fresnel term.

The geometric attenuation term accounts for the self-shadowing due to the micro-

facets. The Fresnel term describes how much light is reflected and how much is

refracted. Here, we ignore the geometric attenuation term and the Fresnel term,

and a simplified Torrance-Sparrow model is described as

ρs (ωi,ωo) =
ks

4πσ2
b cos θi cos θo

exp
(
−(θh/σb)

2
)

, (2.9)

where ks is the specular albedo; θi, θo and θh are the incoming light direction,

the viewing direction and the half angle (of the angle between the light direction

and the viewing direction), all defined with respect to the surface normal; and σb
is the surface roughness. We employ this simplified Torrance-Sparrow model for

the specular component of the BRDF in Chapter 8.

With a general reflectance function, the reflection equation can also be simi-

larly represented with SH. For a general BRDF without any parametric modeling
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2.2 Scene Flow Estimation

other than isotropic, the rephrased equation of the reflectance equation has the

form

B (α, β, θo, φo) =

FB∑
l=0

l∑
m=−l

PB∑
p=0

p∑
q=−p

glm ρ̂lpqD
l
mq(α) eImβ Ypq(θo, φo) , (2.10)

where (α, β) and (θo, φo) are the spherical angular parameters of n and ωo, FB
and PB are the SH orders, and Llm and ρ̂lpq are the SH coefficients of Lv(ωi) and

ρ̂ (ωi,ωo). Dl
mq(α) is a matrix modeling how a spherical harmonic transforms

under rotation into direction α, and Ypq(θo, φo) is the SH basis function. Note

that while (α, β) is defined in global coordinates, (θo, φo) is defined in local surface

coordinates, with the normal direction as north pole.

Eq. (2.10) is much more complicated than Eq. (2.5) due to the complexity

of the general isotropic BRDF. Due to the complicated formula of Dl
mq(α) Ra-

mamoorthi & Hanrahan (2004), it is still very challenging to apply Eq. (2.10)

directly for inverse rendering. However, if the BRDF has a central direction,

e.g. the simplified Torrance-Sparrow model, Eq. (2.10) can be further simplified.

Specifically, taking the form of Eq. (2.9) for the reflectance function, a rephrased

reflection equation in the frequency domain, having a form similar to the Lam-

bertian case, can be derived:

Bs(α
′, β′) =

NS∑
l=0

l∑
m=−l

Λl Llm ρ̂sl Ylm(α′, β′) , (2.11)

where ρ̂sl are the SH coefficients of the properly reparameterized BRDF, NS is

the order of SH, and (α′, β′) is the reparameterized spherical angle of (α, β) with

respect to the central direction of BRDF. The SH order in Eq. (2.11) is usually

higher than the Lambertian case because the frequency spectral of general BRDF

will not always be low-pass. In this thesis, we take FS = 10 and will reduce it

accordingly when BRDF parameters can be determined.

2.2 Scene Flow Estimation

Finding the corresponding pixels in multiple frames, which is usually called corre-

spondence finding, is also one of the key problems in performance capture. Based

on the photo-consistency constraint, which assumes the correspondences share

the same color, optical flow describes a 2D displacement field providing dense

correspondences between two images Brox et al. (2004); Horn & Schunck (1981).
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Figure 2.5: Epipolar constraint. OL and OR are the two camera centers. xL and
xR are the projections of the 3D point X in the two cameras. eL and eR are the
intersections of the baseline OLOR with the two camera planes, and are called
epipoles. X1, X2, X3 are 3D points lying on the optical ray OLxL. Given point
xL in the left camera, its correspondence xR in the right camera is constrained
to lie on the projection of the optical ray OLxL, i.e. the epipolar line eRxR.

Optical flow is usually employed to capture the 2D motion field between two

consecutive frames in a video.

With a stereo camera setting as shown in Fig. 2.5, the corresponding points in

the two images cannot lie in arbitrary locations. In fact, they are constrained by

the epipolar constraint. In Fig. 2.5, OL and OR are the camera center positions for

the left and right camera respectively. The point xR corresponding to the point

xL is actually constrained to lie on a specific line (red line in Fig. 2.5), which is

called the epipolar line Hartley & Zisserman (2000). This constraint is called the

epipolar constraint, which relates corresponding points in one pair of images by a

3×3 matrix F , i.e. the fundamental matrix. From the estimated correspondences

between the left view and the right view, a 3D model can be reconstructed for

each frame. With the computed optical flow between two consecutive frames, a

3D motion field can then be obtained; this is called scene flow Vedula et al. (2005).

Scene flow describes how a surface at the current frame moves to the next frame

in 3D. Fig. 2.6 shows an estimated scene flow on a 3D face surface. To follow, we

introduce how to estimate the scene flow through a variational framework.
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2.2 Scene Flow Estimation

Figure 2.6: Estimated scene flow overlaid with a 3D face surface (red: large
motion; blue: small motion).

Fig. 2.7 shows scene flow estimation for two consecutive stereo frames. To

compute the scene flow between the time instances t and t+1, we employ a scene

flow estimation method similar to Valgaerts et al. (2010). In contrast to Valgaerts

et al. (2010), we assume the calibration of the stereo system is known here so we

can use the known fundamental matrix to guide the correspondence search.

The scene flow method estimates a 3D reconstruction and 3D displacement

field by establishing correspondences in the image domain. It is based on the four

frame case depicted in Fig. 2.7. As one can see, all possible constraints between

two consecutive stereo pairs (I t0, I
t
1) at time t and (I t+1

0 , I t+1
1 ) at time t+ 1 can be

expressed in terms of three unknown optical flow fields: the motion flow w1, the

stereo flow w2 and the difference flow w3. We compute these flows wi = (ui, vi)
>,

i = 1, 2, 3, by minimizing an energy function of the form:

E =

∫
Ω

( 4∑
i=1

E i
D︸ ︷︷ ︸

data

+
2∑
i=1

αiE
i
G︸ ︷︷ ︸

geometry

+
3∑
i=1

βiE
i
S︸ ︷︷ ︸

smoothness

)
dx . (2.12)

The four data terms E i
D encode constancy assumptions between all frames, the

three smoothness terms E i
S assume the desired flows to be piecewise smooth and
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Figure 2.7: Scene flow estimation.

the geometry terms E i
G model the geometric relations between the two stereo

pairs. All deviations from model assumptions are weighted by positive weights αi
and βi and are integrated over the rectangular image domain Ω of the reference

frame I t0(x), x = (x, y)>. Next, we will introduce these terms in detail.

Data Terms For the data constraints that model the relations between the four

input images, we first assume that the brightness of corresponding image points is

the same in all frames. Using the parameterization of Valgaerts et al. (2010) with

respect to the coordinates of the reference frame I t0, we obtain the four data terms

E 1
D = Ψ

(
|I t+1

0 (x+w1)− I t0(x)|2
)

, (2.13)

E 2
D = Ψ

(
|I t+1

1 (x+w1+w2+w3)− I t1(x+w2)|2
)

, (2.14)

E 3
D = Ψ

(
|I t1(x+w2)− I t0(x)|2

)
, (2.15)

E 4
D = Ψ

(
|I t+1

1 (x+w1+w2+w3)− I t+1
0 (x+w1)|2

)
. (2.16)

While the first two terms result from motion constraints between two consecu-

tive time instances, the last two terms arise from stereo constraints at the same

time step. To handle outliers in all constraints independently, every data term

is subject to a separate sub-quadratic penalization using the the regularized L1

norm Ψ(s2) =
√
s2 + ε2 as the cost function, with ε = 0.001. To cope with vary-

ing illumination and to make use of color information, we additionally included

the gradient constancy assumption in the model and extended it to RGB color

images Valgaerts et al. (2010).
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2.2 Scene Flow Estimation

Geometry Terms The geometric relations between the left and the right image

of the stereo pairs (I t0, I
t
1) and (I t+1

0 , I t+1
1 ) are given by the associated epipolar

constraints. These constraints relate corresponding points in a stereo pair via the

fundamental matrix F . The epipolar constraints between the two stereo pairs

can be modeled as

E 1
G = Ψ

((
(x+w2)>hF (x)h

)2
)

, (2.17)

E 2
G = Ψ

((
(x+w1+w2+w3)>hF (x+w1)h

)2
)

, (2.18)

where the subscript h denotes the use of homogeneous coordinates, i.e. (x)h =

(x, y, 1)>. In contrast to Valgaerts et al. (2010), we assume that the stereo system

is calibrated with a known fundamental matrix F . Thus in this case, only the

flows wi are unknown. Both terms E 1
G and E 2

G are soft constraints that penal-

ize deviations of a point from its epipolar line. Together with a sub-quadratic

penalizer function such as the regularized L1 norm (see data terms), such soft

constraints increase the robustness of the scene flow estimation with respect to

small inaccuracies in the camera calibration.

Smoothness Terms Since the data terms and geometry terms alone may not

guarantee a unique solution at every location, the problem needs to be regularized

by imposing an additional smoothness constraint. In particular, this makes it

possible to obtain dense scene structure and scene flow. In Valgaerts et al. (2010),

the isotropic total variation (TV) regularizer is used. In our thesis, as we are

aiming to capture the geometry of a human face or body, the TV regularizer

may not adapt sufficiently to the directional structure, such as laugh lines in a

face. Besides, TV can lead to staircasing artifacts, i.e. steps in the reconstructed

geometry. To recover the motion of typical facial features more realistically, we

need a smoothness constraint that adapts better to the structure of the underlying

reference image, while preserving sharp discontinuities in the reconstruction and

the scene flow at the same time. Thus, we make use of recent advances in the

field of optical flow estimation Sun et al. (2008); Zimmer et al. (2011) and employ

the following anisotropic smoothness term

E i
S = Ψs

(
|∇w>i r1|2

)
+ Ψs

(
|∇w>i r2|2

)
. (2.19)

It splits the regularization locally into the directions along and across the image

structures by projecting the Jacobian ∇wi onto r1 and r2, respectively. Thereby,
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the directions r1 and r2 are computed as eigenvectors of the structure tensor

J = KG ∗ ∇I t0 ∇I t0
>
, (2.20)

where ∗ denotes convolution with a Gaussian KG. Since deviations from smooth-

ness are penalized separately for each direction, and typically a discontinuity-

preserving cost function is used, such as Ψs(s
2) = 2λ2

s

√
1 + s2/λ2

s, with λs > 0,

discontinuities in the solution are preserved independently for both directions.

This in turn is able to handle structures of different intrinsic dimensionality such

as corners, edges and homogeneous regions appropriately, thereby achieving the

desired structure-aware anisotropic smoothing behavior.

Minimization The final energy given in Eq. (2.12) has to be minimized with

respect to the three unknown flows wi. To this end, we employ the the mini-

mization scheme from Valgaerts et al. (2010): large displacements are resolved by

means of a coarse-to-fine multi-resolution strategy, while the resulting nonlinear

optimization problem at each resolution level is solved using a bidirectional multi-

grid method. Please note that in contrast to the original optimization scheme,

we do not need to perform an alternating minimization between the flows and

fundamental matrix, since F is known here.

With the estimated 2D flow fields, all corresponding pixels are triangulated

to obtain a 3D reconstruction and a 3D displacement field, i.e. the scene flow for

each reconstructed point. The scene flow estimation is employed in Chapter 7

and Chapter 8 for deformable surface tracking and skeletal motion estimation,

respectively.

2.3 Human Skeleton and Pose Parameters

In marker-less full-body performance capture, a prior template with underlying

skeletons is frequently used; see Fig. 2.8. This representation is motivated by

human anatomy. The full representation of the anatomical bones in a human body

is very complex, and it is beyond the realm of possibility to estimate the motion

of such a representation. The kinematic skeleton we use is an approximation of a

human skeleton where the degrees of freedom (DOF) are reduced to a manageable

size. With the skeleton determined by a set of joints and body segments, it

has to be determined how the motion parameters on it should be defined. As

the motions of body segments depend on each other through the body joints,
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2.3 Human Skeleton and Pose Parameters

Figure 2.8: Human skeleton.

a convenient way of incorporating these additional constraints is the twist and

product of exponentials map formalism for kinematic chains Bregler et al. (2004);

Murray et al. (1994). Using this format, the motion of each body segment can

be described as the motion of the previous segment in a kinematic chain and an

angular motion around a joint. Just one single DOF for each additional segment

in the chain is added. Therefore, the number of free motion parameters can be

dramatically reduced using this representation, and the reduced unknown motion

parameters will make the motion estimation more robust.

2.3.1 Twist Based Pose Representation

Using the exponential maps, a twist ξ can be represented as (a) a 6D vector, or

(b) a 4× 4 matrix with the upper 3× 3 component as a skew-symmetric matrix:

ξ =


υi
υ2

υ3

ωx
ωy
ωz

 , ξ̂ =


0 −ωz ωy υ1

ωz 0 −ωx υ2

−ωy ωx 0 υ3

0 0 0 0

 , (2.21)

where ω = (ωx, ωy, ωz) is a 3D unit vector that points in the direction of the

rotation axis. The rotation transformation is specified by a scalar angle θ that
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is multiplied by the twist: ξθ. The υ = (υ1, υ2, υ3) component determines the

location of the rotation axis and the amount of translation along this axis. It can

be shown that for any arbitrary rigid motion G ∈ SE(3) there exists a ξ ∈ R6

twist representation. A twist can be converted into the G representation with

the following exponential map:

G =

r11 r12 r13 d1

r21 r22 r23 d2

r31 r32 r33 d3

 = eξ̂ = I + ξ̂ +
(ξ̂)2

2!
+

(ξ̂)3

3!
+ . . . (2.22)

Kinematic Chain as a Product of Exponentials If we have a chain of

K + 1 segments linked with K joints (kinematic chain) and describe each joint

by a twist ξk, a point on segment k is mapped by the transformation defined as

gk(∆ξ̂, θ1, θ2, . . . , θk) = e∆ξ̂

k∏
i=1

eξ̂i·θi , (2.23)

where ∆ξ̂ describes the rigid motion of the root joint, and θ1, θ2, . . . , θk represent

the rotation of each joint (here for simplicity, we just assume one rotation of DOF

for each joint). As the human skeleton is a kinematic chain, the skeletal pose of

a human can also be represented in the same way. We use the twist based pose

representation for human skeletal motion estimation in Chapter 6 and Chapter 8.

2.4 Surface Skinning

Skinning is the process of attaching a renderable skin, e.g. a mesh surface, to an

underlying articulated skeleton. This technique is extensively used for animating

articulated characters such as virtual humans in computer graphics and inter-

active applications. In our marker-less motion capture algorithms, we use this

technique to deform the template mesh according to the given pose parameters.

In order to perform surface skinning, a static character model with an underlying

skeleton in a neutral pose is given. A set of blending weights are assigned to each

vertex to define the amount of influence coming from different joints.

To introduce different skinning methods, let us assume there are m joints in

the model, and that vertex q on the mesh surface is attached to joints J1, ..., Jm
with weights (w1, ..., wm). The weights are normally assumed to be convex, i.e.,

wi ≥ 0 and
∑m

i=1wi = 1. The blending weight wi represents the amount of in-

fluence of joint Ji on vertex q. In the neutral pose, each joint has an associated
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local coordinate system. Then, the transformation from the neutral pose of joint

J to its actual position in the animated pose can be expressed by a rigid trans-

formation matrix, denoted as Cj. Based on these inputs, the skinning algorithm

then solves for the new position of the mesh surface, i.e., a new vertex position

q′ for each vertex q.

2.4.1 Linear Blend Skinning

For linear blend skinning, each neutral pose vertex is firstly rigidly transformed

by all of its influencing joints. Then, blending weights are used to linearly com-

bine these transformed positions into one position. Mathematically, the updated

vertex position is given as (
q′

1

)
=

m∑
i=1

wiCJi

(
q
1

)
, (2.24)

where Cji represents the rigid transform matrix for joint Ji, q and q′ are the

vertex positions before and after skinning. Linear blend skinning is used in the

skeletal motion estimation in Chapters 6 and 8.

2.4.2 Dual Quaternion Skinning

Unfortunately, linear blend skinning is known to suffer from skin collapsing arti-

facts, as the blended matrix
∑m

i=1wiCJi is no longer a rigid transformation. Thus,

Kavan et al. (2007) propose a new blending method based on dual quaternions,

which is called dual quaternion skinning. This method first converts the rigid

transformation matrices CJi , ..., CJm to unit dual quaternions Q1, ..., Qm. Then,

a blended unit dual quaternion Qb w.r.t. the given blending weights (w1, ..., wm)

is computed using a linear combination and then a normalization:

Q =
w1Q1 + · · ·+ wmQm

‖w1Q1 + · · ·+ wmQm‖
. (2.25)

Finally, the blended dual quaternion Q is converted back to a rigid transformation

matrix M . The updated vertex position is computed as(
q′

1

)
= M

(
q
1

)
. (2.26)

As M is assured to be a rigid transformation, the skin collapsing is prevented.
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Chapter 3

Related Work

In this chapter, we introduce the previous work related to the content in the

thesis. It is generally divided into three areas. Firstly, we introduce the related

work in image based modeling for static objects. This is related to our work in

Chapter 4, which focuses on static 3D reconstruction. Secondly, the work related

to performance capture, including full body capture and face capture, is discussed.

This section introduces the work respectively related to Chapters 5, 6 and 8 for

capturing full-body performance, and Chapter 7 for capturing facial performance.

In the third part, the related work in the field of reflectance estimation and

lighting estimation is introduced. Reflectance estimation and lighting estimation

are two basic techniques in inverse rendering, and thus related to the content of

the thesis as a whole.

3.1 Static 3D Reconstruction

Stereo matching is one of the basic techniques in computer vision to estimate

the 3D structure, e.g. the depth, from one pair of images. The basic idea is to

estimate the correspondence between two images based on the photo consistency

constraint, e.g. requiring the color of the correspondences in two images to be the

same. Then, the depth can be triangulated from the correspondences. Multi-view

stereo (MVS) extends the stereo method into working with multi-view images,

and is able to reconstruct watertight 3D geometry. This technique has achieved

great success in static 3D reconstruction. The reconstruction accuracy of the most

advanced MVS methods is around 1/400 (0.5mm for a 20 cm wide object) Seitz

et al. (2006). These techniques can be generally divided into two categories.

The first group is formed by multistage local approaches, which proceeds the
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3.1 Static 3D Reconstruction

reconstruction stage by stage, for instance, first estimating the depth maps for

each camera and then fusing them to a 3D model Bradley et al. (2008); Liu

et al. (2010), or first reconstructing the 3D points for extracted features and

then growing them into a watertight 3D model Furukawa & Ponce (2010). The

other group is global methods, which formulate the 3D reconstruction as a global

optimization, e.g. extracting the surface from a volume representation Vogiatzis

et al. (2007), or evolving a surface by optimization Pons et al. (2005). In spite of

its great success in 3D reconstruction, this technique has an inherent weakness

in reconstructing high-frequency surfaces.

Shape-from-shading (SfS) is another important technique for image based

modeling. SfS can be seen as one of the oldest inverse rendering techniques,

which tries to estimate the shape by inverting the rendering process from a single

image. Traditionally, a surface normal map is first estimated and then integrated

to obtain the shape. The history of SfS can be traced back to the 1970s Horn

(1970). In terms of the traditional SfS work, we refer the reader to Zhang et al.

(1999) for a survey. As only one single image is available and the unknowns in

lighting, reflectance and shape are too many to solve, the SfS problem is not a

well-posed problem. Traditional SfS usually assumes a single known light source

and uniform reflectance to make the problem solvable. Many priors, e.g. the

surface integrability, are also employed to better constrain the solution. Even

though great advances have been made in the last decades, SfS has yet to find

its way into real-world applications. Alternatively, based on the shading cues

but using the images filmed under many different lightings, photometric stereo

(PS) methods have recently attracted much attention within the field Woodham

(1980). As a set of images with different lightings is taken as input, the shape

estimation problem becomes well-posed and high-quality shapes can be estimated.

Specifically, Alldrin et al. (2008) propose a new photometric stereo method which

works for isotropic BRDF. For uncalibrated photometric stereo, with a point light

source assumption, the shape can be solved up to a transformation, which is

called generalized bas-relief ambiguity (GBR) Belhumeur et al. (1997). Shi et al.

(2010) develop a self-calibrated method for photometric stereo, even when the

camera response function is unknown. Under general lighting conditions, where

the lighting is not just generated simply by point lights but also produced by

other types of lights as well as the surrounding environment, another photometric

stereo method is proposed for Lambertian surfaces by assuming no cast shadows

in the scene Basri et al. (2006). Although high-quality shapes can be obtained,

there are still many constraints to applying photometric stereo methods. For
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instance, an image sequence must be captured under several different lightings,

which may require a special setup for the capture. Besides, because all the images

are captured from a single viewpoint, the shape obtained by photometric stereo

is not metrically meaningful, even though fine details can be captured. This is

also true with the SfS techniques.

From the above analysis, a 3D model can be robustly reconstructed by MVS,

but may lack details, while the shading-based approaches (SfS or PS) are quite

successful for estimating the high-frequency geometric detail but have difficulty

in obtaining metrically correct shapes. It is obvious that these two techniques

are complementary and should be combined Blake et al. (1986). Much work has

been done on efficiently combining them. Leclerc & Bobick (1991) use stereo

to provide initialization and boundary constraints for SfS. Cryer et al. (1995)

combine depth maps from SfS and stereo in the frequency domain using filter-

ing. Rather than fusing MVS and SfS results, Fua & Leclerc (1995) start with a

coarse mesh computed from binocular or tri-view stereo, then minimize an error

function with stereo, shading, and smoothness components. They handle slowly

varying albedo of Lambertian surfaces. Samaras et al. (2000) iteratively estimate

both shape and illumination given multiple views taken under fixed illumina-

tion. They assume piecewise constant albedo. Jin et al. (2000, 2004a,b) have

proposed a series of variational algorithms that combine MVS and SfS. Their

recent work Jin et al. (2008) focuses on 3D reconstruction of Lambertian objects

with piecewise constant albedo. Hernandez et al. (2008) develop a system to

capture multi-view images under different lightings. Wu et al. (2010) develop

a multi-view and multi-lighting system to combine MVS and PS under general

lightings for high-quality 3D reconstruction. Beeler et al. (2010) recently propose

a high-quality stereo method with an additional step of shape refinement. Their

refinement embosses or extrudes the geometry at locations where high-frequency

shading variations are visible, producing qualitatively pleasing results. However,

their strategy for shading-based refinement implicitly requires uniform lighting

to work, which prevents the method from being applied to more general illumi-

nation conditions. In conclusion, none of those methods is able to work under a

common condition in the real world, where the lighting is general, unknown and

mostly constant. In Chapter 4 of this thesis, we propose such a technique, which

combines MVS and SfS to achieve high-quality 3D geometry by using the images

captured under general, unknown and constant lighting.
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3.2 Dynamic Scene Reconstruction

3.2 Dynamic Scene Reconstruction

3.2.1 Full Body Capture

Marker-less full body motion capture approaches reconstruct human skeletal mo-

tion and have been developed in vision and graphics over many years. For a

thorough discussion and a historical perspective on this technique, one should

consult any of the surveys Moeslund et al. (2006); Poppe (2007); Sigal et al.

(2010). Research efforts today can be broadly distinguished into quality-oriented

methods which usually employ multiple synchronized and calibrated cameras to

achieve a high level of accuracy, and general purpose methods that work under

fewer cameras in potentially cluttered surroundings — albeit producing pose es-

timates of lower accuracy. Many of the successful methods Bo & Sminchisescu

(2010); Lee & Elgammal (2010); Li et al. (2010) validated on the HumanEva

dataset Sigal et al. (2010) rely on a set of training poses for tracking which limits

their generalizability to new poses not observed in the training set. For the first

category, which is related to Chapters 6 and 8, most of the methods rely on a

template skeleton with attached shape template, to then minimize some form of

model-to-image consistency, e.g., edge or silhouette features using local or global

optimization methods Bregler et al. (2004); Deutscher et al. (2000); Gall et al.

(2008). Recently, Stoll et al. (2011) have proposed a technique which approaches

real-time performance and captures complex motion. Even though these motion

capture algorithms estimate the skeletal motion, they do not reconstruct de-

tailed surface models. To move towards combined skeleton and surface capture,

researchers experimented with coarse 3D shape models in multi-view motion cap-

ture Balan et al. (2007), e.g., with parametric human templates. However, they

deliver very coarse geometry and expect actors to wear skin-tight clothing. There

are also approaches trying to estimate skeletal motion from monocular input, but

requiring heavy manual interaction, e.g. Wei & Chai (2010).

Marker-less performance capture approaches go beyond motion capture and

reconstruct dynamic geometry, possibly with skeletal motion, of people in more

general clothing. Some techniques rely on shape-from-silhouette or active or

passive stereo Matusik et al. (2000); Starck & Hilton (2007); Waschbüsch et al.

(2005); Zitnick et al. (2004). Vlasic et al. (2009) record a person with multi-

ple cameras in a dense controlled light stage and perform photometric stereo for

capturing space-time-incoherent shapes. Model-based approaches deform a shape

template such that it resembles a person de Aguiar et al. (2008); Gall et al. (2009);
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Vlasic et al. (2008) in multi-view video, which yields spatio-temporally coherent

reconstructions. Mesh-based tracking approaches, as proposed by de Aguiar et al.

(2008), provide frame-to-frame correspondences with a consistent topology. The

approach by Cagniart et al. (2010a) makes a weaker a priori assumption by mod-

eling the scene as a set of moving patches that are tracked over time. But the

reconstructed detail of geometry is limited to the patch size. Another set of model-

based approaches combine skeleton tracking with deformable surface tracking to

capture people in more general apparel Gall et al. (2009); Liu et al. (2011); Vlasic

et al. (2008). Some of these methods combine pose estimation with image seg-

mentation and optical flow Bray et al. (2006); Brox et al. (2006, 2010), and by

this means also capture more than one person in a scene Liu et al. (2011). How-

ever, most methods are still restricted to controlled studios with green screen

backgrounds, and usually expect ten or more cameras. Moreover, the amount

of surface detail captured by these approaches is limited. Hasler et al. (2009)

jointly employ feature-based performance capture and structure-from-motion of

the background for outdoor motion capture with multiple cameras, but require

manual interactions and do not produce detailed surface geometry. Besides, none

of these methods are able to work under varying lighting conditions, as the em-

ployed image cues will become unstable under changing illuminations. In con-

trast, in Chapter 6 of this thesis, by employing the shading cues and modeling

the lighting changes, we are able to capture both the skeletal motion and the de-

tailed surface geometry under general and varying lighting conditions. Another

limitation with the previous marker-less performance capture methods is the re-

quirement for a multiple camera setup. In Chapter 8, we take a step further

by just employing a stereo camera setup to track skeletal motion and detailed

space-time coherent surface geometry.

There are also recent works on skeletal pose estimation from depth cameras,

such as the Kinect, e.g., Ganapathi et al. (2010); Shotton et al. (2011); Wei et al.

(2012). These approaches are designed for real-time use and reconstruct coarse

skeletal motion and coarse surface geometry Taylor et al. (2012). High-quality

pose and shape reconstruction is not their goal. In addition, most depth cameras

only work indoors, and have a very limited range and accuracy. Besides, some

earlier vision methods attempted to capture human skeletal motion from stereo

footage, e.g., Plankers & Fua (2001), but did not achieve as high-quality poses

and reconstructions as recent methods.

To reconstruct fine scale surface detail, a controlled light setup is usually

employed. For instance, Vlasic et al. (2009) uses a complex controlled light stage
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to achieve a high quality dynamic scene reconstruction from multi-view video.

From a single camera, photometric stereo methods are developed to estimate the

dynamic surface orientation. Brostow et al. (2011) developed a system to capture

the dynamic scene under controlled and colored lights. Then, photometric stereo

can be utilized to estimate the surface normal for each frame, as each color

channel provides one lighting condition. Kim et al. (2010) propose another system

with a colored lights setup, and also leverage the temporal sample for applying

photometric stereo. However, these methods all need a sophisticated controlled

light setup, and cannot be applied to general capture conditions. In comparison,

in Chapter 5, we propose a dynamic shape refinement method, which is able

to capture fine scale geometric detail under general, unknown and uncontrolled

illumination. This method is extended in Chapter 8 to even capture the geometric

detail on non-Lambertian surfaces.

Instead of making priori template assumptions, some approaches build up a

spatio-temporally coherent shape model by space-time analysis of partial scanner

data Liao et al. (2009); Tevs et al. (2012). For single objects in a scene, these

approaches also succeed with sparse depth camera or scanner systems. The qual-

ity of these methods heavily depends on the quality of the scan or depth data.

Besides, it may be infeasible to build such a system in a general environment.

Furthermore, due to strong regularization employed in the algorithms, they often

capture geometry lacking high-frequency detail. In contrast, in Chapter 8, using

a sparse camera system, i.e. a stereo setup, our method is able to achieve detailed

reconstructions in a general environment.

3.2.2 Face Capture

Another important branch of performance capture is to capture the dynamic

shape of facial expressions, which is called facial performance capture. As the

surface of a dynamic face is highly non-rigid, it cannot be easily represented

using a skeleton-based model as a human model. Thus, the methods for full-body

performance capture cannot be easily extended to facial performance capture. In

this section, we review the previous work on capturing facial performances, which

is related to Chapter 7 in the thesis.

For many years, researchers in graphics and vision have investigated facial

performance capture approaches that differ in the employed sensors and recon-

struction techniques. Some methods solely rely on dynamic 3D shape scanner

data, i.e., time-varying point clouds, and no additional input images. Anuar
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and Guskov Anuar & Guskov (2004) track an initial template mesh from point

cloud data using a purely geometric 3D scene flow method. Reconstruction of

high frequency detail is difficult with their approach and the purely geometric

3D scene flow method more frequently suffers from drift. Wand et al. (2009) si-

multaneously build up and track a template of a face from point cloud data, but

reconstructions lack some high-frequency shape detail. Popa et al. (2010) pro-

pose a similar framework that can capture more high-frequency detail by means

of a change prior. But the detail does not truly come from the capture. Weise

et al. (2011) use point clouds from a Kinect and a template with an attached

blend shape model to track facial performances. However, their goal is animation

transfer, not authentic reconstruction of fine-scale shape detail.

Image-based approaches help to overcome the resolution limits and the limits

in tracking accuracy that purely geometric methods still have. Following the

marker-based motion capture paradigm widely accepted in industry, researchers

attempted to reconstruct facial performances by tracking attached or painted

markers in a face with several cameras, or by tracking the distortion of an invisible

paint applied to the skin Bickel et al. (2007); Furukawa & Ponce (2009); Guenter

et al. (1998); Williams (1990). Active fiducials greatly enhance tracking accuracy

and enable robust reconstruction of even extreme facial expressions. However,

the resolution of the captured geometry is limited, the mark-up phase can be

cumbersome, and due to the active intrusion into the scene, the simultaneous

reconstruction of geometry and appearance is not feasible. Huang et al. (2011)

try to overcome some of these limitations in a data-driven way by transferring

geometric detail from a sparse set of 3D scans to dynamic face geometry recorded

with a marker-based motion capture system.

Instead of markers, active illumination, e.g., patterns emitted from projectors,

can be used to facilitate image-based face geometry reconstruction from multiple

cameras Wang et al. (2004); Weise et al. (2007); Zhang et al. (2004). With

these approaches, texture acquisition requires interleaving of pattern and texture

frames, and temporal reconstruction artifacts may occur since several subsequent

images are required for a single 3D reconstruction. Also, establishing geometric

correspondence between subsequent reconstructions is still a challenge.

Template-based methods fit a deformable shape model to images of a face Blanz

et al. (2003); DeCarlo & Metaxas (1996); Pighin et al. (1999). While this yields

spatio-temporally coherent reconstructions, the captured face geometry is often

coarse and lacks true fine-scale detail.
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Our method in Chapter 7 falls into the passive facial performance capture cat-

egory. High quality facial performances can be reconstructed with purely passive

stereo-based approaches in combination with mesh tracking Bradley et al. (2010).

Borshukov et al. (2003) developed the Universal Capture system for the movie

The Matrix, which deforms a laser-scanned 3D facial model by using optical flow

fields computed from a multi-camera system. These approaches usually require

dense multi-camera setups and a controlled studio environment. Also, recon-

structing pore-level detail is difficult from pure stereo, and temporal drift in the

reconstructions often prevents capturing expressive facial motions. Beeler et al.

(2011) try to overcome the drift problem in dense multi-view face reconstruction

by stabilizing mesh tracking with a set of key facial poses. The commercial sys-

tem by DepthAnalysis1 also reportedly uses stereo reconstruction from a dense

multi-camera system under controlled studio lighting. Stereo reconstruction is

also used in the MOVA Contour system2, which employs an even denser array

of tens of cameras, and invisible make-up to aid reconstruction. In contrast to

the requirement for a multiple camera setup, the method proposed in Chapter 7

only needs two cameras, i.e. a simple stereo setup, but is able to reconstruct

high-quality facial geometry.

Passive acquisition of true fine-scale surface detail with image-based meth-

ods is still difficult. Several approaches have recently shown that shading and

reflectance effects under controlled lighting can boost reconstruction resolution

dramatically. Vogiatzis & Hernández (2011) use controlled tri-colored studio il-

lumination and a combination of multi-view stereo and photometric stereo to

capture facial geometry. Combining active structured light scanning and marker-

based facial performance capture with a complex light stage illumination setup

also enables high-quality capture of geometry and appearance in a studio Alexan-

der et al. (2009). Light stage illumination requires recording of multi-view images

under several light conditions to obtain a single reconstruction. To cope with the

resulting spatio-temporal alignment problem in the data, Wilson et al. (2010)

developed an approach to establish correspondences between images taken under

starkly varying spherical gradient illuminations from the light stage. This en-

ables a combination of stereo and photometric normal reconstruction in a spatio-

temporal way. Fyffe et al. (2011) reconstruct geometry and reflectance of a mov-

ing face using spherical gradient illumination from a light stage and high-speed

cameras. However, the reconstructed geometry is not spatio-temporally coherent.

1www.depthanalysis.com
2www.mova.com
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Compared with those approaches, our method in Chapter 7 does not require those

specifically engineered setups and is able to achieve highly detailed and spatio-

temporally coherent facial performance capture in general and uncontrolled or

even changing lighting scenarios.

3.3 Reflectance and Lighting Estimation

Reflectance and lighting are two basic elements in the rendering procedure. In

the field of inverse rendering, many methods are developed to estimate reflectance

or lighting directly from the captured images. As this thesis is about exploiting

inverse rendering for scene reconstruction, the previous work on reflectance and

lighting estimation is generally related to all the chapters in the thesis.

In the past, a variety of approaches have been proposed for image-based esti-

mation of reflectance models for static scenes. Having a shape model, samples of

surface reflectance can be recorded by capturing images of the object from varying

outgoing and incident light directions with a calibrated point light. An analytical

model of surface reflectance, such as a parametric BRDF, can now be estimated

for the whole surface or for every surface point individually, e.g. Lensch et al.

(2003); Matusik et al. (2003); Sato et al. (1997). Given a shape model and some

general prior assumptions about lighting Yu & Malik (1998), or given geometry

and calibrated lighting Yu et al. (1999), the spatially-varying BRDF of a scene can

be found via inverse global illumination. Given a manually designed model of the

geometry and lighting, BRDF estimation from a single image is feasible Boivin

& Gagalowicz (2001). Theobalt et al. (2007) extend this concept to scenes with

a moving human. They reconstruct a shape and motion of the actor using a

template-based motion estimation approach from multi-view video recorded un-

der the light of two calibrated spotlights. From the data, they estimate a para-

metric BRDF model for each vertex. However, their 3D models are very coarse,

which has a negative influence on the final result. Using wavelet-based lighting

and an assumed subspace of BRDFs, the surface reflectance of a static object can

be estimated using images from community image databases Haber et al. (2009).

Another important component in inverse rendering is to estimate the inci-

dent illumination from images. For this purpose, certain assumptions are made

about the lighting model. A simple point light source assumption is common in

uncalibrated photometric stereo methods Higo et al. (2009). However, this as-

sumption is too simple to model the real-world illumination. General illumination

can be represented by an environment map Greene (1986). Different methods are
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developed to parameterize the environment map of incident illumination. Low-

frequency illumination can be efficiently represented using Spherical Harmonics

(SH), as was shown by Ramamoorthi & Hanrahan (2001a). The SH basis has

also been used in the signal processing theory of inverse rendering Ramamoor-

thi & Hanrahan (2001c). The general illuminations are estimated jointly with

a surface normal by ignoring the cast shadow Basri et al. (2006). In addition

to spherical harmonics, Ng et al. (2004) proposed using a Haar wavelet basis to

model high-frequency lighting and reflectance effects. The wavelet-based lighting

is estimated from community image databases using the estimated BRDF and

the reconstructed geometry Haber et al. (2009). However, none of these methods

consider the light visibility in their work, while in this thesis the light visibility

is explicitly modeled.

Reflectance and lighting estimation in this thesis are also mainly considered

in the context of shape and motion estimation. Many photometric stereo meth-

ods fall into this category. Georghiades (2003) use photometric stereo to capture

static shape and BRDF of a face from multiple images illuminated with a point

light from unknown directions. Goldman et al. (2005) reconstruct shape and

spatially-varying BRDF via photometric stereo from images under controlled

lighting. However, as mentioned before, photometric stereo is not able to re-

construct metrically correct geometry. Using multi-view images under known

illumination, Yoon et al. (2010) estimate a parametric BRDF model and exploit

this for surface refinement. But it assumes a simple point light source with known

position and intensity, and only captures static objects. Carceroni & Kutulakos

(2002) capture coarse surfel-based geometry and reflectance from multi-view video

footage with calibrated lights. Georghiades (2003) reconstruct a static face model

and estimate a coarse BRDF from multiple images under point light illumination

with unknown positions. The reflectance and lighting estimation in this thesis

differs from those methods in that we are estimating the reflectance and lighting

from images captured under one general and uncontrolled illumination, and using

the estimated reflectance and lighting for shape and motion estimation.
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Part I

Static 3D Reconstruction from
Multi-view Images
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Reconstructing the 3D geometry of static scenes from multi-view images has

been a subject of research for decades. Multi-view stereo methods have achieved

great success and are able to reconstruct the geometry of scenes by matching

the correspondences across different viewpoints. However, these methods are

not able to reconstruct the high-frequency geometric detail. Shading cues can be

combined to achieve high-quality reconstruction, but the way shading information

is utilized usually assumes a simple point light source, and usually the light

is calibrated. These requirements prevent these methods from being applied

to general scenarios, where the lighting is general and unknown, e.g. an indoor

environment.

In this part, by investigating the inverse of the reflection equation introduced

in Chapter 2, we are able to achieve high-quality 3D reconstruction in the general

scenario, where the lighting is general and unknown. By inferring the lighting and

geometry from images captured under general illumination, the shading cues can

be integrated into the reconstruction method to achieve high-quality geometry,

which rivals laser scan results. The success of our method on static scene recon-

struction proves the concept in this thesis that inverse rendering can be employed

to achieve high-quality scene reconstruction.
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Chapter 4

High-quality Shape from
Multi-view Stereo and Shading
under General Illumination

4.1 Introduction

Multi-view stereo (MVS) methods compute depth by triangulation from corre-

sponding views of the same scene point in multiple images. Establishing corre-

spondence is difficult within smoothly shaded regions, so MVS methods compute

accurate depth for a sparse set of well-localized points and must interpolate else-

where. Seitz et al. (2006) present a taxonomy and evaluation of MVS algorithms.

Results posted on the benchmark website1accompanying that work show that

today’s best-performing methods capture the rough shape of the scene well, but

generally cannot recover the high-frequency shape detail well. In contrast to

MVS, shape-from-shading (SfS) methods compute per-pixel surface orientation

instead of sparse depth. SfS techniques use shading cues to estimate shape from

a single image, usually taken under illumination from a single direction Zhang

et al. (1999). It has been shown that SfS approaches are able to recover high-

frequency shape detail, even if surfaces are smoothly shaded. SfS reconstruction

can therefore often shine where stereo fails, and vice versa. Generalizing this

shading-based reconstruction to the multi-view case is not easy, though. Recov-

ered normal fields usually need to be integrated to obtain 3D geometry, which is

non-trivial for general surfaces seen from multiple viewpoints Nehab et al. (2005).

1vision.middlebury.edu/mview/
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4.1 Introduction

Furthermore, most SfS algorithms make strong assumptions about the incident

illumination, which effectively restricts most of them to studio lighting conditions.

In this chapter, we re-visit the 3D reconstruction problem from the perspective

of inverse rendering. Image-based 3D reconstruction algorithms usually try to

exploit some image cues to infer the 3D geometry. What image cues are good

for 3D reconstruction? In order to answer this, we need to first understand how

the images are generated from the real world. The rendering technique tells

us that the images are determined by the lighting, the surface reflectance and

the geometry, while the generation process can be described by the rendering

equation Kajiya (1986). Thus, the intuitive way to do 3D reconstruction is to

invert this process to estimate the geometry, which means solving an inverse

rendering problem. From this perspective, SfS is actually one form of inverse

rendering technique. With this concept in mind, it is natural to develop a new

SfS technique which works for general scenarios, as we understand well how the

images are generated under general illumination. However, directly decomposing

images into lighting, reflectance and geometry is too ill-posed a problem to be

solvable. In our method, we make an assumption about the reflectance, namely

that it is Lambertian reflectance with uniform albedo, and start the geometry with

the MVS result. With this, we are able to solve two inverse rendering problems,

including the lighting estimation and shape refinement, and thus obtain a high-

quality 3D reconstruction. This algorithm is one example of exploiting inverse

rendering concept for scene reconstruction.

Specifically, in this chapter, we propose a new multi-view reconstruction ap-

proach that combines the strengths of MVS and SfS. It enables us to capture high-

quality 3D geometry of Lambertian objects from images recorded under fixed but

otherwise general, unknown illumination. In detail, we propose a shape recon-

struction method that uses stereo for initial geometry estimation and shading-

based shape refinement under general and uncalibrated illumination. Our method

estimates high-fidelity shapes that include subtle geometric details that cannot be

captured by triangulation-based approaches. We develop a new multi-view shad-

ing constraint for achieving this goal. For efficient computation, we use spherical

harmonics (SH) to estimate and encode general lighting conditions and local vis-

ibility. We also develop an adaptive anisotropic smoothness term for preserving

high-frequency details while filtering out noise. In addition, we show an adap-

tive computation approach that takes the complexity of lighting and visibility

estimates into account at each surface point for efficient computation. The work

presented here was published in Wu et al. (2011b).
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4. HIGH-QUALITY SHAPE FROM MULTI-VIEW STEREO AND
SHADING UNDER GENERAL ILLUMINATION

Figure 4.1: Outline of our processing pipeline.

4.2 Method Overview

Our goal in this chapter is to compute a high-quality shape of a static object

based on multiple images taken from different viewpoints. The illumination is

assumed to be fixed and distant, but is otherwise general and unknown. Cam-

eras are assumed to be calibrated both geometrically and radiometrically. We

represent the geometry using a high-resolution mesh model and the illumination

using spherical harmonics. In order to keep the problem tractable, we henceforth

assume that the albedo of the object is constant. We will see in our results,

though, that this assumption does not prevent us from reconstructing detailed

shape models even in the presence of small albedo variations. We also neglect

inter-reflections on the object.

The workflow of our method is shown in Fig. 4.1. It has three steps. First, we

use existing MVS methods to create an initial closed, 3D triangle mesh model of

the object. Next, we use this model to estimate the spherical harmonic coefficients

for the incident illumination (Sec. 4.5). Finally, we refine the MVS geometry so

that shading variations in the input images are properly explained by our image

formation model and the estimated geometry (Sec. 4.6). The next sections review

image formation using the SH illumination model and explain the illumination

estimation and geometry refinement in detail. As we will describe, we handle

concave surfaces and self-occlusion by computing the visibility of each vertex

from all directions, and we adaptively tune the order of the SH approximation for

higher accuracy in areas with higher ambient occlusion (i.e., more self-occlusion).
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4.3 Image Formation Model

4.3 Image Formation Model

As introduced in Sec. 2.1.1, the reflection equation for Lambertian surfaces can

be described by Eq. (2.2). In this chapter, we employ the same image formation

model, but assume all surface points share the same albedo value, e.g. kd. Then

the albedo term can be absorbed by the lighting term, which is equivalent to

scaling the lighting intensity by a constant factor. By denoting the scaled lighting

term as La(ωi) = kdL(ωi), the reflection equation can be rewritten as

B(q) =

∫
Ω

La(ωi)V (q,ωi) max(ωi · n, 0)dωi. (4.1)

As discussed in Sec. 2.1.1, this equation can be simplified using SH. We will use

different simplifying strategies respectively for lighting estimation and geometry

refinement in the following sections.

4.4 Multi-view Stereo Reconstruction

We utilize a multi-view stereo method to achieve an initial reconstruction, which

will then be used for lighting estimation and as an input geometry for shape

refinement. As multi-view stereo has been researched for many years, any MVS

method which is able to provide a coarse 3D reconstruction can be employed

here. On the benchmark website1, the method proposed by Furukawa & Ponce

(2010) has achieved the highest accuracy on many evaluation data sets. This

method firstly matches feature points across the different images to obtain a

high-fidelity 3D reconstruction of these sparse points. Then, it expands this sparse

reconstruction to a surface reconstruction based on photo-consistency constraints.

Afterwards, this initial surface reconstruction is refined by minimizing the photo-

consistency-based energy function once more. As can be seen from the algorithmic

detail, this method works fairly well for textured objects. For the uniform-albedo

objects that we are specifically focusing on, this method can also give a reasonable

shape for surfaces with lots of geometric detail. However, for smooth surfaces on

which no feature points can be found, this method usually fails to obtain the

coarse structure. Based on this observation, we utilize this method for the data

sets shown in Fig. 4.6 and Fig. 4.9.

Liu et al. (2010) propose another MVS method, which firstly reconstructs a

point cloud by stereo matching and then fuses this point cloud to a watertight

1vision.middlebury.edu/mview/
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4. HIGH-QUALITY SHAPE FROM MULTI-VIEW STEREO AND
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mesh representation. In order to obtain better stereo matching results, it starts

from the visual hull, which is obtained by space carving using the silhouette

images. Besides, this MVS method has a robust scheme for detecting the depth

points that were wrongly estimated, and it then replaces them with visual hull

points. By doing so, this method is able to generate a robust reconstruction. For

example, for smooth surface regions, it will not generate a worse shape than the

visual hull, and thus will keep the coarse geometric structure in the reconstructed

results. Although on the evaluation website, this method generates less accurate

results, its robustness enables us to perform a robust lighting estimation and thus

a successful shape refinement. This method is used for the data shown in Fig. 4.4,

Fig. 4.7 and Fig. 4.10, where the smooth region is challenging to reconstruct using

Furukawa’s method Furukawa & Ponce (2010).

4.5 Lighting Estimation

With the initial model reconstructed using MVS, our method first estimates

the SH coefficients for the incident illumination. Explicitly considering the vis-

ibility function in our image formation model enables us to reconstruct non-

convex objects. Taking the same simplifying strategy as in Eq. (2.7), i.e. defining

T (q,ωi) = V (q,ωi) max(ωi · n(q), 0), the image irradiance equation becomes

B(q) =

ND∑
l=0

l∑
m=−l

Lalm Tlm(q) =
n2∑
k=1

lak tk(q), (4.2)

where ND is the order of the SH, n = ND+1, and lak and tk are respectively the SH

coefficients of lighting La and the visibility related term T . The irradiance B is

known from the images, and the MVS geometry gives us an approximation for the

visibility coefficient tk. First, we use the model to compute the visibility of each

vertex as a function of incident light direction. For each vertex, the coefficients tk
are the projection of the product of the visibility function and the clamped cosine

function onto the SH basis functions. We calculate the coefficients l = {l1, . . . ln2}
by minimizing the `1 norm of the difference between the measured and computed

image irradiances at each mesh vertex:

l̂ = argmin
l

Nv∑
i

∑
c∈Q(i)

∣∣∣∣∣
n2∑
k=1

lak tk(qi)− Ic(Pc(qi))

∣∣∣∣∣ . (4.3)
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Here, i is the vertex index, Nv is the number of vertices, c is the camera index,

Q(i) is the set of cameras that can see the i-th vertex qi, Pc is the projection

matrix for camera c, and Ic(Pc(qi)) represents the image intensity corresponding

to vertex i and captured by camera c. The `1 norm makes this estimation robust

in the presence of outliers like interreflections, specularities, and errors in the

MVS geometry.

We are estimating the low order SH coefficients for the illumination here. The

specified order number is automatically decided by the local occlusion situation

on the surface; see Sec. 4.7.

4.6 Shading-based Geometry Refinement

Given the current estimated geometry and illumination, the final step is to refine

the geometry using shading information. For this step, we compute the visi-

bility for each vertex using the current geometry, and assume that it does not

change during the refinement. If we define Lv(q,ωi) = La(ωi)V (q,ωi), the image

irradiance equation can be rewritten

B(q) =

∫
Ω

Lv(q,ωi) max(ωi · n(q), 0)dωi. (4.4)

As discussed in Chapter 2, this is a convolution of Lv with the clamped cosine

kernel determined by the surface normal. Similar to Eq. (2.5), according to the

Funk-Hecke theorem Basri & Jacobs (2003), the convolution of two signals in the

spatial domain results in the dot product of their SH coefficients in the frequency

domain (SH domain here). Thus, the image irradiance equation can be expressed

as

B(q) =

ND∑
l=0

l∑
m=−l

Λl glm ρ̂dl Ylm(n(q)), (4.5)

where glm is the SH coefficients of Lv, ρ̂dl is the SH coefficients of the clamped

cosine term and is known, and Ylm is the SH function. The scalar Λl is defined as

Λl =

√
4π

2l + 1
. (4.6)

Here, we have to allow the use of higher order spherical harmonic approximations

when necessary (see Sec. 4.7). The function Ylm depends only on the surface

normal n.
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We run an optimization for each vertex position that attempts to minimize

shading errors in all visible views. The computed irradiance is unlikely to match

the observed irradiance, for many reasons: interreflections, radiometric calibra-

tion errors, approximation errors for the spherical harmonic illumination represen-

tation, and so on. Rather than directly comparing irradiance values, we compare

the gradients of the observed and computed irradiances at each vertex. This is

natural, because shading is expected to be more accurate for higher frequency

shape components. Mathematically, we define the multi-view shading gradient

error E0 as

E0 =
Nv∑
i

∑
j∈N(i)

∑
c∈Q(i,j)

(
rc(i, j)− s(i, j)

)2
, (4.7)

where i and j are vertex indices, N(i) is the set of the neighbors of the i-th

vertex, c is the camera index, Q(i, j) is the set of cameras which see vertex i and

j, and r and s are the measured image gradient and predicted shading gradient,

respectively. We compute the gradients r and s with direct differences, namely,

rc(i, j) = Ic(Pc(qi))− Ic(Pc(qj)), and

s(i, j) = B(qi)−B(qj).

The shading value B is calculated according to Eq. (4.5). With the estimated

illumination, the only remaining undefined variable in Eq. (4.5) is the normal n,

which we can compute from the vertices’ positions. We limit vertex displacements

to 3D locations that project into the object’s silhouettes in all input views. Com-

bining the silhouette and shading constraints gives the following new objective

function E1 for the multi-view shading gradient:

E1 =
Nv∑
i

∑
j∈N(i)

∑
c∈Q(i,j)

d(i, j, c), (4.8)

where i, j, N(i), c, Q(i, j) are the same as in Eq. (4.7). The function d(i, j, c)

has the following form:

d(i, j, c) =

{
(rc(i, j)− s(i, j))2, M(qi) ·M(qj) 6= 0

∞, otherwise,
(4.9)

where ∞ is a large constant that imposes a severe penalty if a vertex leaves the

silhouettes, and M is a mask image which is non-zero inside the silhouettes and

zero outside.
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4.6 Shading-based Geometry Refinement

Figure 4.2: Anisotropic smoothness constraint: the smoothness weight for each
edge is determined by the image gradient along the edge.

Smoothness constraint In practice, we have found that the shading gradient

error alone leads to noisy reconstructions in areas where the normal is not suf-

ficiently constrained or where errors in our image irradiance approximation are

significant. Traditional smoothness terms might erroneously remove fine shape

detail. We thus use an anisotropic smoothness constraint based on the image gra-

dient that filters noise while preserving details captured by the shading gradient

constraint.

We observe that for objects of uniform albedo, the image gradient can be used

to infer geometric smoothness. We use a small smoothness weight in regions with

large image gradients, allowing the shading constraint to capture fine detail. In

areas where the image gradient is small, the shape is most likely smooth, so we

use a larger smoothness weight. Fig. 4.2 shows this idea.

The smoothness constraint is imposed between vertex i and its 1-ring neigh-

bors, with the weight being assigned to the corresponding edges. An isotropic

smoothness constraint would require the geometric differences between vertex i

and its neighbors to be as small as possible, with the same weight for each edge.

Our anisotropic smoothness term, on the other hand, assigns different weights

based on the image gradient between neighboring vertices. The weight of edge

eij, for example, is determined by the corresponding image gradient in the camera

most directly facing the vertex i. The weight for each edge is defined as

wsij = 1−min(r̂(i, j), C)/C, (4.10)

where r̂(i, j) is the image gradient and C is a constant setting a lower bound on

the smoothness weight when the gradient is large.
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Combining the anisotropic weights with traditional mean curvature flow Meyer

et al. (2002), the smoothness term E2 becomes

E2 =
∑
i

‖
∑
j∈N(i)

wsijw
m
ij (qi − qj)‖2

2, (4.11)

where qi and qj are the positions of vertex i and j, and wmij is the common

cotangent weight. The cotangent weight wmij is defined as

wmij =
1

2Ai
(cotαij + cot βij), (4.12)

where αij and βij are the two angles opposite to the edge (qi, qj), and Ai is the

Voronoi area of vertex qi.

We optimize a cost function summing the shading gradient E1 and smoothness

constraints E2, defined as

E = λE1 + (1− λ)E2, (4.13)

where λ is a weighting factor. Optimizing all the vertex positions simultaneously

is computationally intractable because of the non-linear SH function. Optimizing

vertices one at a time, however, does not afford enough flexibility to adjust the

local surface shape. Our algorithm visits each vertex in turn in a fixed order,

optimizing the positions of a patch comprising the vertex and its 1-ring neighbors

in each step. To avoid self-intersections as far as possible, we restrict vertex

motion to be along the initial surface normal direction.

We could iterate by recomputing visibility using the refined geometric model,

re-estimating lighting, refining the geometric model, and so on. In practice,

however, we find that one pass suffices for an accurate reconstruction.

4.7 Adaptive Geometry Refinement

For convex Lambertian objects, low-order spherical harmonics suffice to approxi-

mate the irradiance well. For more complex objects, however, we must use high-

order approximations, which are slower to compute. We use the local ambient

occlusion Langer & Bülthoff (2000) to adapt the order of the SH approximation to

the geometry. Ambient occlusion corresponds roughly to an integral over the local

visibility hemisphere, so it is high for vertices with more local self-occlusion. We

segment the mesh into two sets based on whether the ambient occlusion at each
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Figure 4.3: An example visibility map and its SH representations of different
order.

Figure 4.4: Evaluation on synthetic data.

vertex is over a threshold, and use high-order and low-order SH approximations

for vertices with high and low ambient occlusion, respectively (Fig. 4.5 (d)(e)).

Although the SH approximation error depends on the specific visibility function at

each vertex, not just its integral, we have found that the ambient occlusion gives

a good balance between reconstruction accuracy and computational complexity.

4.8 Results

We validated our algorithm using a synthetic bunny model, shown in Fig. 4.4,

and four real world data sets: an angel statue (Fig. 4.6), a sculpture of a fish

(Fig. 4.7), a crumpled sheet of paper (Fig. 4.9), and a plaster cast of a face

(Fig. 4.10). For the real world models, we took between 22 and 33 photos with

a Canon 5D Mark II from calibrated positions. We captured images at the full

camera resolution and cut out the region of interest containing the object, yielding

images of around 800× 600 pixels. For some models we also captured laser range
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Figure 4.5: Adaptive geometry refinement: Our reconstruction using adaptive
SH order (c) is almost as accurate as the high order case (b), which is obviously
better than the low order case (a). The SH order used for every vertex (e) depends
on its ambient occlusion value (d).

scans with a Minolta Vivid 910. We used Furukawa’s method Furukawa & Ponce

(2010) to generate the initial MVS models for the angel and the paper, and Liu’s

method Liu et al. (2010) for the bunny, the fish and the face. These MVS results

are re-meshed to get a uniform triangulation, resulting in 30000 vertices for the

bunny and 200000 vertices for the real scenes. We use DirectX to render a cube

map for the visibility function at each vertex in the re-meshed result. Fig. 4.3

shows an example visibility map and its SH representations at different orders.

For the synthetic model, we used 4 simulated area light sources (Fig. 4.4 (e)). The

real objects were captured in two different environments: a large indoor atrium

environment with a variety of light sources at different locations and distances

(lighting I), and a room with several rows of standard office lighting on the ceiling

(lighting II), Fig. 4.8. For the lighting estimation, we used conjugate gradient

to solve the `1 minimization problem in Eq. (4.3). The shape is then refined by

minimizing Eq. (4.13) using the Levenberg-Marquardt algorithm.

Parameters There are two tunable parameters in our method, λ in Eq. (4.13),

and C in Eq. (4.10). Experimentally, we determined λ = 0.3 for all data sets. C

was set to 20 for the bunny model, 100 for the angel model, and 50 for the other

real-world models.

Generally, the selection of C depends on the level of image noise and unifor-

mity of the albedos. For instance, less uniform albedos require a higher C. The

per-vertex ambient occlusion threshold value (Sec. 4.7) was set to 0.1. 4-th order

SH approximations were used for vertices with low ambient occlusion. Vertices
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Figure 4.6: Our approach reconstructs models of much higher detail than state-
of-the-art stereo approaches.

over the threshold used 14-th and 16-th order approximations for the real and

synthetic sets, respectively.

Synthetic scene Our synthetic dataset was generated by rendering 20 images

of the “bunny” model at 800×600 pixel resolution. Fig. 4.4 (a) shows an example

image. The MVS result (Fig. 4.4 (b)) lacks fine-scale detail. Our refinement

without anisotropic smoothing (Fig. 4.4 (c)) brings out more detail, but also

has artifacts on the surface. In contrast, our complete reconstruction approach

(Fig. 4.4 (d)) shows the high-frequency shape detail nicely with no disturbing

artifacts. Table 4.1, a numerical evaluation of the reconstruction error w.r.t. the

ground truth model, confirms the accuracy of our results.

Real-world scenes Our algorithm produces results of similarly high quality

for the real objects shown in Figs. 4.6, 4.7, 4.9, and 4.10. While the MVS re-

construction consistently fails to capture high-frequency details, our algorithm

produces results with an accuracy that rivals and sometimes exceeds the quality

of a laser range scan. For instance, in Fig. 4.10 our approach not only brings out
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Figure 4.7: Fish reconstructed under two lighting conditions (cf. Fig. 4.8) — in
both cases, our final result (e),(f) is much more detailed than the MVS results
((d) is only shown for lighting II and is better than MVS results for lighting I)
and close to the laser scan (a).

Position[�] Normal[deg.]
Runtime

mean std mean std
MVS result 1.44 1.24 8.66 6.93

adaptive, no smoothing 1.17 1.13 8.53 9.99 2 hours
adaptive + smoothing 1.15 1.07 7.05 6.03 2 hours
4th order + smoothing 1.19 1.13 7.28 6.28 1 hour
16th order + smoothing 1.13 1.06 6.91 6.17 4 hours

Table 4.1: Quantitative evaluation on synthetic data. First column: position
error (in � of bounding box dimension). Second row: error in surface normal
direction in degrees. Third row: run time.

the birth marks and pimples in the skin, but also extracts ridges on the rubber cap

that are completely masked by measurement noise in the laser scan. Although

the angel statue in Fig. 4.6 has a slightly varying albedo, our algorithm achieves

high-quality results. Thus, in practice the constant albedo assumption is not a

strict limitation. Fig. 4.7 shows reconstructions of a fish figurine captured under

two very different lighting conditions (lighting I and II). In both cases, our final

model is very accurate and close to the laser scan.

Runtime performance The algorithm’s run time depends on the mesh den-

sity, the SH order, and the cube map dimensions for rendering and SH projection.

The bunny mesh has 30000 vertices and was computed using visibility cube maps

with 64× 64 facets. Using unoptimized code on a standard PC with a 2.66 GHz

Core 2 Quad processor, rendering the visibility map takes 33 minutes, and opti-

mizing the shape takes roughly 1 hour and 30 minutes. Higher SH orders improve
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Figure 4.8: Comparing estimated lightings (c), (d), (f) to the captured environ-
ment map (a), (e) and the ground-truth SH representation of lighting I (b).

reconstruction quality, particularly in starkly occluded areas; see Fig. 4.5 (a), (b).

Reconstruction of the bunny with 4-th order SH coefficients (Fig. 4.5 (a)) takes

roughly 1 hour, but produces less accurate results than a full reconstruction with

16-th order (Fig. 4.5 (b)), which takes 4 hours to compute. Adaptive refinement

reduces the runtime to only 2 hours with accuracy comparable to using high order

coefficients throughout (Fig. 4.5 (c)).

Discussion The approach in this chapter is subject to a few limitations. The

constant albedo assumption limits the possible application range. In the next

chapter, we will modify the approach to handle clearly varying albedo. Another

limitation comes from the assumption of Lambertian reflectance. This approach

has difficulties when applied to non-Lambertian materials. We will also amend

the approach to be applied to more general materials in later chapters. Also, this

approach assumes a good initial guess of the geometry and would suffer from a

failure of the MVS. In the future, we intend to start from a mesh obtained by

active sensing methods Reynolds et al. (2011).
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Figure 4.9: Our reconstruction of the crumpled paper recovers high frequency
shape (c), while it is absent in the stereo result (b).

Figure 4.10: Reconstruction of a face plaster cast — the stereo result (b) lacks a
lot of detail. Our reconstruction (c) captures even small-scale detail that, in the
laser scan (d), is hidden by noise.

4.9 Conclusion

In this chapter, we demonstrate how to employ inverse rendering for scene recon-

structions on static scenes. We proposed a new approach for purely image-based

reconstruction of 3D models with extremely high surface detail. The core of the

method is a shading-based refinement strategy for stereo reconstructions that

succeeds under general unconstrained illumination. An efficient representation

of visibility and lighting in the spherical harmonic domain enables the method

to reliably estimate incident illumination and exploit it for high-quality shape

improvement. Both visual and quantitative analysis show that our purely image-

based results rival even laser range scans.
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Part II

Dynamic Scene Reconstruction
from Multi-view Video
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As the idea of employing inverse rendering for scene reconstruction was demon-

strated on static scenes in the previous chapter, in this part we are going to

investigate the use of the inverse rendering concept for dynamic scene reconstruc-

tion from multi-view video input. Marker-less performance capture is one of the

techniques able to produce temporal-coherent dynamic geometry from multi-view

image sequences. However, previous methods are constrained by the capture en-

vironment, e.g. requiring controlled lighting or a green-screen background. One

of the reasons is that they have not fully made use of or they have inappropriately

modeled the information in the input video, especially the shading information

in the images, which comes from the interaction between the lighting and the

geometry of the scene.

With a better understanding of the light transport in the scene, in this part

we exploit the shading information for dynamic scene reconstruction in two ways.

Firstly, in Chapter 5 we look into the shading information in the video to add the

true, fine geometric detail to coarse dynamic geometry to achieve high-quality per-

formance capture under general and unknown illumination. Secondly, in Chap-

ter 6, the shading cues are investigated for skeletal motion tracking under gen-

eral unknown and even varying illumination, and a less-constrained background.

With the techniques proposed in this part, we are able to achieve high-quality

temporal-coherent dynamic geometry reconstruction, including the true fine-scale

detail as well as accurate motion, under a less constrained environment, where

the lighting could be general, unknown and varying.
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Chapter 5

Shading-based Dynamic Shape
Refinement under General
Illumination

5.1 Introduction

Recent advances in computer vision and computer graphics have made it possible

to reconstruct dynamic scenes from the real world into 3D mesh representations

(e.g., Bradley et al. (2010); Cagniart et al. (2010b); de Aguiar et al. (2008);

Vlasic et al. (2008)). This is achieved by capturing the scene from multiple

synchronized video cameras and building the 3D shape from photometric cues,

with the requirement that the reconstructions are geometrically and topologically

consistent over time. These 3D shapes show plausible deformations up to medium

scale detail, but often lack true detail at the finest level. As an example, a static

laser-scan can be deformed to mimic the motion of the real scene, but any fine-

scale detail thus obtained appears baked into the surface in the rest of the frames

and does not capture the soft wrinkles on clothes and skin as can be observed

from the images de Aguiar et al. (2008); Vlasic et al. (2008) (Fig. 5.1(d)). Some

approaches attempt to reconstruct such detail through multi-view stereo from

scratch or stereo-based refinement, but even then the detail in reconstructions is

limited.

In this chapter, we propose a method that exploits knowledge about how a

scene is lit and how it appears shaded in images to refine captured dynamic scene

geometry. Shading information or photometric stereo cues have been exploited in

certain previous approaches for capturing shape detail, for instance for facial per-
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Figure 5.1: Shading based shape refinement: (a) captured image, (b) smooth
model obtained by tracking, (c) our result of spatio-temporal shape refinement,
(d) high-resolution geometry of a laser scan transferred by tracking, whose baked-
in detail does not correspond to (a).

formance capture Wilson et al. (2010). However, they required controlled studio

lighting through calibrated colored lights or a light stage, and made additional

restrictive assumptions about the scene, such as that surface albedo is constant

Hernandez et al. (2007). In contrast to these past methods, in this chapter, we

propose a passive shape refinement method that attempts to reconstruct highly

detailed spatio-temporally coherent 3D geometry under general illumination con-

ditions (Fig. 5.1(c)).

We accept as input a sequence of multi-view images captured from a set of syn-

chronized and calibrated cameras. Considering the state of the art in marker-less

3D motion capture systems (e.g., Gall et al. (2009)), we also assume that tempo-

rally coherent 3D meshes were reconstructed that lack any fine shape detail. We

consider the estimated motion between the meshes to be accurate up to a coarse

level. From this input, we try to capture high quality surface detail such as folds

and deformation of the human body or cloth. For every time step of video, we ex-

plicitly estimate the incident illumination in the scene based on the reconstructed

shape, make an estimate of the albedo distribution on the surface, and then use

this information together with the lighting equation to recover the fine-grained

structure and orientation of points on the surface. We assume a Lambertian

model of reflection where incident lighting is given by an environment map that

is parameterized in the spherical harmonic (SH) domain Ramamoorthi & Hanra-

han (2001b), and where surface properties are given by a spatially-varying albedo

map.

We mathematically formulate this in a maximum-a-posteriori (MAP) estima-

tion framework, where we enforce a soft temporal coherency in estimated light-

ing, albedo and refined geometry. In this way, the environment map and surface
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albedo can also change over time within reasonable bounds, e.g., when a sub-

ject walks across a room with several distributed lights, or when shifting apparel

changes the albedo of a surface point over time. Our major contributions in this

chapter, which were published in Wu et al. (2011a), are as follows.

1. We provide a method for adding spatio-temporally coherent millimeter scale

surface geometry to coarse dynamic 3D scene models captured from multi-

view video under general illumination.

2. We reconstruct time-varying incident illumination, time-varying and spa-

tially varying surface albedo, and time-varying geometry detail, without

using engineered lighting conditions.

3. We exploit the spatio-temporal information in the scene through soft tem-

poral priors, which improves reconstruction quality but permits variations

in the data.

5.2 Method Overview

We assume that a performance capture method was employed to obtain coarse

mesh reconstructions, lacking true surface detail, at each time frame. We use the

approach of Gall et al. (2009) that starts from a smoothed static model of the

person of around 5000 vertices (this can be obtained through a static laser scan

or imaged-based modeling) which it deforms to follow the motion in the scene.

These spatio-temporally coherent meshes and the multi-view images captured

under general unknown illumination form the input to our method. From this

input, we perform spatio-temporal surface refinement at each frame to recover the

high frequency geometry component by looking at shading cues. For refinement,

we use a finer tessellated version of the coarse tracked geometry (vertex count

increased to 80000), where a displacement for each vertex is found. In the rest of

the chapter, we refer to the coarse estimates of vertex positions and normals given

by the performance capture method as low freq and the refined vertex positions

and normals output by our method as high freq. We perform this refinement

successively at each frame to reconstruct the entire sequence.

Shading in the scene is generally an interaction result of lighting, material and

geometry, which is described by the rendering equation Kajiya (1986) (see Sec. 2.1

for a detailed explanation). In the general reconstruction case, all these three

components are unknown. To make the problem tractable, similar to Chapter 4,
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Figure 5.2: Overview — input to shape refinement at frame t: (a) lighting es-
timate at t-1, (b) surface albedo map at t-1, (c) detailed surface geometry at
t-1, (d) coarse tracked model at t, (e) multi-view images at t. The two steps of
our method: (A) lighting and albedo estimation, (B) recovery of high frequency
shape detail.

we assume the surface to be Lambertian and employ spherical harmonics (SH)

to represent the general lighting. So our refined model has three components:

SH lighting coefficients, albedos and surface geometry (or positions of vertices

{q}). We formulate the problem of dynamic shape refinement as estimating these

three components ({lt}, {ktd}, {qt}) at a given frame using these estimates in the

previous frame ({lt−1}, {kt−1
d }, {qt−1}) and the coarse performance capture model

in the current frame ({q̂t}). We develop a two-step algorithm that is visualized

in Fig. 5.2. In the first step, we estimate the lighting coefficients and the surface

albedos ({lt,ktd}) at a given frame. These are estimated based on the lighting

and albedos of the previous frame and the current tracked coarse model. In the

second step, based on the estimated lighting and albedos, as well as the previous

refined model, the high quality geometry at the current frame ({qt}) is recovered

based on shading cues. We formulate these two steps as two MAP estimation

problems with the appropriate priors, as detailed later in the following sections.
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5.3 Image Formation Model

As introduced in Sec. 2.1.1, when the surface reflectance can be assumed to be

Lambertian, we can simplify the reflection equation using SH to Eq. (2.5) or

Eq. (2.7). We rewrite these two equations as follows:

B(q) = kd(q)

ND∑
l=0

l∑
m=−l

Llm Tlm(q) = kd(q)
n2∑
k=1

lk tk(q), (5.1)

B(q) = kd(q)

ND∑
l=0

l∑
m=−l

Λl glm ρ̂dl Ylm(n), (5.2)

where B(q) is the reflected radiance, lk is the SH coefficients for the lighting

term, tk(q) are the SH coefficients for the combinational term of visibility and

the clamped cosine function, kd(q) is the albedo value for surface point q, ND

is the SH order employed and equals n − 1, Λl is a constant scaling factor, glm
are the SH coefficients for the visible lighting term, ρ̂dl are the SH coefficients for

the clamped cosine function, Ylm are the SH basis functions, and n is the surface

normal. We consider scenes captured using color images with RGB channels.

The above equation, along with the equations derived in the following, hold true

for all the color channels.

5.4 Lighting and Albedo Estimation

In the general case, the albedo varies across surface points. In an extreme case

of high frequency texture with many surface albedos, solving for all the albedos

and the incident illumination from the coarse geometry is infeasible. However,

in most cases it is reasonable to assume that the albedo space is restricted and

that the surface consists of patches of piecewise uniform albedo. For instance,

most pieces of apparel have a dominant base color, as seen in Fig. 5.3. With

a restricted albedo space we can simultaneously solve for albedo and lighting at

each time step. Otherwise there would be an insufficient number of surface points

(or shading samples) of similar reflectance seen under different orientations, which

are needed to infer the incident illumination.

In our method, we first obtain an initial guess for the albedo of each vertex

by making two assumptions: (i) that the lighting of the previous frame applies

approximately to the current frame and (ii) an approximation to the high freq
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Figure 5.3: Stages for albedo estimation: (a) input textured model, (b) initial
guess for albedos based on the previous frame’s lighting, (c) albedo clusters de-
tected on (b) through segmentation, (d) detected outliers marked in red, (e) the
final albedo map.

surface normals at the current frame can be obtained by transferring the high freq

normals of the previous frame through the low freq motion estimates given by the

performance capture method (described in greater detail in Sec. 5.5). Using these

initial guesses, we solve for the albedos at the current time step (i.e. an individual

albedo for every mesh vertex) using Eq. (5.1) (Fig. 5.3(b)). Subsequently, we solve

a global energy minimization problem to refine these albedo values over the entire

shape, and to estimate the lighting conditions at the current frame.

Following our assumption about piecewise uniform albedo in the scene, we

employ an image segmentation algorithm Felzenszwalb & Huttenlocher (2004)

to segment the albedo map into surface parts of approximately constant albedo

(see Fig. 5.3(c)). As criteria for segmentation, we provide the minimal size for

each segment and the minimal difference in albedos across two segments (same

parameters for all time steps).

Assuming we have K different albedo parts, we formulate a global problem

that updates these albedo values as well as computes the lighting coefficients at

the current frame. This is defined as a finding a MAP solution that maximizes

the likelihood:

P (lt,ktd|I t) ∝ P (I t|lt,ktd)P (lt)P (ktd), (5.3)

where lt = {lt1, . . . ltn2} is the SH coefficients for the lighting, and ktd = {ktd(1), . . . ktd(K)}
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represents the albedos for segmented parts. So the cost function we define is:

ψ(lt,ktd) = φ(I t|lt,ktd) + φ(lt) + φ(ktd), (5.4)

where φ(I t|lt,ktd) is the shading error, φ(lt) and φ(ktd) are the priors for lighting

and albedo in the current estimate. Specifically, as albedo segmentation may

contain outliers, we use the `1 norm to define the shading error, i.e.

φ(I t|lt,ktd) = |I(q)−B(q)| . (5.5)

We require the incoming light energy and the albedo of the surface points in the

current frame to be not too different from those of the previous frame, which

yields the priors:

φ(lt) = λ0(
n2∑
k=1

(ltk)
2 −

n2∑
k=1

(lt−1
k )

2
)2, (5.6)

φ(ktd) = λ1

K∑
i=1

(ktd(i)− kt−1
d (i))2. (5.7)

With the lighting and albedo estimated, we detect the outliers in the albedo

segmentation for each part. Examples of outliers are surface points under cast

shadows (where the first bounce illumination assumption is violated) or where the

surface is non-Lambertian. To detect outliers, we calculate the median absolute

deviation Rousseeuw & Leroy (1987) for each uniform albedo part as

σi = α ∗ medianq∈O(i)‖I(q)−B(q)‖1, (5.8)

where O(i) represents the uniform-albedo part i and α = 1.4826 is the theoretical

correction factor Rousseeuw & Leroy (1987). If ‖I(q)−B(q)‖1 > βσ, the surface

point is considered as an outlier and will be optimized only by relying on the

shape prior afterwards (in our experiments, we have set the penalizing threshold

β = 2.5). We refine the lighting and albedo estimates again with these outliers

excluded by solving Eq.(5.4) (Fig. 5.3(e)).

5.5 Recovery of High-frequency Shape Detail

Now, the lighting and the albedos for the current frame are known. The next

step is to estimate the fine-scale geometry of the current frame based on the

images, the coarse shape model at the current frame, and the refined model of
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the previous frame. This can be defined as a MAP problem as well, the likelihood

of which is:

P (gt|I t, gt−1) ∝ P (I t|gt)P (gt|gt−1), (5.9)

where gt and gt−1 are the geometry of the current frame and the previous frame,

and I t are the current captured images. The cost function to optimize is thus

ψ(g) = φ(I t|gt) + φ(gt|gt−1), (5.10)

where φ(I t|gt) is the shading error and φ(gt|gt−1) is the prior for the current

geometry based on the previous frame’s geometry.

The shading error measures the difference between the observed and predicted

irradiances at each vertex according to the shape estimate. We are not comparing

irradiances, since that comparison is less robust if the assumptions on lighting

and image-formation are not exactly met. When evaluating the energy, we use

grayscale intensities, instead of treating the three color channels separately. Our

shading error is defined as:

φ(I t|gt) =
Nv∑
i

∑
j∈N(i)

∑
c∈Q(i,j)

|rc(i, j)− s(i, j)|, (5.11)

where i and j are vertex indices, Nv is the number of vertices, N(i) is the set

of the neighbors of the i-th vertex, c is the camera index, Q(i, j) is the set of

cameras which see vertex i and j, and r(i, j) and s(i, j) are the measured image

gradient and predicted shading gradient, respectively.

An important step to solving this equation is determining Q(i, j), which de-

pends on the current estimate of the 3D geometry (vertex positions qi). A dis-

crepancy between the hypothesized scene geometry and the real geometry will

lead to wrong assumptions about what surface point is visible from what camera.

Such errors translate into wrongly evaluated shading cues, and thus geometry ar-

tifacts. Fig. 5.4 shows one such error that often arises around a visibility shadow

that more frontal geometry casts onto more distant geometry.

In Chapter 4, we have proposed a similar shading error metric to Eq. (5.11)

for the reconstruction of static 3D scenes. However, there we assume a much

denser set of input camera views (> 20) and better initial geometry to start

with. In contrast, performance capture methods Gall et al. (2009) typically use

only 8-12 cameras, and reconstruct a geometry that is only accurate up to a

coarse scale. This makes the errors in determining Q(i, j) more damaging for our

situation, and demands explicit consideration. In order to implicitly downweight
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Figure 5.4: Handling errors in estimated geometry: (a) the geometry of the
forearm is not estimated fully correctly — using an `2-metric shading term, this
yields artifacts around the visibility shadow on the torso; (b) the `1-metric shading
term prevents this artifact.

the influence of these errors, without having to resort to more complex visibility

computation, we employ the robust `1 metric in Eq. (5.11) in contrast to the `2

metric (Fig. 5.4).

The prior φ(gt|gt−1) enforces weak temporal coherence by requiring the cur-

rent high freq normal field not to be much different from the one in the previous

time step transformed into the current time step:

φ(gt|gt−1) = λ2

∑
i

∑
u,w

[n̂ti · (qtu − qtw)]2, (5.12)

where qtu and qtw are the positions of vertices u and w, vertices u, w and i belong

to the same mesh triangle, and n̂ti is the propagated surface normal at vertex i

based on the already reconstructed high freq normal field of the previous frame.

This propagation is done by estimating the relative transformation Ri of the low

freq normals between the two frames, using a method similar to Nehab et al.

(2005), such that:

ñti = Riñ
t−1
i , (5.13)

where ñti and ñt−1
i are the low freq normals of the current frame and the previous

frame, respectively. Then we obtain the propagated fine-scale normal of the

current frame by transforming the high freq normal of the previous frame as:

n̂ti = Rin
t−1
i , (5.14)

where nt−1
i is the normal of the refined model of the previous frame. We now

obtain an initialization for the fine geometry at the current frame by displacing
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Figure 5.5: Importance of temporal shape prior: (a) captured image, (b) recon-
structed model using no temporal shape prior (OneFrm method), (c) improved
reconstructed model using temporal shape prior.

vertex positions so as to align with the propagated normal field {n̂ti}. Starting

from this initial estimate, the final refined vertex positions (and normals) are

found by optimizing Eq. (5.10).

In our shape refinement procedure, we give the shading term less influence

when optimizing regions with low albedo. This is because such regions suffer

more from camera noise. We thus include a weighing term λ2 in the shape prior

Eq. (5.12):

λ2 = β1(2− kd(u)/max
i

(kd(i))), (5.15)

where kd(u) is the albedo for the vertex u, which is to be optimized, and maxi(kd(i))

is the maximum albedo of the current model.

Since optimizing the positions of all the vertices simultaneously might take

too long, similar to Chapter 4, we adopt a patch-based optimization strategy

that divides the surface into a set of patches and optimizes on the set of vertices

belonging to each patch sequentially. This arrives at a local optimum that is

usually quite robust.

5.6 First Frame Reconstruction

For the first time step, we cannot employ our spatio-temporal reconstruction

scheme as information from the prior time instant is not available. Instead, we

employ a static refinement method (referred to as OneFrm) that only uses image

and coarse model information for the one time step under consideration. To this

end, we first segment the shape into parts of uniform color, and assume that
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Figure 5.6: Shape refinement results on synthetic data: (a) one of the rendered im-
ages that we provided as input, (b) the smooth low-freq model obtained by track-
ing, (c) our spatio-temporal shape refinement result, (d) ground-truth model,
(e) difference from ground truth for (b) in the inset region (color-coded error
w.r.t. ground truth — red=high), (f) difference from ground truth for (c).

these are regions of uniform albedo. We then estimate lighting coefficients and

albedo values using our method of Sec. 5.4, but without temporal priors. Next, we

recover the high frequency surface detail using a spatial smoothness prior (used

in Chapter 4) in Eq. (5.10) (instead of the shape prior from the previous frame)

that requires neighboring surface vertices in a one-ring to have similar positions.

This gives a reasonable estimate for the first frame. In later frames, however,

we always resort to the full spatio-temporal scheme which is clearly better than

using the static scheme sequentially to all time steps (see Fig. 5.5 and Sec. 5.7).

5.7 Experiments

We test our algorithm on one synthetic sequence for quantitative evaluation, and

four real-world sequences for qualitative validation. We use the performance cap-

ture method of Gall et al. Gall et al. (2009) that uses an initial smooth mesh of

around 5000 vertices to track the performance. We obtained this by smoothing a

static laser scan of the performer (for real data, e.g., Fig. 5.1(b)) or by smooth-

ing a ground truth input mesh (for synthetic data, Fig. 5.6(b)). Refinement is

computed on the 80000 vertex versions of the coarse models (see Sec. 5.2).
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Figure 5.7: Lighting estimation: (a) typical light-source distribution for real-
world datasets we used, (b) ground-truth lighting for synthetic data — SH ap-
proximation of the incoming radiance displayed onto a cubemap, (c) the estimated
lighting for synthetic data by our algorithm.

Synthetic Scene We rendered a synthetic motion sequence of a female dancer

of length 60 frames from 12 circularly arranged virtual cameras of resolution

1296 × 972. Surface albedo distribution was manually specified (5 regions of

similar albedo), and the scene was rendered using a single area light from an

overhead position (Fig. 5.6(a) shows one rendered frame).

We applied the performance capture method to all the frames; we then per-

formed static refinement (OneFrm) on the first time step and spatio-temporal

refinement on all subsequent ones. Fig. 5.6(c) and Fig. 5.6(d) show the refined

model and the ground truth, respectively.

We compare the accuracy w.r.t. ground truth of the lighting and albedo esti-

mation between the OneFrm and spatio-temporal refinement methods in Fig. 5.8(a)

and (b). We use the normalized correlation coefficient to compare the estimates.

This figure clearly demonstrates that by using spatio-temporal information for es-

timating lighting and albedo values, higher accuracy is achieved. Fig. 5.7 shows a

visual comparison of our lighting estimate with the ground truth on the synthetic

data, illustrating the high quality of our estimate.

We also evaluated the accuracy of the reconstructed high-resolution geometry

from our algorithm. In Fig. 5.8(c,d,e,f), we show the errors in normal orientation

and position as compared to the ground truth. Here, we also compare our method

to the OneFrm method, and to the coarse tracked model as the baseline. These

figures illustrate that our method reliably captures high-frequency shape detail

that is not present in the coarse model. The refinement with OneFrm is under-

standably less accurate, especially in estimating normal orientations. The same
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Figure 5.8: Quantitative evaluation on synthetic data: (a) lighting estimation
accuracy, (b) surface albedo estimate accuracy, (c) mean of the estimated normal
error, (d) std of the estimated normal error, (e) mean of the position error (nor-
malized using the diameter of the bounding sphere of the model), (f) std of the
position error. Our spatio-temporal shape refinement (red curve) yields the best
results.
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Figure 5.9: Qualitative comparison with stereo refinement: (a) captured image,
(b) our shape refinement results, (c) stereo-based shape refinement of Liu et al
Liu et al. (2010)

can be visualized in Fig. 5.5(b,c) as spatio-temporal refinement better brings out

high frequency shape details. Using the OneFrm method independently at each

frame also produces temporal flicker which is absent in the reconstructions of our

method.

Real-world Scenes We validate our algorithm on four real captured sequences,

showing 3 different subjects in different types of apparel. All sequences were

captured indoors with non-engineered lighting, i.e. several area light sources and

spot lights on the ceiling (Fig. 5.7-a). The results of shape refinement on certain

frames are provided here. The first two sequences show an actress wearing a

sweater and jeans performing different motions, namely walking (Fig. 5.9) and

kicking (Fig. 5.1), the third shows another actress in a skirt performing samba

dancing (Fig. 5.10-a,b), and the fourth shows an actor executing a Capoeira

move (Fig. 5.10-c,d). For the first two sequences, 12 cameras at a resolution of

1296× 972 pixels are used to record at a frame rate of 44 fps. For the latter two

sequences that were provided to us by the authors of de Aguiar et al. (2008), 8

cameras running at the resolution of 1004 × 1004 pixels are used. We show the

results in Fig. 5.10. In all cases, our method recovers the true dynamic detail

seen in the images reliably. Our reconstructions capture the true time-varying

detail visible in input images, as opposed to the deforming embossed static shape

detail seen from performance capture methods that deform a (unsmoothed) static

laser scan (Fig. 5.1(d)). In Fig. 5.9(c), we show a qualitative comparison of our
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Figure 5.10: Qualitative evaluation on real datasets: (a,c) captured image, (b,d)
our shape refinement results. Our refinement method faithfully brings out fine-
scale detail from images.
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method with a stereo based reconstruction method of Liu et al. (2010). It can be

observed that our method brings out finer detail than stereo.

Runtime Performance We measured the runtimes of the various algorithmic

components on a standard PC with a 2.66 GHz Core 2 Quad processor. Perfor-

mance capture using Gall et al. (2009) takes on average 5−10 s per time step. Per

vertex visibility computation (one visibility environment map per vertex) takes

around 10 minutes per frame. The shape refinement step takes around 6 minutes

per frame. Since these three steps can be executed in parallel for processing se-

quences, the runtime is decided by the visibility computation step (10 minutes

per frame).

Discussion On parts of the shape where image resolution is limited (for ex-

ample, on the faces of the actors), our approach cannot completely recover the

fine-scale detail. Reconstruction quality depends on the tracking accuracy of the

performance capture approach; large tracking errors or tracking failure will lead

to incorrect shape refinements. Thus, although the shape refinement potentially

works for changing illumination and general background, the motion tracking

step limits the whole pipeline so it only succeeds under constant lighting and

with a green-screen background. In next chapter, we will show how to address

this issue by also exploiting the shading information for motion tracking. An-

other limitation is that we assume Lambertian surfaces; as such, our algorithm

fails to obtain the high-frequency detail on non-Lambertian parts of the shape.

We will also address this issue in later chapters. Also, the assumption that the

surface can be clustered into regions of uniform albedo is restricting and can be

violated in some scenes. If too many different materials are present, the space of

shading samples may not be sufficient in order to estimate albedo and lighting

at the same time. In such cases, they may have to be spatio-temporally solved

over more time instants, which makes the approach more vulnerable to tracking

errors. In the future, we intend to handle this case by incorporating more priors

on lighting and albedos.

5.8 Conclusion

In this chapter, we investigated the idea of employing inverse rendering for dy-

namic reconstruction of high-frequency shape detail. Specifically, we proposed

74



5. SHADING-BASED DYNAMIC SHAPE REFINEMENT UNDER
GENERAL ILLUMINATION

a general method for capturing high-quality time-varying surface detail by an-

alyzing the shading information of multi-view video sequences captured under

general illumination. We make minimal assumptions about the nature of the

scene, the type of motion or the lighting requirements. Starting off from coarse

per time-step reconstructions, we recover incident illumination, surface albedo

and fine-scale surface detail in a spatio-temporally coherent way. Our recon-

struction framework uses weak temporal priors to boost reconstruction quality,

and it is able to allow for and capture temporal variations in lighting, albedo and

shape.
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Chapter 6

Full Body Performance Capture
under Varying and Uncontrolled
Illumination

6.1 Introduction

In Chapter 5, we address the problem of how to reconstruct dynamic shape detail

under general and unknown lighting. While the high-frequency geometry can be

estimated by utilizing the shading information without resorting to specific light-

ing conditions, the low-frequency geometry, which has so far been reconstructed

with a traditional template-based performance capture method Gall et al. (2009),

still requires constant and well-controlled lighting and a green-screen background.

This constrains this method to controlled indoor studio setups. In this chapter,

we develop a new performance capture method which works under general, un-

known and time-varying illumination, and a less-constrained background. The

key step to achieve this goal is to also exploit inverse rendering for human skele-

tal motion tracking under general and varying illumination. The low-frequency

geometry obtained by this step is further refined based on the shading cues to

achieve a high-quality dynamic scene reconstruction. In conjunction, this combi-

nation of exploiting inverse rendering for pose estimation and shape refinement

enables us to greatly broaden the application range of marker-less performance

capture.

Marker-less capture of human skeletal motion from images is one of the well-

studied problems of computer vision, with recent advances being able to recon-

struct human motion at increasing speed and accuracy and under less-controlled
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situations Balan et al. (2007); Bregler et al. (2004); Deutscher et al. (2000); Poppe

(2007); Sidenbladh et al. (2000); Sigal et al. (2010); Stoll et al. (2011). These

methods have several applications in industry, ranging from game and movie

productions to use in biomechanics, ergonomics and sports sciences. However,

despite great algorithmic advances, even the latest approaches cannot yet be

applied in arbitrary environments with possibly changing lighting conditions, oc-

clusions and starkly varying scene backgrounds. This is why purposefully placing

markers in the scene is still the method of choice under such challenging condi-

tions Raskar et al. (2007). Special effects professionals and producers of 3D video

content are sometimes interested in factors beyond kinematic motion parameters

— demanding faithful and detailed dynamic 3D shape models of captured scenes,

such that believable virtual actors or convincing novel viewpoint renderings can be

created. To respond to this requirement, performance capture methods Cagniart

et al. (2010a); de Aguiar et al. (2008); Starck & Hilton (2007); Vlasic et al. (2008)

are developed to simultaneously capture shape, motion and possibly appearance

of people in general apparel from a handful of video recordings. Unfortunately,

these methods are similarly limited to studio settings with controlled lighting,

controlled background, and to scenes without static or dynamic occluders. This

has prevented the use of performance capture in practical applications such as

outdoor movie sets or sports stadiums.

In this chapter, we make a principal contribution towards the goal of model-

based performance capture under less controlled conditions. We propose an algo-

rithm that analyzes shading information to simultaneously estimate (a) human

skeletal motion parameters, (b) arbitrary and time-varying incident scene illu-

mination, (c) an approximation of surface reflectance, and (d) detailed dynamic

shape geometry — such as folds and muscle bulges. We accept as input a multi-

view video recorded from a synchronized and calibrated set of cameras, along

with a rough initial shape-template of the person given as a 3D mesh fit to a

kinematic skeleton. We do not require the subject to wear specific clothing or

markers. Unlike previous performance capture methods Cagniart et al. (2010a);

de Aguiar et al. (2008); Gall et al. (2009); Starck & Hilton (2007); Vlasic et al.

(2008), we do not require a fully controlled scene background, such as a green

screen, and thus do not expect exact foreground-background segmentations. We

handle changing backgrounds and even some occlusions in the scene (Fig. 6.1).

We do not rely on image features such as SIFT; our method is suitable even when

the subject wears sparsely textured clothing.
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(a) (b) (c)

Figure 6.1: Shading based pose tracking: (a,b) overlay of estimated pose with
recorded images — the actor is partially occluded by a person moving in the
background, (c) reconstructed high-detail 3D geometry. The inset shows folds of
the yellow T-shirt captured in 3D.

The main idea of employing inverse rendering for skeletal motion tracking is to

mathematically formulate the image shading constraint in terms of its differential

w.r.t. the motion parameters of the kinematic chain representing the human body

pose. Along with pose, we simultaneously estimate time-varying incident illumi-

nation, surface albedo and detailed surface geometry in a joint framework. Thus,

we integrate the human motion estimation problem into the broader framework

of multi-view shape-from-shading.

To summarize, the major contributions described in this chapter, published

in Wu et al. (2012), are as follows.

1. We present a new theoretical formulation of performance capture that si-

multaneously recovers human articulated motion and time-varying incident

illumination, by minimization of a shading-based error.

2. We provide a solution to reconstruct both skeletal motion estimates and

finely detailed time-varying 3D surface geometry for human performances

that are recorded under general and changing illumination, and in front of

less constrained backgrounds.

6.2 Method Overview

The input to our method is a multi-view video sequence of a moving actor cap-

tured using a sparse set of synchronized and calibrated cameras. Lighting in the
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Figure 6.2: Overview: (a) input multi-view images, (b) skeletal pose, (c) incident
illumination, (d) surface albedo, (e) refined surface geometry. (b-e) are outputs
of our method. Steps (A,B) for estimating pose and lighting are alternated in a
joint optimization framework. In step (C), final estimates of lighting, albedo and
surface geometry are obtained. These estimates at t are provided as input for the
optimization at t+ 1.

scene can be arbitrary and time-varying, and since no background subtraction is

required, no green-screen is expected, and other potentially occluding elements

can be in the scene. A rigged 3D mesh model with an embedded skeleton is

provided as a template for tracking. We only need a smooth template mesh at a

low resolution; the fine-scale detail is added later by our method. Similar to Gall

et al. (2009), the smooth template is built from a static laser scan of a person. Al-

ternatively, image-based reconstruction methods are also feasible to reconstruct

a template model directly from images. The embedded skeleton, as well as the

skinning weights for each vertex (which connect the mesh to the skeleton) are

obtained using standard tools.

An outline of the processing pipeline is given in Fig. 6.2. Given a set of cap-
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tured multi-view images (a) as input, at each time-step t+ 1 we estimate skeletal

pose (b), incident illumination (c), surface albedo (d), and detailed surface geom-

etry (e). For each of these variables, we solve an inverse-rendering problem that

attempts to bring the rendered images as close as possible to the captured image

data. In Step A, starting with the skeleton and the refined mesh from time t, the

skeletal pose is optimized by assuming incident lighting and surface albedo from

t, thereby exploiting temporal coherence. In Step B, the incident illumination

at time t + 1 is estimated based on the skinned coarse mesh in the new skeletal

pose. Step A is then repeated with the newly estimated lighting, which results in

a better pose estimate. Steps A and B constitute the main part of our method

and are described in Sec. 6.4. In Step C, we re-estimate incident lighting and

surface albedo, and then refine the surface geometry. The refined surface now

captures folds and bulges on the surface which cannot be modeled by articulated

skeletal motion alone. For the initialization of the very first frame, we employ

the same strategy as Gall et al. (2009) for pose estimation based on the manually

segmented silhouettes. We also use a similar method as Chapter 5 to calculate

the albedo value for each albedo segment, while the albedo segmentation could

be provided by the user or any albedo segmentation method.

6.3 Image Formation Model

Similar to the previous chapters, we build upon the spherical harmonics (SH)

parametrized reflectance equation, i.e. Eq. (2.5) and Eq. (2.7). We restate these

two equations here for completeness:

B(q) = kd(q)

ND∑
l=0

l∑
m=−l

Llm Tlm(q) = kdq
n2∑
k=1

lk tk(q), (6.1)

B(q) = kd(q)

ND∑
l=0

l∑
m=−l

Λl glm ρ̂dl Ylm(n(q)), (6.2)

where B(q) is the reflected radiance on point q, Llm and lk are the SH coefficients

of the incident illumination, Tlm and tk are SH coefficients for the combined

visibility and clamped cosine function, kd is the albedo value, ND is the SH

order employed and is equal to n − 1, Λl is a constant scaling factor, ρ̂d are SH

coefficients for clamped cosine function, which are pre-given and constant, glm are

the SH coefficients for the visible lighting term, and Ylm is the SH basis function
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which depends on the surface normal n(q). Similar to the previous chapters,

our lighting estimation (Sec. 6.4.3) employs Eq. (6.1), and our shape refinement

(Sec. 6.5) utilizes Eq. (6.2). Our major contribution is how we use Eq. (6.2) for

skeletal pose estimation (Sec. 6.4), which we will elaborate on in the next section.

6.4 Pose Estimation Under Time-varying and

Uncontrolled Illumination

At each time-step t + 1, we perform a simultaneous estimation of body pose

and incident lighting, both of which may have changed from time t. In order

to keep the optimization tractable, we assume that changes in body pose are

independent from changes in lighting, and alternate between the optimization of

these variables.

We take as initialization the refined mesh and the embedded skeleton of time

t, as well as the estimated incident lighting and surface albedo. In Sec. 6.4.1,

we introduce how the mesh geometry changes according to the pose change. In

Sec. 6.4.2, we define the shading constraint to estimate the pose parameters, given

the incident lighting. The optimization to minimize the shading error is described

afterwards. The method to estimate incident lighting is described in Sec. 6.4.3.

6.4.1 Surface Parameterization w.r.t. Pose

Image-based pose estimation methods usually need to model how the surface

deforms with a change in pose. While some methods use a set of cylinders to ap-

proximate the human body, mesh skinning of a closed surface mesh usually gives

a better approximation. Here we utilize the linear mesh skinning method Lewis

et al. (2000) to deform the mesh to a skeletal pose (see Sec. 2.4.1). Supposing

the position of vertex i to be qti at time t, the new vertex position qt+1
i at time

t+ 1 is described by the following equation:(
qt+1
i

1

)
=

m∑
i=1

wiCJi

(
qti
1

)
, (6.3)

where Cji represents the rigid motion, including rotation and translation, of joint

Ji, and wi is the skinning weight, which connects the mesh surface to the em-

bedded skeleton and can be computed from a standard toolbox Baran & Popović

(2007). Similar to Bregler et al. (2004), we represent the articulated pose by a
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set of twists θkξ̂k (see Chapter 2). The state of a kinematic chain is determined

by a global twist ξ̂ and the joint angles Θ = (θ1, · · · , θm). Assuming the state of

the kinematic skeleton of the previous time-step to be known, the unknowns for

pose estimation are the rigid motion of the root node and changes in joint angles

which we denote as φ = (∆ξ̂,∆θ1, · · · ,∆θm). Let qti be the 3D position of vertex

i at t. By using exponential maps to represent each joint’s rigid motion and by

linearizing the rigid body transforms, the position of the vertex i at t+ 1 can be

expressed by the skinning equation as(
qt+1
i

1

)
=

m∑
j=1

wje
∆ξ̂

∏
k∈R(j)

eξ̂k·∆θk
(
qti
1

)

≈
(
qti
1

)
+

∆ξ̂ +
m∑
j=1

wj
∑
k∈R(j)

ξ̂k ·∆θk

(qti
1

)
=

(
qti
1

)
+Mq(i) · φ,

(6.4)

where R(j) determines the indices of joints preceding the joint k in the kinematic

chain. Each vertex i is assigned a set of skinning weights wj that determine

how much influence joint j has on the deformation of vertex i. Skinning weights

are defined once during template building using standard techniques Baran &

Popović (2007). Mq(i) is the matrix determining how the pose change influences

the change of vertex position, and has the form of

Mq(i) =

[
I4×3, −q̂ti , WR(1)ξ̂1

(
qti
1

)
, WR(2)ξ̂2

(
qti
1

)
, . . . , WR(m)ξ̂m

(
qti
1

)]
,

(6.5)

where WR(j) =
∑

k∈R(j) wk and is the sum of the skinning weights of vertices

which are influenced by joint j, and q̂ti is a skew-symmetric matrix and has the

following form:

q̂ti =


0 −qz qy
qz 0 −qx
−qy qx 0

0 0 0

 . (6.6)

Eq. (6.4) can be rewritten as:

(
∆qt

0

)
=

(
qt+1

1

)
−
(
qt
1

)
≈

∆ξ̂ +
m∑
j=1

wj
∑
k∈R(j)

ξ̂k · θk

(qt
1

)
= Mq(i) · φ.

(6.7)
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A similar equation can be derived for the vertex normal nt+1
i at time t+ 1:(

nt+1
i

0

)
≈
(
nti
0

)
+Mn(i) · φ, (6.8)

where Mn(i) is a matrix that determines how a change in pose is related to a

change in normal orientation.

6.4.2 Shading Constraint for Pose Estimation

Our shading constraint requires the rendered images of the optimal pose accord-

ing to our image formation model to be as close as possible to the image data

captured. Following Eq. (6.2), the shading constraint for a single camera c can

be defined as

Es
c =

∑
i

(kd(i)

ND∑
l=0

l∑
m=−l

Λl ρ̂dl glm Ylm(ni)− I t+1
c (xt+1

i , yt+1
i ))2, (6.9)

where (xt+1
i , yt+1

i ) is the projection of the surface vertex qt+1
i , and other symbols

are defined similarly to Eq. (6.2). We assume the albedo kd(i) at time t + 1

is the same as that at time t, thereby exploiting temporal coherence in scene

motion. However, both the lighting and geometry at time t + 1 are unknown,

in other words glm and n are unknown. We attempt to estimate both of them

in a unified framework in order to properly account for shading changes due

to changes in either lighting or pose. Since simultaneous estimation of both of

them is computationally challenging and less stable, we alternate between error

minimization with respect to each of these two variables. Firstly, we minimize

the shading error to estimate the pose, by assuming the lighting to be the same

as in the previous time-step, and thereafter we solve for the new lighting. To do

this, we linearize the SH term Ylm(nt+1
i ) and the image intensity term I t+1

c from

Eq. (6.9). The SH term is expressed in a first-order Taylor-series expansion, using

Eq. (6.8), as follows:

Ylm(nt+1
i ) ≈ Ylm(nti) +

∂Ylm(nti)

∂nti
∆nti = Ylm(nti) +

∂Ylm(nti)

∂nti
Mn(i) · φ, (6.10)

where
∂Ylm(nt

i)

∂nt
i

is the derivative of the SH basis function with respect to normal

changes ∆nti, which can be expressed in terms of pose changes φ.

84



6. FULL BODY PERFORMANCE CAPTURE UNDER VARYING
AND UNCONTROLLED ILLUMINATION

Similar to the computation of optical flow Brox et al. (2004), we linearize

I t+1(xt+1
i , yt+1

i ) as:

I t+1(xt+1
i , yt+1

i ) = I t+1(xti + ui, y
t
i + vi) ≈ I t+1(xti, y

t
i) + I t+1

x ui + I t+1
y vi. (6.11)

Here, (ui, vi) is the 2D flow, i.e. the displacement in the image due to the motion

of vertex qi. Next, we derive the linear approximation for the flow (ui, vi) in an

image from the motion parameters φ. This is similar to the derivation in Bregler

et al. (2004), but we use the full perspective camera model instead of scaled

orthographic projection Bregler et al. (2004), as camera calibration is available

in our system. In detail, the following equation describes the projected location

(xt+1
i , yt+1

i ) of a 3D point qt+1
i , whose position is determined by skeletal position

φ by means of a perspective camera model:(
xt+1
i

yt+1
i

)
=

(
s1
Zt+1
i

0 0 u0

0 s2
Zt+1
i

0 v0

)
· eξ̂c ·

(
qt+1
i

1

)
, (6.12)

where s1, s2 are the focal length in x axis and y axis respectively, (u0, v0) is the

principle point, Zt+1
i is the depth of qt+1

i for the current camera, and eξ̂c is the

extrinsic matrix, i.e. the camera’s pose. Then, the image motion from time t to

time t+ 1 can be expressed as follows:(
ui
vi

)
=

(
s1
Zt+1
i

0 0 s3

0 s2
Zt+1
i

0 s4

)
· eξ̂c ·

(
qt+1
i

1

)
−

(
s1
Zt
i

0 0 s3

0 s2
Zt
i

0 s4

)
· eξ̂c ·

(
qti
1

)

=

(
s1

Zt
i−∆Zt

i
0 0 s3

0 s2
Zt
i−∆Zt

i
0 s4

)
· eξ̂c ·

(
qt+1
i

1

)
−

(
s1
Zt
i

0 0 s3

0 s2
Zt
i

0 s4

)
· eξ̂c ·

(
qti
1

)

≈

(
s1
Zt
i

0 0 s3

0 s2
Zt
i

0 s4

)
· eξ̂c ·

((
qt+1
i

1

)
−
(
qti
1

))
+

 s1∆Zt
i

Zt
i
2 0 0 0

0
s2∆Zt

i

Zt
i
2 0 0

 · eξ̂c · (qt+1
i

1

)

≈
( s1
Zt
i

0 0 s3

0 s2
Zt 0 s4

)
· eξ̂c ·

(
∆qti

0

)
+

 s1∆Zt
i

Zt
i
2 0 0 0

0
s2∆Zt

i

Zt
i
2 0 0

 · eξ̂c · ((qti
1

)
+

(
∆qti

0

))

≈

(
s1
Zt
i

0 0 s3

0 s2
Zt
i

0 s4

)
· eξ̂c ·

(
∆qti

0

)
+

( s1
Zt
i
2 0 0 0

0 s2

Zt
i

2 0 0

)
· eξ̂c ·

(
qti
1

)
·∆Zt

i .

(6.13)

The linearization is based on the assumption that the rigid motion ∆qti as well

as the relative depth change ∆Zi/Z
t
i are small. The depth change ∆Zt

i can be
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further expressed through the motion parameters:

∆Zt
i = −

[
eξ̂c
(

∆qti
0

)]
z

= −
[
eξ̂c ·Mq(i) · φ

]
z

= −

rT1 t1
rT2 t2
rT3 t3

 ·Mq(i) · φ


z

= −
[
rT3 t3

]
·Mq(i) · φ,

(6.14)

where rT3 is the 3rd row of the rotation matrix of the camera pose. As the 4th row

of Mq(i) contains only zeros, t3 can be omitted in the above equation. Considering

this, the flow (ui, vi) can be expressed as a linear function of the pose change φ

as follows:(
ui
vi

)
≈

(
s1
Zt
i

0 0 s3

0 s2
Zt
i

0 s4

)
· eξ̂c ·

(
∆qti

0

)
+

(
s1
Zt
i
2 0 0 0

0 s2
Zt
i
2 0 0

)
· eξ̂c ·

(
qti
1

)
·∆Zt

i

≈

{(
s1
Zt
i

0 0 s3

0 s2
Zt
i

0 s4

)
eξ̂c −

(
s1
Zt
i
2 0 0 0

0 s2
Zt
i
2 0 0

)
eξ̂c
[
qti
1

]
·
[
rT3 0

]}
·Mq(i) · φ,

(6.15)

The shading constraint in Eq. (6.9) can be further improved by considering

the color similarity between the rendered color and the image color. This color

similarity is computed as the Euclidean distance in HSV space and appears as a

weighting factor µi in our shading constraint. This helps us avoid optimizing the

model where the template material does not yet match the material visible in the

projected region of an input image. Combining terms from multiple cameras, our

non-linear multi-view shading energy function is then given as

E =
1

Nc

∑
c

∑
i

{µci (kd(i)

ND∑
l=0

l∑
m=−l

Λl ρ̂dl glm Ylm(ni)− I t+1
c (xt+1

i , yt+1
i ))}2, (6.16)

where Nc is the total number of constraints for error normalization (i.e, the

number of pixels in which a mesh surface is visible), and µci is the color similarity

for pixel i in camera c. The non-linear energy defined in Eq. (6.16) will be solved

by an iterative solver that minimizes the energy in a sequence of linearized versions

of the original nonlinear problem. In order to do this, we use the previously

explained recipe for linearization, and can express Eq. (6.16) as a linear system

depending on a small change in pose parameters φ as follows:

H · φ = b. (6.17)
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Here, the kth rows of matrix H and vector b have the following form:

Hk = µcikd(i)(

ND∑
l=0

l∑
m=−l

Λlρ̂dlglm ·
∂Ylm(nti)

∂nti
)Mn(i)

− µci
[
s1
Zt
i
I t+1
x , s2

Zt
i
I t+1
y , 0, s3I

t+1
x + s4I

t+1
y

]
eξ̂cMq(i)

+ µci

[
s1
Zt
i
2 I t+1
x , s1

Zt
i
2 I t+1
y , 0, 0

]
eξ̂c
[
qti
1

]
·
[
rT3 0

]
·Mq(i),

bk = µciI
t+1(xti, y

t
i)− µcikd(i)

ND∑
l=0

l∑
m=−l

Λlρ̂dlglmYlm(nti).

(6.18)

Coarse-to-fine Optimization To minimize the non-linear error function of

Eq. (6.16), we iteratively solve Eq. (6.17) and linearize around the new solu-

tion. Note that here after solving Eq. (6.17), we check if the original energy in

Eq. (6.16) decreases to decide the appropriate step size for updating the solu-

tion, in a fashion similar to Newton-Raphson style minimization with adaptive

step size. The linearization as given in Eq. (6.11) assumes that the local image

intensity variations can be approximated by a first-order Taylor expansion. So

we adopt a coarse-to-fine strategy for pose estimation — by building an image

pyramid through successively downsampling each captured image, and running

the pose estimation from the coarsest images to the finest images. This helps us

to properly track faster motions with bigger image displacements, and reduces

the chance of getting stuck in local minima.

6.4.3 Lighting Optimization

In general, lighting changes can be abrupt, and severe lighting changes, that occur

within two consecutive frames of video, are difficult to model. However, for most

cases, it can be assumed that the lighting at t+1 changes gradually from lighting

at t. In our method, we optimize for pose and lighting in a two pass strategy. For

the first pass, we use the lighting at t to optimize for pose at t+ 1, as described

in the previous section. For the second pass, we estimate the lighting at t + 1

based on the new pose, and then use it to refine the pose estimates. We have

empirically observed that one additional iteration of alternating optimization is

sufficient for getting good estimates.
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6.5 Dynamic Surface Refinement

We derive the constraint for lighting optimization from the image formation

model defined in Eq. (6.1). Similar to Chapters 4 and 5, we compare the rendered

intensity values with the captured image Ic and estimate the lighting coefficients

lk by solving an `1 norm minimization problem defined as:

l̂ = argmin
l

∑
i

∑
c∈Q(i)

∣∣∣∣∣kd(qi)
n2∑
k=1

lk tk − Ic(Pc(qi))

∣∣∣∣∣ . (6.19)

Here, i is the vertex index, c is the camera index, Q(i) is the set of cameras that

can see the i-th vertex qi, Pc is the projection matrix for camera c, kd is the

albedo value, tk are the SH coefficients for the combined visibility and clamped

cosine function, and n− 1 is equal to the SH order employed.

6.5 Dynamic Surface Refinement

After the pose and lighting estimation step, we have a coarse template model that

strikes the correct pose, as parameterized by the respective skeleton pose param-

eters. We here use quaternion blend skinning Kavan et al. (2007) to obtain the

final shape of the surface mesh in the current pose, as it leads to higher quality

surface deformation (see Sec. 2.4.2). Before proceeding with the shading-based

shape refinement, we need to first acquire the reflectance for each vertex, i.e. the

albedo value. Similar to Chapter 5, we represent the surface reflectance on the

mesh by a set of albedo segments, while the vertices in each segment share the

same albedo value. As our reconstructed mesh for each frame is temporally co-

herent, and also the albedo of each vertex is known for the previous frame, we

can readily obtain the albedo value for the mesh of the current frame. However,

due to potential shifting of the garment, the albedo segmentation of the previous

frame may not be correct for the current frame, especially for the vertices located

on the boundary of the segments. Thus, in this chapter we update the albedo

segmentation in a temporally coherent way. By formulating the segmentation

as a Markov Random Field (MRF) problem, our method is able to generate a

segmentation which uses a consistent set of materials for each time-step, to pre-

serve boundaries between materials on the surface, and to represent the potential

shifting of material over the surface, which can be caused for example by sliding

apparel. In detail, we assume the surface albedos belong to a set of K distinct

materials {dt1, . . . , dtK} and want to determine the albedo labels at ∈ {1, . . . , K}
of the vertices. Assuming the material segmentation at at frame t is given, we
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segment the mesh at frame t+ 1 by finding the lowest energy configuration of the

MRF defined as:

ψ(at+1) =

Nq∑
i=1

(φ(O|at+1
i ) +

∑
j∈Nr(i)

φ(at+1
i , at+1

j )), (6.20)

where Nq is the number of vertices on the mesh, Nr(i) is the neighboring vertex set

of vertex i, φ(at+1
i , at+1

j ) is a smoothness term that takes the form of a generalized

Potts model Szeliski et al. (2008), and φ(O|at+1
i ) is a likelihood data term which

imposes individual penalties for assigning an albedo label to vertex i according

to the observation O. The data term combines two terms. The first is the color

prior term for each segment:

φc (O|ai) =
(
ot+1
i − dt

at+1
i

)2

, (6.21)

where ot+1
i is the initial albedo estimate of vertex i at frame t+1 based on captured

image irradiance and the estimated lighting lt+1 from Sec. 6.4.3. The second term

is the albedo label prior, which penalizes different labels in consecutive time-steps:

φs
(
O|at+1

i

)
=

{
CP , if at+1

i 6= ati
0, if at+1

i = ati
(6.22)

where CP is a preset penalty constant. Finally, the MAP-MRF energy function

defined in Eq. 6.20 is minimized via graph cuts Boykov & Funka-Lea (2006);

Szeliski et al. (2008).

When the albedo segmentation is updated, namely the vertex albedo is ob-

tained for time t+ 1, we refine the vertex position qt+1
i on the coarse mesh from

shading cues using the method described in Chapter 5. With this step, we are able

to capture the non-rigid surface deformation, for instance the folds and wrinkles,

which are not being captured using the skeletal motion tracking.

6.6 Results

6.6.1 Quantitative Evaluation

In order to quantitatively evaluate our method, we generated a synthetic sequence

of 100 frames with 10 camera views. The ground-truth skeleton and mesh geom-

etry are taken from the captured results of the human walking sequence that we

reconstruct in Chapter 5. The ground-truth surface albedo map and dynamically
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(a) (b) (c)

Figure 6.3: Quantitative evaluation: (a) the mean error of joint positions, (b) the
standard deviation of joint position errors, (c) a generated synthetic image.

changing illumination are manually assigned. With these generated synthetic im-

ages as input, and given the mesh, skeleton, and albedo segmentations for the

first frame, we run our algorithm on the remaining 99 frames. In Fig. 6.3, we

report the accuracy of our approach. The error metric used is the difference in 3D

positions between the ground truth and the reconstructed joint positions. The

mean joint position error is about 6 mm, which shows the high accuracy of our

method.

6.6.2 Real-world Sequences

We use three real captured sequences for qualitatively evaluating our method.

The sequences were captured with 11 cameras in a studio. The subject can wear

sparsely textured apparel, such as a t-shirt or a sweater with a simple color.

But unlike in the input data of previous performance capture methods, there is

no need for a green-screen background, and there may be potentially occluding

objects in the scene and dynamic background (Fig. 6.1). Cameras recorded at a

resolution of 1296×972 pixels, and at a frame rate of 40fps. Each sequence shows

major illumination changes; they are induced by an operator randomly setting

control knobs for various lights in the studio — these readings are not taken nor

provided in any way to our method. Please also note that some of the captured

images are saturated, which our method handles robustly. As can be seen in the

overlaid images of our estimated skeleton and 3D shape in Fig. 6.4, good pose

estimates are obtained despite the challenging scene conditions. Even when a few

cameras are partially occluded, our method still works quite well owing to the
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(a) (b) (c) (d)

Figure 6.4: Illumination changes in a real captured sequence: (a,c) frames showing
widely differing incident illumination; (b,d) the output skeletal pose and mesh
overlaid onto the images. The insets show estimated illumination at each frame.

(a) (b) (c)

Figure 6.5: Comparison with alternative tracking methods: (a) our method, (b)
texture-based tracking, (c) silhouette-based tracking Gall et al. (2009)

use of shading cues and the multiple camera setup. High quality surface details,

such as deforming cloth folds, are also captured (Fig. 6.6).

We compare the results of our method with a texture-based tracker that does

not estimate lighting explicitly at each frame. Instead, it assumes texture from the

first frame and uses optical flow for tracking; it loses tracking after a few frames

as the lighting changes significantly (see Fig. 6.5-b). We also tested against a

silhouette-based tracker Gall et al. (2009) that explicitly performs background

segmentation using chroma-keying on the captured images. Due to changing

lighting, the extracted silhouettes are sometimes misleading and result in inaccu-

rate pose estimates (see Fig. 6.5-c).

6.6.3 Computation Time

The computation time of our method depends on image resolution, mesh reso-

lution, and the level of detail at which the lighting components are modeled, in

particular the order of spherical harmonics that is used. In our experiments, we
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Figure 6.6: Results of pose and 3D shape estimation: (a,b) overlaid skeletal pose
at different frames and camera views, (c) fine-scale 3D shape reconstruction. The
inset shows dynamic cloth deformations captured from shading.

represented 3D shape using meshes of 80000 vertices, and used a 4th order SH for

representing lighting. With these values, our method takes about 10 minutes per

frame on a standard CPU with a 2.6 GHz processor and 8 GB RAM. Specifically,

the computation times are 3 minutes for one pass of pose estimation, which we

do twice for each frame. The lighting estimation step is quite fast, taking only 10

seconds. The other time-consuming part is the dynamic shape refinement, which

takes 4 minutes, of which 1 minute is spent on visibility calculation. Striking a

trade-off between representation accuracy and computation time, we utilized a

low-resolution mesh (around 5000 vertices) to render the visibility map for each

vertex on the high-resolution mesh. As our code is unoptimized, we believe the

computational time can be further reduced by parallelizing the algorithm.

6.6.4 Discussion

Our assumptions of Lambertian reflectance and a local shading model may not

be justified in some cases, for instance scenes with strong specularity, etc. Abrupt

lighting changes, e.g., in a disco, or the illumination generated by a controlled

light stage, are also hard to model. However, in cases where the lighting pattern

is known, it can be directly provided as input to our method. Since we estimate
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lighting and pose sequentially at each time-step, error accumulation may cause

drift of the tracker. In future work, we would like to address this issue by stronger

motion priors that can be learned from data. A final limitation is the computation

time for running our method, which is too high for real-time deployment. We

would like to address these and other limitations in future work.

6.7 Conclusion

In this chapter, we provide a novel shading based framework for human per-

formance capture under uncontrolled and dynamic lighting. Starting from syn-

chronized multi-view images, we estimate both the articulated human pose and

fine-scale time-varying surface geometry. A key innovation is a novel iterative

pose optimization framework developed based on the inverse rendering. Our ap-

proach does not expect carefully engineered backgrounds as it does not perform

silhouette extraction or any other form of background segmentation. Thus, our

approach is not limited to the specified lighting and background, and can be ap-

plied to more general scenarios, where the lighting is general, unknown and even

time-varying. Still, our method requires many cameras for recording. In the next

part of this thesis, we will describe algorithms that are able to work with a low

number of recording cameras.
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Part III

Binocular Performance Capture
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With a controlled studio setup, marker-less performance capture are able to

produce accurate motion and high-quality dynamic geometry. However, the re-

quired capture setup is still very constraining and prevents these methods from

being applied to general scenarios, e.g. a real movie set. In the previous part, we

showed how to relax these constraints by investigating inverse rendering, enabling

marker-less performance capture under general lighting and with less-constrained

backgrounds. However, it still requires many cameras for the capture, and it is

not trivial to set up a multi-view system on a real movie set. Thus, in this part

we focus on reducing the required number of cameras for performance capture

to as few as two cameras, i.e., a stereo camera setup, by resorting to inverse

rendering concepts. This setup mimics real movie production setups, where a

primary stereo camera is often available. In Chapter 7, we develop a new method

to capture facial performance under uncontrolled illumination by using a single

pair of cameras. In Chapter 8, a new performance capture method is proposed

to capture the full-body performance of multiple actors on set by employing a

stereo camera.
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Chapter 7

Binocular Facial Performance
Capture under Uncontrolled
Lighting

7.1 Introduction

A convincingly rendered face and a convincingly animated facial performance

are the essential features of realistic virtual actors. To achieve this, high quality

dynamic facial geometry is required. To meet these high quality demands, the

research community has developed a variety of facial performance capture tech-

niques which aim to reconstruct very detailed dynamic facial geometry, motion,

and possibly appearance from sensor measurements of real subjects. On the one

hand, there are active optical systems that use markers, active illumination, or

invisible paint to capture facial performance Bickel et al. (2007); Furukawa &

Ponce (2009); Zhang et al. (2004). However, such reconstructions often lack de-

tail and appearance capture is difficult or impossible. On the other hand, passive

approaches use multiple cameras and vision-based reconstruction techniques to

capture facial performance, e.g., Bradley et al. (2010). Reconstructions are of

high quality, but pore-level detail is often missing. Moreover, accumulating drift

makes it hard to capture very expressive motion. Active lighting methods can

bring out pore-level shape detail, but the price to be paid is a complex controlled

light and camera setup Vogiatzis & Hernández (2011); Wilson et al. (2010). In

other words, to capture facial performance with high-quality spatial and temporal

detail, current state-of-the-art techniques require a large number of cameras in a

controlled indoor environment, possibly actively controlled illumination, and in
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many cases some form of active interference with the scene.

These strong requirements are the reason why high-quality facial performance

capture has so far mostly been a privilege of high-budget animation productions.

In addition, facial performance capture has scarcely been used where it would

actually be most effective: in arbitrary uncontrolled settings, such as indoor and

outdoor movie sets where the actors perform in their natural environment. Also,

in light of an ever-growing amount of existing stereo movie footage, a method

that just makes use of the principal stereo camera could serve as a cornerstone

for new movie-production applications, such as facial performance capture from

the principal stereo camera feed.

In this chapter, we take a step towards the goal of lightweight facial perfor-

mance capture in a general environment by proposing a new image-based facial

performance capture approach that uses a single stereo pair of video cameras.

It succeeds under uncontrolled and time-varying illumination, either indoors or

outdoors. It allows both the performer and the stereo pair of cameras to move

independently and yields detailed 3D facial performance geometry that is fully

spatio-temporally coherent, even when performers have very expressive faces. We

show highly detailed 3D facial performance results, optionally with texture, that

were reconstructed under uncontrolled and time-varying lighting with two differ-

ent camera systems: results from a pair of SLR cameras capturing indoors, and

results of previously unseen detail captured outdoors with a low quality consumer

stereo camera (see Sec. 7.6). The work presented here was published in Valgaerts

et al. (2012b).

7.2 Method Overview

As input, our approach expects a stereo video sequence of a face captured in

a general environment. Our method is composed of two main computational

pipelines (Fig. 7.1):

I In a first pass, we track a coarse detail face template throughout a binocular

stereo sequence. This template tracking step (Sec. 7.4) produces a sequence

of coarse face meshes that are in full correspondence and show minimal

drift. To enable this, our approach makes use of a highly accurate image-

based scene flow method and relies on a Laplacian deformation model to

regularize the moving geometry.
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Figure 7.1: Overview of our facial performance capture method with two process-
ing pipelines. Starting from an initial stereo reconstruction, a coarse template
mesh is tracked in a first pass. In a second pass, the tracked coarse geometry is
refined using shading information.

II In a second pass, we add fine time-varying detail, e.g., wrinkles and folds, to

the tracked meshes. This shape refinement step (Sec. 7.5) exploits shading

information to produce accurate surface detail under general and changing

lighting. We build upon a framework for incident lighting and albedo esti-

mation, and contribute with both a new albedo clustering approach, and an

improved shape refinement optimization that produces better results with

an order of magnitude lower computation time than the method proposed

in Chapter 5.

Thus, we capture facial performance in a coarse-to-fine manner : While the

first pass is responsible for the recovery of coarse-scale head motion and facial

deformation, the second pass refines the results to include fine-scale detail at skin

level.

In the next sections we will discuss both pipelines in detail. Henceforth, we

will indicate by I t0 the left frame of a binocular stereo sequence at time t, and

by I t1 the corresponding right frame. Without loss of generality, we can assume

that I t0 and I t+1
0 (I t1 and I t+1

1 ) are two consecutive frames in the left (right) image

sequence for any time t. We further denote by t0 the time at which we start

capturing, i.e., (I t00 , I
t0
1 ) is the first stereo pair in our tracking and refinement

algorithm. A reconstructed triangular mesh at time t will be denoted by M t.

The Euclidean coordinates of a vertex at time t will be denoted by qt. Please

note that our two pipelines reconstruct a coarse mesh M t
c and a refined mesh M t

r

at each time step, both of which are based on the same vertex set and connectivity.
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7.3 Initialization

We assume that the stereo camera pair is calibrated off-line (MATLAB toolbox1).

Our method starts off from a smooth 3D reconstruction of the face that will serve

as a template mesh for the tracking step. During mesh tracking, this template will

be moved and deformed according to the detected motion in the stereo sequence.

Template Reconstruction It is assumed that the face at time t0 is at rest. To

obtain an initial 3D reconstruction from the first stereo pair (I t00 , I
t0
1 ), we apply a

variant of the variational stereo method of Valgaerts et al. (2012a) for calibrated

images. This method recovers the dense 2D displacement field between I t00 and

I t01 by minimizing an energy function of the form:

E =

∫
Ω

(
ED + α EG + β ES

)
dx , (7.1)

where ED imposes constancy assumptions on certain image features, EG includes

knowledge about the known stereo geometry, and ES assumes the displacement

field to be piecewise smooth. The mathematical form of these terms can be found

in the equations (2.15), (2.17) and (2.19) respectively. We also use a similar

minimization method to that used in the scene flow estimation. Please refer to

Sec. 2.2 for details.

Once the 2D displacement field has been recovered, the corresponding pixels

can be triangulated to obtain a 3D point cloud Hartley & Zisserman (2000). In

practice, we perform a 3D reconstruction for both pairs (I t00 , I
t0
1 ) and (I t01 , I

t0
0 ).

This ensures a sufficient number of 3D points in regions that are poorly visible

in just one image, such as the sides of the nose.

In a post-processing step, the background is removed manually and the point

cloud is converted to a triangular mesh Kazhdan et al. (2006). We set the number

of vertices roughly equal to that of the pixels in the face region such that each

vertex corresponds to a pixel in the input views. Finally, the mesh is smoothed

Sorkine (2005) and each vertex is assigned a fixed color using projective texturing

and blending from both input views. If desired, holes can be cut in the the mesh

for the mouth or the eyes.

The above steps are illustrated in Fig. 7.2, where we show the starting frames

I t00 and I t01 of a stereo sequence, together with the obtained 3D reconstruction

and the final template mesh M t0
c .

1www.vision.caltech.edu/bouguetj/calib_doc/
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Figure 7.2: Initialization. Top row: starting frames I t00 and I t01 . Bottom row:
stereo reconstruction and template mesh M t0

c .
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7.4 Template Tracking

The tracking step is responsible for propagating the template mesh throughout

the stereo sequence. To accurately recover the motion of the face, we base our

tracking on a state-of-the-art method for scene flow computation, which is in-

troduced in Sec. 2.2. This method establishes a dense 3D displacement field,

which is used to update the position of all the vertices in the tracked mesh from

one time instance to the next. A smooth deformation of the face is obtained by

regularizing the geometry of the surface via the Laplacian operator. Scene flow

estimation is then used a second time to refine the motion and to minimize any

reprojection error that might have been induced by the tracking.

All corresponding pixels can be triangulated to obtain a 3D reconstruction

and a 3D displacement field. Note that we have only used 2D optical flow as

an intermediate representation during the scene flow estimation. Our tracking

algorithm effectively uses a 3D motion field, where each scene flow vector is

characterized by a 3D starting position st and a 3D vector dt. Note that we are

able to cope with large motion and even noticeable motion blur.

7.4.1 Mesh Tracking

Once the scene flow dt has been estimated for time instance t, it can be used to

propagate the vertices of the current coarse mesh M t
c to their new positions at

t+1. However, moving each vertex by its corresponding scene flow vector is likely

to induce local drift, which would quickly destroy the integrity of the template

mesh. The reason for this is that the computed scene structure and motion

contain errors, e.g., due to noise, which cannot be completely removed by our

scene flow regularization. In addition, our scene flow lacks temporal coherence

because it is estimated independently on all time instances. To ensure that the

tracked geometry remains smooth over time, we have to regularize the moving

geometry.

Positional Constraints To preserve the smoothness of the tracked mesh, we

only assign a scene flow vector to a subset Ct of vertices. These vertices will

be denoted as constrained vertices, because their locations will form the posi-

tional constraints in the regularization of the mesh geometry. Here we select the

constrained vertices uniformly over the mesh to ensure a sufficient distribution

of positional constraints. Additionally, we ensure on each time instance t that
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all vertices in Ct are visible in both the left and the right image. This avoids

erroneous tracking in regions that become occluded by, e.g., head movement or

expressive facial motion. For some outdoor sequences, we experienced strong in-

terference of the estimated background motion at the side of the face. To avoid

drift in more oblique regions, we restrict Ct for such cases to vertices for which

the angle between the surface normal and the camera’s principal axis lies below

a certain threshold (≤ 70◦).

Positional Update A straightforward way of updating the position of a con-

strained vertex qti, i ∈ Ct, would be to move it to the end point of the closest

scene flow vector, thus calculating its new position as sti + dti. This strategy

effectively fits the mesh M t
c to the target point cloud computed by our scene

flow algorithm, but would only make sense if both the 3D reconstruction and

the 3D displacement field are estimated with equally high accuracy. In practice,

however, the estimated 3D structure is noisier than the scene flow because the

optical flow due to the change in view point is generally larger than the flow due

to face motion. Also, possible differences between the left and right camera can

play a role. Especially for outdoor capture from low quality cameras, this strat-

egy led to undesired overfitting artifacts that could not be removed by Laplacian

regularization without oversmoothing the geometry.

Instead, for our final tracking, we determine the new position of a constrained

vertex qti, i ∈ Ct, by looking for the scene flow vector dti, whose starting position

is closest to qti. The updated constrained vertex position is then calculated as

qti +d
t
i. Possible errors introduced by assigning the value of the closest scene flow

vector rather than its end point can be compensated for by an optional motion

refinement step, which is the subject of Sec. 7.4.2.

Laplacian Regularization For a natural shape-preserving deformation of the

face, we regularize the geometry of the target mesh M t+1
c using the differential

coordinates of the template mesh M t0
c (similar in spirit to Bradley et al. (2010)).

The differential coordinates of M t0
c encode the shape characteristics of the tem-

plate surface and encapsulate information about the specific face that we are

tracking. If we used the differential coordinates of the current mesh M t
c , the orig-

inal shape of the face would not be preserved and the template structure would

eventually be “forgotten”. Using M t0
c as a shape prior instead will avoid drift,

while still allowing the capture of the low frequency component of strong facial

deformations.
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Figure 7.3: Motion refinement. From left to right: input image, corresponding
mesh obtained without motion refinement, corresponding mesh obtained with
motion refinement. Note how the lips protrude more, as in the input image.

To deform M t
c to M t+1

c under the influence of the constrained vertices qti,

i ∈ Ct, we minimize the energy

E=
∥∥Lgt+1−Lgt0

∥∥2
+ µ2

∑
i∈Ct

∥∥qt+1
i −(qti+d

t
i)
∥∥2

, (7.2)

where L is the Laplacian matrix with cotangent weights of M t0
c Sorkine (2005).

Further, gt+1 and gt0 contain the vertex positions of the meshes M t+1
c and M t0

c ,

and µ is a weighting factor.

7.4.2 Motion Refinement

Two possible sources of error remain in our tracking pipeline: First of all, the

Laplacian regularization maintains mesh integrity but may prevent the vertices

from moving to their true target positions. Secondly, we can expect a gradual

accumulation of motion errors over multiple frames. To compensate for such

errors, we introduce a motion refinement step. The idea is to generate a synthetic

image pair (Ir0 , I
r
1) by reprojecting the tracked mesh M t+1

c onto the left and right

image and to correct its position by minimizing the deviation between (Ir0 , I
r
1) and

the ground truth (I t+1
0 , I t+1

1 ). This effectively minimizes the reprojection error.

We do this by computing the scene flow between (Ir0 , I
r
1) and (I t+1

0 , I t+1
1 ) and by

updating the position of M t+1
c as explained in Sec. 7.4.1.

106



7. BINOCULAR FACIAL PERFORMANCE CAPTURE UNDER
UNCONTROLLED LIGHTING

Figure 7.4: Motion refinement. Graph of the NCC for a tracking result with
(blue) and without (red) motion refinement.

In Fig. 7.3, we illustrate the effect of motion refinement after capturing 30

frames of the same sequence. We see that the geometry on the right, recon-

structed with motion refinement, is closer to what one would expect from the

corresponding input image on the left. This visual impression is confirmed quan-

titatively by a higher normalized cross correlation (NCC) between the reprojected

image and the input image. In the bottom row of Fig. 7.4, we plotted the NCC

between the reprojected image and the corresponding input image for 25 frames

of a similar sequence. For tracking with motion refinement (blue curve), we see

that the NCC is consistently higher than it is without it (red curve). From our

experience, motion refinement is important for the realistic capture of expressive

facial motion, such as the examples in the figure. For such cases, we found that

one refinement step per time instance constituted a good compromise between

accuracy and computational complexity. This strategy is illustrated in the blue

curve by an increase in NNC between each pair of consecutive frames. For less ex-

pressive motion such as speech, we found no large improvements in the estimated

geometry. For such cases motion refinement could be applied less frequently or

even considered optional. Motion refinement assumes that the texture of the face

mesh does not change much over time and is thus less effective in the case of

changing illumination and cast shadows.
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7.5 Shape Refinement

In this section, we explain how we employ shading cues to infer the high-frequency

facial geometry detail and add it to the coarse tracked template. The idea here

is similar to that proposed in Chapter 5, i.e., employing inverse rendering for

high frequency detail estimation. Then, similarly, the shading-based refinement

algorithm consists of two steps: First, the lighting and albedo for each frame

are estimated, after which both are used to optimize the geometry based on the

shading information in the images. In spite of its similarity to that in Chapter 5,

the method here uses an albedo clustering that is better adapted to human faces

as well as an improved refinement step which yields better results and faster

convergence.

7.5.1 Albedo Clustering

In Chapter 5, the surface albedo is assumed to be piecewise uniform with larger

coherent regions of similar reflectance. This could be efficiently segmented using

a graph-based segmentation method Felzenszwalb & Huttenlocher (2004). How-

ever, when recording human faces from nearby camera positions, this assumption

is less appropriate. While it is still fair to assume that there are a few albedo

groups of vertices, their locations may not be spatially coherent, e.g. due to skin

pigmentation, beards, shadows, etc. In contrast to Chapter 5, we use a K-means

clustering method to obtain k albedo groups, where vertices of the same group

share the same albedo value. Particularly, given a set of initial per-vertex color

albedo values (a1,a2, · · · ,an), we aim at partitioning the n vertices of the mesh

into k groups S = {S1, S2, · · · , Sk} to minimize the within-cluster sum of squares:

arg min
S

k∑
i=1

∑
j∈Si

‖aj − ρi‖2 , (7.3)

where ρi is the mean of the initial albedo of the vertices belonging to group i. The

initial albedo value ai is calculated from the shading equation with the geometry

and lighting provided by the previous time frame. See Chapter 5 for the initial

albedo inference. Once the albedo clusters are obtained, we use the same strategy

as in Chapter 5 to estimate the incident illumination and the albedo value for

each albedo cluster.

An example of our improved albedo clustering strategy is shown in Fig. 7.5,

where the different clusters are color coded.
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Figure 7.5: Albedo clustering. Left to right: Original spatially coherent clustering
from Chapter 5, our new clustering result that corresponds better to typical facial
feature distributions (e.g. around eyebrows, eyes etc.), average per material albedo
coloring.

7.5.2 Surface Refinement

With the estimated illumination and albedos fixed, the coarse geometry of each

frame is refined based on the shading cues in the images. The refined geometry

is represented as the displacement of each vertex along its normal direction and

is estimated by solving a spatio-temporal MAP inference problem.

Shading Energy Chapter 5 minimizes a cost function that consists of a shading

error term (data term) and a prior term (similarity term). Considering the fact

that the reflectance of the face will not be purely Lambertian, such refinement

will lead to noisy shape details when there are highlights on the skin. To account

for this, we add to the energy a second prior term which requires the shape of

the face to be spatially smooth (smoothness term). The cost function that we

minimize then takes on the form:

E = ED︸︷︷︸
data

+ λM EM︸ ︷︷ ︸
similarity

+ λS ES︸ ︷︷ ︸
smoothness

, (7.4)

where λM and λS are weighting factors. The data term ED is the shading error

that measures the similarity of the shading gradients in the input images I t0 and

I t1 to the predicted shading gradients:

ED =
∑
i

∑
j∈N(i)

∑
c∈Q(i,j)

(rc(i, j)− s(i, j))2 , (7.5)
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where i and j are triangle indices, N(i) is the set of neighboring triangles of

triangle i, c is the camera index, Q(i, j) is the set of cameras which see triangles

i and j, and r(i, j) and s(i, j) are the measured image gradient and predicted

shading gradient. The similarity term EM is a prior term, based on the previous

frame geometry, that requires the current refined geometry M t
r to be similar to

the refined geometry of the previous time step M t−1
r , transplanted on the coarse

mesh M t
c . This prior constrains the reconstructed high-frequency shape detail

in the face, such as fine folds and laugh lines, to change in a spatio-temporally

coherent way. In particular, it takes on the form:

EM =
n∑
i

∑
u,v

(
n̂ti · (qtu − qtv)

)2
, (7.6)

where vertices qtu, q
t
v and qti belong to the same mesh triangle and n̂ti is the

propagated surface normal based on the already reconstructed high-frequency

normal field of the previous time t − 1. For more details on the propagation of

the surface normals, please refer to Chapter 5. In contrast to Chapter 5, however,

we define the surface normals in the data and similarity term on triangles. The

third, newly-added term in our energy equation (7.4) is the smoothness term ES,

which has the following form:

ES =
n∑
i

∥∥∥ ∑
j∈N(i)

wij
(
qti − qtj

) ∥∥∥2

2
. (7.7)

Here qi and qj are the positions of the vertices i and j in the mesh M t
r , N(i) is

the 1-ring neighborhood of vertex i, and wij are the common cotangent weights

Sorkine (2005).

Fast Iterative Minimization The shading energy (7.4) is usually non-linear

and not trivial to minimize. In Chapter 5, we employ a patch-based non-linear

optimization strategy to refine the geometry within separate vertex patches. Such

a strategy, however, imposes a trade-off between run time and quality: While a

small patch size may not constrain the neighboring vertices enough to achieve

high quality large-displacement shape refinement, a large patch size will take

much longer to compute.

Here, we reduce this trade-off by replacing the non-linear optimization of the

energy with an iterative linear one. To this end, we replace the only non-linear
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Figure 7.6: Novel Shape Refinement. Top row: results obtained using Chapter 5.
Bottom row: results obtained using our current method. Both meshes are colored
by normal orientation. The zoom-in shows that we obtain a smoother result with
an even higher level of detail(best visible in electronic version).
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Figure 7.7: Fast Iterative Minimization. Left: run time per frame for a sequence
refinement with constant parameters. Right: shading energy per frame. Red:
our optimization using the present method, blue: optimization of Chapter 5.

part in the energy (7.4) — the argument of the shading error term — with its first-

order Taylor approximation. This way, all terms in the energy become squared

linear with respect to the vertex displacement which we aim to optimize. Since

each vertex in the resulting energy only has a relation with its direct neighbors,

the vertex displacements can be easily found by solving a sparse linear system. A

first-order Taylor approximation is only valid when the displacements are small,

so in practice we update the vertex positions using the obtained solution scaled

by an adjustable step size. We repeat this procedure several times, such that

the sequence of newly-defined energies better approximates the original one. In

our experiments, we use a step size of 0.7 and iterate 4 times to obtain the final

refinement.

Fig. 7.6 shows that the novel shading energy and the iterative minimization

strategy lead to superior refinement results compared to those of Chapter 5: our

estimated face surface suffers less from noisy artifacts, while exhibiting an even

higher level of fine-scale detail such as wrinkles.

Because we can make use of fast sparse linear solvers, e.g., Cholesky decom-

position, and because all vertices are optimized simultaneously in each iteration

step, we achieve a general speed-up over patch-based non-linear optimization.

This is depicted in Fig. 7.7, where the graph shows that our novel iterative mini-

mization strategy reduces computation time by an order of magnitude compared

to the non-linear patch-based optimization in Chapter 5 for the same sequence
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Figure 7.8: The setups used in our experiments. From left to right: A pair of
Canon EOS 550D cameras; the GoPro 3D Hero system.

with constant parameters. The figure also shows that the proposed shape opti-

mization strategy converges to a lower energy, and thus to a better optimal shape,

for most frames.

7.5.3 Temporal Postprocessing

After the final shape refinement, there might remain a slight temporal flicker

in the visualization of the results due to small differences in the direction of

the surface normals. To reduce this effect, we update the normals in the whole

sequence by averaging them over a temporal window of size 5 and then adapting

the geometry to the updated normals using the method of Nehab et al. (2005).

7.6 Results

We evaluate the performance of our approach on real world data captured from

three different test subjects with two different stereo camera setups: (I) a pair of

Canon SLR cameras in an indoor environment and (II) a pair of GoPro helmet

cameras, both indoors and outdoors. In total, five sequences of lengths varying

from 300 to 560 frames (12s to 22s) will be presented.

Canon Setup Our first setup consists of two Canon EOS 550D cameras in an

indoor environment, as depicted in Fig. 7.8. These cameras record HD video

with a resolution of 1920×1088 at 25 frames per second. They are not hardware

synchronized and were just started at the same moment, and synchronization is

verified by event-based temporal alignment. The green screen in the figure is not

a requirement, just a standard feature of the room we used.
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Figure 7.9: Results for a pair of Canon cameras. From top to bottom: the
left input image, the corresponding reconstructed mesh, the mesh overlaid with
a checkerboard pattern to demonstrate geometric coherence, the mesh colored
using projective texturing.
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Figure 7.10: Results for a pair of Canon cameras. From top to bottom: the left
input image, the corresponding reconstructed mesh.

In Fig. 7.9 we show the results for a subject captured with this setup. All

meshes consist of the same set of vertices and have been produced by tracking a

single template mesh throughout a sequence of around 300 frames. The number of

reconstructed vertices is 100,000. These results illustrate that we are able to cap-

ture very expressive facial motion with a level of detail that rivals more complex

capture methods using more cameras and controlled lighting. Reconstructions

are space-time coherent with no perceivable drift, as illustrated by the checker-

board result. With such high-quality reconstructions, realistic-looking textured

faces can be also created via projective texturing with no perceivable ghosting.

In Fig. 7.10 we provide a long captured sequence for a different actor perform-

ing both extreme facial gestures and normal conversation. Both types of motion
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are captured by our method with high quality. Motion blur, due to the fast

movement, makes the sequences especially challenging. However, our approach

is robust to this and captures fast motion reliably. Even after 560 frames, our

method has hardly introduced any temporal drift.

The parameters used for both experiments are: α1 = 5, α2 = 5, β1 = 200,

β2 = 150, β3 = 200, ρ = 3, λs = 0.1, k = 4, λM = 2500 and λS = 10000.

The weight µ was chosen 1 and 0.9 respectively. The run time for sequential,

non-optimized code is around 9 minutes per frame on an Intel Xeon@3.1GHz.

GoPro Setup Our second setup uses a pair of GoPro HD Hero cameras that

are hardware synchronized and combined in a single housing (Fig. 7.8). The pair

records at 1920×1080 and 30 frames per second each. The camera is designed

to be used outdoors on bike helmets and is at best comparable to an upscale

webcam. Data are challenging due to the smaller baseline, cheap plastic wide

angle lenses, the generally higher noise level, the rolling shutter, and potential

automatic white balancing which cannot be controlled.

Recordings are captured with the hand-held GoPro HD Hero stereo system

in both indoor and outdoor environments. One such setup is depicted in the

first row of Fig. 7.11, where a speaking actor is recorded indoors. The general

uncontrolled lighting makes this scenario extremely difficult for any facial motion

capture algorithm. Moreover, compared to the Canon setup, the face of the actor

only makes up a small portion of the HD images. Despite these challenges, we

obtain reconstructions which exhibit a fair amount of detail (Fig. 7.11). We are

able to capture the face, including the head motion, over extended periods of

time with only a little drift.

A second scenario is shown in the second row of Fig. 7.11, where an actor

records himself outdoors in bright direct sunlight. For this sequence, the face was

captured over 400 frames with equally high quality as in the previous recording.

There is a strong shadow from the nose that floats freely over the mouth, and

motion refinement in the tracking step treats this incorrectly as physical motion.

Although motion refinement was disabled for this sequence, we are still able to

achieve very expressive facial motion. The same strong shadow also leads to

artifacts on the boundary caused by the shading-based refinement step. These

high-frequency effects can be partly alleviated by the use of higher order spher-

ical harmonics (see Chapter 4) to better approximate the visibility and shadow

boundaries. This would, however, increase the run time substantially. An option

for handling this case is the explicit detection of strong shadows to disable shape
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Figure 7.11: Results for a pair of GoPro HD helmet cameras for a person being
recorded in an uncontrolled indoor environment (first row of figures), a person
recording himself outdoors in bright sunlight (second row of figures) and under
changing illumination (last row of figures).

117



7.7 Conclusion

refinement in these regions. We detect shadows by high shading errors and esti-

mate them iteratively with the lighting environment map. The results that we

obtain do not have shadow boundary artifacts, but do exhibit less detail. This

trade-off between fine detail and shadow artifacts should be chosen with respect

to the application in mind.

The last row of Fig. 7.11 shows a third scenario, where an actor records

himself while walking in an outdoor wooded setting. This is a very challenging

scenario, not least due to the additional background motion and the changing

illumination on the face caused by shadows from the trees. Nevertheless, we

are able to capture highly detailed and realistic facial motion, which shows that

both our tracking and shape refinement pipeline are robust with respect to the

aforementioned difficulties.

The parameters used for these experiments are the same as for the Canon

sequences, with the exception of β1 = 300, β2 = 200, β3 = 300 and λS = 40000.

The weight µ is 0.9 for the indoor sequence and 0.4 for the outdoor sequences.

Discussion Our approach is the first to capture highly detailed facial perfor-

mances from a single stereo rig under general illumination, and it shows that

on-set capture with consumer grade hardware is feasible. Our approach is nev-

ertheless subject to some limitations. One of them arises from strong shadows

on the face. Strong moving shadows are a major challenge for the tracking step,

which interprets the sharp, moving boundaries as surface motion. We will in-

vestigate better ways of detecting shadows and the use of photometric invariants

for scene flow computation Zimmer et al. (2011) in future work. In addition,

temporal drift is reduced by our method, but cannot be completely prevented

over extended periods of time. In this context, a combination of our template

tracking approach with a key-frame-based regularization Beeler et al. (2011) may

be promising. Also, scene flow estimation could be further improved by using the

refined geometry model as an explicit regularizer rather than relying merely on

image constraints. In the future, we will also look into extracting more advanced

reflectance and lighting models from the data and to investigate whether this

enables further improvements of the results.

7.7 Conclusion

In this chapter, we presented an algorithm to capture high-quality facial perfor-

mances from a single stereo pair of video streams that were captured in general
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environments, even outdoors. This becomes possible through the combination

of mesh tracking by the scene flow constraint and a shading-based refinement

approach that captures space-time coherent, highly detailed geometry. With our

approach, we are able to produce results of a high quality that could not previ-

ously be achieved using just a single stereo rig. Our method can make hand-held

facial performance capture feasible for everyone. It also opens the door for new

applications in on-set facial performance capture, movie postprocessing, etc.
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Chapter 8

On-set Performance Capture
with a Stereo Camera

8.1 Introduction

Marker-less full-body performance capture methods enable the reconstruction of

detailed motion, dynamic geometry, and the appearance of motion actors from

multiple video recordings. However, most existing marker-less methods require

studios with controlled lighting, a controlled background, and a large number of

cameras. These constraints limit the extent to which the method can be applied

to many practical feature film productions, as they may require methods that can

work on a normal set or on location rather than a separate green-screen controlled

stage. If such a method, with the ability to capture detailed moving 3D models

of actors on the actual production set, can be developed, it would broadly benefit

movie and VFX production.

In previous chapters, we showed how to investigate inverse rendering to relax

the constraints of marker-less performance capture on lighting and background,

albeit with a multi-view camera setup. While these methods are able to capture

detailed models of actors in natural motion and natural apparel without markers,

the requirement for a multi-view camera setup is still a big obstacle in the path to

on-set performance capture. This is because on a real production set, it is difficult

to effectively place the satellite cameras for capturing the motion or geometry, as

the environment and scene conditions are very general and chosen with the visual

quality of the shot in mind. This is usually orthogonal to the requirements that

vision-based tracking algorithms have for robust operation. While a performance

capture method that can succeed with the cameras placed within a limited space
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on set is always desired, the question of how to choose an appropriate number of

cameras and appropriately place them on a production set is still open.

Currently, performances of real actors in a scene are frequently composited

with virtual renditions of actors during post-processing. One example is the movie

Pirates of the Caribbean, where real actors in a scene wear marker suits. The Imo-

cap system is used to track their skeletal motion from the primary camera and a

few satellite cameras and, in post-production, the actors in marker suits are re-

placed with virtual renditions. This common example shows the importance and

tremendous difficulty of the task, since even the skeletal tracking alone required

substantial manual marker labeling by an operator. If we could capture detailed

motion and surface geometry automatically under the more general lighting con-

ditions and backgrounds of a production set, while using only production stereo

cameras, then actors would benefit by being able to work on the real set while

being captured, more realistic overlays of virtual actors could be created, more

detailed pre-visualizations of CG augmented actors on set could be created, and

the recovery of a 3D model underlying each actor in the scene would enable novel

editing possibilities such as appearance modifications.

In this chapter, we describe a novel performance capture algorithm which

works towards this goal. It enables us to capture the full body skeletal motion

and detailed surface geometry of one or more actors using only a single stereo

pair of video cameras. It is designed to work without additional depth sensors,

such as Kinect, which only work indoors, have a limited range and accuracy,

are not part of standard production cameras, and may interfere with other on-

set equipment. The low-baseline stereo camera rig is permitted to move during

recording. This setting is akin to modern movie production sets with a primary

stereo camera. Our algorithm succeeds under uncontrolled lighting, non-frontal

body poses of the actors, and scenes in which actors wear general apparel with

non-Lambertian reflectance. It also succeeds in front of general scene backdrops

where classical background subtraction would be infeasible. The work presented

here was published in Wu et al. (2013).

8.2 Method Overview

Our algorithm tracks and deforms a template model for each actor in the scene

such that it optimally aligns with stereo input images. An overview is shown in

Fig. 8.1. Input to our algorithm is a stereo video sequence of a scene filmed with a

camera rig that can freely move, as well as a light probe image of the set without
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Figure 8.1: Overview of our performance capture method.

actors. We also expect, for each actor, a static triangle mesh shape template with

an embedded kinematic skeleton that can be obtained from a laser scan or from

image-based reconstruction. Instead of relying on simple light transport assump-

tions, and assuming Lambertian surface reflectance as in previous chapters, our

performance capture method applies knowledge about the incident illumination

and a detailed spatially-varying BRDF of every actor in a scene for both skeletal

pose estimation and for reconstruction of detailed surface geometry. Therefore,

we expect as additional input a spatially-varying parametric BRDF surface model

for every actor, captured prior to stereo recording. In practical productions, re-

construction of such a reflectance model for each actor is becoming standard and

can be performed with a light stage Vlasic et al. (2009). However, inspired by the

capture methods under general illumination Li et al. (2013), we describe in this

chapter a lightweight method to estimate the BRDF based on multi-view video

footage of a moving actor recorded under standard studio lighting (Sec. 8.4).

Our main contribution is a new skeletal pose estimation approach. It relies on

a new stereo-based foreground segmentation algorithm that employs appearance

cues, scene flow, pose reconstruction results from previous frames, and stereo co-

herence to reliably segment out actors in front of general backgrounds (Sec. 8.5.1).

Pose estimation is based on minimizing a new energy function that measures the

model-to-image consistency based on the segmented silhouettes, the depth map

given by scene flow, and the shading consistency based on a full diffuse and

specular surface BRDF model (Sec. 8.5.2).
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First, our algorithm captures the skeletal pose of each actor together with

surface geometry which lacks high frequency shape detail such as cloth folds

(Sec. 8.5). Second, this detail is reconstructed by a new inverse rendering ap-

proach that refines the coarse geometry using shading-based dynamic scene re-

finement based on the scene illumination and the full surface BRDF (Sec. 8.6).

We demonstrate the performance of our algorithm on a variety of scenes with

general uncontrolled lighting, and scenes showing several actors performing mo-

tions with difficult occlusions and out-of-plane motions. We also show results on

footage with apparel with challenging non-Lambertian appearance, and scenes

filmed with a moving camera rig. We qualitatively and quantitatively demon-

strate the accuracy of our method and the importance of each step, and show

that the quality of our reconstructions enables appearance editing of actors in

video (Sec. 8.7).

8.3 Image Formation Model

In this chapter, we are aiming to reconstruct the scenes with a more general and

more expressive BRDF, which means in addition to diffuse reflectance our image

formation model here also needs to represent the non-Lambertian or specular

reflectance. As introduced in Chapter 2, the general BRDF can be represented

by a combination of diffuse reflectance and specular reflectance. In detail, here

we represent the diffuse component as Lambertian albedo, and the specular com-

ponent using a simplified Torrance-Sparrow model Torrance & Sparrow (1967).

Then, our reflectance model can be written as:

ρ (ωi, ωo) = kd +
ks

4πσ2
b cos θi cos θo

exp
(
−(θh/σb)

2
)

, (8.1)

where kd and ks are the diffuse and specular albedos, θi, θo, and θh are the

incoming light direction, the viewing direction, and the half angle, respectively,

all defined with respect to the surface normal, and σb is the surface roughness.

As discussed in Chapter 2, the reflection equation for general BRDF then can be

represented as:

B(α, β) = kdBd(α, β) + ksBs(α, β) , (8.2)

where Bd and Bs are respectively the reflected irradiance from the diffuse com-

ponent and the specular component, and (α, β) are the spherical coordinates of
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the surface normal. For diffuse irradiance, Bd can be efficiently represented using

a low order SH, which has the form:

Bd(α, β) =

ND∑
l=0

l∑
m=−l

Λl Llm ρ̂dl Ypq(α, β) , (8.3)

where ρ̂dl are the SH coefficients for the clamped cosine function, Λl is the normal-

ization constant, and ND is the order of SH, which is taken to be ND=4, similar

to the previous chapters. The specular irradiance Bs can also be represented

using SH, which takes the form

Bs(α, β) =

NS∑
l=0

l∑
m=−l

Λl Llm ρ̂sl Ypq(α
′, β′) , (8.4)

where ρ̂sl are the SH coefficients of the properly reparameterized BRDF, (α′, β′) is

the reparameterized spherical angle of (α, β) with respect to the central direction

of BRDF, and NS is the order of SH, which is generally higher than for the

Lambertian case due to the high-frequency component in the specular reflectance

function. In this chapter, we take NS = 10 and will reduce it accordingly if

specular BRDF parameters are obtained.

Based on the image irradiance equation described above, we first describe how

to inversely estimate the BRDF function from a multi-view and multi-lighting

image sequence in Sec. 8.4. Afterwards, an analysis-through-synthesis pose es-

timation method is explained in Sec. 8.5, and a new shape refinement method

based on Eq. (8.2) is introduced in Sec. 8.6.

8.4 Template and Reflectance Reconstruction

A first input to our algorithm is a static triangle mesh shape template Mc for

each tracked actor. We use a laser scanner, but Mc could also be obtained via

image-based reconstruction. The template is purposefully smoothed to remove

static high-frequency shape detail. A skeleton with 20 joints and 37 degrees of

freedom controls the motion of the shape template via skinning.

A model of surface reflectance for every actor is a second important prerequi-

site enabling stable binocular performance capture in general scenes (see Sec. 8.5).

Such a model can be captured using a light stage Vlasic et al. (2009). However,

with wider applicability in mind, we employ an alternative solution that is based

on a simpler studio setup and is inspired by methods that are able to capture
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Figure 8.2: Reflectance estimation: (a) input image, (b) material segmentation,
(c) estimated spatially varying diffuse albedo, (d) estimated per-segment specular
albedo, (e) the light probe images.

the BRDF under general illumination Li et al. (2013). Our approach consists of

three light sources placed vertically at different heights and a calibrated multi-

view camera system (see Fig. 8.2), a setup that is close in spirit to Theobalt

et al. (2007). The actor is recorded performing a simple rotational motion with

all three light sources turned on sequentially. Prior to recording, a ground truth

environment map is captured for each such lighting condition and projected into

spherical harmonics space. Then, we use the performance capture algorithm pro-

posed in Chapter 6 to track this simple sequence with our shape template.

The rotating motion of the performer allows us to collect reflectance samples

of visible surface locations in the camera views. These samples are captured under

different illumination and viewing conditions covering a range of azimuthal angles,

while the vertical displacement of the light sources gives us measurements on

different elevation angles. From these samples, we estimate the BRDF parameters

kd, ks and σb (see Sec. 8.3). Although it is desirable to estimate these parameters

for each point on the template mesh, the high-frequency reflectance component

is particularly hard to estimate from a relatively sparse set of samples. Similar to

the previous chapters, to make the calculation tractable, we assume the surface

to comprise a discrete set of b materials Kb (such as skin), each with a constant

specular reflectance. This discrete set of materials is manually segmented in the

first frame (see Fig. 8.2b), but could also be found via color clustering. Another

simplifying observation is that many common materials are dielectric, i.e., the

126



8. ON-SET PERFORMANCE CAPTURE WITH A STEREO
CAMERA

generated highlights are of the same color as the light source. Following this

assumption, we can represent the specular albedo ks as a scalar value. Thus, we

solve for a per-vertex kd, a per-patch specular albedo ks, and a per-patch surface

roughness parameter σb.

BRDF estimation is performed in an iterative coarse-to-fine way. In a first

iteration, we assume that all BRDF parameters are constant for all vertices of a

material Kb. Then, we minimize the error between the rendered model under the

calibrated lighting and the input frames:

Eb
K =

∑
f

∑
i∈Kb,c∈Nc

wqi,c ‖kdBd + ksBs(σb)− Ic(qi, f)‖, (8.5)

where f is the frame index, i is the vertex index, c is the camera index, and

wqi,c is a weighting factor. The surface normals of the coarse model reported by

performance capture are too coarse to estimate the reflectance reliably. There-

fore, we interleave a refinement of the surface normal orientations using a shape-

from-shading approach similar to Zhang et al. (1999) with the estimation of the

reflectance. We perform normal refinement for each camera view. We iterate

normal refinement and reflectance estimation, typically twice. After the first it-

eration of BRDF and normal estimation, we allow the diffuse albedo kd to vary

for every vertex, while keeping ks and σb fixed per material. To prevent kd and

ks from being negative in the optimization, we reparameterize them as kd=r
2
d and

ks=r
2
s , and optimize rd and rs instead. All optimization steps are performed with

a conjugate gradient solver. We start by setting NS=10, and when the BRDF

parameters are obtained, we adaptively reduce NS for each material segment us-

ing a strategy similar to Ramamoorthi & Hanrahan (2002) to reduce processing

time.

8.5 Skeletal Motion Estimation

It is our goal to estimate detailed surface and skeleton motion of actors in general

clothing, who perform general motion in sets with no controlled background,

merely from the video footage of a possibly moving stereo camera rig. Compared

to previous multi-view performance capture algorithms that operate with tens

of cameras and in front of a green screen for easier background subtraction, the

drastically reduced set of views and the uncontrolled environment represent a

previously unseen challenge. Thus, we need to fundamentally rethink which data
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cues to use for tracking, how to measure the model-to-image data consistency,

and how to optimize the pose and shape parameters of the template model.

To meet this challenge, our method is the first to jointly employ shading cues

from a full BRDF model, depth information, and motion information extracted

from binocular views, and also to robustly extract foreground regions representing

actors, all from binocular footage in general scenes. First, a light probe image of

the empty set is captured, assuming that the lighting is constant for the duration

of the recording. Then, we employ a variational approach similar to Valgaerts

et al. (2010) to compute the 3D scene flow between each consecutive pair of frames

(see Chapter 2 for how to estimate the scene flow). This approach computes

optical flows in each camera view and 3D stereo geometry for each time step,

both of which are used by our algorithm.

Performance capture now subsequently processes pairs of stereo video frames,

by alternating the following two steps:

1. A segmentation method is applied to segment out the regions in the depth

maps corresponding to persons in the foreground, even if the stereo rig is

moving and the background has a general appearance and shape (Sec. 8.5.1).

To succeed in this challenging setting, the segmentation method jointly

relies on color information, a scene flow-induced body shape prior derived

from previous body poses, and stereo constraints between input image pairs.

Segmentation produces a depth region of the person to be tracked, whose

outlines provide additional silhouette cues for performance capture.

2. The current pose and shape of the actor are found by optimizing a pose

error (Sec. 8.5.2). To this end, we employ a tracking algorithm that, for the

first time, jointly relies on appearance cues from a full BRDF with diffuse

and specular component, silhouette cues, and scene flow information.

8.5.1 Foreground Segmentation

Automatically obtaining clean segmented regions of depth belonging to persons

in the foreground is a prerequisite for reliable binocular full body performance

capture. Many previous segmentation approaches used color alone for segmenting

foreground objects in video. Unfortunately, the colors of foreground objects in

general scenes can be very similar, leading to segmentation errors. Often only

manual intervention can resolve these problems Rother et al. (2004). However,

even for multi-view performance capture of interacting persons in front of a green
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screen, color information alone was found to be insufficient for labeling persons

in video Liu et al. (2011). Depth thresholding alone is also not a reliable cue to

segment out the person in a scene since, depending on the surrounding geome-

try, the person may not be the closest object to the camera. Finally, depth or

image differencing alone is not suitable, since with a moving camera rig the back-

ground model would need to be permanently updated and possibly tracked with a

structure-from-motion approach, which is error-prone with a dynamic foreground.

To succeed with a sparse set of binocular views, a general background, and a

possibly moving rig, we employ a Markov Random Field (MRF)-based segmen-

tation approach that combines evidence from a variety of scene cues to obtain a

reliable segmentation of the persons in the foreground in both input views, and

thus in the stereo depth. Foreground segmentation was also employed for mo-

tion tracking by Brox et al. (2006, 2010) in a multi-view setting by combining

appearance cues, modeled by a Gaussian distribution, with a shape prior, pro-

vided by the object contour at the current pose. They evolve the object contour

by minimizing a non-linear energy, which is sensitive to local minima. Here, we

formulate the segmentation as a labeling problem which can be solved efficiently

by a graph cut algorithm, and we model the appearance by a Gaussian mix-

ture model (GMM) which enables the segmentation to work for textured objects.

Further, we include a shape prediction by the estimated scene flow to obtain a

more accurate shape prior and add a new stereo constraint as a consistency check

between both cameras.

For every time step, segmentation is performed in two stages: 1) First, pixels

in the left and right images are labeled separately as person in the foreground

or as background. In case of multiple actors in the scene, a separate two-label

segmentation is solved for each person. 2) Second, the segmentations of each

person from both views are fused.

Stage I: In the first stage, the segmentation finds the lowest energy (maximum

likelihood) configuration L={lp | p ∈ 1, . . . , Np; lp ∈ {0, 1}} of the MRF, assign-

ing binary labels lp to each of the Np pixels. The energy is defined as follows:

DS
1 (L) =

∑
p∈P

λAD
A
p (lp) + λGD

G
p (lp) + λSDpq(lp, lq) . (8.6)

DA
p (lp) is a likelihood term penalizing the assignment of label lp to pixel p based

on its color, DG
p (lp) is a shape prior exploiting the fact that the body model pose

in the previous frame is known and the scene flow between the previous and the

current frame is available, and Dpq(lp, lq) is a regularizing contrast term which
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favors pixels having the same label when their color is similar. The weighting

factors are experimentally set to λA=2, λG=10 and λS =50.

Color Likelihood A separate color model is used for foreground (l = 0) and

background (l= 1). For both, it is implemented as a GMM of RGB colors with

KG = 6 mixture components. The k-th Gaussian N
(
I(p) |µlk,Σl

k

)
in the GMM

corresponding to label l is parameterized by a mean µlk, a covariance Σl
k, and a

weight ωlk. Given the pixel color I(p), the appearance cost DA
p (l) for assigning to

it a label l is defined as the negative log-likelihood of:

p
(
I(p) |µl1,Σl

1, ω
l
1, . . . , µ

l
KG
,Σl

KG
, ωlKG

)
=

KG∑
k=1

ωkN
(
I(p) |µlk,Σl

k

)
. (8.7)

The GMMs for foreground and background are continuously retrained over time

to increase robustness under lighting and appearance changes. To train the

GMMs for the current frame, we take the foreground and background regions

of the previous frame and warp them to the current frame by means of the opti-

cal flow computed as part of the scene flow estimation. The colors of the warped

regions are used for training the GMM models of the current frame. Fig. 8.3

(b) and (c) show the results of assigning pixels to the foreground or background

using the color term for the input image of Fig. 8.3 (a). As shown, the color term

is able to distinguish most of the foreground. However, it may not be sufficient

when the foreground color is similar to the background, e.g., the lower foot in

Fig. 8.3 (a), which leads to an incorrect segmentation result as seen in Fig. 8.3

(d).

Shape Prior The shape prior measures the label assignment cost based on a

prediction of the pose of the model in the current time step, given that its pose

in the previous time step is known and motion is smooth. We model this term by

warping the previous pose of the shape model onto the current frame via scene

flow. The warped model is projected onto the image and we build a heat map

HG based on the pixel’s distance to the outer contour of the projected model.

The shape prior cost is defined as the negative logarithm of:

HG
p (lp) =


1

1+exp(−d2p/(2σ2
p))

lp = l̂p

1

1+1/ exp(−d2p/(2σ2
p))

lp 6= l̂p
, (8.8)
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Figure 8.3: Foreground segmentation: (a) input image, (b)+(c) color likelihood
for background and foreground (white: high, black: low), (d) segmentation result
using only color likelihood, (e) color term and shape prior likelihood, (f) final
segmentation result using all components.

where dp is the distance from pixel p to the nearest contour point, l̂p is the pixel

label given by the warped projected model, and σp is experimentally set to 5 for

all experiments. Fig. 8.3 (e) shows the cost function of assigning pixels to the

background, which helps to correctly segment the foot part to the foreground in

Fig. 8.3 (f).

Smoothness Term The contrast term Dpq takes the same form as described

in Liu et al. (2011) and is defined as:

Dpq(lp, lq) =

{
γ

s(p,q)
exp

(
−‖Ip−Iq‖2

2σ2
c

)
lq 6= lq

0 lp = lq
, (8.9)

where s(p, q) is the spatial distance between the pixels.

The minimum energy (8.6) is found via graph cuts Boykov & Funka-Lea

(2006). For efficiency, segmentation is performed for a conservatively extended

bounding box around the foreground actor, centered at the location from the

previous frame warped by the scene flow. Pixels outside the box are labeled as

background.

Stage II: In the second stage, we perform another segmentation of each image

by taking into account information from the other camera. Specifically, we aug-

ment the MRF energy such that for each pixel in the current view, we check the

consistency with the segmentation in the other view. We derive a stereo-based
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confidence measure by warping the segmentation of the other view into the cur-

rent view using scene flow. If the warped segmentation assigns the same label to

a pixel in the current view, the pixel is marked as trusted. Then, we retrain the

color GMMs for the foreground and background using only trusted pixels in both

views. Finally, another graph cut segmentation is performed by minimizing

DS
2 (L) =

∑
p∈P

λAD
A
p (lp)+λGD

G
p (lp)+λSDpq(lp, lq)+λOD

O
p (lp). (8.10)

The main extension is the added stereo constraint DO
p . It assumes the value 1

if trusted pixels are assigned a different label than in Stage I, and 0 otherwise.

For untrusted pixels, DO
p is set to 0.5 for both labels. The weighting factor λO is

experimentally set to 100.

8.5.2 Pose Estimation

Given a template model of the actor, including a rigged and skinned 3D mesh

with reflectance information for each vertex, we track the motion of actors in a

binocular input video recorded in an arbitrary uncontrolled environment. As is

common in related work, we formulate this as a sequential problem. Given the

pose and the geometry M t−1
c at time t−1, and two pairs of images at times t−1

and t respectively, we want to estimate the skeletal pose at time t. We formulate

this as an energy minimization based on the constraints coming from the cues

obtained in the previous steps. Gall et al. (2009) employ the silhouette and feature

constraints for pose estimation in a multi-view setup, which is not enough for our

setup (see the comparison in Sec. 8.7). Our energy for pose estimation takes three

terms. The first term ES encodes information from shading cues and measures the

difference between the captured images and a rendered version of the character

based on the reflectance and the captured environment map. The second term EG

comes from the depth cues, and it measures the difference between our current

pose and a depth map of the current image pair calculated as a by-product of the

scene flow method. The third term EH contains the silhouette cues and measures

the difference between the projected contour of the mesh at the current pose and

the segmented silhouette. The three terms are combined into a single energy

term:

ET = βS E
S + βGE

G + βLE
H , (8.11)

where βS, βG, and βL are weighting factors. We optimize this energy as a function

of the skeletal joint angle parameters using a simple conditioned gradient descent
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method similar to Stoll et al. (2011). The weighting factors are experimentally

set to βS = 1 and βL = 10 for all sequences, while βG = 20 for sequences with

moving cameras and βG=10 for all other sequences.

Shading Term Similar to previous chapters, the shading energy ES measures

the similarity between a rendered image of the current pose of the actor under the

known lighting and reflectance and the captured images. In contrast to previous

chapters, we do not assume Lambertian reflectance, but propose one of the first

methods to employ a full BRDF model with diffuse and specular reflectance as

cues in a 3D pose tracking framework. We demonstrate in the experimental

section (Sec. 8.7) that by relying on this more advanced light transport model,

we can obtain more accurate and more robust tracking results even with sparse

input data captured in general environments. For a single camera c, we write:

ES
c =

1

N s
c

∑
i

(
B (c, qti ,n

t
i)− I tc(xti, yti)

)2
, (8.12)

where N s
c is the number of visible vertices in camera c, (xti, y

t
i) is the projection

of the surface vertex qti , n
t
i is the corresponding surface normal, and B is the ra-

diance calculated according to Eq. (8.2). While lighting and reflectance functions

are constant, the vertex positions qti , the projections (xti, y
t
i), and the normals

nti depend on the pose parameters of the model. Taking the same manner with

that in Chapter 6, we can calculate analytical derivatives of this function using

a Taylor expansion, by ignoring potential visibility changes in the vertices.

Depth Term We estimate per-camera depth maps as part of the scene flow

computation. Using the segmentation obtained in Sec. 8.5.1, we remove the

background from the depth map. The segmented foreground depth is then re-

fined by removing interpolated depth values at occlusion boundaries via triangle

normal orientation thresholding relative to the viewing direction. Based on the

filtered foreground depth map, the second component of the pose energy encodes

iterative-closest-point-like constraints:

EG
c =

1

N g
c

∑
i

(
qti − c (qti)

)2
, (8.13)

where c (qti) is the corresponding 3D point for vertex qti in the reprojected depth

map of camera c based on an approximate nearest neighbor search.
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Silhouette Term Following our segmentation, the contour pixels of an actor

in the foreground can be conveniently detected in each camera view, enabling us

to define a silhouette consistency term. For each of the Nh
c contour pixels, we

define a projection ray that can be parameterized as a Plücker line Hi = (si, ti)

Gall et al. (2009). The silhouette consistency term sums the distance between

each line Hi and its closest vertex q(i)t on the body model:

EH
c =

1

Nh
c

∑
i

(
q(i)t × si − ti

)2
. (8.14)

If more than one person is present in the scene, the steps in this section are run

for each person separately.

8.6 Shape Refinement

Skeletal tracking yields the coarse shape of each actor in the scene at every time

step. However, fine-scale surface detail visible in the images is missing. We recover

this with an extended version of the photometric refinement process described in

Chapter 5. We formulate this problem as a spatio-temporal MAP inference, where

the cost function takes the form:

ψ (gt) = φ (I t | gt) + φ (gt | gt−1) , (8.15)

where φ (I t | gt) is the shading error that measures the similarity of the image

gradients in the input image I t to the predicted rendered shading gradients ac-

cording to the image reflectance equation described in Sec. 8.3. The unknown gt

represents the refined surface geometry for every vertex as a displacement from

M t
c in the local normal direction. The term φ (gt | gt−1) is a prior that requires

the current refined surface geometry to be similar to the refined surface geometry

of the previous time-step, transformed to the current time-step via skeleton-based

deformation and surface skinning using the pose parameters obtained in Sec. 8.5.

Please refer to Chapter 5 for details.

Unlike Chapter 5, we adapt the geometry refinement approach to explicitly

consider a full diffuse and specular BRDF, rather than just diffuse reflectance.

Our method is related to previous stereo methods that phrase multi-view con-

sistency under general surface BRDFs, e.g., Davis et al. (2005), but unlike these

we do not require images under multiple and often calibrated lighting conditions.

Since we are able to exploit the information in the full BRDF, our present method
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Figure 8.4: Surface refinement on a synthetic test sequence: (a) one of two input
images, (b) refined shape using the method in Chapter 5, (c) refined shape using
our present method, (d) ground truth shape.

not only works as well as that of Chapter 5 on diffuse surfaces with sparse binocu-

lar input data, it also successfully recovers surface detail on very specular surfaces

where the previous method would fail, e.g., the specular jacket in the bottom row

in Fig. 8.5. As a final result, high frequency shape detail on the surface, such

as fine folds and creases, are recovered in a spatio-temporally coherent way. To

optimize this energy function, we employ the Levenberg-Marquardt algorithm,

which is similar to that used in Chapter 5. Fig. 8.4 shows a comparison of our

refinement method with the method described in Chapter 5 on a specular surface.

8.7 Results

We recorded 3 test sequences consisting of over 1300 frames. The data was

recorded with a stereo rig with a baseline of ≈22 cm at a resolution of 1024×1024

pixels and at a frame rate of 45 fps. Each sequence shows two people wearing

casual clothing performing a variety of different motions in front of a general

background. The scenes provide various challenges, such as moving cameras,

specular apparel, close contact with background objects, and partial occlusions
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Figure 8.5: Performance capture results of our algorithm on real world sequences.
Left to right: one of the two input images, segmentation and tracked skeleton as
an overlay, 3D geometry after skeletal pose estimation, 3D geometry after surface
refinement.

(see Fig. 8.5), which would make tracking these sequences with previous ap-

proaches challenging. We also evaluate our method on a synthetic data set. The

pose for the first frame is initialized manually, followed by the local optimization

described in Sec. 8.5.2. The mask image for the first frame is generated using a

segmentation tool Rother et al. (2004).

The first sequence (Fig. 8.5, top) contains two people who initially are stand-

ing and talking, and then start to dance. Our algorithm successfully evaluates

the pose and reconstructs small details such as the folds in the shirts accurately

from the stereo images. The second sequence (Fig. 8.5, middle) shows two actors

in the process of sitting down on a couch, and is recorded with a moving camera.

Even though the actors are in contact with the couch in the background and

some partial occlusions take place, the motion and surface detail is reconstructed

accurately. As the camera is moving, we only reconstruct the relative pose of the

actors with respect to the camera (i.e., we do not distinguish between camera mo-
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Figure 8.6: One of our performance capture results. Left to right: input video,
reconstructed geometry, edited video with virtual logo added.

tion and actor motion). The third sequence (Fig. 8.5, bottom) shows two actors

jumping and kicking. Even though the motions are very fast, the pose estimation

is successful. Further, even though the left actor wears a highly specular jacket,

the surface detail is reconstructed accurately by our method. This again high-

lights the importance of using a non-Lambertian BRDF, since a method based

on Lambertian shading would fail to estimate surface detail accurately.

Scene Enhancement We use the tracked motion and refined surface of the

scenes to modify the original footage from the stereo camera. As our geometry is

spatio-temporally coherent, it is easy to add new textures on top of the original

footage, or perform other modifications. Fig. 8.6 shows an example on one of the

captured sequences (Fig. 8.5, top).

Quantitative Evaluation To evaluate our method quantitatively, we gener-

ated a synthetic data set consisting of 100 frames by rendering a captured se-

quence with a manually painted Phong-based material and texture onto a virtual

stereo rig with a baseline of ≈4 cm under the environment lighting of St. Peter’s

Basilica Debevec (1998). Given the images, the initial model, and its BRDF, as

well as the incident lighting, we ran our complete pipeline, including the scene

flow estimation, foreground segmentation, motion tracking, and surface refine-

ment. We then compared the results against the ground truth to quantify the

accuracy of the skeletal motion and surface reconstruction (see Fig. 8.7). The

evaluation shows that our algorithm is able to create a very accurate reconstruc-

tion of the synthetic scene, with an average joint position error of only 11.6±5.09

mm, and average surface position and normal error of 6.92±4.23 mm and 9.34±7.7

degrees respectively.

To make sure that all parts of our pipeline are actually important, we also

evaluated the approach on a real sequence of 500 frames by leaving out one or
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Figure 8.7: Quantitative evaluation on a synthetic sequence, showing mean and
standard deviation for each frame: (a) joint position error, (b) vertex position
error for refined shape, (c) normal direction error for refined shape.
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Figure 8.8: Comparison of our method with Gall et al. (2009): (a) our tracked
skeleton, (b) tracked skeleton of Gall et al. (2009).

several stages of our pose estimation pipeline. Possible algorithmic components

for the pose estimation pipeline are: (a) image segmentation, (b) scene flow

constraints, (c) depth map constraints, (d) shading constraints, and (e) silhouette

constraints. Using only (c), (c+d), or (a+b), the pose estimation fails to track

the sequence completely. Using (a+c), or (a+c+d), the pose estimation is able

to track the whole sequence, but some body parts get lost during tracking. Our

pipeline, consisting of (a+c+d+e), is able to track the whole sequence correctly

and performs best of all the combinations.

Comparison with previous methods We compared our tracking approach

with the method described in Gall et al. (2009) for the real-world sequence shown

in the bottom row of Fig. 8.5. As can be clearly seen in Fig. 8.8, the tracking

method of Gall et al. (2009), which employs the silhouette and feature constraints,

fails on this binocular data, while our method successfully estimates the correct

pose.

We also compared our present method with our surface-based tracking method

for binocular facial performance capture proposed in Chapter 7. Fig. 8.9 shows

the results of tracking the template mesh over ≈ 200 frames for the real-world
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Figure 8.9: Comparison of our present method with surface tracking method pro-
posed in Chapter 7: (a) first frame, (b) corresponding geometry, (c) 100th frame,
(d) our reconstructed geometry using the present method, (e) reconstructed ge-
ometry using the method in Chapter 7.

sequence in the bottom row of Fig. 8.5. The method from Chapter 7, which

only propagates mesh vertices by means of scene flow, clearly suffers from self-

occlusions, motion estimation errors near boundaries, and the inability of the ap-

plied Laplacian regularization to deal with rotating motion. Our present method,

on the other hand, builds on a model-based skeletal tracking that is much more

robust to the articulated motion that is typical for full body tracking.

Run Time We ran our algorithm on a commodity PC with a dual-core 3GHz

processor and 8GB RAM with a single threaded, non-optimized implementation.

Scene flow calculation takes ≈3 min per frame. Motion tracking including fore-

ground segmentation takes ≈ 2 min per frame. The final shape refinement step

takes ≈1 min for a template mesh resolution of ≈80000 vertices. As these three

steps are independent of each other, they can be pipelined into multiple threads

or machines.

Discussion Our method successfully handles many challenging cases, including

moving cameras, specular apparel, and partial occlusions. However, there are

limitations to its use. As we use only a small-baseline stereo rig, some body parts
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Figure 8.10: A failure case of our tracking method: (a) input frame in which an
actor is turning away from the camera, (b) corresponding tracked skeleton, (c)
corresponding tracked mesh, (d) input frame in which the same actor is turning
back towards the camera, (e) corresponding tracked skeleton, (f) corresponding
tracked mesh.

may be completely occluded in some frames. Our current local optimization

scheme may fail to recover from these occlusions when the body parts appear

again. Fig. 8.10 shows such a failure case for our method on a sequence with

self-occlusions. Fig. 8.10 (a), (b) and (c) show one of the input images, the

corresponding tracked skeleton from the camera view point, and the tracked mesh

geometry for a frame in which an actor is turning away from the camera, thus

occluding his right side. The tracked mesh makes it clear that the occluded

arm is not tracked correctly and intersects the torso. Fig. 8.10 (d), (e) and (f)

show results from the same camera view point at a later point in time where the

right leg starts to reappear again. Both the tracked skeleton and mesh show an

incorrect pose for the leg that was occluded in the previous frames. For the same

reason, multiple interacting actors currently cannot be handled by our method.

Occlusions could be handled by first detecting them and then using a global

optimization for the occluded parts to make sure they are recovered correctly.

The fact that occluded body parts do not have a correct pose during occlusion is

not a major concern since our primary interest lies in the geometry visible from

the perspective of the stereo camera. Nevertheless, recovering a reliable pose

for occluded parts is an important open problem and may be relevant for some

applications.
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Extending the current method to outdoor performance capture is another

interesting direction for future work. While our shape refinement algorithm is able

to generate detailed geometry for most surfaces, it may fail for saturated and over-

exposed highlights where no information can be extracted. Topological changes

cannot be handled either, as we assume a constant connectivity and topology.

Even though the output of our algorithm is spatio-temporally coherent (i.e., it has

a constant connectivity and mesh topology), the shape refinement currently does

not account for minor motion of garments such as a shifting shirt, which may lead

to slight swimming artifacts in the range of 1-2 cm when rendering virtual textures

in the original video. This could be improved by performing an additional scene

flow-based alignment between the virtual actor and the current input images and

performing an additional adaptation of the actor to the foreground segmentation

to capture cloth motion.

8.8 Conclusion

We have presented a novel performance capture algorithm that reconstructs de-

tailed human skeletal motion and space-time coherent surface geometry from a

potentially moving, low-baseline stereo camera rig. It is able to track skeletal

motion and detailed surface geometry of one or more actors in uncontrolled envi-

ronments by exploiting BRDF information, scene illumination, and background

segmentation. With our approach, we are able to produce high-quality results

from a simple stereo camera setup; they approach the quality of results previ-

ously only achievable with complex setups containing 10 or more cameras. We

believe that our method is a step towards making full-body performance capture

available for wider use, such as on-set performance capture without additional

hardware, video editing, and the creation of virtual actors.
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Other Applications
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The ability to estimate the lighting, the reflectance, and the geometry from

image or video input enables many applications. In this part, we list two meth-

ods that build on the techniques proposed in the previous parts of the thesis.

One is relightable performance capture, which estimates not only detailed spatio-

temporally coherent dynamic scene geometry, but also a spatially-varying surface

reflectance model. The estimated dynamic geometry and surface reflectance en-

able the captured performance to be relit under a new environment. The other

application introduced in this part is monocular facial performance capture. This

method builds on the technique proposed in Chapter 7, but takes a step further

by using only a monocular video input.
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Chapter 9

Relightable Performance Capture
and Monocular Facial
Performance Capture

9.1 Relightable Performance Capture

9.1.1 Introduction

Capturing real performances of human actors and reproducing them in virtual

environments has been one of the grand challenges in computer graphics and com-

puter vision in the last few decades. Recent advances in marker-less multi-view

video based capture methods have made it possible to reconstruct the motion,

geometry and texture of actors de Aguiar et al. (2008); Gall et al. (2009); Vlasic

et al. (2008), and create new motions from the performances Stoll et al. (2010)

from arbitrary viewpoints. In previous chapters, we show how to achieve a high-

quality dynamic scene reconstruction under a general environment. However,

reconstructing a realistic appearance of the models is still challenging.

So far, most methods for rendering captured performances resort to projective

texturing from the input video frames, e.g., Matusik et al. (2000); Starck & Hilton

(2007). However, rendering a captured scene under new illumination has not yet

been feasible. To overcome this limitation, some dynamic scene reconstruction

methods estimate a spatially-varying BRDF of the scene model by filming such

scenes under calibrated studio lighting Theobalt et al. (2007). Other approaches

combine scene reconstruction with image-based relighting techniques Einarsson

et al. (2006); Matusik et al. (2002) by recording under an advanced controllable

light stage. However, these approaches are fundamentally limited by the fact that
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Figure 9.1: Several images of a reconstructed real-world performance rendered
from novel viewpoints and under a novel lighting condition. (Environment map
courtesy of Paul Debevec.)

they require complex, expensive, and controlled camera and light setups which

only exist in controlled studio environments. For many practical animation pro-

ductions in movies or games, or for recording of 3D video, the requirement for

controlled calibrated lighting is a major hindrance. Essentially, movie profession-

als would like to capture performances that can be relit directly on an arbitrary

movie set where lighting can be arbitrary and vary greatly over time. The im-

portance of this becomes clearer if one considers that many production sets are

actually outdoors.

In this section, based on the techniques proposed in previous chapters, we

introduce a new performance capture method that reconstructs not only detailed

spatio-temporally coherent dynamic scene geometry, but also a spatially-varying

parametric surface reflectance model of a human from a sparse set of multi-

view video recordings under general uncontrolled illumination. Estimating a re-

lightable performance under general lighting is a chicken-and-egg problem, as

neither shape, illumination, nor surface reflectance are known in the beginning.

Taking a strategy similar to previous chapters, we resort to a coarse-to-fine recon-

struction scheme that eventually outputs highly detailed dynamic scene geome-

try, an all-frequency model of incident illumination, and a parametric spatially-

varying BRDF model for the moving surface. In this way, we are able to keep the

individual sub-estimation problems feasible in terms of computation time and

the signal processing theory of inverse rendering. Plausibly relit performances

can be created from multi-view video footage under general unknown lighting.

Fig. 9.1 shows a reconstructed real-world performance rendered from novel view-

points and a novel lighting condition. The work presented here was published

in Li et al. (2013). The author of this thesis contributed to this work through
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Figure 9.2: Overview of the method, illustrating the steps for geometry recon-
struction (1 and 2b), lighting estimation (2a and 3), reflectance estimation (4),
and final performance relighting (5).

his expertise on low-frequency lighting estimation and shading-based shape re-

finement, as described in Chapter 5. The new method for estimating the BRDF

and the high-frequency incident lighting are not contributions of this thesis. To

follow, we therefore briefly illustrate how the inverse rendering concepts of this

thesis are used, and we refer the reader to Li et al. (2013) for details on the other

algorithmic aspects.

9.1.2 Method

Input to our system is a multi-view video sequence of a moving actor captured

using a sparse set of Nc synchronized cameras running at a standard frame rate

(Nc typically between 8 and 9). The cameras are expected to be geometrically

calibrated. They are also assumed to have linear response (if exact response

curves are available, they are used), and color matching across views is performed

during pre-processing. However, we do not impose strict requirements concerning

the scene illumination. We need a rigged 3D shape model template comprising

a skeleton, a triangle mesh surface model, and skinning weights for each vertex,

which connect the mesh to the skeleton. The surface mesh of the actor can be

generated using a laser scanner or image based 3D reconstruction techniques and

is rigged using standard tools.

Given this input data, our algorithm reconstructs high resolution spatio-

temporally coherent geometry, surface reflectance, and incident illumination. As

shown in Fig. 9.2, we first reconstruct coarse geometry, reflectance and illumina-

tion and gradually refine the estimations over several steps of the pipeline. In
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detail, our reconstruction approach consists of the following four main steps:

� Low-frequency geometry reconstruction. Similar to Chapter 5, we

use a 3D model to track the articulated motion of the actor in the videos

and reconstruct a dynamic geometry sequence using the marker-less motion

capture approach of Gall et al. (2009) (Fig. 9.2 step 1). We purposefully use

a smoothed geometry model for motion tracking, where the high-frequency

surface detail has been removed. This yields an initial spatio-temporally

coherent low-frequency 3D model of the dynamic scene.

� Low-frequency illumination estimation and high-frequency geom-

etry refinement. Based on the technique proposed in Chapter 5, we use

the initial geometry from the marker-less motion tracking approach to es-

timate the incident illumination in a spherical harmonic basis, as well as

an initial piecewise constant diffuse surface albedo map (Fig.9.2 step 2a).

From this, we refine the geometry of our model to recover the time-varying

high-frequency geometry component (Fig. 9.2 step 2b).

� All-frequency illumination estimation. We use the detailed geometry

to refine the previous low-frequency estimate of incident illumination into a

more detailed representation, modeling high frequency lighting effects. We

solve an inverse rendering problem to find a wavelet-based all-frequency

representation, regularized by our initial low-frequency illumination model

and the spatial total variation of the illumination (Fig. 9.2 step 3). The

lighting is estimated in each color channel.

� Reflectance reconstruction. The estimated high-frequency incident il-

lumination model is used to solve for a reflectance model that represents

high-frequency reflectance effects. We estimate a spatially-varying para-

metric BRDF model with a temporally-varying diffuse component (Fig. 9.2

step 4). As we make no a priori assumption about the illumination, our al-

gorithm estimates reflectance under general and uncontrolled illumination,

even to a certain extent under time-varying illumination.

� Performance relighting. Given the reconstructed dynamic shape and

reflectance information of the input performance, we now render the actor’s

performance from arbitrary viewpoints under arbitrary novel illumination

conditions (Fig. 9.2 step 5).
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Figure 9.3: Results of our algorithm on different input scenes. The first two
rows show, from left to right, single input camera view, reconstructed geometry,
relit performance from input camera view, and relit performance from novel view.
The bottom row shows closeups on the characters, highlighting the reconstructed
and relit fine geometry details and specular reflections (Environment maps Grace
Cathedral and St. Peter’s Basilica courtesy of Paul Debevec).

9.1.3 Results

We reconstructed geometry, reflectance, and illumination from multi-view video

sequence. The sequences kungfu (Fig. 9.1 and Fig. 9.3, row 1 ) and dance (Fig. 9.3,

row 2) were reconstructed with 9 cameras in our multi-view video studio. We

used general arbitrary studio lighting which was not controlled or designed in

any specific way. Cameras recorded at a resolution of 1296× 972 pixels, and at a

frame rate of 45 fps; they were placed in a roughly circular arrangement around

the scene.

The results show that this algorithm is able to capture geometry, reflectance

and illumination in a believable way. Plausibly relit performances can be ren-

151



9.2 Dynamic face geometry from monocular video

dered from arbitrary new viewpoints and under novel environment lightings. In

the results, small-scale time-varying surface detail is plausibly captured and relit,

such as folds in clothing (Fig. 9.3 bottom row). In particular, high-frequency

reflectance effects are captured: for example, the specularity in the print of the

t-shirt in the kungfu sequence, and the slight specularities in the skin and other

fabrics in the dance sequence. This approach does not assume static per-vertex

reflectance, and thus can also handle changing facial expressions or shifting ap-

parel to a certain extent.

9.2 Dynamic face geometry from monocular video

9.2.1 Introduction

In Chapter 7, we presented an approach for detailed facial performance capture

from binocular video. However, if only a monocular video is available, 3D face

models of a quality level needed for movies and games cannot yet be captured. In

this section, we briefly discuss a research project that aims to push the boundary

and application range further and move towards monocular video. We introduce

a new method to automatically capture detailed dynamic face geometry from

monocular video filmed under general lighting. It fills an important algorithmic

gap in the spectrum of facial performance capture techniques between expensive

controlled setups and low-quality monocular approaches. It is a step towards de-

mocratizing face capture technology for everyday users with a single inexpensive

video camera. The work briefly described here was published in Garrido et al.

(2013). The author of this thesis contributed to this work with an adaptation of

the dynamic shape refinement method from Chapter 7 to the single camera case.

The main contribution of Garrido et al. (2013) on blend shape modeling and

parameterization, monocular shape tracking, and flow-based surface refinement

and stablization are not part of this thesis. To follow, we therefore only briefly

review these parts of the project and focus on results illustrating the usefulness

of shading-based shape refinement in this setting. More detail can be found in

Garrido et al. (2013).

Our approach consists of several algorithmic components that are joined with

state-of-the-art 2D and 3D vision and graphics techniques adapted to monocu-

lar video. In a one-time preparatory step, we create a personalized blend shape

model for the captured actor by transferring the blend shapes of a generic model

to a single static 3D face scan of the subject. Then, in the first step of our
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Figure 9.4: Two results obtained with our method. Left: The input video. Mid-
dle: The tracked mesh shown as an overlay. Right: Applying texture to the mesh
and overlaying it with the input video using the estimated lighting to give the
impression of virtual face make-up.

automatic algorithm, we track a sparse set of 2D facial features throughout the

video by adapting a probabilistic face tracking method that is regularized by a

parametric 3D face model, learned once from a training set. The accuracy of the

2D landmark localization is improved by a feature correction scheme that uses

optical flow for tracking correction. After 2D landmark tracking, we obtain the

blend shape and pose parameters of the personalized 3D face model by solving a

constrained quadratic programming problem at every frame. To further refine the

alignment of the face model to the video, a non-rigid, temporally coherent geome-
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9.2 Dynamic face geometry from monocular video

Figure 9.5: Algorithm overview: Left to right: (a) Input video frame, (b) sparse
feature tracking, (c) expression and pose estimation using a blend shape model,
(d) dense expression and pose correction, (e) shape refinement.

try correction is performed using a multi-frame variational optical flow approach.

Finally, a shape-from-shading-based shape refinement approach, inspired by the

previous chapters, reconstructs fine scale geometric face detail after estimating

the unknown incident lighting and face albedo.

This approach is one of the first in the literature to capture long sequences

of expressive face motion for scenarios where none of these other methods are

applicable. With the temporally coherent dynamic geometry obtained by our

method, advanced video editing can be performed on the input video, for instance,

by adding virtual face textures to the video. Fig. 9.4 shows two of the results

from our method.

9.2.2 Method

Our method uses as input a single video of a face captured under unknown light-

ing. It is composed of four main computational steps:

� Personalized face model creation. We construct a customized para-

metric 3D blend shape model for every actor, which is used to reconstruct

all sequences starring that actor.

� Blend shape tracking. In a first step, we track 2D image features

throughout the monocular video by combining sparse facial feature tracking

with automatic key frame selection and reliable optical flow; see Fig. 9.5

(b). From the established sparse feature set, we estimate a global 3D trans-

formation (head pose) and a set of model parameters (facial expression) for

the blend shape model; see Fig. 9.5 (c).
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� Dense tracking correction. Next, we improve the facial expression and

head pose obtained from sparse blend shape tracking by computing a tem-

porally coherent and dense motion field in video and correcting the facial ge-

ometry to obtain a more accurate model-to-video alignment; see Fig. 9.5 (d).

� Dynamic shape refinement. In a final step, we reconstruct fine-scale,

time-varying facial detail, such as wrinkles and folds. We do this by esti-

mating the unknown lighting and exploiting shading for shape refinement;

see Fig. 9.5 (e). This is based on an extension of the method from Chap-

ter 7 to monocular video input where lighting is estimated over a span of

subsequent video frames.

Since the dynamic shape refinement is the step that exploits inverse rendering

for fine geometric detail estimation, we will elaborate on this step next.

9.2.3 Dynamic Shape Refinement With Monocular Video
Input

In this step, we capture fine-scale, possibly time-varying surface detail, such as

emerging or disappearing wrinkles and folds, which are not yet represented in

the tracked mesh by the previous steps. The approach is based on the shape-

from-shading framework under general unknown illumination that was proposed

in Chapter 7. Based on an estimate of low-frequency geometry, the method

first estimates the unknown incident lighting and the surface reflectance at the

current time step and then uses the known lighting and reflectance to deform

the geometry such that the rendered shading gradients and the image gradients

agree. Essentially, the method inverts the rendering process to reconstruct the

scene, which is easier in a setting with multiple cameras, where the fact that a

surface is seen from several viewpoints constrains the solution space better.

To adjust this approach to the monocular case, we estimate the unknown

illumination from a larger temporal baseline to compensate for the lack of addi-

tional cameras. In our setting, we assume that the illumination conditions do not

change over time, yet a ground truth light probe may not be available. Therefore,

we first estimate lighting, albedo and refined surface geometry of the tracked face

mesh for the first 10 frames of every video using the exact same approach as

in Chapter 7. Since in the monocular case the estimation is much more under-

constrained and error-prone, we only use this result as an initialization. In a

second step, we jointly use the initial albedo and fine scale geometry to estimate
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a single environment map that globally fits all time steps. We then use this static

light environment and estimate the dynamic geometry detail at each time step.

The result of dynamic shape refinement is the final refined face mesh.

9.2.4 Results

We evaluate the performance of our approach on multiple video sequences of

different actors with lengths ranging from 560 (22s) to 1000 frames (40s). Three

videos are recorded with a Canon EOS 550D camera at 25 fps in HD quality.

Face capture results. The first two results are obtained by testing the al-

gorithm on the face sequences from Chapter 7, which are recorded under un-

controlled indoor lighting. Here, we only use one camera input for our method

and need one extra frame from the second camera for the blend shape model

creation. Results for the first sequence, featuring very expressive gestures and

normal speech, are shown in Fig. 9.6. The figure shows that we are able to faith-

fully capture very challenging facial expressions, even for gestures that are not

spanned by the blend shape model, e.g. the right column. Fig. 9.7 shows a result

for a second sequence of around 620 frames (25s), featuring fast and expressive

motion and a high level of surface detail. Also for this sequence, our results

capture the facial geometry and motion with high detail.

Fig. 9.8 shows an additional result for a third sequence, newly recorded under

similar conditions as the first two. The sequence depicts a recitation of a theatrical

play and is extremely challenging due to its length of 1000 frames (40s), its

diversity of facial expressions, and fast and shaky head motion. The overlays in

the figure show that we are able to estimate the X- and Y-component of the head

pose very accurately and retrieve very subtle facial expressions, demonstrating

the applicability of our method for demanding real-world applications.

Virtual face texture. Our capturing process introduces hardly any perceiv-

able drift, so it is well suited for video augmentation tasks, such as adding virtual

texture or tattoos1; see Figs. 9.4 and 9.6. To this end, we render the texture as

a diffuse albedo map on the moving face and light it with the estimated incident

illumination. The texture is rendered in a separate channel and overlaid with the

input video using Adobe Premiere. Our detailed reconstruction and lighting of

the deformation detail is important to make the shading of the texture correspond

to the shading in the video, giving an impression of virtual make-up.

1www.deviantart.com/
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Figure 9.6: Monocular reconstruction results for expressive facial motion. Top to
bottom: The input frame, the corresponding blended overlay of the reconstructed
mesh, a 3D view of the mesh, an example of applying virtual face texture using
the estimated geometry and lighting.
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Figure 9.7: Monocular facial performance capture results for very expressive and
fast facial gestures and challenging head motion for up to 1000 frames.

158



9. RELIGHTABLE PERFORMANCE CAPTURE AND
MONOCULAR FACIAL PERFORMANCE CAPTURE

Figure 9.8: Monocular facial performance capture results for very expressive and
fast facial gestures and challenging head motion for up to 1000 frames.
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Chapter 10

Conclusions

In this thesis, we advance the theory and practice of static and dynamic scene

reconstruction from images or videos. The existing technologies are constrained,

requiring a lot of prerequisites to succeed. For static scene reconstruction, pre-

vious methods have difficulties reconstructing high-frequency detail in a general

environment. For dynamic scene reconstruction, marker-less performance capture

methods, which are able to reconstruct dynamic geometry from a handful of video

recordings, heavily rely on specified setups, e.g. controlled lighting and controlled

background, and they require a large number of cameras. These requirements

restrict the technology to working only in a studio environment, and prevent it

from being broadly used by the movie industry or by ordinary consumers. One

of the major reasons for these limitations is that the information in the images

or videos has not been fully exploited or appropriately modeled. Appearance

changes have been treated as artifacts rather than signals. To obtain a stronger

model, in this thesis, we look into the physical process of how the image or video

is generated in a general environment, and investigate inverse rendering for recon-

structing both static and dynamic scenes. In this way, we proposed techniques

for scene reconstruction which overcame the limitations of existing methods and

achieved high-quality scene reconstruction in a general environment by using as

few cameras as possible.

We approached our goal step by step, overcoming existing limitations and

relaxing constraining assumptions. Firstly, we demonstrated the concept of ex-

ploiting inverse rendering for 3D reconstruction in static scenes under general

illumination, but using multi-view images and assuming Lambertian surface re-

flectance with uniform albedo. Specifically, in the first part of this thesis, we

developed a method that combines multi-view stereo and shading cues to obtain
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a high-quality 3D reconstruction for static objects under general unknown light-

ing. By assuming Lambertian reflectance with uniform albedo, we simplified the

inverse rendering problem to two unknowns, namely the lighting and the geom-

etry. Our method starts with a coarse 3D model reconstructed from multi-view

stereo. Then, this coarse model is used to estimate the lighting. With the light-

ing estimated, the coarse geometry is refined by minimizing the shading error

to achieve a final high-quality reconstruction. Our high-quality results prove the

validity of the concept of using inverse rendering for scene reconstruction, so far

for static scenes.

In part II, we took a step in the temporal domain and investigated inverse

rendering for capturing full-body performance with a multi-view camera setup.

The goal in this part was to relax the constraints of traditional performance cap-

ture methods, which required controlled lighting and background. To achieve

this goal, two steps were taken to reconstruct detailed models of dynamic scenes

with spatially varying Lambertian reflectance from multi-view video footage in a

general environment. For the first step described in Chapter 5, we developed a

dynamic shape refinement method, which is based on shading cues in the video

and also used a temporal geometry prior relative to previous time steps, to cap-

ture millimeter-scale surface structure under general and unknown illumination.

Here, we still assume Lambertian reflectance but allow the surface albedo to

be spatially varying. With an off-the-shelf performance capture method of Gall

et al. (2009) for low-frequency geometry estimation, our method is able to capture

high-quality dynamic shape with true fine geometric detail under general and un-

known illumination, which was previously only possible with specially engineered

lighting. However, this method is still constrained by the employed low-frequency

geometry estimation method, which requires constant lighting and a green-screen

background. In Chapter 6, we therefore proposed a new performance capture

method which works under general, unknown and changing illumination, and in

front of a general scene background instead of a green screen. We achieved this by

exploiting inverse rendering for model-based skeletal motion estimation, as well

as for combined low frequency and high frequency 3D geometry reconstruction.

Skeletal pose and low-frequency geometry are estimated with a joint optimiza-

tion for the unknown lighting. Then, the low-frequency geometry is further opti-

mized by our dynamic shape refinement method to capture fine-scale, non-rigid

surface deformation. This whole method works in a general environment, but

still requires eight or more cameras and assumes a discrete set of Lambertian

reflectances on the surface.
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In part III, we made efforts to reduce the number of cameras required. We pre-

sented two performance capture methods which use as few as two cameras for the

capture and achieve high-quality dynamic scene reconstruction in a general envi-

ronment. In Chapter 7, we proposed a method to reconstruct facial performance

whose reconstruction quality comes close to much more complex multi-camera ap-

proaches. This method first captures a low-frequency face model for each frame

by deforming a face template with a scene flow constraint and following a motion

correction step. Then, improved inverse rendering techniques are performed to

estimate the lighting, the reflectance and the geometry. This method is the first

purely passive technique that enables high-quality and spatio-temporally coher-

ent facial performance capture from only two cameras, while being applicable in

uncontrolled or even changing lighting scenarios, e.g. outdoors. In Chapter 8, a

new full-body performance capture method, which only takes input from a binoc-

ular stereo rig, was presented. This method succeeds in capturing the full body

skeletal motion and detailed surface geometry of one or more actors wearing gen-

eral apparel in a general environment. The Lambertian assumption in previous

chapters is extended here to a general BRDF. This is one of the first performance

capture methods to exploit the full BRDF information and scene illumination for

accurate pose tracking and surface refinement in general scenes.

Finally in part IV, two applications were introduced which were made pos-

sible by the techniques proposed in this thesis. One is relightable performance

capture under general illumination, which takes the captured dynamic geometry

from the method proposed in Chapter 5 as input, and estimates the all-frequency

lighting and full BRDF parameters, including diffuse and specular reflectance of

the surface. The estimated reflectance, as well as the high-quality dynamic ge-

ometry, allows the captured dynamic scenes to be relit under a novel illumination

condition. In the second application, we demonstrate monocular facial perfor-

mance capture, which takes the binocular method proposed in Chapter 7 a step

further. In this application, a coarse 3D model is first obtained by blend-shape-

based face tracking, followed by an optical-flow-based geometry correction. Then,

a shape refinement method similar to that in Chapter 7 is employed to add the

high-frequency detail.

In summary, this thesis takes several important steps towards the goal of

static and dynamic scene reconstruction in a general environment. Contribu-

tions are made in terms of reducing the constraints on lighting, background and

required number of cameras. The key contribution lies in the investigation of

light transport in the scene for improved reconstruction of lighting, reflectance
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and geometry. By looking into the rendering process, additional insights for re-

construction are gained; the shading cues, which act as rich information in the

images, are utilized; the environment lighting in the scene, which is an important

signal, is theoretically modeled. We believe that, with the work proposed in this

thesis, a new path will be opened up for applying marker-less performance cap-

ture, not only in industrial movie and game productions, but also in the daily-life

scenarios of average consumers.

10.1 Future Directions

Despite the algorithmic improvements described in this thesis, scene reconstruc-

tion in a general and arbitrary environment is still far from being solved. There

are still many challenges remaining. In the following, we list a few of them and

discuss future work.

10.1.1 Improved Modeling and Inversion of Light Trans-
port

In this thesis, we employed the reflection equation parameterized by spherical har-

monics for inverse rendering and for scene reconstruction. The spherical harmonic

basis functions can represent the low-frequency signal of lighting and reflectance

well, for instance, when representing the clamped cosine function. However, if

the signal has quite a lot of high-frequency components, e.g. in the case of rep-

resenting the specular reflectance function, higher orders of spherical harmonics

are needed. But increasing the order of spherical harmonics comes at the price

of higher computational complexity to solve the inverse rendering problems. Be-

sides, a too high order in the spherical harmonics parameterization will cause

ringing artifacts in the spatial domain. As the spherical harmonics are just one

type of basis functions, other basis functions like wavelets, which have advantages

for representing high-frequency signals, can be investigated. In fact, in the field

of rendering, the benefit of using wavelets to represent the reflection equation has

been demonstrated Ng et al. (2004). We also took a further step to estimate the

full-frequency lighting by using wavelets (see Chapter 9). However, due to the

additional complexity resulting from using a wavelet parameterization, research

is needed to make use of it for geometry reconstruction. In addition to a wavelet

representation, other basis functions can also be employed, if they can lead to a

more compact representation.
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The reflection equation based on the environment mapping, which was used

in this thesis, is an approximation of the full rendering equation that describes

the global process of light transport. There are several simplifying assumptions

underlying this approximation. One comes from the environment mapping for

the lighting, which assumes infinitely distant lights. This works well if the size

of the object is relatively small in comparison to the distance between the lights

and the object. But for indoor scenes, e.g. a full-body performance capture in

a room where the space is confined, this assumption may not necessarily hold

when the actor approaches the light source. Reconstructing a location-dependent

lighting mapping may help to solve this problem. Another assumption is that

light transport is characterized by the first bounce, so interreflections are ignored

during inverse rendering. To solve this problem, more accurate rendering models,

i.e. the full and non-simplified rendering equation, can be used for reconstruc-

tion. However, this could lead to a vastly increased complexity and a much

bigger set of unknowns. For instance, in order to solve inverse rendering prob-

lems, the synthesized images simulated by the rendering equation are needed.

However, simulating a physically correct rendering result, e.g. using Monte Carlo

algorithms Lafortune (1996), will need a lot more time, not to mention that the

optimization in inverse rendering requires thousands of iterations for such simu-

lation. Besides, the physically correct lighting cannot be simply represented by

one environment map but should be the actual 3D surroundings, which will result

in a huge space of unknowns to solve.

With the light transport model chosen, inverse problems need to be solved to

estimate the lighting, the reflectance or the geometry from the captured images or

videos. Due to the insufficient samples and large space of unknowns, the inverse

rendering problems are usually ill-posed and non-trivial to solve. In this thesis,

we firstly reconstruct coarse 3D geometry by multi-view stereo in Chapter 4, by

skeletal motion estimation in Chapters 5, 6 and 8, or by surface mesh tracking

in Chapter 7. Then, with this initialization for the surface geometry, we perform

joint optimization over the lighting, the reflectance and the geometry. Currently,

the color ambiguity between lighting and reflectance has not been solved totally.

In this thesis, either we assume a neutral lighting, the color of which is white, or we

impose a constraint on the reflectance color as input. Solving this color ambiguity

generally needs additional constraints or priors to be imposed on the lighting or

the reflectance. Moreover, we are currently not able to handle arbitrary, spatial-

varying surface reflectance, e.g. a surface where each surface point has a unique

reflectance value. The reason for this is that it will result in a huge space of
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unknowns, which are difficult to optimize. So in this thesis, we either assumed a

piecewise uniform albedo map (Chapter 5), or that the reflectance of the surface

could be represented by a set of reflectance clusters (Chapter 7). Although these

assumptions work well for the specific objects in question, a better prior on the

reflectance is needed for more complex scenarios. For the environment lighting,

additional priors can also be assumed. For example, the lighting itself can be

approximated by a captured light probe image, and this light probe image can

in turn be constrained by image priors that facilitate reconstruction, as studied

by Huang & Mumford (1999). We believe an effective prior on the lighting will

improve its estimation. In this thesis, we also assume an initial coarse solution

for the 3D geometry can be obtained. However, for some scenarios, e.g. with a

monocular video input of a general scene, the initial coarse geometry may not be

easy to obtain. In this case, better priors on lighting and reflectance, which have

been demonstrated to be helpful in the shape from shading framework Barron &

Malik (2012), are needed. We believe with better priors on lighting, reflectance

and geometry, general scenes can be captured even with a monocular video input.

10.1.2 Reconstructing Complex Dynamic Scenes

When reconstructing complex dynamic scenes, there are some relevant limitations

to the current methods proposed in this thesis. One limitation is related to

occlusions, which can cause a problem for several methods in this thesis. The

method from Chapter 6, which relies on a multi-view setup, can handle slight

occlusion, for instance, the case where one of the cameras is occluded by the

dynamic background. But generally it will become more difficult when more

cameras are occluded. Moreover, the method is applicable only towards the

reconstruction of one actor. It will become challenging to capture more actors in

the scene, as the occlusions between actors become severe. Inspired by Liu et al.

(2011), one potential solution is to first segment each image into multiple regions

assigned to different actors, and then to reconstruct the performance of each actor

by using only the shading information from the corresponding regions. However,

the more occlusions there are, the more the information in the images that is

useful for performance capture will be reduced. This may make the reconstruction

problem far more underconstrained, especially as more actors are present in the

scene. For the method proposed in Chapter 8, occlusion handling will be even

more challenging, since there are only two camera views looking at the scene

from a low baseline setup. As also discussed in Chapter 8, under this setting,
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self-occlusions can cause some body parts to be completely occluded. In these

cases of self-occlusions, no image-based constraints will be available to estimate

the motion for those body parts. It will also cause problems if the occluded parts

are later disoccluded, since enforcing continuity is difficult. To resolve this, future

work may infer shape and motion of completely occluded parts from priors. To

track the re-appearing parts, a body part detection step may be helpful. Similarly,

it will also be challenging to handle interacting actors, or an actor interacting with

other objects. For the facial performance capture method of Chapter 7, occlusions

may not be as problematic as for the full body case, as long as the face always

looks more or less straight into the camera. However, it will also have problems if

the face is occluded by other objects, or if the face disappears and re-appears in

the frame. Although off-the-shelf techniques exist for detecting a face and can be

easily applied here, detecting and recognizing a face given the presence of other

faces is still a non-trivial problem.

Another limitation of our methods is related to the fact that we assume a

constant mesh connectivity and topology for the template mesh of an actor or

a face. Thus, changes of apparent topology during capture, which could be, for

instance, due to putting on or taking off clothes, or putting on a face mask, cannot

be handled by the methods of Chapters 6, 7 and 8. A potential solution could be

to use several layers of different templates for different parts. For example, we

can use a template layer for the inner body, and other template layers for coats,

pants, etc. Template layers would also need to be reconstructed.
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