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KURZFASSUNG

Interaktive Visualisierung und Analyse von komplexen Volumendatensätzen ist
eine permanente Herausforderung. Datenakquisitionsgeräte produzieren heutzu-
tage Daten im dreistelligen Gigabytebereich und sind normalerweise den verfüg-
baren Visualisierungssystemen einen Schritt voraus. Das bedeutet, dass die dar-
zustellende Datenmenge um einiges grösser ist als was die verfügbare Comput-
ergrafikhardware verarbeiten kann. Wir gehen diese Herausforderung im Kontext
von hochmodernen Visualisierungssystemen basierend auf Mehrfachauflösungen
an (multiresolution volume visualization). Insbesondere benutzen wir dazu ein
mathematisches Bezugssystem, welches die Daten in Basen und Koeffizienten
zerlegt, um drei Herausforderungen gleichzeitig zu lösen: (a) Extraktion von rel-
evanten Merkmalen innerhalb eines Datensatzes, (b) Datenreduktion und (c) di-
rekte Visualisierung ausgehend von den Koeffizienten der zerlegten Daten.

Diese Doktorarbeit beinhaltet eine ausführliche Analyse von modernen Date-
nannäherungsverfahren (data approximation approaches) und wie diese für die
interaktive Visualisierung von Volumendaten mit spezifischen Merkmalen ver-
wendet werden können. Daten werden oft mittels kompakter Datenrepräsentation
angenähert oder reduziert, wodurch eine kleinere Menge an Koeffizienten als Roh-
daten gebraucht wird. In dieser Arbeit wurde eine Erweiterung der Singulärwert-
zerlegung – Tensor Approximation (TA) – als kompakte Datenrepräsentation ge-
wählt. TA besteht aus zwei Teilen: (1) Die Tensordekomposition zerlegt die Daten
in Basen und Koeffizienten und (2) die Tensorrekonstruktion fügt die zerlegten
Daten für die Visualisierung wieder zusammen.
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Aufbauend auf diesem Konzept verknüpfen wir multiresolution Visualisierung
und multiscale1 Merkmalsektraktion mit Tensor Approximation. Die zwei Ach-
sen der TA-Basen können je für multiresolution und multiscale Visualisierung
verwendet werden. Die Eigenschaften der vertikalen TA-Basenachse eignen sich
für die Modellierung moderner multiresolution Visualisierung. Dabei werden ein-
erseits verschiedene Detaillierungsgrade mit unterschiedlich hoch aufgelösten Ro-
hdaten repräsentiert und anderseits kleinere Datenportionen geladen, welche auf
der Grafikkarte Platz haben. Beide diese Datentransformationen können direkt
in den TA-Basen anstatt in den Rohdaten vorgenommen werden. Die horizontale
Achse der TA-Basen erlaubt es über den sogenannten Tensorrang die Daten für un-
terschiedliche Merkmalsskalen zu rekonstruieren. Die Rekonstruktion mit einer
kleinen Anzahl Rängen entspricht einer tiefrangigen Datenanäherung (viele De-
tails entfernt) während die Rekonstruktion mit einer grossen Anzahl von Rängen
fast mit den Rohdaten übereinstimmt. Zudem wurde eine Metrik für die Vi-
sualisierung von unterschiedlichen Merkmalsskalen entwickelt, um im Visuali-
sisierungssystem automatisch die Auflösung und die Skala der vorhandenen Merk-
male zu steuern. Diese Merkmalsskala-Metrik kann ein Benutzer interaktiv im
Visualisierungssystem anpassen.

Dank der kompakten Datenrepräsentation via TA konnte eine bedeutsame Kom-
pressionsrate erreicht werden (15 Prozent der ursprünglichen Anzahl Datenele-
mente). Diese Datenkompression hält die Speicherkosten tief und steigert gle-
ichzeitig die Interaktivitätsrate von Visualisierungssystemen. Die interaktive Vi-
sualisierung wurde zudem dadurch ermöglicht, dass die Rekonstruktion parallel
und direkt auf dem Grafikprozessor ausgeführt wird.

Die Brauchbarkeit der interaktiven Visualisierung von multiscale Merkmal-
sextraktion und Mehrfachuflösungen wurden mit zwei Tensor-basierten multires-
olution Modellen getestet: (1) Ein TA Modell für lokale Datenblöcke und (2)
ein Modell mit globalen TA Basen. Beide TA Volumenmodelle benutzen die
vmmlib Tensorklassen, welche spezifisch für diese Doktorarbeit entwickelt wur-
den. Die Visualisierungsmodelle wurden mit bis zu 34GB grossen microCT und
Phasenkontrast Synchrotronstomographie Datensätzen getestet. Es werden quali-
tative (visuelle) und quantitative Vergleiche von TA und anderen modernen Kom-
pressionsverfahren wie Wavelets gezeigt.

Zum Schluss werden die Kernpunkte herausgehoben, welche es ermöglichen
Tensor Approximation als vereinheitlichtes Bezugssystem zu benutzen, um multi-
scale Merkmalsextraktion und Mehrfachauflösungen in einem Visualisierungssys-
tem zu modellieren. Dazu werden die erreichten Resultate und mögliche zukünfti-
ge Erweiterungen diskutiert.

1Mit multiscale Merkmalsektraktion ist gemeint, dass im Volumen vorhandene Merkmale auf
unterschiedlichen räumlichen Skalen sichtbar gemacht werden können.



ABSTRACT

Interactive visualization and analysis of large and complex volume data is an on-
going challenge. Data acquisition tools produce hundreds of Gigabytes of data and
are one step ahead of visualization and analysis tools. Therefore, the amount of
data to be rendered is typically beyond the limits of current computer and graphics
hardware performance. We tackle this challenge in the context of state-of-the-art
out-of-core multiresolution volume rendering systems by using a common mathe-
matical framework (a) to extract relevant features from these large datasets, (b) to
reduce and compress the actual amount of data, and (c) to directly render/visualize
the data from the framework coefficients.

This thesis includes an extended state-of-the-art analysis of data approxima-
tion approaches and how they can be applied to interactive volume visualization
and used for feature extraction. Data is often approximated or reduced by using
compact data representations, which require fewer coefficients than the original
dataset. In this thesis, the higher-order extension of the matrix singular value de-
composition summarized under the term tensor approximation (TA) was chosen
as compact data representation. Tensor approximation consists of two parts: (1)
tensor decomposition, usually an offline process, to compute the bases and coeffi-
cients, and (2) tensor reconstruction, typically a fast real-time process that inverts
the decomposition back to the original data during visualization.

From these basic concepts, we derive how multiresolution volume visual-
ization and multiscale feature extraction are linked to the tensor approximation
framework. The two axes of the TA bases were chosen as handles for multiresolu-
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tion and multiscale visualization. The properties along the vertical axis of the TA
bases match well the needs of state-of-the-art out-of-core multiresolution volume
visualization, where different levels of detail are represented by coarser or higher
resolution representations of the same dataset and portions of the original dataset
are loaded on demand in the desired resolution. Thus, the vertical axis of the TA
bases is used for spatial selectivity and subsampling of data blocks. The horizon-
tal axis of the TA bases makes it possible to reconstruct the dataset at multiple
feature scales through the so-called tensor rank. Choosing only a few ranks corre-
sponds to a low-rank approximation (many details removed) and choosing many
ranks corresponds to an approximation more closely matching the original. Fur-
thermore, a feature scale metric was developed to automatically select a feature
scale and a resolution for the final reconstruction. In this scenario, the user selects
a desired feature scale for the approximated data, which is then used by the vi-
sualization system to automatically define the resolution and the feature scale for
the current view on the dataset.

Thanks to the compact data representation by TA, a significant data compres-
sion (15 percent of the original data elements) was achieved, which keeps the stor-
age costs low and boosts the interactive visualization. The interactive visualization
is moreover accelerated by using GPU-based tensor reconstruction approaches.

The viability of interactive multiscale and multiresolution volume visualiza-
tion is tested with different TA volume visualization frameworks: (1) a simple
bricked TA multiresolution, and (2) a TA multiresolution framework that uses
global tensor bases. Both TA frameworks build on the vmmlib tensor classes,
which were specifically developed for this thesis. For the testing, large volume
datasets from micro-computed tomography (microCT) and phase-contrast syn-
chrotron tomography (pcST) that range up to 34 Gigabytes were acquired. We
show visual as well as computational comparisons to state-of-the-art approaches
such as wavelet transform.

We conclude by pointing out the tensor approximation framework to be a uni-
fied framework for interactive multiscale and multiresolution volume visualization
systems, which directly controls data approximation in terms of feature scale and
multiple levels of detail. To wrap up, we discuss the achieved results and outline
possible future work directions.
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2 1 INTRODUCTION

1.1 Large Volume Data Visualization

Today, 3D visualization has become an integral part of many research disciplines
like biology [Muller, 2002; Friis et al., 2007; Mizutani et al., 2007; Cano et al.,
2008; Tafforeau and Smith, 2008; Hadwiger et al., 2012], physics [Springel et al.,
2008; Stadel et al., 2009], geography [Geller, 2007; Pajarola and Gobbetti, 2007]
and other disciplines [Duchaineau et al., 2000; Gobbetti and Marton, 2005; Cignoni
et al., 2003]. In particular, 3D visualization allows users/researchers to inspect
and explore datasets visually. 3D direct volume visualization systems are nowa-
days a standard tool to analyze, explore and inspect large amount of data. Direct
volume visualization approaches are desired in order to visualize arbitrary cross-
sections through a volume and to display transparent areas of an object. This can
be achieved by so-called direct volume rendering (DVR), which displays the full
volumetric data rather than only an iso-surface as usually visualized by mesh ap-
proaches, e.g., Fig. 1.1. In particular, the ray casting algorithm has become the
standard DVR implementation since it produces high-quality images and its high
computing demands are nowadays addressable by running parallel programs di-
rectly on the GPU. However, 3D data acquisition devices are typically still one
step ahead of 3D visualization systems and produce datasets exceeding the graph-
ics unit’s memory. Moreover, even if the acquired datasets fit the memory, com-
puting the DVR integrals still remains too costly for real-time rendering.

(a) (b) (c)

Figure 1.1: Rendering approaches shown on a medical dataset (OsiriX database): (a)
iso-surface rendering, (b-c) direct volume rendering showing different/transparent tis-
sues.

There are basically two ways to address the bottleneck of visualizing datasets
that are larger than the available memory and computing resources: (a) The actual
amount of data can be reduced prior to rendering/visualization, or (b) the actual
rendering efficiency can be optimized. Data reduction can be achieved by a series
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of transformations/actions performed on the data. Such actions are the decom-
position of the data into a different representation, the truncation/thresholding of
insignificant coefficients, as well as the quantization and encoding of the entities.
The rendering efficiency, for instance, can be improved by using parallel algo-
rithms, optimizing or approximating existing algorithms, using hardware acceler-
ation and/or GPU-based implementations, downgrading the resolution dependent
on the viewer, or employing a data management that returns data on demand.
Typically the data is organized/structured during a preprocessing routine into a
convenient compressed data format.

Since the graphics memory is limited and data transfer from CPU to GPU
is time consuming, it is a major goal to reduce the size of the datasets as much
as possible. Data reduction is often achieved by using compact data represen-
tation models, which require fewer bits for encoding than the original data. In
the literature, this concept is known as compression-domain volume rendering, as
illustrated in the pipeline in Fig. 1.2. First, a 3D sample is digitized by a scan-
ner, and then represented by scalar values on, e.g., a regular grid. Second, the
data is decomposed or transformed by means of a mathematical framework into
a compact data representation, which can be encoded and sent over the network
in a lightweight form. When the data needs to be visualized, the inverse process
is applied to reconstruct the original volume. This decomposition-reconstruction
process is nowadays usually highly asymmetric [Fout and Ma, 2007]. That is, the
data decomposition step is an offline process, which is not time critical, while the
reconstruction process needs to be performed at run-time.

rays

viewpoint

screen

samples along a ray
voxelspixels

direct volume rendering (DVR):
GPU-based ray-casting approach

original data sample

visualized data
on computer display

3D data acquisition:
e.g., microCT

voxels

3D data sampling
on a regular grid

data storage

send requested
data to graphics 

unit (GPU)

3D data compression:
compact or sparse model

storage

transform

compact

data loading and 
reconstruction on the GPU

inverse
transform

quantization 
and encoding

storage

quantize encode

decode

Figure 1.2: Overview of the 3D direct volume rendering pipeline – starting from data
acquisition, then applying data reduction, compact data representation, quantization, en-
coding and eventually resulting in a virtual image on a computer display.
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By definition, compact data representation can be lossless or lossy. Lossless
algorithms ensure the maximum accuracy in the reconstruction and guarantee zero
error. Lossy algorithms produce an approximation of the reconstructed volume up
to a tolerated approximation error. In application domains where the data only has
to look similar to the original, e.g., in direct volume rendering, lossy compression
schemes are preferable since they provide a greater compression ratio. Note that
even though some of the models are by definition lossless, they are in practice
often utilized in their lossy form.

Another key point of large data visualization is to define a suitable multiresolu-
tion data model that can be traversed at run-time to adaptively select and load data
portions at a certain resolution [Westermann, 1994; Cignoni et al., 1997; La Mar
et al., 1999; Boada et al., 2001; Gobbetti et al., 2008; Crassin et al., 2009]. To do
so, the original data is down-sampled to lower resolutions and made available in a
hierarchical multiresolution data structure, where one hierarchy level corresponds
to one data resolution. From this generated multiresolution hierarchy the visual-
ized object is glued together out of different data resolutions - dependent on the
viewpoint (see Fig. 1.3). Objects farther aways are typically loaded at lower reso-
lutions, while details are added for objects closer to the viewpoint. Since the mul-
tiresolution data structure is typically organized as small subvolumes, this strategy
makes it possible to load small data portions from large datasets out-of-core on de-
mand. To reduce the cost of slow disk accesses for large volume data, caching or
pre-fetching and bricking techniques are used [Guthe et al., 2002; Ljung et al.,
2006b; Crassin et al., 2009].

Figure 1.3: Illustration of the idea of multiresolution data modeling: Subdivision of the
dataset into equally-sized data blocks down-sampled to lower resolutions.

The adaptive loading of data resolutions corresponds to offering different levels-
of-detail (LOD), where the LOD is usually selected based on certain visual quality
metrics or a rendering budget given for every displayed frame. In the context of
out-of-core multiresolution volume representations, large volume datasets are also
handled by using adaptive texturing schemes to compress and fit entire datasets
into the GPU memory [Vollrath et al., 2006], or by using flat [Ljung et al., 2006b]
multiresolution structures. Moreover, the rendering efficiency, which is important
for the interaction with large volume datasets, can be improved using graphics
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hardware acceleration to some extent, e.g., using texture-based hardware [Engel
et al., 2001; Schneider and Westermann, 2003; Li et al., 2003].

To sum up: Data reduction in conjunction with large data visualization is of
great importance, first, to save storage space at all stages of the processing and
rendering pipelines, and second, to reduce time and cost of transmission during
rendering and between the layers of the memory hierarchy. These compact data
representations and their applicability in DVR are further elaborated in the next
section.

1.2 Compact Data Representations

The general idea of a compact data representation is to express a dataset by a set of
bases, which are used to reconstruct the dataset to its approximation when needed
(see Fig. 1.4). Precisely speaking, a set of bases usually consists of the actual
bases and coefficients describing the relationship between the original data and
the actual bases. Typically, such basis sets constitute less data than the original
dataset, capture the most significant features, and, moreover, describe the data in
a format that is convenient/appropriate for adaptive data loading.

�AA decompose reconstruct

bases +
coefficients

compact data representation

Figure 1.4: Compact data representation for a volumetric dataset A by bases and coef-
ficients that can be used to reconstruct the data to its approximation Ã at run-time.

Bases for compact data representation can be classified into two different
types: pre-defined and learned bases. Pre-defined bases comprise a given function
or filter, which is applied to the dataset without any a priori knowledge of the cor-
relations in the dataset. In contrast, learned bases are generated from the dataset
itself. Established examples of pre-defined bases are the Fourier transform (FT)
and the Wavelet transform (WT). Well-known examples of learned bases are the
PCA or the SVD. The main differences between pre-defined and learned bases are
analyzed in the next section, while the applicability of compact representation by
bases for interactive volume visualization is analyzed afterwards.
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1.2.1 Pre-defined vs. Learned Bases

The compact model decomposition is often produced by the help of mathematical
frameworks that represent the data by pre-defined or learned bases (see Fig. 1.5).
For both basis types coefficients are produced in order to capture the relation-
ship between the original data and the bases. While pre-defined bases are given
a priori, learned bases are computed from the data itself. Using pre-defined or
learned bases should be seen as two alternatives with both assets and drawbacks.
In the following, the two basis types are analyzed according to different volume
visualization-related criteria: the computational costs, the basis fit, the compact-
ness, the feature-capturing ability, the axis-alignment, the multiresolution feasi-
bility, and the reconstruction performance.

apply

bases

coefficients

A

(a) Pre-defined bases

compute

bases

coefficients

A

(b) Learned bases

Figure 1.5: Pre-defined vs. learned bases.

Computational costs Methods using pre-defined bases are often computa-
tionally cheaper, while methods using learned bases require more precomputing
time (to generate the bases). However, due to the given asymmetric computing
power distribution during volume compression and decompression, the drawback
of computationally more expensive approaches becomes less significant.

Basis fit, compactness and features capturing ability Pre-defined
bases have to be selected according to the properties the available bases offer.
For example, a Fourier transform (FT) is known to capture periodicity. Wavelets
are available at a variety of simple as well as complex bases. However, more
complex wavelets typically increase the encoding and decoding in terms of time
and complexity. In contrast, learned bases are specifically generated for each
dataset and therefore should be able to remove more redundancy from a dataset
and be more compact.
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Axis-alignment Pre-defined bases are applied by convolving the bases along
each spatial axis, which corresponds to filtering with a given function kernel. For
instance, wavelets (pre-defined bases) correspond to spatial averaging along the
spatial axes. This makes it difficult to compactly represent unaligned 3D fea-
tures. There has been much work on developing more powerfully oriented wavelet
bases for multi-dimensional spaces [Do and Vetterli, 2001; Do and Vetterli, 2005].
However, such bases are still data-independent prescribed filters, and the compres-
sion efficiency gained over axis-aligned bases is limited [Wu et al., 2008]. Learned
bases have an advantage over pre-defined ones since they search instead for corre-
lations within the dataset and within all data directions. PCA (learned bases) for
instance, represents the data in a more suitable coordinate system.

Multiresolution feasibility For multiresolution rendering, bases should
support hierarchical data decompositions. For example, wavelets (pre-defined
bases) are especially convenient for multiresolution volume rendering since they
define a multiresolution hierarchy of coefficients, where each coefficient improves
the approximation – higher-level coefficients are more important; small coef-
ficients may be thresholded. For learned bases the hierarchy is typically con-
structed, e.g., with hierarchical vector quantization [Schneider and Westermann,
2003] or with residual-based data decompositions [Wu et al., 2008].

Reconstruction performance PCA-like approaches (learned bases) have
the advantage that the components (or ranks) of the bases are ordered by the
amount of data they describe and, hence, can be conveniently reduced without de-
stroying cache coherence and without data repacking. Residual-based approaches
and wavelets make collection of data more tedious since it is necessary to jump
from one memory address to another to fetch the corresponding data portions.

Conclusion Using pre-defined bases is often computationally cheaper, while
using learned bases requires more computing time (to generate the bases), but po-
tentially removes more redundancy from a dataset. Volume rendering approaches
based on pre-defined bases like wavelets are well studied, while there are fewer
works on learned bases. Therefore, we would like to have a fresh look at the prob-
lem by learning preferential bases directly from the data, thus removing a bias in
the approximation process. So far, this has been done in DVR using learned code-
books combined with vector quantization [Schneider and Westermann, 2003; Fout
and Ma, 2007; Parys and Knittel, 2009], which require, however, large dictionaries
if low distortion is desired. Moreover, while computational aspects and rendering
performance of compact data representations have been extensively studied, these
models are only beginning to be used for feature extraction.
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1.2.2 Compression-domain Direct Volume Rendering

Compression-domain direct volume rendering concerns DVR approaches based
on compact data representation and compression. As learned from the previous
section, there are two main groups of compact data representations: Approaches
using pre-defined bases and approaches using learned bases. Both approaches
have been applied to compression-domain DVR.

Examples of pre-defined bases used in compression-domain direct volume
rendering are the discrete Fourier transform [Dunne et al., 1990; Malzbender and
Kitson, 1991; Levoy, 1992; Malzbender, 1993; Totsuka and Levoy, 1993; Chiueh
et al., 1997] or the discrete cosine transform (DCT) [Yeo and Liu, 1995] (both fre-
quency domain transforms) as well as the discrete wavelet transform (frequency
domain transform while keeping spatial information), initiated for DVR by Mu-
raki [Muraki, 1993] and refined in many works [Westermann, 1994; Grosso et al.,
1996; Gross et al., 1997; Lippert et al., 1997; Ihm and Park, 1999; Kim and Shin,
1999; Rodler, 1999; Kim and Shin, 1999; Nguyen and Saupe, 2001; Guthe et al.,
2002; Ljung et al., 2004; Wetekam et al., 2005; Wu and Qiu, 2005; Shen, 2006;
Ko et al., 2008; Wang and Ma, 2008; Meftah and Antonini, 2009].

Examples of learned bases are dictionaries, which represent the entire datasets
with a small set of pre-defined and learned codewords. Dictionaries used in DVR
are vector quantization [Ning and Hesselink, 1992; Ning and Hesselink, 1993;
Schneider and Westermann, 2003; Fout et al., 2005; Fout and Ma, 2007; Parys
and Knittel, 2009] and sparse coding [Gobbetti et al., 2012].

Many compression-domain volume rendering systems have been developed.
However, research in recent years has shown that only methods working directly
on the graphics unit are competitive [Schneider and Westermann, 2003; Fout and
Ma, 2007; Gobbetti et al., 2008; Yela et al., 2008; Nagayasu et al., 2008; Parys and
Knittel, 2009; Mensmann et al., 2010; Iglesias Guitián et al., 2010; Gobbetti et al.,
2012]. In particular, wavelet transform and vector quantization, often combined
together, are standard tools for compression domain volume rendering. Wavelets
are especially convenient for compressed DVR since they define a multiresolution
hierarchy of coefficients [Westermann, 1994]. Similarly, there are hierarchical
vector quantizers [Schneider and Westermann, 2003].

Compression-domain DVR becomes even more essential when dealing with
time-varying volumetric datasets (see, e.g., [Weiss and Floriani, 2008]). Several
strategies exist for this. First, the compact data representation methods can be ex-
tended in the dimensionality from 3D to 4D, which corresponds to exploiting the
correlation of voxels in subsequent frames [Ibarria et al., 2003; Woodring et al.,
2003; Wang et al., 2005b]. These approaches obtain a good compression ratio,
but they need to have a small set of frames in memory for rendering a single time
step. Second, the fourth dimension can be treated as in video encoding, i.e., by
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exploiting temporal coherence [Westermann, 1995; Ma and Shen, 2000; Wang
et al., 2005a; Shen, 2006; Ko et al., 2008; Mensmann et al., 2010; Wang et al.,
2010; She et al., 2011; Jang et al., 2012]. That is, voxel data is delta-encoded
with respect to some reference time step(s), which must be already available to
decode the current one. Third, each time step can be encoded separately with a
static volumes compression method [Gobbetti et al., 2012]. The main advantages
of this method are its implementation simplicity and the full temporal random ac-
cess; however, lower compression ratios are achieved without exploiting temporal
coherence. Finally, hybrid forms of the above mentioned approaches can be ap-
plied [Lum et al., 2001; Binotto et al., 2003; Fout et al., 2005; Nagayasu et al.,
2006; Wang et al., 2008; Cao et al., 2011].

For compact data representation, data reduction and compression are usually
combined with data quantization and encoding. During the quantization step,
floating point values are converted to integer precision or insignificant coeffi-
cients/codewords are truncated. For example, dictionaries are often designed such
that they explicitly include a quantization step. The reduced and limited number
of coefficients can be further compressed by additional encoding. Almost always,
this is a lossless process. Well-known encoders are run-length encoders (RLE) or
so-called entropy encoders like Huffman coding and arithmetic coding.

In compressed DVR, RLE has been widely used since the early applications
of volume rendering [Avila et al., 1992; Lacroute and Levoy, 1994; Yeo and Liu,
1995; Grosso et al., 1996; Kim and Shin, 1999; Komma et al., 2007; Wang et al.,
2010]. Entropy encoders, too, are frequently used in compressed volume ren-
dering: For instance, Huffman encoding [Fowler and Yagel, 1994; Yeo and Liu,
1995; Rodler, 1999; Guthe et al., 2002; Ljung et al., 2004; Wetekam et al., 2005;
Komma et al., 2007] or arithmetic encoding [Guthe et al., 2002; Xiong et al.,
2003; Komma et al., 2007] has also been combined with RLE [Guthe et al., 2002;
Schelkens et al., 2003]. In order to accelerate the decoding of variable length
codewords in entropy encoding, fixed length Huffman coders were explicitly used
and combined with RLE [Guthe et al., 2002; Shen, 2006; Ko et al., 2008]. Other
approaches (mainly for wavelet coefficient encoding) [Lippert et al., 1997; Rodler,
1999; Ihm and Park, 1999] tried to fully avoid entropy encoding and RLE by us-
ing significance maps of wavelet coefficients and bit-wise encodings. Finally,
there are models that have a particular hardware support during the decoding, for
instance block truncation coding [Brown, 2001; Craighead, 2004; Ström and Pet-
tersson, 2007; Agus et al., 2010; Nystad et al., 2012].

Compression-domain DVR is an active field of research. Nevertheless, until
now, PCA-like methods have not yet been exploited for compression domain vol-
ume rendering. One reason for this might be that the extension of the PCA/SVD to
higher-orders is not trivial. However, there have been achievements that describe
how to use PCA-like methods for higher-orders, e.g., for volumes.
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1.3 Higher-order Data Decompositions

The most common tools for data approximation with learned bases are the ma-
trix SVD and the PCA. Their higher-order extensions are summarized under the
term tensor approximation (TA). The first occurrence of TA was in [Hitchcock,
1927a; Hitchcock, 1927b]. The idea of multi-way analysis, however, is generally
attributed to Catell in 1944 [Cattell, 1944; Cattell, 1952]. It took a few decades
until tensor approximations received attention, which was by several authors in
the field of psychometrics [Tucker, 1963; Tucker, 1964; Tucker, 1966; Caroll and
Chang, 1970; Harshman, 1970].

The matrix SVD/PCA work on 2D matrix data and exploit the fact that the
dataset can be represented with a few highly significant coefficients and corre-
sponding reconstruction vectors based on the matrix rank reduction concept. The
SVD and the PCA, being multilinear algebra tools compute (a) a rank-R decom-
position, and (b) orthonormal row and column vector matrices. The extension
to higher-orders is not unique and the two properties from the SVD are captured
by two different models that are both given the term tensor approximation: the
Tucker model [Tucker, 1963; Tucker, 1964; Tucker, 1966; Ten Berge et al., 1987;
De Lathauwer et al., 2000a; De Lathauwer et al., 2000b; Kolda and Bader, 2009]
preserves the orthonormal factor matrices while the CP model (from CANDE-
COMP [Caroll and Chang, 1970] and PARAFAC [Harshman, 1970]) preserves
the rank-R decomposition.

Generally speaking, a tensor is a term for a higher-order generalization of a
vector or a multidimensional array; for example, a scalar is a 0th-order tensor,
a vector is a 1st-order tensor and a matrix is a 2nd-order tensor. Tensors with
more than three modes (data directions) are called higher-order tensors. In TA ap-
proaches, a multi-dimensional input dataset in array form, i.e., a tensor, is factor-
ized into a sum of rank-one tensors or into a product of a core tensor (coefficients
that describe the relationship to input data) and matrices (bases), i.e., one for each
dimension. This factorization process is generally known as tensor decomposi-
tion, while the reverse process of the decomposition is the tensor reconstruction.

Tensor decompositions have been widely studied in other fields and were re-
viewed [Moravitz Martin, 2004; Kolda and Bader, 2009; De Lathauwer, 2009] and
summarized [Smilde et al., 2004; Kroonenberg, 2008]. Since TA was emerging
from different disciplines, it was developed under various names. In particular,
the Tucker model is known in the literature under multiple terms. The CP model
was independently developed under the terms CANDECOMP and PARAFAC,
therefore it is sometimes referenced with a single name. The Tucker model takes
its name from Tucker, who initially worked on the three-mode factor analysis
(3MFA), which is sometimes referred to as the Tucker3 model. [Kroonenberg
and De Leeuw, 1980; Ten Berge et al., 1987; Kroonenberg, 2008] called it the
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three mode PCA (3MPCA). Similarly the model was referenced as N-mode PCA
by [Kapteyn et al., 1986]. [De Lathauwer et al., 2000a] captured all these previous
works and wrote down the generalization of the SVD as multilinear singular SVD,
which is usually termed as higher-order SVD or HOSVD. Thereafter, [Vasilescu
and Terzopoulos, 2002; Vasilescu and Terzopoulos, 2004] called it N-mode SVD.
In this thesis, we either refer to the Tucker model to refer to the tensor decom-
position, or we refer to HOSVD in order to describe the underlying procedure to
produce the higher-order tensor decompositions.

Generally, PCA-like methods are able to extract the main data direction of
the dataset and represent the data in a different coordinate system/subspace such
that it makes it easier for the user to find the major changes or variance within
the dataset. To exploit this feature, we aim to use its higher-order extensions,
namely TA, within volume rendering in order to extract features and to reduce the
actual amount of coefficients needed for storage. In that way, features occurring
at multiple scales should be found with the help of the rank-R decomposition.
When using TA for compression domain volume rendering, we need algorithms
that decompose and reconstruct the dataset. There are a few commonly avail-
able TA implementations, e.g, several MATLAB toolboxes are available. The
MATLAB tensor toolbox [Bader and Kolda, 2006; Bader et al., 2012] is the most
comprehensive one; other toolboxes are the N-way toolbox [Andersson and Bro,
2000], the PLS toolbox [Wise and Gallagher, 2007], and CUBatch [Gournévec
et al., 2005] – a MATLAB interface. The Multilinear Engine [Paatero, 1999] is
a FORTRAN-based library, which mainly supports CP and PARAFAC2. Just re-
cently, the Tensorlab toolbox for MATLAB [Sorber et al., 2013] was released,
which provides many tensor decomposition algorithms, optimization procedures
and tensor visualizations; however, it was released after this thesis submission and
could therefore not be considered. For direct volume visualization, an efficient
memory handling is crucial. In particular for large datasets, we found MATLAB
not to be applicable. There are high-performance tensor libraries in C++ [Landry,
2003; Garcia et al., 2005; Zass, 2006]. However, they only provide basic tensor
operations and no tensor decomposition and reconstruction algorithms.

Tensor approximation has been used in many areas among which there are
applications in the domain of visualization and computer graphics. An overview
of theses is given in the next section.

1.3.1 Applications in Visualization and Graphics

TA approaches have been applied to a wide range of application domains. Start-
ing from psychometrics, in recent years, tensor approximation has been applied to
visual data. A highly studied area is TA used for image ensembles (see [Shashua
and Levin, 2001; Vasilescu and Terzopoulos, 2002; Wang and Ahuja, 2004; He
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et al., 2005; Shashua and Hazan, 2005; Wang and Ahuja, 2005; Wang and Ahuja,
2008; Yan et al., 2009; Morozov et al., 2011]) and/or TA used for pattern recog-
nition, e.g., [Shashua and Levin, 2001; Wang and Ahuja, 2005; Savas and Eldén,
2007; Schultz and Seidel, 2008; Ergin et al., 2011; Liu et al., 2012]. In (real-
time) rendering, tensor decompositions have recently been used as method for
global illumination models, e.g., for bidirectional reflectance distribution func-
tions (BRDFs) [Sun et al., 2007; Bilgili et al., 2011] or precomputed radiance
transfer (PRT) [Tsai and Shih, 2006; Sun et al., 2007; Tsai and Shih, 2012]. TA,
furthermore, is successfully used for bidirectional texture functions (BTFs) [Fu-
rukawa et al., 2002; Vasilescu and Terzopoulos, 2004; Wang et al., 2005b; Wu
et al., 2008; Ruiters and Klein, 2009; Ruiters et al., 2012; Tsai and Shih, 2012],
texture synthesis [Wu et al., 2008], time-varying visual data, e.g., [Wang et al.,
2005b; Wu et al., 2008], 3D face scanning [Vlasic et al., 2005] and animation
(see [Vasilescu, 2002; Mukai and Kuriyama, 2007; Perera et al., 2007; Wampler
et al., 2007; Krüger et al., 2008; Min et al., 2010; Liu et al., 2011]). So far, TA
has not yet been used to model datasets for direct volume rendering (DVR).

Key challenges for DVR of large datasets are that a hierarchical data structure
can be used and that the reconstruction of TA is possible in real-time. For instance,
for datasets larger than the main memory, out-of-core approaches as proposed for
TA in [Wang et al., 2005b] are needed. A complete hierarchical multiscale TA
system has been proposed in [Wu et al., 2008]. Their data hierarchy consists of
tensor decomposed subvolumes with each level having a progressively decreasing
rank-reduction level. All subvolumes or (volume) bricks – as they are called –
on one hierarchy level, representing the residual to the parent level, are treated
as a tensor ensemble. As a result, each hierarchy level consists of one single
rank-reduced core tensor and multiple factor matrices. However, for interactive
reconstruction and visualization, many temporary results must be cached in the
hierarchy at run-time. Instead, we built a multiresolution TA octree where each
lower resolution brick is an autonomous tensor decomposition that can be inde-
pendently reconstructed and rendered on demand, attaining interactive speed.

Furthermore, for compact data representation, the encoding of numerical val-
ues is fundamental and hence an appropriate quantization must be devised. We
refrain from variable-length coding at this point to avoid the corresponding costly
decompression. Fixed linear quantization for the factor matrices (8-bit) and core
tensor (8-20-bit) has been proposed in [Wu et al., 2008]. We investigated more
tensor-specific linear and non-linear quantizations, suitable for fast reconstruction
implementation on the GPU. In particular, the distribution of the core tensor coef-
ficients can benefit from logarithmic quantization.
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1.4 Summary

1.4.1 Hypothesis: Unified Framework

The challenge of this dissertation is the interactive visualization of large volume
datasets, which is illustrated in Fig. 1.6. We have acquired large 3D datasets,
which should be interactively visualized in order to allow an explorative analysis
by an expert in the field. With the recent improvements in data acquisition tools,
nowadays, huge amounts of datasets are acquired. Typically, the sizes of these
datasets exceed the available memory and the computing requirements exceed
today’s graphics hardware. In order to visualize large datasets, we therefore need
tools that can be applied prior to the actual data visualization. These very large
data volumes not only represent an ever-growing amount of information, but also
exhibit an increasing level of structural complexity in space and time, resulting
in a high degree of complexity at different scales. A common approach is to find
a single tool that performs data reduction and feature extraction in one, meaning
that we remove the irrelevant data parts while we keep the essential features and
information within the dataset. The reduced dataset is usually stored within a
compact data representation, which makes it possible to experiment with a few
parameters in order to adjust the level of data reduction and the scale or level of
feature extraction.

data 
reduction

feature 
extraction

decompose

3D data 
acquisition

interactive 
visualization

explorative 
analysis

reconstruct

compact data 
representation

Figure 1.6: Interactive visualization of large 3D datasets and where to hook in to apply
data reduction and feature extraction.

The main goal followed in this thesis is to find one unified framework for large
volume visualization, which does three tasks in one: (a) reduces the actual amount
of data, (b) extracts relevant features from the dataset, and (c) visualizes the data
directly from the framework’s coefficients. The idea is to have as few parameters
as possible to steer and tune the aforementioned tasks. In this thesis, higher-order
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tensor approximation was chosen as a unique framework since it provides learned
bases and has one single parameter (the tensor rank), which enables data reduc-
tion and feature extraction; moreover, it offers properties that fit multiresolution
volume rendering approaches. The TA framework is tested on several aspects
matching large data visualization.

1.4.2 Contributions

The thesis is structured into a classical IMRAD organization (introduction – ma-
terials and methods – results and discussion). For materials and methods, large
volume datasets such as those used in this thesis as well as the visualization meth-
ods and concepts as applied to the given datasets are presented and summarized.
Then results are given in different chapters, with each chapter addressing a differ-
ent key issue in the interactive visualization pipeline. To wrap up, the results are
discussed and future research directions are outlined. The specific contributions
are highlighted next.

Materials During this thesis, a wide range of test datasets were acquired.
Most of these datasets were acquired with micro-computed tomography (µCT).
The test datasets represent different sizes (2563, 5123, 10243, 20483 and larger),
which were useful to test the algorithms and to discover bottlenecks and to set
benchmarks for the visualization performance. The datasets are offered to the
public and made available to other researchers. This is an important contribution
since it is often difficult for computer graphics researchers to get real large test
datasets. Furthermore, it is critical to test algorithm performance under similar
conditions to previous contributions to allow more effective comparison. Addi-
tionally to those test datasets, even larger datasets from fossil teeth were acquired
with phase-contrast synchrotron tomography, which makes it possible to scan tis-
sue at the micrometer scale. These datasets exhibit complex 3D internal structures.
With the help of those datasets, we show how features at multiple scales can be
visualized by the help of TA. The dataset sizes go up to 32GB.

Methods The method of choice for large volume visualization was out-of-core
multiresolution direct volume rendering (DVR), specifically GPU-based ray cast-
ing, which makes it possible to obtain volumetric sections and transparent regions
within a dataset. DVR is well studied in combination with out-of-core multires-
olution approaches. The underlying data structures are hierarchical and allow ef-
fective data reduction. We chose tensor approximation as a unified framework to
compactly represent datasets and show how TA features and TA properties can be
exploited to effectively and efficiently map to multiresolution volume rendering
needs.
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Results The introduced TA methods and concepts are tested according to their
interactivity, multiresolution-feasibility, and multiscalability. The interactivity
and the multiresolution-feasibility are analyzed by means of two different mul-
tiresolution DVR systems, which were implemented during this thesis: (1) a sim-
ple system, where every data brick (data portion) is represented with its own small
tensor decomposition (per brick matrices and core tensor), and (2) a more com-
plex system, where every data brick is stored as a tensor decomposition from
global bases (per brick core). The latter approach should, in principle, support a
multiscale, multiresolution TA hierarchy to independently and separately control
data reconstruction at different scales (of patterns and feature sizes) as well as of
the spatial reconstruction resolution.

The thesis includes an analysis of the data reduction achieved by the tensor-
specific quantization scheme and the asymmetric interactive performance achieved
(offline pre-processing and real-time rendering). Even though we aim for offline
preprocessing routines, during this thesis, we show improvements for a faster
HOSVD decomposition and, in particular, we show that it is feasible to decom-
pose a large tensor decomposition from a 32GB sized volume dataset in order to
produce the global bases. The multiscalability is verified with various examples
of visualizations and error metrics. In particular, it is shown how TA parameters
can be used to steer multiscale features and how TA compares to other state-of-
the-art multiscale approaches. The implementation of the proposed TA algorithms
is mostly contributed to an open-source library (vmmlib), which allows other re-
searchers to make comparisons with our methods more easily. Moreover, a real-
time GPU-based tensor reconstruction, which exploits parallel computation, was
introduced for the first time. Finally, for data reduction, we introduce a tensor-
specific quantization scheme.

Discussion The chosen multiresolution and multiscale TA visualization ap-
proach makes it possible to focus, from the beginning of the rendering pipeline,
on those features in the dataset that are relevant to the user, thus considerably en-
hancing rendering efficiency and permitting interactive exploration of large vol-
ume datasets. At the same time, explorative flexibility is guaranteed through a
multiscale approach, which permits inspection of features at user-defined levels
of scale. This thesis introduces a method for using TA in a volume visualization
system for large datasets and at the same time it opens many new research di-
rections, which can be followed as future work. Some of these future research
directions are outlined after the discussion of the new achievements.
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2.1 Non-invasive Tissue Analysis

In this thesis, several datasets were used to verify the developed algorithms. The
actual datasets are summarized in App. A. In this chapter, we focus on the im-
portance of the interactive 3D visualization of tissues relevant in biomedical ap-
plications. The scanning of real tissues allows researchers from various fields to
conduct the virtual analysis of their samples on a computer screen. The advantage
of this procedure is that a researcher can look into such samples without cutting
them. Typical scanning approaches are based on X-ray tomography, which re-
stricts the analysis for living samples to some extent. For the verification of the
developed algorithms in this thesis, only dead samples and various X-ray tomog-
raphy approaches were used.

Non-invasive analysis of organic structures, tissue and materials with micro-
tomographic techniques has seen rapid development over the past few years. Micro-
computed X-ray tomography (µCT) has now become a standard tool, e.g., in
biomedical research. µCT is an X-ray technique that produces 3D images of tissue
with voxel sizes down to approximately 1µ or even smaller. Compared to conven-
tional CT, µCT uses a smaller field of view with a high resolution detector. During
scanning, the X-ray attenuation of the material properties is captured in order to
reconstruct the 3D structure. Thus, µCT can be used to study materials including
bone, teeth, medical implants, snow, textiles, concrete and similar. As a relatively
recent X-ray technology, synchrotron tomography (ST) has opened up new areas
of research at the sub-micrometer level. In particular, phase contrast synchrotron
tomography (pcST) has become of special interest for the growth structures anal-
ysis in hard tissues of living and fossil species [Tafforeau and Smith, 2008; Friis
et al., 2007] since it offers a high contrast of structures in the sample.

The grand challenge today is thus to make the implicit information contained
in structural volume data explicitly available. Since many internal structures are
in the micrometer domain, the data size of one volume block typically exceeds
the limits for interactive visualization on modern graphic systems. Therefore,
preprocessing of the datasets prior to rendering for visual exploration is needed.
Meeting this challenge requires not only solutions for large-scale volume render-
ing, but more specifically a method to reduce the dataset size and a method to
represent volume features at their feature scale.

An example case study in this thesis is taken from the application of virtual
analysis of fossil tissue in paleoanthropology. For example, patterns of daily
enamel deposition in fossil hominid teeth are imaged with pcST and counted to
estimate the age at death of a fossil specimen. However, standard approaches are
restricted to the analysis of serial 2D cross-sections through data volumes, while
the actual growth microstructures have complex 3D shapes [Jiang et al., 2003; Ma-
cho et al., 2003]. Nowadays, X-ray scanning with pcST is possible, however, the
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resulting dataset sizes are large, which limits the interactive exploration of such
datasets. Hence there is a need for tools to visualize 3D microstructural features
interactively, which is the topic of this thesis. The application of virtual analysis
of patterns in teeth was chosen as an example for the verification of the developed
system and algorithms and is described next.

2.2 Structures and Periodicity in Dental Tissue

The dental enamel dataset is interesting since it represents periodic growth struc-
tures that occur at different levels of scale, and exhibit different spatial orienta-
tions. Human tooth enamel has a microstructure that is roughly comparable to
a bunch of densely packed fibers (so-called prisms). During dental enamel for-
mation, each dental enamel prism elongates in a centrifugal direction through the
daily apposition of a small segment of enamel. Daily growth increments are visi-
ble as surfaces perpendicular to the longitudinal direction of the prisms. In addi-
tion, approximately weekly growth halts are visible as so-called Retzius lines (see
Fig. 2.1(a)). This data characteristic is a well-suited test case for the multiscale
feature visualization that is the aim of this thesis. As can be seen in Fig. 2.1(b), the
dental growth patterns exhibit 3D periodic [Macho et al., 2003], which need a 3D
explorative visualization system rather than only a 2D analysis as performed with
physical cross-sections. Furthermore, the spatial scale and orientation of these
structures is highly characteristic for each feature.

Retzius line at t

Retzius line at t-n

n daily

increments

(a)

deviation; nonetheless decussation planes do
occur. Finally, the microstructure observed in
Papio is noteworthy as it shows high frequency
curves in the inner part of the enamel combined
with additional sinusoidal curves in the x-z and y-z
planes in this area (Fig. 2Aa).

Discussion

Tooth size, shape and microanatomy are com-
monly considered to contain important infor-
mation with regard to phylogeny and function
(e.g., von Koenigswald and Sander, 1997),

Fig. 1. Planes and axes of reference used in this study. In (A) the planes of fractures are indicated, whereby (a) shows the intact tooth,
(b) the longitudinal break and (c) the transverse break. The z-direction is set perpendicular to the DEJ (B, C). The orthogonally aligned
y- and x-directions are aligned approximately along the long-axis of the tooth and transverse to the long-axis of the tooth, respectively.
In addition, in a 3-dimensional view (D) of a simplified model, frontal (x-y), transverse (x-z) and longitudinal (y-z) planes are also
shown. DEJ = dentino-enamel junction; OES = outer enamel surface.
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(b)

Figure 2.1: (a) Cross-sectional image of tooth enamel (pcST scan; scale = 50 microns)
[Tafforeau and Smith, 2008]. Small arrows: cross striations; large arrows: Retzius lines.
The direction of the growth prisms is orthogonal to the cross striations. (b) A simplified
model of the dental growth structures (prisms) after Macho et al. [Macho et al., 2003].

In the multiscale chapter (Chap. 6), we first used synthetic volumes simulating
dental growth structures, which we generated after Macho et al. [Macho et al.,
2003] as in Fig. 2.1(b). To complement this, we used pcST volumes of great ape
teeth. The pcST were available from experiment number 20080205 at the Swiss
Light Source.
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3.1 Direct Volume Rendering (DVR)

Direct volume rendering (DVR) is the visualization technique considered in order
to show the full volumetric data (rather than only a surface as usually visualized
by mesh approaches). DVR has the advantage that it cuts through the volume
and transparent volume areas can be displayed. This is important, for instance,
to display different tissues. A 3D volume on a uniform grid (to which we restrict
ourselves), is typically organized into equally sized volume elements (voxels),
which cover a certain volume area and which are represented by a scalar value, as
illustrated in Fig. 3.1.

(a) (b) (c)

Figure 3.1: A DVR representation of a volume: (a) discrete grid for volume dataset, (b)
voxel centers represented by scalar values, (c) voxels on uniform grid.

In other words, the visualization technique considered in this thesis is mainly
the direct display of scalar fields defined over a three-dimensional space. A scalar
field f : R3 → R assigns a value to each point in the volume and is typically
sampled by fi jk ∈R on a grid of voxels Pi jk ∈R3. A continuous function is defined
by interpolating between the corners of the cell (i jk) containing P (Fig. 3.2) by
f (P) =∑

i+1 j+1k+1
i jk ψi jk(P) · fi jk, often using tri-linear interpolation functions ψi jk.

Pi, j,k

Pi+1, j,k

Pi, j+1,k

Pi+1, j+1,k

Pi+1, j+1,k+1Pi+1, j,k+1

Pi, j,k+1 Pi, j+1,k+1

P

Figure 3.2: Volume cell containing point P.

3.1.1 Volume Rendering Integral

Most direct volume visualization approaches use the so-called volume render-
ing integral for visualization, proposed in [Kajiya and Herzen, 1984] and well



3.1 Direct Volume Rendering (DVR) 23

reviewed in [Moreland, 2004], which was further formally developed with the
emission and absorption theorem ( [Max, 1995]) and relies on geometric optics.
According to geometric optics, light is assumed to propagate along straight lines
unless interaction between light and a participating medium takes place [Engel
et al., 2006]. The following types of interactions are usually considered (Fig. 3.3):
emission, medium increases radiative energy; absorption, medium absorbs ra-
diative energy; and scattering, medium scatters and changes direction of light.
Emission, absorption, and scattering affect the amount of radiance I (light energy)
along a light ray and ergo describes the light transfer along one direction of a light
ray.

(a) emission (b) in-scattering (c) out-scattering (d) absorption

Figure 3.3: Light interactions along one ray and through one voxel [Engel et al., 2006].

Since the full computation of the light energy is computationally expensive,
simplified versions are often used. The emission-absorption model, for exam-
ple, is one of the most widely used models for volume rendering. The emission-
absorption model leads to the volume rendering equation, Eq. (3.1), for the ra-
diance I for a given position s along one single ray, where κ is the absorption
coefficient and q is the emission source term.

dI(s)
ds

=−κ(s) · I(s)+q(s) (3.1)

The volume rendering equation can be solved by the so-called volume render-
ing integral (DVRI), Eq. (3.2), which solves Eq. (3.1) along the direction of light
from a starting point s0 = 0 to the endpoint s1 = D.

I(D) = I0 · e
−

D∫
0

κ(t)dt
+

D∫

s0

q(s) · e
−

D∫
s

κ(t)dt
ds (3.2)

In other words, the volume rendering integral depicts the attenuation of the
light emitted by an initial light source on its way through a medium to the view-
point. The term τ(s1,s2) =

∫ s2
s1

κ(t)dt defines the optical depth between two posi-
tions s1 and s2, which is a measure for the duration a light ray may travel before
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it is absorbed. Small values of the optical depth correspond to transparent medi-
ums, high values to opaque mediums. This definition of the transparency α as in
Eq. (3.3) leads to the DVRI as in Eq. (3.4).

α(s1,s2) = e−τ(s1,s2) = e
−

s2∫
s1

κ(t)dt
(3.3)

I(D) = I0 ·α(s0,D)+

D∫

s0

q(s) ·α(s,D)ds (3.4)

A lot of research effort is put into efficiently computing this volume render-
ing integral (see e.g., [Engel et al., 2006; Schlegel, 2012]). Typically, numerical
approximations are used since the integral cannot be evaluated analytically. This
can be done by splitting the integral into several integration segments from points
si−1 to points si. The transparency αi and color contribution ci of the i-th segment
is formulated as in Eq. (3.5)–(3.6).

αi = αi(si−1,si) (3.5)

ci =

si∫

si−1

q(s) ·α(s,si)ds (3.6)

This leads to the discretization of the volume rendering integral, usually for-
mulated by a Riemann Sum as in Eq. (3.7)–(3.8).

I(D)≈
n

∑
i=0

ci ·
n

∏
j=i+1

α j (3.7)

c0 = I(so) (3.8)

Incorporating alpha blending of multiple transparent of voxels, we get Eq. (3.9).

I(D)≈
n

∑
i=0

αi · Ii ·
n

∏
j=i+1

(1−α j) (3.9)

DVR approaches A number of methods have been developed to sample rays
and compute the DVRI of Eq. (3.9), mostly based on 3D texturing, splatting or
ray casting [Engel et al., 2006]. During the last decade, ray casting has become
the major trend for volume rendering, since the development of programmable
graphics hardware [Lindholm et al., 2001] has become powerful and permits
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highly interactive frame rates nowadays. In fact, ray-based volume visualiza-
tion approaches had already been introduced quite some time ago [Tuy and Tuy,
1984; Levoy, 1988]. However, despite their superior image quality, they only be-
came attractive for interactive applications due to GPU computing approaches,
which eventually satisfy the enormous processing demands of ray-based meth-
ods, e.g., [Kruger and Westermann, 2003; Roettger et al., 2003]. GPU-based ray
casting is therefore the choice of rendering method in this thesis.

3.1.2 GPU-based Ray Casting

The concept of ray casting is illustrated in Fig. 3.4: We shoot rays from the view-
point towards the volumetric dataset, trace those rays through the volume, and
project the accumulated volume information onto a screen plane. There is one ray
shot per screen pixel, which corresponds to a so-called image space algorithm,
where the contribution of the objects is evaluated per pixel. To obtain the final
pixel value, samples at a defined frequency are taken and evaluated according to
the DVRI. The sample values are mapped to their final color and opacity according
to a pre-defined look-up table, the so-called transfer function.

rays

viewpoint

screen

samples along a ray

voxelspixels

Figure 3.4: Direct volume rendering with volume ray casting.

Specifically, for GPU-based ray casting, the rays are sent through the volume
by the CPU, then the GPU computes all the samples along the ray and renders
the final pixel. For the interactive display of large volume data, ray casting is in
practice implemented as out-of-core multiresolution direct volume rendering.

3.2 Out-of-core Multiresolution DVR

As learned from the previous section, the visualization of large datasets is an on-
going challenge. Further computing time can be saved by decreasing the actual
amount of data sent to the volume renderer. The two key issues here are to define
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(1) a suitable multiresolution model in order to generate a level-of-detail approx-
imation hierarchy over the input volume, and (2) an out-of-core memory data
management, since the full dataset typically does not fit the GPU memory.

The most straightforward way to deal with datasets larger than the available
memory is the divide-and-conquer approach. Accordingly, we subdivide our input
volume into equally sized subvolumes, so-called bricks (see Fig. 3.5. By subdi-
viding or bricking the volume dataset into bricks, each data portion becomes small
enough to be loaded on demand for visualization by the out-of-core data manage-
ment. In multiresolution volume visualization one typically works with equally
sized bricks, since it simplifies the fitting of the resolutions.

Figure 3.5: Bricking: Subdivision of a volume into eight equally-sized subvolumes.

Usually, there is a data management system that accesses, loads and stores the
bricks/subvolumes. This is usually referred to as an out-of-core data management
system, which organizes the data blocks. During rendering, the data blocks in-
volved are copied onto the GPU and processed for visualization. This means that
there is a copying of data from the different memory layers involved. Since some
memory, such as the GPU memory, is limited, the data blocks are removed again
once they are not used anymore (oldest out first). At the same time, loaded blocks
are cached such that frequently accessed data blocks do not need to be uploaded
multiple times. I/O transfer is still a limiting bottleneck. Therefore caching mech-
anisms are crucial. Out-of-core rendering extensions have, been presented by, for
example, [Pascucci, 2000; Correa et al., 2002; Wang et al., 2005b; Crassin et al.,
2009]. The out-of-core data management and caching goes along with the concept
of multiresolution data modeling. Next, we take a closer look at the multiresolu-
tion model and its possible data structures.

3.2.1 Multiresolution Data Approximation

The basic idea of multiresolution volume visualization is to adjust the resolution
of the rendered data according to the viewer’s position – the viewpoint – or other
rules/guidelines. Fig. 3.6 illustrates this concept in 3D and in 2D for simplifica-
tion. The data close to the viewpoint is typically rendered at higher resolution,
while data further away is rendered at lower resolutions. Correspondingly, the
multiresolution composition greatly depends on the viewpoint.
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viewpoint

(a) (b) (c)

Figure 3.6: View-dependent multiresolution representation of a volume. (a) High-
resolution data is close to the viewpoint, while data regions further away are rendered
at lower resolutions, (b-c) Two different viewpoints can create two different multiresolu-
tion representations, illustrated here in 2D.

In order to have the dataset available at rendering time in the desired resolu-
tion, the full dataset is usually preprocessed and organized into a multiresolution
data structure. In the literature, flat [Ljung et al., 2006b] or hierarchical [Gobbetti
et al., 2008; Crassin et al., 2009; Iglesias Guitián et al., 2010] multiresolution
structures in conjunction with adaptive loaders can be found. Here, we use a hi-
erarchical level-of-detail based data structure referred to as an octree. An octree
as visualized in Fig. 3.7 contains the data at the original resolution in the leaf
nodes while all other octree nodes represent lower-resolution versions of the data.
The octree used in this thesis is constructed bottom-up. A preprocessing method
gradually averages/subsamples eight bricks into a parent node or brick of lower
resolution until the root node is generated. The root node and all the other nodes
are represented by equally sized bricks B3. For generalized preprocessing, the in-
put dataset is typically zero-padded to a power-of-two input dataset size. With an
octree, the data can be traversed top-down from the coarsest resolution, the root,
gradually refining data regions with higher resolutions.

During rendering, each block consists of the same number of data voxels,
but spans a different actual spatial volume area. For the final visualization, the
bricks need to be glued together, which opens the challenge of resolving brick
border artifacts. Such artifacts are inherent to all brick-based lossy compression
methods, and can be alleviated, at the cost of higher rendering time, by interblock
interpolation through sampling neighboring bricks [Ljung et al., 2006a; Beyer
et al., 2008] or by using deferred filtering [Fout et al., 2005; Fout and Ma, 2007;
Gobbetti et al., 2012].

In order to further compress each data brick, a compact data representation
can be applied for each brick. In the next section, the chosen compact data repre-
sentation – tensor approximation – is described and defined in detail.



28 3 METHODS

lowest resolution (root) = level 1

highest resolution  (leaves) = level N

...

...

...

B3 bricks

...

...
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.........

Figure 3.7: Octree data structure used for multiresolution volume visualization. Eight
children always form a subsampled/averaged parent node (bottom-up process).

3.3 Tensor Approximation (TA)

For this thesis, tensor approximation (TA) was the chosen framework in order to
perform data reduction and feature extraction for direct volume rendering. TA
consists of two parts: The tensor decomposition transforms a multidimensional
dataset into a compact data representation, while the tensor reconstruction ap-
proximates the original volume from the compact data representation. TA is a
higher-order extension of the singular value decomposition (SVD) or the princi-
pal component analysis (PCA). The linear algebra background about SVD/PCA
can be found in App. B. In this section, we explain the notation and definitions of
tensor algebra as well as the models and algorithms used in TA.

3.3.1 Notation and Definitions

The notation taken here is inspired by that ones of De Lathauwer et al. [De Lath-
auwer et al., 2000a], Smilde et al. [Smilde et al., 2004], and Kolda and Bader [Kolda
and Bader, 2009], who follow the notation proposed by Kiers [Kiers, 2000]. Other
standards have been proposed as well (see [Harshman, 2001] and [Harshman and
Hong, 2002]). To illustrate higher-order extensions we mostly make examples of
order three. For details on the higher-order extensions of different products related
to computing with tensors (see App. C).
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General

A tensor is a multi-dimensional array (also called an N-way data array): a zeroth-
order tensor (tensor0) is a scalar, a 1st-order tensor (tensor1) is a vector, a 2nd-
order tensor (tensor2) is a matrix, and a 3rd-order tensor (tensor3) is a volume.
We consistently use the letter A to represent the data. This follows the notation of,
e.g., [De Lathauwer et al., 2000a; De Lathauwer et al., 2000b; Wang et al., 2005b;
Wu et al., 2008; Tsai and Shih, 2012]1. We use lower case letters for a scalar a,
lower case boldfaced letters for a vector a in RI1 , capital boldfaced letters for a
matrix A in RI1×I2 , and calligraphic letters for a 3rd-order tensor A in RI1×I2×I3

(see Fig. 3.8).

a

I2

I1 AI1 I1 Aa

i3 = 1, . . . , I3i2 = 1, . . . , I2i1 = 1, . . . , I1

I2
I3

Figure 3.8: A tensor is a multi-dimensional array: a zeroth-order tensor (tensor0) is a
scalar a, a 1st-order tensor (tensor1) is a vector a, a 2nd-order tensor (tensor2) is a matrix
A, and a 3rd-order tensor (tensor3) is a volume A .

The order of a tensor is the number of data directions, also referred as ways
or modes. Along a mode j, the index i j runs from 1 to IJ . By using lower
script indices for the modes, we can extend the index scheme to any order, i.e.,
I1, I2, I3, I4, . . . . The ith entry of a vector a is denoted by ai, an element (i1, i2) of a
matrix A is denoted by ai1i2 , and an element (i1, i2, i3) of a 3rd-order tensor A is
denoted by ai1i2i3 .

The general term fibers is used as a generalization for vectors taken along
different modes in a tensor (see Fig. 3.9). A fiber is defined by fixing every index
but one. A matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber.
3rd-order tensors have column, row, and tube fibers, denoted by ai1 ,ai2 , and ai3 ,
respectively. Sometimes, fibers are called mode-n vectors.

Slices are two-dimensional sections of a tensor (e.g., one fixed index in a ten-
sor3). For a 3rd-order tensor A , there are, for example, frontal, horizontal, and
lateral slices, denoted by Ai1,Ai2 , and Ai3 , respectively, (see Fig. 3.10).

For computations, a tensor is typically reorganized into a matrix what we de-
note as tensor unfolding (sometimes called matricization). There are two main

1In other areas, however, as for example in statistics, it is common to use the letter X for the
data [Kiers, 2000; Kolda and Bader, 2009].
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(a) rows (b) columns (c) tubes

Figure 3.9: Fibers of a tensor3 A : (a) rows ai1 , (b) columns ai2 , and (c) tubes ai3 .

(a) frontal slices Ai3 (b) horizontal slices
Ai1

(c) lateral slices Ai2

Figure 3.10: Frontal, horizontal and lateral slices of a tensor3 A .

unfolding strategies, backward cyclic unfolding [De Lathauwer et al., 2000a] and
forward cyclic unfolding [Kiers, 2000] (see Fig. 3.11). An unfolded tensor in
matrix shape is denoted with a subscript in parentheses, e.g., A(n).

Rank of a Tensor

In order to describe the definitions of the tensor rank, the definition for the ma-
trix rank is recaptured. The matrix rank of a matrix A is defined over its column
and row ranks, i.e., the column and row matrix rank of a matrix A is the max-
imal number of linearly independent columns and rows of A, respectively. For
matrices, the column rank and the row rank are always equal and, a matrix rank
is therefore simply denoted as rank(A). A tensor rank is defined similarly to the
matrix rank. However, there are differences. In fact, the extension of the rank
concept is not uniquely defined in higher-orders. The definitions for the tensor
ranks are taken from [De Lathauwer et al., 2000a].

• The n-rank of a tensor A , denoted by Rn = rankn(A ), is the dimension
of the vector space spanned by mode-n vectors, where the mode-n vec-
tors of A are the column vectors of the unfolding A(n), and rankn(A ) =
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(a) backward cyclic unfolding [De Lathauwer et al., 2000a]
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(b) forward cyclic unfolding [Kiers, 2000]

Figure 3.11: Backward vs. forward cyclic unfolding of a tensor3.



32 3 METHODS

rank(A(n)). Unlike matrices, the n-ranks of a tensor are not necessarily the
same.

• A higher-order tensor has a multilinear rank (R1,R2, . . . ,RN) [Hitchcock,
1927a; Hitchcock, 1927b] if its mode-1 rank (row vectors), mode-2 rank
(column vectors) until its mode-N rank are equal to R1,R2, . . . ,RN , e.g., a
multilinear rank-(R1,R2,R3) for a 3rd-order tensor.

• A rank-one tensor is an N-way tensor A ∈RI1×I2×···×IN under the condition
that it can be expressed as the outer product of N vectors, as in Eq. (3.10)
(see also [Kruskal, 1989; Comon and Mourrain, 1996]). A rank-one tensor
is also known under the term Kruskal tensor.

A = b(1) ◦b(2) ◦ · · · ◦b(N) (3.10)

• The tensor rank R = rank(A ) is the minimal number of rank-one tensors
that yield A in a linear combination (see [Kruskal, 1989; Comon and Mour-
rain, 1996; De Lathauwer et al., 2000a; Kolda and Bader, 2009]). Except
for the special case of matrices, the tensor rank is not necessarily equal to
any of its n-ranks. It always holds that Rn ≤ R.

3.3.2 Higher-Order SVD (HOSVD)

The HOSVD or multilinear SVD [De Lathauwer et al., 2000a], which is a higher-
order generalization of the SVD, is a basic algorithm that is used to compute the
different tensor decomposition models. The idea of the HOSVD is to compute a
matrix SVD along every mode of the input tensor A ∈ RI1×I2×···×IN . To achieve
this, the tensor A is unfolded along every mode n to its matrix representation A(n),
as shown in Fig. 3.11. Then a matrix SVD is computed on the unfolded matrix
A(n). The Rn leading left singular vectors are chosen as the basis U(n) ∈ RIn×Rn

for the mode n. As shown in Alg. 1, this procedure is repeated for every mode n.

Algorithm 1 HOSVD along every mode n.
1: Input: A ∈ RI1×I2×···×IN , (R1,R2, . . . ,RN)
2: Output: U(n) ∈ RIn×Rn

3: for every mode n of N do
4: unfold A ∈ RI1×I2×···×IN into its matrix representation A(n) ∈ RIn×(I1·····In−1·In+1·····IN)

5: compute the matrix SVD A(n) = U(n)ΣV(n)T

6: set the Rn leading left singular vectors to the mode-n basis U(n)

7: end for
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3.4 Tensor Decompositions

In general, in tensor decompositions an input tensor A ∈ RI1×I2×···×IN is decom-
posed into a set of factor matrices U(n) ∈RIn×Rn and coefficients that describe the
relationship/interactivity between A and the set of U(n).

Historically, as seen earlier, tensor decompositions are a higher-order exten-
sion of the matrix SVD/PCA. The nice properties of the matrix SVD, i.e., rank-R
decomposition and orthonormal row-space vectors and column-space vectors, do
not extend uniquely to higher orders. The rank-R decomposition can be achieved
with the so-called CP model, while the orthonormal row and column vectors are
preserved in the so-called Tucker model. An extensive review of the two models
and further hybrid models can be found in [Kolda and Bader, 2009]. Here, we out-
line the two most common models, the Tucker model and the CP model. Hybrid
models are mentioned only briefly.

3.4.1 Tucker Model

The Tucker model is a widely used approach for tensor decompositions. As given
in Eq (3.11), any higher-order tensor is approximated by a product of a core tensor
B ∈ RR1×R2×···×RN and its factor matrices U(n) ∈ RIn×Rn , where the products ×n
denote the n-mode product (see App. C) between the tensor and the matrices. This
decomposition can later be reconstructed to its approximation Ã . The missing
information of the input tensor A that cannot be captured by Ã is denoted with
the error ε . The Tucker decomposition is visualized for a 3rd-order tensor in
Fig. 3.12. Alternatively, a Tucker decomposition can be expressed as a sum of
rank-one tensors (Eq. (3.12) and Fig. 3.13).

A = B×1 U(1)×2 U(2)×3 · · ·×N U(N)+ e (3.11)

U(3)U(1) U(2)I1 I2I1

I2 I3

I3

R1 R2 R3

R1

R2
R3

B= e+A

Figure 3.12: Tucker tensor3: A = B×1 U(1)×2 U(2)×3 U(3) + e.

A =
R1

∑
r1=1

R2

∑
r2=1

. . .
RN

∑
rN=1

br1r2...rN ·u
(1)
r1 ◦u(2)

r2 ◦ · · · ◦u(N)
rN + e (3.12)



34 3 METHODS

u(1)
R1

u(2)
R2

u(3)
R3u(3)

r3

u(2)
r2

u(1)
r1

I3I2

I1
+ . . . +

br1r2r3 bR1R2R3
= e+A

Figure 3.13: Tucker tensor3 as a sum of rank-one tensors: A = ∑
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The column vectors of the factor matrices U(n) ∈ RIn×Rn are usually orthonor-
mal and can be thought of as principal components Rn in each mode n [Kolda
and Bader, 2009]. The core tensor B ∈ RR1×R2×···×RN represents a projection of
the original data A ∈ RI1×I2×···×IN onto its factor matrices and is always of the
same order as the input data. The core tensor is computed in general, as shown in
Eq. (3.13), and for orthogonal factor matrices as in Eq. (3.14) (see Fig. 3.14). The
element-wise core tensor computation is denoted in Eq. (3.15). In other words,
the core tensor coefficients br1r2...rN show the relationship or interactivity between
the Tucker model and the original data.

B = A ×1 U(1)(−1)×2 U(2)(−1)×3 · · ·×N U(N)(−1)
(3.13)

B = A ×1 U(1)T ×2 U(2)T ×3 · · ·×N U(N)T
(3.14)

B =
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

ai1i2...iN ·u
(1)
i1

T
◦u(2)

i2

T
◦ · · · ◦u(N)

iN

T
(3.15)
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Figure 3.14: Forward cyclic tensor times matrix (TTM) computation after [Kiers, 2000]
in order to produce the core tensor B: n-mode products along the three modes.



3.4 Tensor Decompositions 35

The Tucker decomposition is not unique, which means that we can modify
the core tensor B without affecting the model fit as long as we apply the same
changes to the factor matrices (so-called core tensor rotations). This provides the
option to rearrange the core tensor such that, for example, more values are zero.
For details see [Kolda and Bader, 2009].

3.4.2 CP Model

The parallel factor analysis (PARAFAC) or the canonical decomposition (CAN-
DECOMP), called CP in short, factorizes a tensor into a sum of R rank-one ten-
sors. Hence, a tensor A ∈ RI1×I2···×IN can be rank decomposed as a sum of R
rank-one tensors as in Eq. (3.16). An example of a 3rd-order CP decomposition is
illustrated in Fig. 3.15. Note: The column vectors of the matrices in Eq. (3.16) are
normalized, which yields a weighting factor λr for each term. The information
not captured by the CP model is represented with the error ε .

A =
R

∑
r=1

λr ·u(1)
r ◦u(2)

r ◦ · · · ◦u(N)
r + e (3.16)
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+ + . . . +
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A e+=

Figure 3.15: CP tensor3, sum of rank-one tensors: A = ∑
R
r=1 λr ·u(1)

r ◦u(2)
r ◦u(3)

r + e.

The CP model is in fact a special case of the Tucker model. The vector con-
taining the λ -values can be arranged as the super-diagonal of a Tucker core tensor
with R diagonal values, while the rest of the core tensor is zero (see Fig. 3.16).
In contrast to the Tucker model, the CP model is unique under certain constraints
(see [Kolda and Bader, 2009]). In this context, uniqueness means that the current
CP model is the only possible combination of rank-one tensors that sums to Ã .
However, permutation freedom and scaling is still possible.

3.4.3 Other Models

There are a number of other models, mostly some hybrid forms of the CP model
and the Tucker model. One such model is the so-called block-diagonal tensor
decomposition by [De Lathauwer, 2008a; De Lathauwer, 2008b; De Lathauwer
and Nion, 2008], which produces a super-diagonal of P core tensor with zeros
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Figure 3.16: CP tensor3 visualized as special case of a Tucker tensor3.

except for the blocks forming the diagonal, as illustrated in Fig. 3.17. Other hybrid
models can be found in the extensive review by [Kolda and Bader, 2009].
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Figure 3.17: Block-diagonal tensor3.

Often, we are interested in compact models, which enable a compression of the
input dataset. For example, after computing a Tucker decomposition by a HOSVD
the core tensor B has the same size as the original input dataset A and all the
factor matrices are quadratic. However, we are more interested in light-weight,
approximative Tucker decompositions, where B is an element of RR1×R2×R3 with
R1 < I1, R2 < I2 and R3 < I3. Using so-called rank-reduced tensor decomposi-
tions or truncated tensor decompositions one can directly obtain more compact
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decompositions. Furthermore, the truncated decompositions are usually better in
terms of the difference between approximated and original data [Kolda and Bader,
2009]. In the next section, the tensor rank approximations corresponding to the
Tucker model and the CP model are defined.

3.5 Tensor Rank Truncation

As seen in Sec. 3.3.1, the extension of the matrix rank concept to higher orders
is not unique. There are two main directions followed, which are based on either
a rank-one, i.e., a rank-R tensor decomposition or a rank-(R1,R2, . . . ,RN) tensor
decomposition. Their rank-reduced approximations are defined accordingly:

i). A rank-one approximation is defined as Ã = λ ·u(1) ◦u(2) · · · ◦u(N) from
the rank-one tensor (vector) product (◦) of its basis vectors u(n) ∈RIn and the
scalar λ . Hence a tensor A can be approximated by a linear combination
of rank-one approximations as in Eq. (3.17). This approximation, previously
defined as a CP model, and is called a rank-R approximation.

Ã ≈
R

∑
r=1

λr ·u(1)
r ◦u(2)

r ◦ · · · ◦u(N)
r (3.17)

ii). Alternatively, a rank-(R1,R2, . . .RN) approximation of A is formulated as
a decomposition into a lower-rank tensor Ã ∈ RI1×I2···×IN with rankn(Ã ) =
Rn≤ rankn(A ). The approximated tensor is the n-mode product×n of factor
matrices U(n) ∈RIn×Rn and a core tensor B ∈RR1×R2···×RN in a given reduced
rank space (Eq. (3.18)). This rank-(R1,R2, . . .RN) approximation was previ-
ously introduced as the Tucker model.

Ã ≈B×1 U(1)×2 U(2)×3 · · ·×N U(N) (3.18)

In general a rank-reduced approximation is sought such that the least-squares
cost function in Eq. (3.19) is minimized.

Ã = argmin(Ã )
∥∥∥A − Ã

∥∥∥
2

(3.19)

The notation of the different rank-approximations becomes interesting for com-
pression approaches. Given that (R1,R2, . . .RN) or R are sufficiently smaller than
the initial lengths (I1, I2, . . . , IN), the coefficients Λ ∈ RR or B ∈ RR1×R2×···×RN

and the factor matrices U(n) ∈ RIn×Rn lead to a compact approximation of Ã of
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the original tensor A . In particular, the multilinear rank-(R1,R2, . . .RN) is typ-
ically explicitly chosen to be smaller than the initial ranks in order to achieve a
compression on the input data. In contrast, the CP model often needs larger factor
matrices, where often Rn� In is necessary to represent the dataset (see Fig. 3.16).

Choosing principal components In tensor approximation, we would like
to make use of selecting major components from the decomposition as is similarly
known from the matrix PCA. That is, by eliminating the higher-ranked principal
components and their basis vectors, we preserve the most important direction-
s/structures in the dataset. In other words, this means that we have reconstructed
the major components of the original datasets but that some details are missing.
These details can be added by progressively reconstructing more and more prin-
cipal components to the approximated form of the original dataset. In practice,
many of the insignificant principal components or their basis vectors are very low
or close to zero, i.e., they are negligible. Typically, the first couple of principal
components already define most of the total variability within a dataset. For data
approximation techniques, we therefore often use only a certain number of prin-
cipal components and their basis vectors to represent a dataset, i.e., we work with
a reduced set of singular values σs and truncated factor matrices (see App. B).
Correspondingly, a rank-reduced or truncated tensor decomposition is desired.

Truncated tensor decompositions The tensor rank parameter Rn is re-
sponsible for the number of TA coefficients and bases that are used for the recon-
struction and hence is responsible for the approximation level. In higher orders,
the CP decomposition produced from an alternating least squares (ALS) algo-
rithm (see App. D), can not be truncated per se. The ex post truncation of the
Tucker decomposition, however, is possible due to the all-orthogonality property
of the core tensor. For a 3rd-order tensor, all-orthogonality means that the dif-
ferent horizontal matrices of the core B (the first index i1 is kept fixed, while
the two other indices, i2 and i3, are free) are mutually orthogonal with respect to
the scalar product of matrices (i.e., the sum of the products of the corresponding
entries vanishes). The same holds for fixed indices i2 and i3 (see [De Lathauwer
et al., 2000a]). Therefore, given an initial rank-(R1,R2,R3) Tucker model, we can
progressively choose lower ranks Kn < Rn for reduced quality reconstruction. As
indicated in Fig. 3.18 on the example of the Tucker model, the rank indicates how
many factor matrix columns and corresponding core tensor entries are used for
the reconstruction. From that, we conclude that there are basically two ways to
go: (1) either start with the desired rank truncation as initially described or (2)
subsequently or progressively truncate the given decomposition.

As in the matrix PCA case, a small Rn corresponds to a low-rank Tucker tensor
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Figure 3.18: Illustration of a truncated Tucker tensor reconstruction: A reduced range of
factor matrix columns with corresponding fewer core tensor entries reconstructs a lower
quality approximation but at full resolution.

approximation (many details removed) and a large Rn corresponds to an approxi-
mation matching the original more closely. The ordering of the coefficients in the
core tensor is not strictly decreasing as in the matrix SVD case the singular values
are; however, in practice, it can be shown that progressive tensor rank truncation
in the Tucker model works well for adaptive visualization of the data at different
feature scales.

The algorithms to compute such truncated tensor decompositions are sum-
marized in App. D. After having introduced the concepts for (truncated) tensor
decompositions, we look at the possible reconstruction approaches. In fact, it is
critical to choose the appropriate reconstruction approach in order to achieve a
real-time reconstruction for interactive visualization.

3.6 Tensor Reconstruction

The tensor reconstruction of a reduced-rank Tucker decomposition can be achieved
in different ways. One alternative is a progressive reconstruction: Each entry in
the core tensor B is considered as weight for the outer product between the cor-
responding column vectors in the factor matrices. This looks like Eq. (3.20) for
the Tucker reconstruction and Eq. (3.17) for the CP reconstruction.

Ã ≈
R1

∑
r1=1

R2

∑
r2=1

. . .
RN

∑
rN=1

br1r2...rN ·u
(1)
r1 ◦u(2)

r2 ◦ · · · ◦u(N)
rN (3.20)

This reconstruction strategy corresponds to reconstructing rank-one tensors
and cumulatively summing them up. The weighted “subtensors” then form the
approximation Ã of the original data A . In particular for the Tucker model, this
is an expensive reconstruction strategy since it involves multiple for-loops to run
over all the summations, which typically slows down the computing time.
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3.6.1 Element-wise Reconstruction

Another approach, is to reconstruct each element of the approximated dataset in-
dividually, which we call element-wise reconstruction approach. Each element
ãi1i2i3 is reconstructed, as shown in Eq. (3.21) for the Tucker reconstruction, and
as shown in Eq. (3.22) for the CP reconstruction. For the Tucker model that is:
All core coefficients multiplied with the corresponding coefficients in the factor
matrices are summed up (weighted sum). Similarly, this applies for the CP model
expect that we have only diagonal core coefficients or λ ’s as they are usually
called.

ãi1i2...iN ≈ ∑
r1r2...rN

br1r2...rN ·u
(1)
i1r1
·u(2)i2r2

· · · · ·u(N)
iNrN

(3.21)

ãi1i2...iN ≈
R

∑
r=1

λr ·u(1)i1r ·u
(2)
i2r · · · · ·u

(N)
iNr (3.22)

The element-wise reconstruction can be beneficial for applications where only
a sparse amount of reconstructed elements are needed.

3.6.2 Optimized Tucker Reconstruction

A third reconstruction approach – applying only to the Tucker reconstruction – is
to build the n-mode products along every mode, which leads to a tensor times ma-
trix (TTM) multiplication for each mode, e.g., TTM1 along mode 1, (see Eq. (C.3)
and Fig. C.2). This is analogous to the Tucker model given by Eq. (3.18). In
Fig. C.2 we visualize the TTM reconstruction applied to a 3rd-order tensor using
n-mode products.
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Figure 3.19: Forward cyclic TTM multiplications after [Kiers, 2000] along the three
modes (n-mode products).
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Given the fixed cost of generating a I1× I2× I3 grid, the computational over-
head factor varies from cubic rank complexity R1 ·R2 ·R3 in the case of the pro-
gressive reconstruction (Eq. (3.20)) to a linear rank complexity R1 for the TTM
or the n-mode product reconstruction (Eq. (3.21)). For example, for R = 16, the
improvement to R3 = 4′096 is 256-fold.

3.6.3 CP Reconstruction by the Khatri-Rao Product

For completeness, an alternative CP reconstruction strategy is mentioned as well.
That is, the CP reconstruction can be computed with the Khatri-Rao product �
(see App. C), as in the example of a 3rd-order tensor in Eq. (3.23).

Ãn ≈ U(1)(U(2)�U(3))
T

(3.23)

However, it is to be noted that this reconstruction strategy produces large ma-
trices (see Sec. 3.3.1) due to the Khatri-Rao product, which extends the matrix
rows and the matrix columns to a multiple between the rows and the columns
of two matrices, respectively. Obviously, that results in more expensive matrix-
matrix multiplications.
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4.1 Two Multiresolution Models

As discussed in Sec. 3.2 a multiresolution model is an essential part for the volume
rendering of large datasets. The chosen method is based on the offline decompo-
sition of the original volumetric dataset into small cubical bricks (subvolumes),
which are organized into an octree structure maintained out-of-core. The octree
contains data bricks at different resolutions, where each resolution of the volume
is represented as a collection of bricks in the subsequent octree hierarchy level.
In this thesis, two multiresolution models based on compact data representation
by tensor approximation were developed. Both models are organized into a hi-
erarchical octree, which contains per octree node a brick of the original dataset.
In the first model, each octree node represents an own local tensor decomposition
(Fig. 4.1(a)). In the second model, each node contains only a core tensor, which
represents the coefficients for the current brick relative to global tensor bases,
which are valid for the full volume (Fig. 4.1(b)). The second model, in contrast
to the first model, not only stores local brick information in the bases, but also
captures the global energy distribution of the dataset, which will then be projected
on and stored in the brick-wise core tensors.

For both multiresolution models, we chose the Tucker model (Sec. 3.4.1) as
an underlying tensor approximation model. In a study on the applicability of
TA to interactive volume visualization [Ballester-Ripoll et al., 2013], the Tucker
model has been shown to capture the volumetric datasets in the most compact way.
Moreover, the same study showed that the truncation of coefficients in the Tucker
model works best. Regarding the random-access of individual voxels, the Tucker
model makes it possible (see Eq. (3.21)) to reconstruct individual elements. This
makes the direct rendering from coefficients of the decomposition possible. How-
ever, the voxel-wise reconstruction is not necessarily the fastest approach. There
are tensor reconstruction approaches, which reconstruct a full brick with reduced
computational complexity (Sec. 3.6.2).

With respect to the rendering, each subvolume or brick in the octree hierar-
chy has a fixed width B with an overlap of two voxels at each brick boundary to
efficiently support run-time operations that require access to neighboring voxels
(trilinear interpolation and gradient computation). In application 1 a brick size of
B = 32 was chosen, while in application 2 the brick size was increased to B = 64.

The applicability of the two TA multiresolution DVR models is discussed in
Sec. 4.2 and Sec. 4.4 and was published in [Suter et al., 2011] and [Suter et al.,
2013], respectively. TA properties used for the second application with the global
TA bases are elaborated in Sec. 4.3.
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Figure 4.1: Two multiresolution octree decomposition hierarchies with B3 sized data
blocks: (a) model with per brick tensor decompositions (adapted from [Suter et al.,
2011]), (b) model with global TA bases and per brick core tensors [Suter et al., 2013].
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4.2 Application 1: Brick-wise TA Bases Model

In this first application as described in [Suter et al., 2011], each octree node is rep-
resented by its own local tensor decomposition applied to the respective data brick.
The brick width is set to B = (28+2+2) = 32, i.e., one brick is 323, which has
proved small enough to guarantee level-of-detail (LOD) adaptivity, while coarse
enough to permit an effective brick encoding by the analysis of the local structure.

Each octree brick Abrick ∈ R3 is approximated using rank-reduced Tucker de-
compositions. A Tucker decomposition (see Sec. 3.4) is defined as Ã = B×1
U(1)×2 U(2)×3 U(3), where B is the so-called core tensor and U(n) are the factor
matrices. A rank-reduced TA along every mode of the dataset is written with the
notation: rank-(R1,R2,R3) TA. As illustrated in Fig. 4.1(a), we compute for each
brick of size B3 a rank-(R,R,R) TA, with R ∈ [1..B− 1]. An initial rank reduc-
tion, where R = B/2, i.e., R = 16 for B = 32, is used following the rank reduction
scheme used in other tensor approximation works [Wu et al., 2008; Suter et al.,
2010a]. After the decomposition, the tensor coefficients are stored in a quantized
version. As suggested in [Suter et al., 2011], a 16-bit factor matrix encoding and
an 8-bit core tensor encoding was applied.

The whole preprocessing is performed in a low-memory setup using a bottom-
up process on a brick-by-brick basis, which is repeated until the octree root is
reached. Leaves are constructed by sampling the original dataset, while non-leaf
bricks are constructed from their previously constructed eight children, which are
reconstructed, and spatially averaged.

For instance, the veiled chameleon dataset is visualized with the presented
out-of-core multiresolution volume renderer based on tensor reconstructed bricks,
as shown in Fig. 4.2.

Figure 4.2: Chameleon dataset rendered with the per brick multiresolution TA model,
from [Suter et al., 2011].
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4.3 Useful TA Properties for Multiresolution DVR

Historically, tensor approximation is a higher-order extension of the SVD or PCA.
The nice properties of the matrix SVD, i.e., rank-R decomposition and orthonor-
mal row-space and column-space vectors, do not fully extend to higher orders.
The rank-R decomposition can be achieved with the so-called CP model, while
the orthonormal row and column vectors are preserved in the so-called Tucker
model. In the following, we refer to the Tucker model and decomposition.

The Tucker model (Sec. 3.4.1) consists of one factor matrix per mode (data
direction) U(n) ∈ RIn×Rn and one core tensor B ∈ RR1×R2...RN . The core tensor B
is in effect a projection of the original data A onto the basis of the factor matrices
U(n). In case of a volume, the Tucker model has three modes, as illustrated in
Fig. 3.12, and defines an approximation Ã = B×1 U(1)×2 U(2)×3 U(3) of the
original volume A (using n-mode products ×n).

The row and column axes of the factor matrices represent two different spaces:
(1) the rows correspond to the spatial dimension in the corresponding mode, and
(2) the columns to the approximation quality. In the following we show how
these properties can be exploited for multiresolution modeling (spatial selection
and subsampling of rows) along the vertical axis (see Fig. 4.3). The concepts of
spatial selectivity and spatial subsampling within TA bases as described in this
section are published in [Suter et al., 2013]. The next two subsections not only
elaborate the spatial properties of the TA matrices, but also illustrate how these
properties can be exploited in multiresolution DVR.

1.1

1.2

Rn

In U(n)

U(n)
Jn

U(n)
↓k

Figure 4.3: Factor matrix properties along the vertical axis: (a) spatial selectivity and
(b) spatial subsampling.
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4.3.1 Spatial Selectivity

For view-frustum culling and adaptive brick selection in interactive multiresolu-
tion volume visualization, efficient access to spatially restricted subvolumes is
required. Since a TA factor matrix’s rows directly correspond to its spatial dimen-
sion, we can exploit this fact for the reconstruction of a subvolume directly from
the global factor matrices. We first describe the spatial selection for a given fixed
resolution and explain the multiresolution access in the following section.

The Tucker model defines an approximation of a volume A by the decompo-
sition Ã = B×1 U(1)×2 U(2)×3 U(3), and each element of Ã is defined as

ãi1i2i3 = ∑
r1

∑
r2

∑
r3

br1r2r3 ·u
(1)
i1r1
·u(2)i2r2

·u(3)i3r3
, (4.1)

with factor matrix and core tensor entries u(n)inr and br1r2r3 (see also [Kolda and
Bader, 2009]).

Due to the correspondence of the rows of U(n) to the spatial dimension n (see
Fig. 4.3), we can define row-index subranges Jn ⊆ [0 . . . In] that reconstruct a well
defined spatial subvolume J1× J2× J3 for the reduced index ranges in ∈ Jn in
Eq. 4.1. As illustrated in Fig. 4.4, we can thus select and reconstruct a subvolume
of the dataset, e.g., corresponding to an octree brick, by choosing a subset of the
row vectors of all factor matrices. Using these row-block submatrices U(n)

Jn
we can

formulate the subvolume reconstruction as

ÃJ1×J2×J3 = B×1 U(1)
J1
×2 U(2)

J2
×3 U(3)

J3
. (4.2)
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Figure 4.4: Illustration of spatial selectivity within TA bases: A range of selected subma-
trix rows reconstructs a well defined subvolume (in brown) of the original whole dataset.
From [Suter et al., 2013].

4.3.2 Spatial Subsampling

As outlined in the introduction, in interactive multiresolution volume visualiza-
tion, we need lower resolution subsampled and averaged representations of sub-
volume bricks for view-dependent adaptive LOD rendering. Due to the direct
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spatial correspondence of factor-matrix rows to the spatial dimensions as outlined
above, we can apply the lower-resolution subsampling on factor matrices before
brick reconstruction from the TA representation.

Since the In rows of a factor matrix U(n) correspond to the resolution of the
volume Ã in that mode, we can construct a lower-resolution reconstruction in
the n-th dimension by first merging and averaging (pairs of) rows to get a down-
sampled matrix U(n)

↓1
(with In/2 rows). This is possible because the columns of a

factor matrix capture the data variation along that dimension. Therefore, down-
sampling and averaging pairs of rows correspond to halving the reconstructed
volume resolution. This downsampling of factor matrices is indicated in Fig. 4.5
and corresponds to what is known as mipmapping.

level 4 level 3 level 2 level 1

U
(1)
↓0

U
(1)
↓1

U
(1)
↓2

I/2 I/4 I/8

Rn

Rn

Rn
Rn

In

Figure 4.5: Mipmapping of the global factor matrices: Subsampling by averaging (ex-
ample input data is of size 5123 and the bricks are of size 643), from [Suter et al., 2013].

4.4 Application 2: Model with Global TA Bases

The second TA hierarchy, as illustrated in Fig. 4.1(b), follows again the principle
of an octree subdivision of the input volume dataset and is published in [Suter
et al., 2013]. A key part of this approach unlike any other TA proposed in visual
computing before, is that a global set of mipmapped factor matrices U(n)

↓k
that

capture in every brick some global dataset information is maintained. Thus all
nodes on one level l of the octree hierarchy are reconstructed using the same
factor matrices U(n)

↓k
corresponding to that octree level (with k = lmax− l). Unlike

the first model, in this second model the core tensor(s) capture also some global
information, since the factor matrices were not derived from the octree brick only,
but rather on the full input volume. Still, the core tensor(s) hierarchy is necessary
to be defined.

In practice, we cannot keep one large global core tensor B and selectively
reconstruct individual octree nodes due to the fact that the core tensor entries, un-
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like the factor matrix rows, do not exhibit any mapping to the spatial dimensions.
Therefore, we define a small core tensor Bbrick per octree node. Since octree
nodes correspond to subvolume bricks, and practically in the described applica-
tion a brick size B = 643 was used, the per-brick rank can be set accordingly to
or less than half of the brick dimension, i.e. Rn ≤ 32 (as motivated in [Wu et al.,
2008; Suter et al., 2010a; Suter et al., 2011]).

Eventually, the core tensors are stored in quantized form (the 32-bit floating
point coefficients are quantized with logarithmic step sizes to 8-bit values, as de-
scribed in [Suter et al., 2011]). Our TA hierarchy is hence defined by a set of
global factor matrices U(n)

↓k
and an octree hierarchy that stores one small quan-

tized core tensor Bbrick of size 323 per node. Reconstruction is possible in a flexi-
ble way, according to a desired spatial resolution by choosing the octree level, and
adapting the approximation scale by adjusting the rank reduction level 8≤Rn≤ 32
(ranks less than 8 have been shown not to provide useful reconstructions).

For interactive visualization, the reconstruction from the multiresolution model
is done in a similar way to [Suter et al., 2011]. The main difference of the pre-
sented TA hierarchy is that the global TA factor matrices are permanently loaded
onto the GPU, and can be accessed from fast read-only graphics memory. For
each brick, the corresponding core tensor, its scale factor, its rank, its hierarchy
level and the brick’s spatial position in the dataset are uploaded on demand onto
the GPU. The core tensors are decompressed on demand once the corresponding
bricks at the given LOD are requested. The decoding is performed using consecu-
tive tensor times matrix multiplications, as shown in [Suter et al., 2011], but using
the global factor matrices hierarchy.

The performed experiments performed show that it is feasible, first, to decom-
pose large initial factor matrices of volume datasets, and second, to reconstruct the
volumes at multiple resolutions by subsampling of the large initial factor matrices
(see Figs. 4.6–4.8).
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(1)
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Figure 4.6: Spatial selectivity of factor matrices. Two selected bricks are reconstructed
by the corresponding selection of row index subranges. From [Suter et al., 2013].

In order to have smoother brick transitions during volume rendering, we ap-
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↓1U(n)
↓0
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A↓1 A↓2 A↓3

Figure 4.7: Factor matrix subsampling (bottom row) compared to direct TA (middle row)
derived from original subsampled input datasets (top row). From [Suter et al., 2013].

(a) original (b) level 5 (c) level 3 (d) root

(e) original (f) level 5 (g) level 3 (h) root

Figure 4.8: Different spatial resolution levels reconstructed from the global TA bases:
(a-d) flower dataset of size 10243, (e-h) wood branch of size 20483. The brick size is 64
for both datasets. From [Suter et al., 2013].
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plied two sorts of brick borders. Notably, we chose a 2-voxel border for the gra-
dient interpolation and an additional 4-voxel border to incorporate neighboring
brick information in the core tensor (see Fig. 4.9).

(a) no brick borders (b) with bricks borders

Figure 4.9: A slice through the reconstructed flower dataset once without (a) and once
with additional brick borders (b) from the global TA bases. From [Suter et al., 2013].

4.5 Summary

In this chapter, it was shown that TA is a suitable framework for multiresolution
DVR. Two different Tucker tensor-based multiresolution models were developed
and applied to real datasets. The main difference between the two models is the
setup of the factor matrices. One model shows an octree hierarchy with bricked
tensor decompositions of the local bricks corresponding to octree nodes, while
the other model shows an octree hierarchy of only core tensors and the factor
matrices were generated from the full input volume and therefore additionally
store global information in every data brick. The second model, furthermore,
exploits properties along the spatial dimension of the TA factor matrix bases. The
spatial selectivity and the spatial subsampling within TA bases matches well the
nature of multiresolution models. Spatial selectivity can be used for view-frustum
culling and adaptive brick selection, and spatial subsampling can be used for the
subsampled/averaged lower-resolution representation of the full dataset.

In contrast to other hierarchical tensor models, e.g., [Wu et al., 2008], we only
applied direct tensor decompositions. In other words, this means that we explic-
itly chose not to use incremental hierarchical tensor models, which encode the
data distributed over different resolution levels. We considered it a disadvantage
to use an incremental hierarchical octree model since it implies an accumulated
reconstruction process over several octree nodes.

Since one major goals was to achieve a storage reduced multiresolution model,
the costs of TA multiresolution DVR models are evaluated next.
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5.1 Data Reduction and Compression with TA

As mentioned in the introduction and visualized on the cover picture of this chap-
ter, data reduction and compression consist of several steps. First, the input data
is transformed into a compact data representation, which consists of fewer coeffi-
cients than the original data. Second, the compact data representation is quan-
tized (insignificant coefficients thresholded, floating point-integer conversion),
and third, the data is encoded with a data stream encoding such as run-length
encoding. In this thesis, we address the first two steps, the compact data represen-
tation transform and the TA-specific coefficient quantization. In order to judge the
goodness of the selected data reduction approach, the ratio for the reduced data
storage is evaluated. Other compression issues are related to a fast reconstruction
or decoding and a fast access of individual coefficients. These latter aspects are
covered in Chap. 7. In the following, we describe the general storage requirements
of tensor approximation. Since in all applications of this thesis the Tucker model
(Sec. 3.4.1) was used, the analysis for the requested storage size is also performed
for the Tucker model.

Given an original volume, i.e., a 3rd-order tensor A ∈ RI1×I2×I3 , the required
storage for a Tucker tensor decomposition B ∈ RR1×R2×R3 and U(1..3) ∈ RIn×Rn

is R1 ·R2 ·R3 + I1 ·R1 + I2 ·R2 + I3 ·R3. Since Rn is typically significantly smaller
than In, often starting from Rn ≤ 1

2 · In (see [Wu et al., 2008; Suter et al., 2010a;
Suter et al., 2011]) the storage size is much reduced from the initial volume size of
I1 · I2 · I3. Replacing Rn by 1

2 · In and assuming that I1 ≈ I2 ≈ I3 the storage cost for
a Tucker decomposition of an initial volume I3 is at least reduced to 3

2 · I2 + 1
8 · I3.

However, in the case of large volume visualization, we have to apply a mul-
tiresolution model, which introduces a certain overhead. The storage costs of
multiresolution volume hierarchies are dominated by the cubic growth of the vol-
umetric elements. A simple I3 volume octree will introduce an overhead of I3−1

7

and in total require 8·I3−1
7 elements, or≈ 8

7 · I3. In that context, the multiresolution
costs for the two TA multiresolution models as presented in Sec. 4.1 are analyzed.
The simplest multiresolution DVR data structure, as shown in Fig. 4.1(a), consists
of all octree nodes being individual tensor decompositions. Such a model results
in an octree hierarchy of x bricks B3 represented by x core tensors Bbrick and 3 · x
matrices U(n)

brick. In contrast, our second model (Fig. 4.1(b)) consists of a set of

global mipmapped factor matrices U(n)
↓k and an octree hierarchy of core tensors

Bbrick.
The matrices costs differ for the two multiresolution models. Mainly, the

model with the global mipmapped factor matrices profits from reusing the ma-
trices for all the bricks along a given row-selection of each factor matrix while
the bricked TA model has to store three individual matrices for each octree node.
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The size of one core tensor (i.e., one octree node) is only dependent on the rank
Rn. The maximum rank in both multiresolution models is given as half of the
brick size, i.e., Rn =

1
2 ·B. For the multiresolution models, we typically consider

equally-sized subvolumes B3 for octree nodes and hence we use also equal ranks
along the three modes, i.e., R = Rn∀n.

The factor matrix storage costs for the bricked TA model is given by three
matrices of size B ·R per octree node. The cumulated matrices of all leave nodes
along one mode are of size B ·R · I3

B3 , where R = 1
2 ·B. That is in terms of I along

all three modes: 3
2·B · I3. Incorporating the general octree overhead, this results in

a total factor matrices size of 8
7 · 3

2·B · I3 = 12
7·B · I3. For the chosen brick size B = 32

this is 3
56 · I3.

The overall storage cost of the mipmapped factor matrices is approximately
twice as large as the accumulated sum over all leaves brick factor matrices or the
initial global factor matrices, due to the binary octree hierarchy over the factor
matrix rows. Additionally, we store some information such as the core tensor
rank value for each octree node in the global TA bases model, although this is
neglected in this analysis. Intuitively, it can be seen that the matrices cover the
full spatial data over all resolutions, that is 2 ·3 · I ·R. However, the chosen brick
size for the multiresolution model affects the initial rank size. The brick size in
the global mipmapped factor matrix TA model was B= 64 and the initial rank was
half the brick size, i.e., R = 1

2 ·B. Therefore, the matrix storage space required for
the global TA bases model is 2 ·3 · I · 1

2 ·64 = 192 · I.

In both models the octree nodes store core tensors of size R3. Since the ranks
are chosen as half the initial mode size, we get an octree typical cost, but with
half the dimension 1

2 · I. This results in a total octree cost for all core tensors of
≈ 8

7
I3

23 =
1
7 · I3.

Thus, we get a total storage cost of the bricked TA model and of the global
TA bases model of 3

56 · I3 + 1
7 · I3 = 11

56 · I3 ≈ 0.20 · I3 and 192 · I + 1
7 · I3, respec-

tively. Since the dominating factor is the cubic term we conclude that our two
TA multiresolution data structures require about eight times less than a normal
volume octree, in terms of stored elements. In comparison, for large I the en-
tire tensor decomposition cost (3

2 · I2 + 1
8 · I3 from above) is less than 1

56 larger
but supports adaptive multiscale and multiresolution reconstruction and maintains
much smaller core tensors. Note that typically, an octree consists of empty nodes,
which are simply encoded with zeros. The theoretical costs mentioned above do
not consider empty bricks since this is highly data-dependent.

Once the initial transform into a multiresolution model is performed, further
data reduction can be achieved by quantizing the floating point TA coefficients.
For this purpose a Tucker tensor-specific quantization approach was developed.
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5.2 Tucker Tensor-specific Quantization

As mentioned previously, the core tensor and factor matrix coefficients take up
unnecessary space if maintained as floating point values. For a compact repre-
sentation of the tensor decomposition and to reduce the disk to host to device
bandwidth during rendering, we apply a simple fixed bit length encoding based
on tensor-specific quantization, as indicated in [Suter et al., 2011]. For example,
a fixed bit length approach was selected in order to simplify parallel decoding on
the GPU. In particular, the factor matrices and the core tensor of the Tucker model
have a different distribution of coefficients and thus the quantization approach was
selected accordingly.

5.2.1 Factor Matrices and Core Tensor Coefficients

The coefficients of the factor matrices U(1...3) are normalized and distributed be-
tween [−1,1], due to the orthonormality of factor matrices in the Tucker model.
Therefore, a uniform linear 8-bit or 16-bit quantization as in Eq. 5.1 can effec-
tively be applied. We use a single min/max-pair of the original data range to
indicate the quantization range for all three factor matrices. In this way, the num-
ber of coefficients that need to be loaded for the reconstruction are minimized.
The factor matrix values x are quantized to the values x̃U, where the range of the
quantized coefficients with a bit-depth of QU is given by (2QU−1).

x̃U = (2QU−1) · x− xmin

xmax− xmin
(5.1)

As per definition of the Tucker model, the core tensor B captures the contribu-
tion of the linear bases combinations, i.e., the energy of the data, in its coefficients.
The distribution of the signed coefficients is such that the first entry of the core
tensor has an especially high absolute value close to the volume’s norm, capturing
most of the data energy, while many other entries concentrate around zero. The
probability distribution of the other values between the two extrema is decreasing
with their absolute magnitude in a logarithmic fashion (see Fig. 5.1). Hence we
apply a logarithmic quantization scheme as in Eq. 5.2 for the core tensor coeffi-
cients, using a separate sign-bit. The absolute core tensor coefficient values |x| are
quantized to the values |x̃B|, where the range of the quantized coefficients with a
bit-depth of QB is given by (2QB −1).

|x̃B|= (2QB −1) · log2(1+ |x|)
log2(1+ |xmax|)

(5.2)

Special treatment can be given to the one first high energy value mentioned
before. It is known that this value, the hot-corner coefficient, is always at position
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Figure 5.1: Histogram of the absolute core tensor coefficient values. The core tensor
coefficients are taken from a rank-(16,16,16) TA on the hazelnut dataset. Most values are
close to zero; only a few values reach up to the largest core tensor coefficient values. The
by far largest core tensor value (119′894) is not even displayed.

B(0,0,0). Since it is one value and in order to give more space for the quanti-
zation range to the other coefficients, we optionally fully encode the hot corner
coefficient as a floating point value.

Various quantization levels for the other coefficients, QU and QB, could be
used and are thus analyzed. The quantization of the tensor coefficients helps to
keep the critical CPU-to-GPU data transfer and disk storage low. In the next sec-
tion, we analyze the error due to quantization and how the storage size is thus af-
fected. We considered quantization approaches that use the same bit-length (from
8-bit to 16-bit) for all values within a coefficient type, the factor matrices U(1...3)

and the core tensor B.

5.2.2 Storage Cost

The storage cost for different quantization approaches is indicated in Fig. 5.2,
where U and B indicate factor matrices or core tensor settings, respectively, and
klin/log indicates linear or logarithmic quantization to QU,B = k bits according to
Eqs. 5.1 and 5.2. The left-most value A:16 represents the size of a 20483 16-bit
input volume dataset A , and U:32 B:32 a 32-bit floating point representation of
the reference rank-(1024,1024,1024) reduced tensor approximation of Ã . The
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data reduction follows the storage requirements outlined in Sec. 5.1.
We can see in Fig. 5.2 that the proposed quantization (U:8 B:8 to U:16 B:16)

has an additional storage reduction effect, compared to the floating point tensor
(U:32 B:32) and the original volume (A:16) data representation. Furthermore,
for the quantized 323-bricked multiresolution octree hierarchy the storage con-
sumption is minimally different from the non-bricked quantized format. Only
the non-quantized bricked floating-point representation has an adverse space cost
behavior due to its many coefficients that have to be stored. The approximation
quality of the different quantization levels is analyzed next. From the storage
cost results we can conclude that it is preferable to spend 16-bits on the factor
matrix entries rather than on the core tensor, as the factor matrices U(1...3), being
quadratic, affect the total storage marginally compared to the core tensor B, being
cubic.
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Figure 5.2: Storage needed (in GB) for the various quantization approaches. U stands
for the factor matrices, B for the core tensor. The number after B and U gives the number
of bits used for the respective coefficient type. From [Suter et al., 2011].

From Sec. 5.1, we know the overall storage costs of the bricked TA model and
of the global TA bases model. In fact, actual storage costs are independent from
the bit-depth of the initial dataset, e.g., 8-bit or 16-bit values. The storage costs
are defined by the coefficients, resulting in an effective storage cost of 2 · 3

56 · I3 +
1
7 · I3 = 3

28 · I3+ 1
7 · I3 = 1

4 · I3 (bricked multiresolution TA) and 2 ·192 · I+ 1
7 · I3 =

384 · I + 1
7 · I3 (multiresolution TA with global mipmapped factor matrices) for
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16-bit factor matrix coefficients and 8-bit core tensor coefficients.
Finally, we strive to give some insight into the actual storage requirements

(including empty space skipping and including the octree overhead) for our ex-
periments. In the first multiresolution model (bricked multiresolution TA), the
achieved storage costs for a 2048-cubed dataset (great ape molar) was 5.5GB.
The difference between the actual 5.5GB and the theoretical 2.1GB (0.25 ·20483)
arises from the Berkeley DB overhead (see also Sec. 7.5.1). The 10242× 1080
sized chameleon dataset was reduced to 230MB. However, the chameleon dataset
involves a significant amount of empty space skipping. Without empty space skip-
ping it should be about twice the data size, i.e., around 500MB. These storage
cost requirements from the bricked TA model could be improved with the global
mipmapped factor matrix multiresolution model. Namely, the 2048-cubed dataset
could be reduced to 1.2GB and the chameleon dataset could be reduced to 162MB
without empty space skipping.

5.2.3 Quantization Error

To evaluate the approximation quality of a rank-reduced and quantized tensor de-
composition we use the signal-to-noise ratio (SNR) to express the error in re-
lation to the data’s signal strength. We define the signal strength of a volume

A as the averaged Frobenius norm ‖A ‖F̄ =
√

1
N ∑a2

i1,i2,i3 , and the approxima-

tion and quantization noise of the reconstructed volume Ã as the root-mean-

squared error (RMSE) ε
Ã

=
√

1
N ∑(ai1,i2,i3− ãi1,i2,i3)

2. Hence the SNR is defined

as σ
Ã

= 20 · log10‖A ‖F̄
ε
Ã

.
As base reference to evaluate quantization effects, we compare to the error

which was introduced by a reduced rank-(R1,R2,R3) tensor approximation Ã of
the original volume A ∈ RI1×I2×I3 , where Rn =

1
2 · I, as seen previously. In view

of the processing time required, the costly approximation error analysis was not
performed on a large volumes, but on three volume datasets of size 2562× 128.
From the datasets described in Appendix A, the bonsai tree, the engine, and a
subvolume of the great ape molar were chosen.

The triple-bars in Fig. 5.3 are organized in the indicated dataset order and
bright-dark-medium-luminance color coded. The reference floating-point tensor
decomposition (U:32 B:32) is shown to isolate and evaluate the quantization ef-
fect. We analyzed the quantization approaches outlined, applying linear and log-
arithmic quantization to both, the factor matrices and the core tensor. The effects
on the approximation error were analyzed for entire as well as bricked volume
Tucker decompositions. Fig. 5.3 shows the analysis of the approximation quality
in terms of the SNR σ

Ã
for different linear and logarithmic quantizations.
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Figure 5.3: Quantization error as SNR for various quantization approaches. The triple-
bars are organized in the indicated dataset order and are bright-dark-medium-luminance
color coded. U stands for the factor matrices, B for the core tensor. The number after B
and U gives the number of bits used for the respective coefficient type. From [Suter et al.,
2011].

Except for the 8-bit linear core quantization (B:8lin), it is clear from Fig. 5.3
that for the factor matrices a significant improvement in SNR, and hence lower
approximation error, can be achieved when using 16-bit (U:16) instead of 8-bit
(U:8) quantization. Although the bonsai tree dataset does not benefit as strongly
from this as the other volumes.

With respect to the core tensor quantization, it can be seen that the logarith-
mic is superior to the linear quantization, reaching comparable SNR values using
much fewer bits, i.e., B:8log achieving almost the same quality as B:16lin for
the same factor matrices quantization. It can be seen that increasing the quantiza-
tion resolution from 8 to 12-bit only minimally improves the SNR, with the latter
(B:12log) basically matching the more costly linear quantization. We evaluated
the separate floating point representation of the hot-corner core tensor coefficient
(B:8log+ in Fig. 5.3), which otherwise potentially wastes quantization resolution
better spent on the remaining core tensor coefficients. This way the SNR can thus
be slightly increased at the expense of only 4 extra bytes.

Taking the results from the storage cost study into account, the optimally com-
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pact quantization can be achieved using a 16-bit linear factor matrix and a 8-bit
logarithmic core tensor quantization with separate hot-corner (U:16 B:8log+).

In a bricked multiresolution octree setting the quantization quality differs only
slightly, as shown in Fig. 5.3 (U:.. B:..-bricked), sometimes even being better.
This could be explained by the fact that the bricked representation uses more co-
efficients in total over all bricks for the same volume dataset, consuming a little
bit more space. The preferable optimal quantization setting is thus the same as
above for the bricked TA, too.

5.3 Discussion

The tensor-specific quantization approach was applied to both multiresolution
models. In the application with the bricked tensor decompositions the factor ma-
trices and the core tensors were quantized with the suggested quantization scheme
of 16-bit factor matrices and 8-bit core tensors. In the application with the global
mipmapped factor matrices, only the core tensors were encoded, the matrices were
fully loaded as floating point values for the whole application run-time. The dif-
ference between the storage costs two TA multiresolution models is seen in the
costs of the factor matrix encoding, which results in a rough data reduction ratio
of 0.15 and 0.25 of the original data size for the global factor matrices and the
bricked TA matrices multiresolution models, respectively.

The final storage costs are independent from the bit-depth of the original vol-
ume and are mainly dominated by the cubic core tensors in the octree hierarchy.
Following this analysis, the evaluated quantization scheme was a critical starting
point to keep the storage cost low, namely by storing the core tensors with 8-bit
values. This achievement was possible thanks to the observation that the core ten-
sor values are logarithmically distributed and, therefore, a logarithmic (instead of
a linear) quantization scheme saves a lot of precision for the final reconstruction.
Until now, no other tensor-decomposition-specific quantization scheme as pub-
lished in [Suter et al., 2011] was presented. The only other known tensor quan-
tization scheme was presented in [Wu et al., 2008] who proposed a fixed linear
quantization for the factor matrices (8-bit) and a variable quantization core tensor
(8-20-bit). In [Suter et al., 2011], the goal was to refrain from variable-length
coding to avoid the corresponding costly decompression.

The storage costs of the developed compression-domain multiresolution TA
models achieve a well-comparable storage cost reduction compared to other ap-
proaches. In [Gobbetti et al., 2012], for example, a comparison between three
different compression-domain DVR approaches indicates that the TA models are
competing for the best storage costs. The 1024-cubed chameleon dataset, for ex-
ample, was encoded for the highest resolution with 1GB for the K-SVD-based



62 5 RESULTS: DATA REDUCTION AND COMPRESSION

dictionary, [Gobbetti et al., 2012], with 145MB for the hierarchical vector quan-
tization, [Schneider and Westermann, 2003], and with 357MB for the brick-wise
TA model, [Suter et al., 2011]. The corresponding storage cost for the global
mipmapped TA bases is 162MB, which is close to the best performing vector
quantization approach.

5.4 Summary

TA applied to multiresolution DVR reduced the amount of storage significantly.
The storage costs are lowest for the global mipmapped TA model due to the re-
duced factor matrix storage costs (1GB instead of 5.5GB in the bricked TA model
for an initial 2048-cubed dataset). In the global factor matrix TA model, the stor-
age costs are dominated by core tensors of the octree hierarchy, while in the
bricked TA model, the storage costs are around 25 percent of the original vol-
ume data size. Compared to other state-of-the-art and new compression-domain
DVR systems, the storage cost reduction achieved is successful and effective (see
Sec. 5.3).

Furthermore, a tensor-specific quantization scheme was developed during this
thesis, fitting the value distributions in the factor matrices and the core tensors re-
spectively. Namely, the orthonormal factor matrices were quantized in the bricked
multiresolution model with a larger value range, 16-bit, and the core tensors were
quantized by a logarithmic data distribution over a smaller data range, 8-bit.

The results and the storage cost analysis show that data reduction by TA is
a competitive and effective approach that was introduced to compression-domain
multiresolution volume visualization during this thesis. Besides the goal of achiev-
ing at a high compression ratio, there are certain quality requirements that need
to be met by the reconstruction. In the next chapter, it is shown that we achieve
not only a reduced storage cost, but a good reconstruction quality and and an
approximation-quality feature-sensitive data visualization approach. Specifically,
the TA approach helps to highlight relevant data features at different spatial scales.
The background and experiments on this so-called multiscale feature detection by
TA are the core topic of the next chapter.
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6.1 Multiscale Volume Visualization

By multiscale volume visualization, we mean to have a parameter that is respon-
sible for highlighting features (e.g., biological) at different spatial scales. We in-
terpret the feature scale-space in a traditional way such that at coarser scales only
the larger and more prominent structural components should be maintained as fea-
tures, and more detailed features are identified on finer scales. In other words, the
parameter to tune multiscalability corresponds to displaying an object at an ab-
stract level (main shape of the data) or displaying the same object in details. This
notion of multiscalability is different from the multiresolution concept, as mul-
tiscalability aims at extracting the most dominant features, while multiresolution
is rather a spatial averaging of the whole dataset (see Fig. 6.1). Multiscalability
is an approach known from PCA. Similarly, we exploit multiscalability for direct
volume rendering from higher-order PCA, as previously introduced using tensor
approximation (TA). In this context, the scale is given by the rank reduction (trun-
cation) or number of coefficients used in the approximation. That is, the rank is the
main parameter, which steers the display of features at multiple scales. Details on
how the tensor rank truncation results in multiscalable direct volume visualization
is shown in the next section.

(a) original (b) r-(128,128,64) TA (c) r-(32,32,16) TA (d) r-(4,4,2) TA

(e) 2× averaged (f) 4× averaged (g) 8× averaged

Figure 6.1: (b-d) Idea of multiscalability (rank-(R1,R2,R3) TA) vs. (e-g) idea of multires-
olution (averaging) shown with the bonsai tree dataset (a) of size 2562×128.
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6.1.1 Multiscalability within TA a Framework

In this thesis, we represent a volume dataset A spanned along the spatial axis x, y,
z by a 3rd-order tensor. This tensor is decomposed with so-called tensor decompo-
sition approaches into a set of bases, consisting of three factor matrices U(1), U(2),
and U(3) (one matrix per mode) and a 3rd-order core tensor B with coefficients
that describe the relationship between the original data and the factor matrices.
One eminent feature of tensor decompositions is that we can apply a tensor rank
truncation similar to a matrix rank truncation. The rank truncation is good for two
things: first, we reduce the number of coefficients and ergo the amount of stor-
age needed, and second, we use less detailed or redundant information from the
dataset. Eventually, the data is stored and loaded as a truncated tensor decompo-
sition. The original data is only reconstructed to its approximation Ã when it is
used for visualization.

The Tucker decomposition (one of the TA models) was chosen for compact
data representation. As defined in Sec. 3.4.1, the Tucker model defines a rank-
(R1,R2,R3) approximation, where a small Rn corresponds to a low-rank approx-
imation (many details removed) and a large Rn corresponds to an approximation
more closely matching the original. In the Tucker model, the rank Rn for the initial
decomposition has to be explicitly given. However, further adaptive rank trunca-
tions can be applied after the initial decomposition (similar to the rank truncation
in the matrix SVD case). Even though the ordering of the coefficients in the core
tensor is not strictly decreasing, as in the matrix SVD case, in practice it can be
shown that progressive tensor rank truncation in the Tucker model works well for
adaptive visualization of the data at different feature scales. Fig. 6.2 compares the
progressive rank truncation from an initial rank-(256,256,256) TA (bottom row)
to a specific fixed rank-(R1,R2,R3) tensor decomposition (top row) of a 5123 in-
put volume. Both reconstructions are visually similar down to the lowest ranks,
which are rarely used, however. Furthermore, the round hazelnut shapes could be
extracted well at lower ranks where higher ranks expose adding details. That is,
the rank serves as a multiscale parameter in this example.

With the TA approach, the initial project idea (hypothesis) to use one common
framework for visualization, data reduction and feature extraction is maintained.
During two subprojects of this thesis [Suter et al., 2010a; Suter et al., 2011], it
has been shown that the tensor rank parameter can be used to highlight features
at different levels of scale. The applicability of TA for multiscale direct volume
visualization is tested in the following section.
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R = 4R = 8R = 16R = 32R = 64R = 128R = 256

U(n)
Kn

U(n)

Figure 6.2: Multiscale volume visualization by tensor rank reduction (bottom row) com-
pared to rank-(R,R,R) tensor approximations to specific ranks R (top row), from [Suter
et al., 2013].

6.2 Application: Dental Microstructures

As outlined in Chap. 2, one goal of this thesis is to search for an approach to
capture and identify the essential features of complex volumetric structures such
as periodic growth patterns in tooth enamel scanned by µCT or PCST imaging
(Sec. 2.1). With several experiments, different effects of rank-reduced tensor ap-
proximation and its applicability for multiscale volume visualization are tested.
We start with a first experiment that shows the general feasibility of TA to enhance
and highlight periodic features, then, we move on to a comprehensive comparison
between the feature-preservability by TA and state-of-the-art wavelet transform
(WT). Both, synthetic and real datasets were used. The results reported here are
taken from [Suter et al., 2010b; Suter et al., 2010a; Suter et al., 2011].

6.2.1 Volume Features

Our structural volume features are defined by certain intensity regions, i.e., voxel
elements (i, j,k) for which their value A [i, j,k] is in a given interval, in the volume
dataset. The features we look at can manifest different characteristics at different
scales. We interpret the feature scale-space in a traditional way: At coarser scales
only the larger and more prominent structural components should be present as
features, while at finer scales more detailed features should be identified. The
scale in this context is given by the rank-(R1,R2,R3) reduction or number of coef-
ficients, used in the approximation Ã . Feature expressiveness is evaluated visu-
ally as well as numerically. Visually, the coarsening and structural simplification
of features can be verified by comparing the display of the original dataset A to
its approximation Ã . Numerically, we compare different approximations Ã by
their root-mean-squared error (RMSE) with respect to A .
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6.2.2 Highlight Features by TA

In an example taken from experiments with dental growth structures (see Sec. 2.2)
as published in [Suter et al., 2011], we noticed that by using lower-rank TA, dental
structures like growth prisms become highlighted, as illustrated in an example
close-up in Fig. 6.3(a). A similar effect is shown in Fig. 6.3(b), where a horizontal
cut orthogonal to the growth prisms (yellow dots) is visualized. The image of
the base reference of a TA with tensor rank 16 shows the prisms’ irregular spatial
distribution. The lower-scale reconstruction with a tensor rank 8 clears out the
fuzziness and reveals the layered periodic and parallel arrangement of the prisms.

(a) (b)

Figure 6.3: (a) Dental growth structures (prisms), highlighted with a reduced tensor rank
4 reconstruction. Taken from a frontal projection to an area below the enamel surface (see
Fig. A.2.7). (b) Dental growth structures (prisms), highlighted with reduced tensor rank
8 reconstruction. Taken from a horizontal cut through an area below the enamel surface
(see Chap. 2) (from [Suter et al., 2011]).

In order to determine the number of reduced ranks, we need to be aware of the
original tensor rank. Results from different studies [Wu et al., 2008; Suter et al.,
2010a; Suter et al., 2011] have shown that we can tolerate the error introduced by
half of the original tensor rank, i.e., a half-ranked tensor decomposition is consid-
ered as the reference point. In Fig. 6.3 subvolumes of 323 are tensor encoded, i.e.,
we start with a tensor rank of 16 and a rank-(16,16,16) tensor approximation per
brick.

6.2.3 Feature Expressiveness by TA and WT

To demonstrate the ability of TA to capture oriented patterns, tensor approxima-
tion and wavelet transform (WT), which is known as state-of-the-art method for
multiresolution compact data decomposition, are applied to volume datasets con-
taining multiscale features. Next, three experiments are conducted to test how TA
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and WT compare in terms of feature expressiveness. In particular, axis-alignment
of features and multiscalability are verified. The tests are first performed on syn-
thetic, non-axis-aligned (dental) growth structures, then benchmarks are taken
from two different real dental datasets.

The performance of TA and WT are compared at corresponding approximation
levels. For each approximation, the same number of non-zero coefficients (NNC)
has been chosen for both the WT and TA method. For TA, NNC is given by the
rank reduction as R1 ·R2 ·R3 +R1 · I1 +R2 · I2 +R3 · I3, representing the number
of coefficients in the tensor decomposition1. Correspondingly, in the case of WT,
we selected the most significant wavelets’ NNCs. Unless specified otherwise, we
used the multilevel biorthogonal 9/7 wavelet transform, which is used in JPEG-
2000 and in [Wu et al., 2008], too.

In Fig. 6.4, a synthetic dataset after [Macho et al., 2003] (see Fig. 2.1(b)) was
produced in order to demonstrate the visual results of applying different compres-
sion ratios (columns in Fig. 6.4) with TA and wavelets (rows in Fig. 6.4). Besides
TA, we observed that only the Haar wavelet managed to reconstruct the original
structures, but only with a “high” NNC. With TA, we were even able to recognize
the main directions of the original structures with low-rank approximations and
ergo with only a few coefficients. In particular, we observed that TA was in fa-
vor when dealing with non-axis-aligned structures such as the curved fibers. The
same effect can be observed for real 3D dental enamel growth patterns.

Fig. 6.5 demonstrates that a compact TA (rank-(8,8,8) with 2′048 coefficients)
makes it possible to highlight features (growth prisms) that are difficult to identify
and visualize in the original dataset, or on finer approximation scales. At a cor-
responding number of coefficients, the Haar or biorthogonal 9/7 WT approaches
show difficulties in reconstructing the characteristic features. However, it could
be argued that the features from Fig. 6.5 are axis-aligned. Therefore, another ex-
periment is performed with non-axis-aligned features.

Fig. 6.6 visualizes different non-axis-aligned 3D dental enamel growth pat-
terns. The periodic halts along growth prisms cause the formation of surface
layers, which can be identified and visualized using TA at different scales us-
ing progressive rank-reduction. In particular, the weekly growth markers (Retzius
lines) can be well analyzed using 3D visualization and variation of reconstruction
scale. The biorthogonal 9/7 WT based approach fails to extract the growth-halt
layers and continuously transforms into a blobby reconstruction at progressively
reduced approximation level. Compared to Fig. 6.3 where TA is applied to sub-
volumes, in Fig. 6.6, the full dataset of size 2563 was tensor encoded, i.e., we
started with a tensor rank of 128.

1By default, the TA coefficients do not equal zero, neither a further coefficient thresholding was
applied. TA coefficient thresholding needs further investigations and is a topic for future research.
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TA

Haar WT

biorthogonal 9/7 WT

Daubechies WT

original 2.26 9.65 3.15 5.74 1.64 3.1³ 1.5³

decreasing number of coefficients

256³

Figure 6.4: Synthetic growth structures reconstructed with different numbers of encoded
coefficients and different approximation approaches (adapted from [Suter et al., 2010a]).
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(a) Rank-(16,16,16)
TA

(b) 7’168 Haar WCs (c) 7’168 bior. WCs

(d) Rank-(8,8,8) TA (e) 2’048 Haar WCs (f) 2’048 bior. WCs

Figure 6.5: Structural volume dataset of tooth enamel acquired with PCST (643 vox-
els, 16-bit voxel depth, 0.75 microns resolution per voxel). Reconstructions from three
different approximation levels: (a,d) TAs; (b,e) Haar WT, and (c,f) biorthogonal 9/7 WT.

(a) tensor rank 128 (b) tensor rank 64 (c) tensor rank 32 (d) tensor rank 16

(e) 26 WCs (f) 35 WCs (g) 5.74 WCs (h) 1.64 WCs

Figure 6.6: Periodic microstructures in tooth enamel (2563, 16-bit voxel depth, 0.75 mi-
crons per voxel). (a-d) Feature visualization using different tensor rank approximations.
Showing on the front side, horizontal growth prisms oriented left-to-right and diagonal
Retzius lines oriented bottom-left to top-right. (e-n) Reconstructions from corresponding
numbers of biorthogonal 9/7 wavelet coefficients (from [Suter et al., 2010a]).
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6.2.4 Rate Distortion (Numerical Approximation Quality)

Above, a qualitative evaluation of the feature-preserving reconstruction perfor-
mance of TA in comparison to state-of-the-art WT based approaches was pre-
sented. In addition to the visual assessment of feature expressiveness, a quanti-
tative numerical approximation analysis is required to fully establish the capabil-
ity and potential of the proposed TA based feature extraction and visualization
framework. Our numerical evaluation analyzes the performance of TA versus WT
in terms of their rate-distortion. A rate-distortion diagram displays a curve be-
tween two axes (error and data approximation level), where a curve is the better
the more closely it is aligned to the axes. We measured the root-mean-squared
error (RMSE) ε over all voxels in the original and the approximated datasets and
put ε in relation to the number of (non-zero) coefficients NNC used for different
approximation levels. Note that we are interested in the feature difference at a

certain scale and thus the RMSE ε =
√

m−1 ∑i, j,k(A [i, j,k]− Ã [i, j,k])2 is com-

puted only for the m voxels where Ã [i, j,k] is within a given intensity range of
interest (e.g., of the feature).

As can be seen in Fig. 6.7, for the real microstructure volume, the rate-distortion
curves of TA and WT are close, with a slight advantage for the WT. The TA curve
for the synthetic microstructure volume in terms of rate distortion, is less quali-
fied than the WT curve. However, the visual images have shown a different result.
We have observed that standard measures of data reduction quality, such as rate-
distortion on RMSE, do not sufficiently capture the feature expressiveness of a
numerical approximation method.
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Figure 6.7: Rate-distortion curves for tensor and wavelet reconstructions for datasets
from Figs. 6.4– 6.6 (adapted from [Suter et al., 2010a]).
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6.3 Multiscalability and Multiresolution in One

As we have seen previously in this chapter, multiscale feature visualization is pos-
sible through tensor rank truncation. The first goal of this section is to integrate
the multiscalability into a multiresolution model with the global TA factor matri-
ces presented in Chap. 4. The second goal of this section is to develop a feature
scale parameter, which in the end can be used in the visualization system to steer
both, multiresolution DVR and multiscale feature visualization in one.

The key challenge to integrate the multiscalability is to maintain the tensor
rank truncation. The tensor rank truncation works as long as we maintain the so-
called all-orthogonality property within the core tensors. The all-orthogonality
(see [De Lathauwer et al., 2000a]) is achieved when a core tensor is generated
from orthogonal matrices. The TA factor matrices produced from a standard
HOSVD procedure fulfill this property; in fact, the TA factor matrices are even
orthonormal. However, in order to model multiresolution, we use spatial selection
and spatial averaging in our global TA factor matrices. Hence, we can not produce
all-orthogonal core tensors from those mipmapped global TA factor matrices.

We solved the issue of maintaining all-orthogonal core-tensors in [Suter et al.,
2013]. The key idea was to apply SVDs on TA factor matrix row blocks cor-
responding to the octree bricks. That means, we re-span the subspace of each
row-block global factor submatrix U(n)

Jn
by applying another SVD (similar to [Tsai

and Shih, 2012]). As shown in Fig. 6.8, the row-block matrices’ columns corre-
sponding to bricks are then replaced with the orthogonal singular vectors. In that
way, we are able to define per-brick core tensors that can be truncated. Intuitively,
this recomposition of the global matrices can be seen as a different representation
of the same local subspaces as defined by the initial non-orthogonal submatrices.
Jn corresponds to the octree brick size (including borders). Due to equally sized
bricks along all spatial octree directions, the sub-block replacements can be used
for spatially-corresponding bricks.

For the multiscale feature scale manipulation within the visualization system,
we compute a feature scale parameter for different rank truncated tensor recon-
structions of every brick. Specifically, the feature scale parameter is computed on
the differences of the approximations and the original at different feature scales
(i.e., different rank truncations). Therefore, we compute per brick (excluding bor-
ders) the differences in terms of the root-mean-square error (RMSE). With respect
to different resolution approximations, we use trilinear interpolation to compute
the RMSE between any LOD brick and the original. We compute for every brick
a number of different rank truncated reconstructions and store this information in
a separate file.

Fig. 6.9 visualizes the average errors per LOD. The chart shows that the error
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Figure 6.8: Preprocessing the mipmapped initial global factor matrices in order to ob-
tain orthogonal localized row-block submatrices and thus all-orthogonal per-brick core
tensors in the octree hierarchy. From [Suter et al., 2013].

is gradually decreasing when refining the resolution, and it overlaps between oc-
tree levels and rank ranges. Still, there is an overlap between the LOD RMSES
of different octree levels that needs to be handled in the visualization algorithm.
Nevertheless, the presented LOD RMSE was chosen to steer multiple features
scales (chosen ranks dependent on brick LOD RMSE) and multiple resolutions
(chosen brick LOD) during interactive visualization. As the truncated approxima-
tions of the Tucker model do not guarantee a strictly decreasing error, we map the
minimum-maximum error range to the range of ranks Ri = {8,9,10, . . . ,31,32}.
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Figure 6.9: Mean normalized brick RMSEs for all octree levels of the hazelnut. The
standard deviation of the errors is additionally indicated. From [Suter et al., 2013].
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In practice, as can be seen in Fig. 6.10, the coupling of multiresolution DVR
and multiscale feature visualization through the feature scale parameter works
well. The resolution is indicated by the brick bounding box size and the rank by
the color of the brick bounding box (red–blue–green for few–many–more ranks).
In Fig. 6.10(a), for instance, we visualized a high feature scale with chosen high
ranks and high resolutions. By decreasing the target feature scale, the chosen
resolutions become coarser and lower ranks are chosen (Fig. 6.10(b)) until we
reach a low feature scale, as shown in Fig. 6.10(c), where we see that only the
finest details are encoded with high ranks.

(a) high feature scale (b) medium feature scale (c) low feature scale

Figure 6.10: Coupling of multiresolution and multiscalability by a feature scale param-
eter (rank-based). The rank is color encoded (red–blue–green bricks correspond to few-
more-many ranks); the size of each brick indicates its spatial resolution.

6.4 Discussion

The results in this chapter show, first, the feasibility of the TA framework to pro-
duce multiscale feature visualization with DVR and, second, that the multiscale
visualization can be coupled with the previously introduced multiresolution DVR.
The most important insights are discussed here.

In [Wang et al., 2005b; Wu et al., 2008], it has been shown that TA can gener-
ate higher quality images at larger data reduction ratios than WT or PCA. In our
work, we went one step further and we have shown that the mathematical frame-
work of TA makes it possible to highlight features, which were difficult to see



6.4 Discussion 75

in the original dataset (Figs. 6.6(b) and 6.6(c)). This is particulary applicable for
features at multiple scales, which can be brought out with TA at corresponding
approximation levels (Fig. 6.6). Notably at low ranks, i.e., at high data reduction
ratios, TA showed higher quality reconstructions of internal structures compared
to WT. While WT showed reconstructions with a most closely visual resemblance
to the overall original appearance (multiresolution-fashion), TA identifies specific
structural features at different scales (e.g., Figs. 6.6(b) or 6.6(d)).

Wavelets focus on optimal data reduction over the complete volume. That is,
WT is beneficial when the overall statistical distribution of the dataset is intended
to be reconstructed with a coarser resolution. In contrast, we follow an approach
that extracts specific features based on statistical properties like the major direc-
tion or a periodicity. TA, similar to PCA, which extracts the major direction of
a dataset, is more powerful regarding this latter aspect since it finds appropriate
bases for reconstruction rather than assuming fixed basis functions as the WT. An
approach like TA extracts components with more importance and neglects irrel-
evant areas within the dataset. Hence TA has the advantage when we want to
analyze features, e.g., count the number of Retzius lines (Fig. 6.6(d)).

Compared to wavelets, where different wavelets need to be evaluated in order
to find out which wavelet best fits a dataset, with the TA approach, we do not
have to take such a decision with the TA approach, as there is a single mathemat-
ical tool, a rank-(R1,R2,R3) TA. However, higher computational costs need to be
considered for TA (learn basis with ALS algorithms), especially for large datasets,
for which we need to consider bricking or similar data decomposition steps during
volume processing and rendering.

Furthermore, we have observed that standard measures of data reduction qual-
ity, such as rate-distortion on RMSE, do not sufficiently capture the feature ex-
pressiveness of a numerical approximation method. New procedures need to be
developed, which permit the quantitative analysis of feature selectivity in lossy
data reconstruction methods. Examples of future investigations are, e.g., [Wu
et al., 2010; Lin and Kuo, 2011; Hill et al., 2011].

The coupling of the multiresolution DVR and the multiscale feature visualiza-
tion is completely based on the inherent properties given from the TA framework
in the TA bases. Moreover, we could produce all-orthogonal rank-reducible per-
brick core tensors for the multiresolution TA hierarchy from the global TA bases
by applying row-block SVDs as outlined previously. We are not aware of any
other system exploiting a similar visualization concept to that presented in this
thesis and in [Suter et al., 2013]. Thus, in the future, it is suggested that more
investigations into feature scale manipulation applications as well as in-depth ex-
periments should be carried out.
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6.5 Summary

In summary, TA is powerful when we are not interested in the complete appear-
ance of a dataset, but rather want to highlight or count features at a certain scale.
Since new data acquisition techniques lead to volume datasets of ever-increasing
size, which tend to be one step ahead of the available graphics resources for in-
teractive visualization, there is thus an ongoing need to develop new data reduc-
tion and feature extraction methods to tackle the resulting performance bottle-
necks. This thesis demonstrates that TA is a powerful approach to (a) represent
microstructural volume datasets at high data reduction ratios, and (b) simultane-
ously highlight relevant features at different spatial scales.

On top of this unique chosen TA framework, we presented a new concept to
couple multiresolution DVR and multiscale feature visualization within an unified
framework. The idea exploits a novel TA hierarchy for both, multiresolution mod-
eling and multiscale feature representation, and is implemented using a state-of-
the-art GPU-based ray-caster. The multiresolution and multiscale TA properties
are coupled through a feature scale parameter that can be operated at runtime by
the user. The feature scale parameter is precomputed based on per-brick RMSE
errors over a range of truncated approximations. By adjusting the feature scale
parameter, the DVR implementation automatically chooses whether to increase or
reduce spatial resolutions and feature scales.

The implementation details of all the presented multiresolution and multiscale
TA DVR approaches are given in the next chapter.
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7.1 TA Rendering Pipeline

The general TA rendering pipeline was already outlined in the introduction in
Fig. 1.2. The focus of this chapter is the implementation of the newly proposed
TA stages in the rendering pipeline (see Fig. 7.1). First, the brick compression or
compact data representation using TA is explained, second, the construction of the
multiresolution TA data structure is presented, third, the developed reconstruction
strategy from the produced multiresolution data structure is shown, and fourth, the
integration of TA into state-of-the-art multiresolution DVR visualization systems
and its interactive performance are evaluated.

TA compression
and compact data 

representation

run-time tensor 
reconstruction

multiresolution TA
data structure generation

interactive
visualization

Figure 7.1: The implementation pipeline of TA multiresolution and multiscale DVR.

Regarding the implementation, different focuses were set during the develop-
ment of the four stages. While the initial tensor decomposition of a large volume
data is memory intense, the tensor reconstruction needs to be performed at run-
time since interactive visualization is one of the predefined goals. The first two
stages are carried out in a pre-processing routine and are, therefore, not run-time
critical. However, it was needed to implement a memory-optimized tensor decom-
position algorithm in order to decompose large volumes. The multiresolution data
structure generation was neither memory-critical (small bricks are processed) nor
run-time critical. The tensor reconstruction is mainly run-time critical, however,
since it is computed on the GPU, it is to some degrees also memory-intense since
GPU memory is limited. The same applies to the interactive visualization: Due to
the brick-wise data loading the memory bottleneck is reduced, however, the total
amount of currently loaded bricks on the GPU is limited. That is, even though the
most recently used bricks are cached on the GPU, new data needs to be continu-
ously transferred from CPU to GPU during interactive visualization. Therefore,
the bandwidth plays another important role, which can, however, be reduced by
achieving high brick compression ratios. The performance of the rendering is in
fact another critical implementation stage. However, this issue was not addressed
during this thesis. The memory-intense, run-time critical and bandwidth criti-
cal implementation stages are summarized in Tab. 7.1. The four implementation
stages are elaborated and evaluated in detail in the next four sections.
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tensor TA octree tensor interactive
decomposition generation reconstruction visualization

memory-intense XXX X X
run-time critical XXX XXX
bandwidth critical XX XX

Table 7.1: Memory-intense, run-time critical and bandwidth critical implementation
stages. The number of checkmarks indicates the criticalness of an implementation stage.

7.2 Tensor Decomposition Implementation

During this thesis project, the underlying data structures and algorithms used for
each 3rd-order tensor (tensor3) and the tensor decompositions were implemented
in an open-source C++ library. The existing vector and matrix math library (vmm-
lib) (see [vmm, 2013]) was extended for 3rd-order tensors. Specifically, data ac-
cess to 3rd-order tensors and different algorithms to perform the tensor decompo-
sition were implemented. To our knowledge, this is the first commonly available
tensor approximation library in C++. The well-established MATLAB toolbox by
Bader and Kolda [Bader and Kolda, 2006] served as a reference.

7.2.1 CPU Tensor Classes

As stated before, the basic tensor data structure as well as the tensor decomposi-
tion and tensor reconstruction algorithms were developed and integrated into the
template-based vmmlib. There is an implementation of a 3rd-order tensor (ten-
sor3), which is the main data structure containing frontal matrix slices stored in
an array. For memory-mapping purposes a tensor memory mapper class was de-
veloped. In addition, there are the two main tensor models available as a class,
the tucker3 tensor and the cp3 tensor. The tucker3 tensor uses the tensor3 HOOI
implementation, while the cp3 tensor uses the tensor3 HOPM implementation.
Both alternating least-squares (ALS) implementations (HOOI and HOPM) use
the HOSVD, the HOEIGS and the tensor times matrix (TTM) implementations.
There are further utilities for conversions and import/export available. The rele-
vant tensor classes and their description are illustrated in a simplified UML class
diagram in Fig. 7.2.

7.2.2 Initial Large Tensor Decomposition

In order to perform an initial decomposition on a large tensor input, some op-
timizations of the presented tensor classes had to be developed. As visualized
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Figure 7.2: Simplified class diagram of CPU tensor classes integrated into vmmlib.
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in Fig. 7.3, tThe actual method is based on an ALS algorithm implemented as
a higher-order orthogonal iteration (HOOI) (see App. D). One iteration of the
HOOI ALS for a 3rd-order tensor (a volume) consists of three optimization steps,
one along each mode. That is for one optimization along mode n, the data tensor
is projected onto the other two factor matrices followed by extracting a new factor
matrix for the optimized mode. As shown in Alg. 2 and Fig. 7.4, thus, two factor
matrices U(n±1) are fixed to optimize U(n) in one iteration.
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Figure 7.3: Visualization of the HOOI ALS and the mode-n optimization.

Algorithm 2 HOOI optimization of one mode, here mode n = 1, (see Alg. 16,
lines 9 . . .12).
1: Input: A ∈ RI1×I2×I3 , Rn
2: Output: optimized U(n) ∈ RIn×Rn

3: for mode n optimization do
4: TTM: tensor AI1×I2×I3 times matrix U(2)

I2×R2

T
multiplication→ TI1×R2×I3

5: TTM: tensor TI1×R2×I3 times matrix U(3)
I3×R3

T
→PI1×R2×R3

6: HOSVD (Alg. 1) on P(n) (unfolded Pn along mode n)→ U(n)

7: end for
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Figure 7.4: TTM multiplications needed in order to produce the projection tensor P:
n-mode products along all modes but mode n are performed.

The HOOI decomposition of large datasets exhibits two main bottlenecks [Suter
et al., 2013]: (1) the tensor times matrix multiplications (TTMs) of large tensors as
in line 2 of Alg. 2, and (2) the HOSVD as in line 4 of Alg. 2. The two bottlenecks
were addressed as follows:

1. Larger than main memory data tensors A are unfolded in the required mode
direction (→ A(n)) once and accessed as memory mapped files.

2. The HOOI iterations are designed such that the TTM operations access the
unfoldings of A(n) sequentially and memory aligned.

3. The TTM operation has been implemented using parallel multi-threaded
matrix matrix multiplications.

4. The HOSVD is computed either based on the SVD or the EIG, depending
on the size of the input tensor.

7.2.3 Performed Optimizations

As evaluated previously, the HOSVD and the TTMs are the most critical com-
putation steps. While the HOSVD is computing-intense, the TTMs are memory-
intense. In particular, the first TTM of the first mode optimization (Alg. 2, line 2,
and Fig. 3.14(a)) is the most critical one. The size of this first unfolded tensor is
I · I · I, while all the successive TTMs are only applied to tensors of size I · I ·R,
I ·R ·R or R ·R ·R, where R� I. The algorithms used for the large tensor de-
composition have been integrated into vmmlib, for which wrappers to BLAS and
LAPACK routines were developed during this thesis.
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Optimized TTMs

The TTMs were optimized using BLAS DGEMM for all matrix matrix multiplica-
tions. For this, a TTM is implemented as multiple matrix matrix multiplications,
where one matrix stays always the TA factor matrix and the other matrix is up-
dated by the next tensor slice along the third axis. In order to parallelize this step,
OpenMP was used. The underlying array of the tensor3 structure in vmmlib is im-
plemented as several column-major frontal slices. In order to have a better access
pattern within the array during the TTM, the TTMs were implemented with ei-
ther forward (FWD) or backward (BWD) cyclic TTMs (see Fig. 3.11) depending
on the access pattern during the TTMs. The specific memory-access optimized
implementations for the three HOOI optimization steps as well as the core tensor
computations are shown in the Algs. 3-7 (see also Alg. 16, lines 10 and 13).

Algorithm 3 Optimize mode n = 1.
1: Input: A ∈ RI1×I2×I3 , U(2), U(3)

2: Output: P1 ∈ RI1×R2×R3

3: compute U(2)−1
(use transpose for orthogonal matrices)

4: compute U(3)−1
(use transpose for orthogonal matrices)

5: memory optimized version (after [De Lathauwer et al., 2000b]):
6: TTM (frontal BWD) multiplication of U(2)−1

with A →T (Alg. 2, line 4)
7: TTM (horizontal BWD) multiplication of U(3)−1

with T →P1 (Alg. 2, line 5)

Algorithm 4 Optimize mode n = 2.
1: Input: A ∈ RI1×I2×I3 , U(1), U(3)

2: Output: P2 ∈ RR1×I2×R3

3: compute U(1)−1
(use transpose for orthogonal matrices)

4: compute U(3)−1
(use transpose for orthogonal matrices)

5: memory optimized version (after [Kiers, 2000]):
6: TTM (frontal FWD) multiplication of U(1)−1

with A →T (Alg. 2, line 4)
7: TTM (lateral FWD) multiplication of U(3)−1

with T →P2 (Alg. 2, line 5)

Algorithm 5 Optimize mode n = 3.
1: Input: A ∈ RI1×I2×I3 , U(1), U(2)

2: Output: P3 ∈ RR1×R2×I3

3: compute U(1)−1
(use transpose for orthogonal matrices)

4: compute U(2)−1
(use transpose for orthogonal matrices)

5: memory optimized version (after [Kiers, 2000]):
6: TTM (frontal FWD) multiplication of U(1)−1

with A →T (Alg. 2, line 4)
7: TTM (horizontal FWD) multiplication of U(2)−1

with T →P3 (Alg. 2, line 5)
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Algorithm 6 Derive core orthogonal factor matrices. TTM after [Kiers, 2000]
(see Alg. 16, line 13).
1: Input: A ∈ RI1×I2×I3 , U(1), U(2), U(3)

2: Output: B ∈ RR1×R2×R3

3: set U(1)−1
= U(1)T

4: set U(2)−1
= U(2)T

5: set U(3)−1
= U(3)T

6: TTM (frontal FWD) multiplication of U(1)T
with A →T

7: TTM (horizontal FWD) multiplication of U(2)T
with T →P

8: TTM (lateral FWD) multiplication of U(3)T
with P →B

Algorithm 7 Derive core non-orthogonal factor matrices (see Alg. 16, line 13).
1: Input: A ∈ RI1×I2×I3 , U(1), U(2), U(3)

2: Output: B ∈ RR1×R2×R3

3: compute U(1)+ (use matrix pseudo inverse)
4: compute U(2)+ (use matrix pseudo inverse)
5: compute U(3)+ (use matrix pseudo inverse)
6: TTM (frontal FWD) multiplication of U(1)+ with A →T

7: TTM (horizontal FWD) multiplication of U(2)+ with T →P

8: TTM (lateral FWD) multiplication of U(3)+ with P →B

HOEIGS: Use EIG for HOSVD Implementation

As elaborated in App. B.2.1, the SVD for a symmetric input matrix equals its
symmetric eigenvalue decomposition. Based on that the HOSVD can also be
computed via symmetric eigenvalue decomposition what we call HOEIGS. In
Fig. 7.5, the differences between the HOSVD and HOEIGS are visualized. The
HOEIGS was implemented with a vmmlib wrapper, which uses the LAPACK
DSYEVX (symmetric eigenvalue decomposition) to return the first R largest mag-
nitude eigenvalues with corresponding eigenvectors. These eigenvectors corre-
spond in the C(n) = A(n)A(n)

T covariance matrix scenario to the R first left singu-
lar vectors that are used as TA factor matrices U(n) (see Alg. 8). For the covariance
matrix computation, again BLAS DGEMM was used.

To further save computing time and memory, we initialize the factor matri-
ces for the ALS with random values as in [Wang et al., 2005b]. Neither [Wang
et al., 2005b] nor we noticed an empirical difference when initializing the fac-
tor matrices by random values. On the contrary, the simple random factor matrix
initialization in fact improves the computation time. In particular, the first factor
matrix computation – usually generated by the HOSVD itself – is the most ex-
pensive step. This is because this initial HOSVD would be computed on a large
data tensor AI1×I2×I3 , where subsequent HOSVDs during the ALS iterations only
work on tensors TI×I×R or PI×R×R with R� I.
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Figure 7.5: Visualization of the HOSVD and the HOEIGS implementations.

Algorithm 8 HOSVD by EIGS along mode n.
1: Input: A ∈ RI1×I2×···×IN , Rn
2: Output: optimized U(n) ∈ RIn×Rn

3: for mode n of N do
4: unfold A ∈ RI1×I2×···×IN into its matrix representation A(n) ∈ RIn×(I1·...·In−1·In+1·...·IN)

5: build the covariance matrix C(n) ∈ RIn×In from A(n)AT
(n)

6: compute the EIG C(n) = Q(n)ΛQ(n)T

7: sort the eigenvalues λ j and its corresponding eigenvectors q(n)j by largest magnitude

8: set the Rn sorted eigenvectors Q(n)′ , which correspond to the leading left singular values,
to the mode-n factor matrix Q(n)‘→ U(n)

9: end for
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The choice of the initial rank Rinit is an important factor of the computational
cost of the initial tensor decomposition. The smaller Rinit , the fewer computations
in bottleneck (1) and bottleneck (2) are needed. The typical setting for a reduced
rank TA would be half of the dimension of the input volume A , thus Rinit =

I
2

(see [Wu et al., 2008; Suter et al., 2010a; Suter et al., 2011]). However, in one of
the developed TA multiresolution models, [Suter et al., 2013], it was possible to
reduce Rinit to half of the brick size instead. This is a great benefit once the initial
datasets get large.

Achieved Decomposition Times

For performance analysis, the critical steps during the initial tensor decomposition
steps were measured. The tensor decomposition has been carried out on an Quad-
Core Intel Xeon 2.4GHz MacPro5,1 with 22GB RAM and a 500GB SSD hard
disk, and a Geforce GTX 285 graphics card with 1GB memory. In Tab. 7.2, the
total decomposition time for HOSVD and HOEIGS as well as the time for the
most critical TTM (Fig. 3.14(a)), the SVD, the EIGS, and the covariance matrix
are shown. Different data sizes were used to give insight into the scaling of the
initial decomposition algorithm steps. As a conclusion from Tab. 7.2, it can be
seen that the SVD/EIGS computation and the critical TTM computation are the
most expensive steps. The critical TTM is used once per ALS iteration, while
the SVD/EIGS is used three times per ALS iteration. Regarding the data size
of the input tensor, it can be derived that the HOSVD is in advantage for large
initial tensor decomposition, while for data bricks or small volumes, the HOEIGS
is marginally faster. Whereas [Kolda et al., 2008] reported that for MATLAB
tensor toolbox and for a tensor A1003 the HOEIGS was roughly 10 times faster
than the HOSVD. However, it has to be considered that the computation is highly
dependent on the used HOEIGS, HOSVD, LAPACK and BLAS implementation
as well as the computer hardware.

After the tensor decomposition representation implementation has been intro-
duced, the generation of the multiresolution data structure is illustrated.

7.3 Octree Build

As introduced in Chap. 4, a multiresolution model is an essential part for direct
volume rendering of large datasets. As underlying multiresolution data structure
an octree with equally sized nodes (bricks or subvolumes) was chosen. This octree
data structure is produced in an “offline” preprocessing routine prior to rendering.
During this thesis a generic octree build was implemented for the multiresolution
model with global mipmapped TA bases (see Fig. 4.1(b)). The described generic



7.3 Octree Build 87

Brick Bonsai Hnut Flower Branch 1 Branch 2
A643 A2563 A5123 A10243 A20483 A20482×4096

HOSVD 0.13s 1.6s 8.8s 50s 15min 20min
HOEIGS 0.11s 1.6s 10s 70s 28min 83min
Critical TTM 0.003s 0.03s 0.3s 2.5s 2.4min 4.7min
Other TTMs ≤ 0.001s ≤ 0.01s ≤ 0.05s ≤ 0.2s ≤ 7s ≤ 15s
SVD ≤ 0.01s ≤ 0.13s ≤ 0.65s ≤ 3.5s ≤ 8s ≤ 4.5min
EIGS ≤ 0.005s ≤ 0.10s ≤ 0.70s ≤ 5s ≤ 42s ≤ 5.5min
C = AAT 0.002s 0.01s 0.05s 0.2s 0.8s 3.5s

Table 7.2: Times of different steps during the initial tensor decomposition, measured with
differently sized datasets. All initial decompositions were run over three ALS iterations.

octree build was used in [Suter et al., 2013] and is explained in more detail here.
Prior to the actual octree node generation, the global mipmapped TA bases need
to be generated.

7.3.1 Processing of Global TA Bases

In this section, the algorithm (Alg. 9) to produce the global mipmapped factor
matrices is given. We start with the initial three factor matrices that were pro-
duced on the full input dataset (see Alg. 9, line 3) and average them to all lower
resolution octree hierarchy levels (see Fig. 7.6 and Alg. 9, line 5). As described
in Sec. 6.3, the submatrices in our mipmapped global TA matrices need to fulfill
certain orthogonality constraints in order to produce rank-reducible core tensors.
Therefore, as shown in Fig. 7.7 and Alg. 9, line 9, another SVD on a row-subset
of the initial matrices is applied.

Algorithm 9 Generate global TA bases.
1: Input: A ∈ RI1×I2×I3

2: Output: U(n)′
Jn↓k ∈ R( In

k+1+x·2·Wn−2·Wn)×Rn

3: generate initial factor matrices U(n) by the HOOI (Alg. 16)
4: for every octree level k do
5: downsample factor matrices to U(n)

↓k
6: recompose factor matrices
7: for every row-block sn of brick length Jn = B+Wn do
8: get submatrix U(n)

Jn↓k (including brick borders)

9: get new U(n)′
Jn↓k via SVD on U(n)

Jn↓k
10: save processed matrices U(n)′

Jn↓k
11: end for
12: end for
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Figure 7.6: Step one during factor matrix processing (spatial subsampling): Mipmapping
of global TA factor matrices (see Alg. 9, line 5).
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Figure 7.7: Step two during factor matrix processing (spatial selection): Row-block SVDs
corresponding to bricks of the global TA factor matrices (see Alg. 9, lines 7–11).

Fig. 7.8 visualizes the submatrices U(n)
Jn↓k

for a given brick of size B = 64 and a
given octree level k, as they need to be selected in Alg. 9, line 8. During the row-
subset SVD, the row-blocks are chosen for each brick and its available borders
Wn. As described in Sec. 6.3 we use a 2-voxel border for the volume rendering
(gradient interpolation) and a 4-voxel border for the information overlap between
neighboring bricks (see also Fig. 7.7). For the submatrix with length Jn = B+Wn
corresponding to a brick with index in that is:
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Wn =





Wn = 0 if ((in == 0) AND (in == ( In
B −1))

Wn = 2+4 = 6 if ((in == 0) AND (in < ( In
B −1))

Wn = 2+4 = 6 if ((in > 0) AND (in == ( In
B −1))

Wn = 2 · (2+4) = 12 if ((in > 0) AND (in < ( In
B −1)).

J2J1 U(3)
J3 ↓kU(2)
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Rn RnRn

J3 borders

Figure 7.8: Submatrices U(n)
Jn↓k

for a given brick of size B = 64 and a given octree level k:
the submatrix length Jn includes brick borders needed for the core tensor generation. The
borders Wn are visualized with the light brown colors.

To give an idea what such global TA bases look like, we visualize in Fig. 7.9
the global factor matrices of U(1) of the hazelnut dataset. The intensity distribu-
tions look similar to frequency patterns but in fact show the input-data-specific
distribution of the TA’s data-specific factor matrix bases. Furthermore, similar to
a matrix PCA the first rank is represented by one major base frequency, while
the frequencies increase with subsequent ranks, i.e., higher frequency details are
encoded with additional ranks.
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Figure 7.9: Visualization of an initial factor matrix U(1) of the hazelnut and its full res-
olution row-block SVD replacement U(1)

↓0
. Subsampled matrices U(1)

↓k
are stretched to fit

and value coded: brown (negative), white (zero), green (positive), [Suter et al., 2013].
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Based on these global mipmapped TA factor matrices, each brick can be com-
pressed with submatrices defined in this section and as described next.

7.3.2 Brick Compressor

In order to make a link between the global TA factor matrices and the actual mul-
tiresolution data, the octree data structure is generated. As shown in Fig. 7.10, an
octree node in our TA multiresolution model consists of one core tensor. Alg. 10
and Fig. 7.11 describe the procedure to produce one core tensor or one octree
node (the so-called brick compression). The basic steps of the brick compression
are: (1) load a brick Abrick at position (i1, i2, i3) with available borders, (2) load
the corresponding submatrices, (3) compute the core tensor (projection of brick
onto inverse submatrices), and (4) encode the core tensor with an 8-bit logarithmic
quantization. The generic octree build is the topic of the next section.

lowest resolution

highest resolution

...

...

B3 bricks

...

...

...

.........core tensor   B

Figure 7.10: TA-based octree data structure: One octree node is represented with a core
tensor showing the relationship to the global TA factor matrices and the original data.

Algorithm 10 Brick compressor: Core tensor generation from global TA matrices
for a given hierarchy level k and a brick Abrick↓k at position (i1, i2, i3).
1: Input: brick data and borders Abrick↓k ∈ RJ1×J2×J3 at position (i1, i2, i3)
2: Output: quantized core tensor Bbrick↓k ∈ RR1×R2×R3 for position (i1, i2, i3)
3: if Abrick↓k is empty then
4: skip this brick
5: else
6: determine submatrices U(n)

Jn ↓k for position (i1, i2, i3)
7: compute core tensor:

Bbrick↓k = Abrick↓k×1 U(1)
Jn ↓k

T
×2 U(2)

Jn ↓k
T
×3 U(3)

Jn ↓k
T

8: quantize core (log2, float32 to uint8) and store it with an id
9: end if
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Figure 7.11: Load submatrices from global TA factor matrices in order to project the
brick on the submatrices. The projection forms the core tensor of one octree node.
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7.3.3 Generic Octree Building

The generic octree data structure building for the described multiresolution model
is shown here. The data of an octree node corresponding to an input subvolume
AJ1×J2×J3 is given by its core tensor BR1×R2×R3 , whose coefficients indicate the
relationship between the factor matrices and the volume.

Given the mipmapped factor matrices U(n)
↓k

, with R columns each, we com-
pute the core tensor BR×R×R per octree node. That is, the input subvolume brick
AJ1×J2×J3 , at the required spatial resolution, is projected onto the row-block SVD
factor submatrices U(n)

Jn ↓k
of the appropriate subsampling level k(see Sec. 6.3). The

length Jn of each brick Abrick includes available brick borders Wn as defined in
Sec. 7.3.1. Without restricting the generality of the described concepts, in the
following we assume a subvolume brick size of B3 = 643, thus per-brick core ten-
sor ranks R = 32 and core tensors of size R3. The core tensor rank R is equal to
the initially chosen rank Rinit of the global mipmapped TA factor matrices, i.e.,
R = Rinit = 32. For empty bricks, the node’s core tensor is null and skipped.

The implementation of the generic octree building is performed block-wise, as
illustrated in Fig. 7.12. One block is of size AI1×I2×J3 , where J3 is the size along
the third spatial data axis. These blocks are loaded and processed one after the
other. For every data block the core tensors of all bricks are generated, encoded
and stored. Moreover, the data blocks are averaged to all their lower resolution
octree hierarchy levels that are maintained in a separate array in the main mem-
ory. Once the lower level data bricks are filled, they are processed, too. This
temporary data array stores for every octree hierarchy level averaged data blocks
corresponding to four brick sizes (I1↓k×I2↓k×4 ·B). By maintaining four averaged
bricks per octree level the access to neighboring bricks for the border collection is
guaranteed. Once the averaged bricks are processed, the two last averaged blocks
at position 2 and 3 are moved to the start of this octree level and the next loaded
block is downsampled to position 2. This procedure is continued until all data
blocks are loaded and all octree levels are processed. The octree building process
is shown in Alg. 11.

Note: The node ids for the octree data structure are given level-wise. The root
level has always the node id 1, the second level has always the node ids 2 to 9. The

starting node of a level k can be computed as id =
k−1
∑

i=0
23·i. For each octree level,

the ids are given per block. The ids are first enumerated along the I1↓k axis and
then along the I2↓k axis, as visualized in Fig. 7.13. For the visualization system, a
data structure accessing the bricks z-curve indexing is constructed such that each
child node can be access via child id = (parent id · 8) + 1 and vice versa via
parent pos = child pos−1

8 . A converter creates the desired node id transformation
for the visualization system and stores the individual cores in 2GB files.
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Figure 7.12: Octree averaging on the fly: Illustrated on a five level octree hierarchy with
a brick size of B = 64. The original data is loaded as blocks of size I1× I2×J3, where J3 is
the brick size B plus available borders (top row). Whenever new data blocks are loaded,
they are downsampled to their lower resolution representations (middle and bottom row).
For the lower resolution representations, always four blocks of size I1↓k × I2↓k × 4 ·B are
kept in memory. In order to have brick borders available at the downsampled blocks, the
brick borders need to be collected from the neighboring blocks. Once the first eight blocks
are loaded, the data in all the lower resolution representation is shifted leftwards by two
blocks before the next four full resolution blocks are loaded. This procedure guarantees
to have all the necessary brick borders available for the lower resolution representations.
Thus, in the lower resolution representations, the number of blocks that are processed
depends on their position and on their availability of brick borders. The circled numbers
show in what order the data blocks are processed in order to produce the core tensor
hierarchy.
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Algorithm 11 Generic octree build.
1: Input: A ∈ RI1×I2×I3

2: Output: multiresolution TA data structure (matrices; core tensors) and meta information file
3: process factor matrices, as shown in Alg. 9
4: for every data block do
5: load data block AI1×I2×J3 into memory
6: average data block to lower resolutions
7: for all brick Abrick↓k in leaves’ level of the octree hierarchy, i.e., k = 0 do
8: compress brick as in Alg. 10
9: end for

10: if the first eight full resolution blocks were loaded then
11: for every brick Abrick↓k in the first three downsampled blocks do
12: compress brick (Alg. 10)
13: end for
14: end if
15: if last blocks were loaded then
16: for every brick Abrick↓k in the last three downsampled blocks (if available) do
17: compress brick (Alg. 10)
18: end for
19: end if
20: if inner blocks were loaded then
21: for every brick Abrick↓k in the two middle downsampled blocks do
22: compress brick (Alg. 10)
23: end for
24: end if
25: end for
26: for every brick Abrick↓k in the level above the root do
27: compress brick as in Alg. 10
28: average data to root brick
29: end for
30: for root brick Abrick↓k do
31: compress root brick as in Alg. 10
32: end for
33: save meta information file

Finally, for the multiresolution DVR and multiscale feature visualization cou-
pling as described in Sec. 6.3, an LOD error has to be computed per brick. This
procedure is performed after the octree is built and is described next.

LOD Error Pre-computation

As part of the preprocessing – after the octree build, a per-brick error is computed
in order to couple the rank-reduced reconstructions with an error corresponding to
different feature scale renderings (see Sec. 6.1.1). The RMSEs for a certain num-
ber of rank-reduced brick reconstructions are stored in a separate file. Each brick
RMSE is computed using trilinear interpolation to the original LOD. During the
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Figure 7.13: Octree ids illustrated for three octree levels.

interactive visualization, the user can decide what error, i.e., what approximation
level, he allows.

After having introduced the generation of the multiresolution data structure
(octree), in the next section, the reconstruction strategy from the multiresolution
DVR structure is presented. While the octree building is not time-critical, it is a
need that the reconstruction process performs at run-time.

7.4 Parallelization of the Tensor Reconstruction

7.4.1 GPGPU-based Tensor Reconstruction

For volume ray casting one can consider either a per-voxel (e.g., for random ac-
cess during traversal) or per-brick reconstruction approach. Using a per-brick
solution permits us to optimize reconstruction by refactoring computations in or-
der to reduce computational costs and to take advantage of the complex memory
hierarchy of nowadays GPGPU platforms. The reconstruction is performed brick-
wise. Each requested brick, if not already cached by the rendering system, is
loaded and transferred to the GPU where the tensor reconstruction is performed.
The GPGPU-based tensor reconstruction strategy and implementation was pub-
lished in [Suter et al., 2011]. The basic concepts of the reconstruction were, how-
ever, applied to both of the multiresolution models from Chap. 4. In the follow-
ing, the CUDA implementation for the optimized Tucker reconstruction by TTMs
(Sec. 3.6) is explained. Before that, the CUDA terminology is briefly introduced.
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7.4.2 CUDA Terminology

A CUDA kernel is a SIMD parallel program that is executed by an array of threads
(work-items),1 all running the same code. The threads are organized in a grid of
thread blocks, and each kernel is called with a given grid size (NDRange) and a
given blocks size (work groups). Each thread owns some registers (private mem-
ory) and each thread block has access to a limited amount of shared memory (local
memory), which constitute the fastest data access paths. Additionally all threads
can concurrently access global memory, constant memory and texture memory
(global memory), where the memory latency increases from constant and texture
memory (read only and cached), to local and global memory (read/write).

7.4.3 CUDA TTM Reconstruction

The reconstruction process from our chosen tensor decomposition is, in princi-
ple, straightforward, and can be optimized by a careful reordering of operations
(Sec. 3.6). Nevertheless, reconstruction time can be critical for real-time visual-
ization and therefore needs to be given attention in our system. For the first time,
we address GPGPU-based tensor reconstruction. The reconstruction is expected
to be faster when following a strategy that sticks to general concepts of paral-
lel computing. For example, while thresholding of tensor coefficients [Wu et al.,
2008] may reduce the amount of data, the reconstruction process can be more te-
dious for parallel computing since complex decoding algorithms have to be used.
Moreover, the reconstruction is affected by the format and representation of the
coefficients.

The tensor reconstruction in CUDA is implemented using three successively
applied TTM kernels. Each kernel corresponds to the application of one n-mode
product (Eq. (C.3)), hence TTM1, TTM2, and TTM3. After applying TTM1 and
then TTM2, we need each time to temporarily store a 3rd-order tensor of size
B×R2 and B2×R, respectively. Eventually after applying TTM3 the final B3

sized volume brick is reconstructed. The pseudo code implementation of the three
CUDA kernels is given in the Algs. 12–14. We use a thread block per decoded
brick, where each thread is responsible for computing one element of the tensor-
matrix multiplication. The grid-size for parallel execution is determined by the
number of bricks that need to be decoded in the current frame (e.g., 8 bricks for
the minimal octree refinement).

The simplified CUDA implementation layout is shown in Fig. 7.14. For TTM1,
we compute one slice of the intermediate tensor B′ on one thread block. For one
TTM1-block, we load the factor matrix U(1) and one slice of B (slice is given
by blockId). For reasons of memory optimizations, we compute for TTM2 and

1Analogous OpenCL terms are mentioned in parenthesis.
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TTM3 only half slice of B′′ and half slice of Ã , respectively, on one thread block.
For one TTM2/TTM3-block, we load half of the factor matrix and one slice of the
intermediate data structures B′ and B′′. The memory usage and performance op-
timizations of the CUDA TTM reconstruction, following CUDA implementation
best practices [CUD, 2010], are explained next.

Algorithm 12 CUDA kernel for TTM1. From [Suter et al., 2011].
1: load U(1) and tensor core B slices to GPU
2: CUDA kernel:
3: extract min/max values for dequantization
4: linearly dequantize one element of U(1)

5: log dequantize one element of B
6: each thread writes one element of U(1) to shared memory
7: each thread writes one element of the B slice to shared memory
8: synchthreads()
9: for each r1 in R1 do

10: voxel += U(1)(i1,r1) ·B(r1,r2,r3)
11: end for
12: store voxel to the intermediate B′(i1,r2,r3)

Algorithm 13 CUDA kernel for TTM2. From [Suter et al., 2011].
1: load U(2) and half tensor B′ slices to GPU
2: CUDA kernel:
3: extract min/max values for dequantization
4: linearly dequantize one element of U(2)

5: each thread writes one element of U(2) to shared memory
6: each thread writes one element of the B′ slice to shared memory
7: synchthreads()
8: for each r2 in R2 do
9: voxel += U(2)(i2,r2) ·B′(i1,r2,r3)

10: end for
11: store voxel to the intermediate B′′(i1, i2,r3)

Algorithm 14 CUDA kernel for TTM3. From [Suter et al., 2011].
1: load U(3) and half tensor B′′ slices to GPU
2: CUDA kernel:
3: extract min/max values for dequantization
4: linearly dequantize one element of U(3)

5: each thread writes one element of U(3) to shared memory
6: each thread writes one element of the B′′ slice to shared memory
7: synchthreads()
8: for each r3 in R3 do
9: voxel += U(3)(i3,r3) ·B′′(i1, i2,r3)

10: end for
11: add contribution of hot-corner core value to voxel
12: store voxel in decoding buffer for Ã (i1, i2, i3)
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Figure 7.14: CUDA implementation layout of tensor reconstruction: One CUDA thread
computes one voxel ai1i2i3 . Otherwise a slice-wise matrix matrix computation was chosen
such that it fits the grid size and layout of CUDA.
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7.4.4 Performance Optimizations

In order to optimize the parallel execution on the GPU, data parallelism and mem-
ory usage should be optimized, taking into account the bandwidths to the parts
of the memory hierarchy, thus increasing throughput. In our approach, host-to-
device data transfers are reduced by using page-locked buffers. That is, before
launching the kernel TTM1, the quantized factor matrices and the quantized core
tensor of one brick are transferred all at once to the global GPU memory. Our
GPU TTM reconstruction code (TTM kernels) uses intermediate data structures
(B′ and B′′), which allows us to make use of the on-chip memory.

The temporary data structures of B′ and B′′ are stored in the global mem-
ory, and slices of these 3rd-order tensors are loaded to the shared memory when
requested. Threads within the same thread block cooperate to load into shared
memory the necessary elements of U(1), U(2),U(3), B, B′ and B′′. Always, one
single tensor element is loaded per thread. A syncthreads() barrier at the end of the
loading phase ensures that all the elements are up-to-date before performing cal-
culations. In order to avoid bank conflicts in shared memory accesses, the factor
matrices and core tensors were dequantized to 32-bit floating point words before
we upload the data to shared memory. Thus, all accesses are aligned on 32-bit
words.

For TTM2 and TTM3, we split the matrix matrix multiplication of one slice
into two blocks. In that way, we optimize the shared memory usage and load only
half of a factor matrix together with the full core tensor (we thus compute only
upper or lower half of a matrix with the other matrix). With this scenario, we need
for TTM1 (B ·R · 4+R ·R · 4) bytes and for TTM2/TTM3 (B/2 ·R · 4+B ·R · 4)
bytes of shared memory per block, which works with 32-cubed bricks for CUDA
1.x and 2.x. We have a maximum of 16 KB (CUDA 1.x) or 48 KB (CUDA 2.x) of
shared memory available per multiprocessor, where one multiprocessor can have
at maximum 8 blocks. Depending on how much shared memory is used, fewer
or more blocks are loaded per multiprocessor. To summarize, in our implemen-
tation, increasing the use of shared memory has higher priority than maximizing
the number of blocks run per processor (for CUDA 1.x).

Based on this tensor-specific GPU-based reconstruction implementation, the
visualization for the interactive rendering was performed. In the next section, the
visualization system and the interactive performance for the tensor-based visual-
ization are given.

7.5 Visualization and Interactive Performance

The two multiresolution models from Chap. 4 were implemented with two dif-
ferent systems and two different viewers. In the first model, the focus lies on
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the interactivity of the advanced TTM reconstruction described in Sec. 7.4, in the
second model, the focus lies on the coupling of the multiscalability and the mul-
tiresolution by the LOD error, as indicated in Sec. 6.3. Next, the two applications
and their interactive performance are elaborated.

7.5.1 Application 1: TTM Reconstruction Performance

The bricked TA octree hierarchy as published in [Suter et al., 2011] was used to
verify the GPU-based TTM reconstruction performance. First, the visualization
system is described, then, the test setup to measure the interactive performance is
outlined, and finally, the performance analysis is given.

At run-time, an adaptive loader updates a view-dependent and transfer function-
dependent working set of bricks. The working set is incrementally maintained on
the CPU and GPU memory by asynchronously fetching data from the out-of-core
brick multiresolution TA structure. Following the MOVR approach [Gobbetti
et al., 2008; Iglesias Guitián et al., 2010], the working set is maintained by an
adaptive refinement method guided by the visibility information fed back from
the renderer. The adaptive loader maintains on GPU a cache of recently used vol-
ume bricks, stored in a 3D texture. At each frame, the loader constructs a spatial
index for the current working set in the form of an octree with neighbor pointers.

For rendering and visibility computation, the octree is traversed using a CUDA
stackless octree ray caster, which employs preintegrated scalar transfer functions
to associate optical properties to scalar values, and supports a variety of shad-
ing modes [Iglesias Guitián et al., 2010]. The ray caster works on reconstructed
bricks, and reconstruction steps occur only upon GPU cache misses. The quan-
tized tensor decomposition is dequantized and reconstructed on demand by the
adaptive loader during the visualization on the GPU (see Sec. 7.4).

In order to make structural exploration of the datasets possible, the reconstruc-
tion can consider only the K most significant ranks of the tensor decomposition,
where K ∈ [1..R] is chosen by the user. The reconstruction rank K can be changed
by the user during the visualization process with a rank slider. Lower-rank ap-
proximations give an outline of the visualized dataset and can highlight structures
at specific scales [Suter et al., 2010a] (see Sec. 6.2). Higher K values add more
details onto the dataset.

We implemented a library supporting the volume tensor reconstruction and its
integration with a GPU-accelerated out-of-core multiresolution volume rendering
framework using C++ and CUDA 3.2. All performance tests have been carried
out on an Intel Core 2 E8500 3.2GHz Linux PC with 4GB RAM, and GeForce
GTX 480 graphics with 1.5GB of memory. The multiresolution volume octree is
stored in an out-of-core structure, based on the Berkeley DB, with each 323 brick
being stored as a quantized rank-(16,16,16) tensor decomposition. Preprocess-
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ing consisted in the construction and storage of the multiresolution volume octree,
including the computation of the tensor decomposition for all bricks and the quan-
tization of the coefficients. The preprocessing time for the 2GB chameleon dataset
was 25min15sec and in the case of the 16GB tooth dataset the preprocessing time
was 8h45min.

We evaluated the rendering and tensor reconstruction performance on the great
ape molar (App. A). Our interactive inspection sequences include overall views
and extreme close-ups, which stress our adaptive loader by incrementally re-
questing and reconstructing a large number of bricks. Fig. 7.15 demonstrates
the achieved performance. As we can see, in any case an interactive rendering
performance can be maintained, with frame-rates higher than 12Hz even for the
most demanding situations, and on average between 50Hz and 100Hz. In particu-
lar, the timing reveals that our tensor reconstruction constitutes only a negligible
overhead with respect to the overall rendering cost. Rendering time is in fact dom-
inated by the ray casting and data transfer times. The most costly part of the tensor
reconstruction process is the final copy of the decoded bricks to texture cache.

The number of rendered bricks per frame varies depending on the zoom factor,
and is always maintained below 7000 by our adaptive renderer. Brick dequantiza-
tion and reconstruction occurs only upon cache misses, which attributes to the low
tensor reconstruction cost. But even under the most stressful situations where the
number of rendered bricks changes rapidly, the dynamic update process is largely
dominated by the brick data uploading time from CPU to GPU and not by the
tensor reconstruction.

7.5.2 Application 2: Multiscale Feature Visualization

In this application, the implementation of the LOD error and rank coupling of mul-
tiresolution DVR and multiresolution feature visualization as published in [Suter
et al., 2013] is presented. The application bases on the second multiresolution
DVR model, as described in Sec. 7.3.

The goal of the interactive visualization system was to develop a multiresolu-
tion volume renderer that selects bricks not only at a certain spatial resolution, but
also at a chosen feature scale. We achieved this by modeling the multiscalability
within the multiresolution TA octree data structure, as shown in Sec. 7.3.3. The
multiresolution renderer builds upon state-of-the-art view-dependent LOD selec-
tion, out-of-core data loading, brick caching on the GPU, asynchronous loading
and rendering budgets. The bricks are decoded and reconstructed on demand us-
ing consecutive tensor times matrix multiplications, as introduced in [Suter et al.,
2011], but using the new global mipmapped factor matrices hierarchy.

In addition to the view-dependent screen-projection based LOD selection, the
feature scale of the reconstruction is chosen based on a user input (see Alg. 15).
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Figure 7.15: The performance measured is on the great ape molar: (a) indicates the per
frame performance of different computing steps measured in ms, (b) shows the number of
rendered and decoded bricks. Adapted from [Suter et al., 2011]
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The user input is a feature scale parameter, which maps to a tensor rank. A higher
feature scale is achieved by reconstructing more ranks, a lower feature scale is
achieved by reconstructing fewer ranks. During the actual visualization, a lower
feature scale means that we perform a coarser approximation. This principle is ex-
ploited to steer the feature scale via the per-brick RMSE error ranges, as described
in Sec. 7.3.3.

Algorithm 15 Per frame TA-error-based LOD traversal. From [Suter et al., 2013].
1: rendering list L, loading queue Q, heap H (screen-size sorting)
2: assign a rank corresponding to εtarget to the root brick Abrick 1
3: if Abrick 1 is on GPU and Abrick 1 is visible then
4: push Abrick 1 to H and then push Abrick 1 to L
5: end if
6: push Abrick 1 to Q
7: while H not empty do
8: set current brick Abrick↓k to the front of H
9: remove front from H

10: if (size(Q)≥ budgetGPU ) || (size(L)≥ budgetrender) then
11: break
12: else if (Abrick↓k has no children) || (εtarget > εrank=8(Abrick↓k)) || [(εtarget >

εrank=32(Abrick↓k)) & (screen size(Abrick↓k))< screen size threshold)] then
13: continue
14: end if
15: set list C to all visible children of Abrick↓k
16: assign all of C with ranks corresponding to εtarget
17: if all of C are on GPU then
18: sort C according to the rendering order
19: find Abrick↓k in L and replace it with all of C
20: push all of C to H
21: end if
22: push all of C to Q
23: end while
24: update GPU usage statistics based on Q and L
25: request missing bricks on GPU from Q to (re)load async
26: render bricks from L

Fig. 7.16 illustrates the multiscale adjustments to the multiresolution LOD
selection given a feature scale, represented by εtarget (Alg. 15, line 12). The min-
imum error front corresponds to εtarget > εrank=8(Abrick↓k), which prevents fur-
ther resolution refinement; in contrast, the maximum error front corresponds to
εtarget > εrank=32(Abrick↓k), which enforces refinement. During the brick refine-
ment, the rank is updated based on the εtarget (Alg. 15, line 16). As mentioned in
Alg. 15, line 10, we follow this adjusted multiresolution front as long as we stay
within the given rendering and memory budgets.

In order to verify the multiscale and multiresolution tensor approximation hi-
erarchy introduced in this paper, we implemented a volume rendering application
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depending on (1) the minimum error octree front (prevent refinement), and (2) the maxi-
mum error octree front (enforce refinement).

in C++ based on a GPU-ray caster that uses GLSL-shaders. The interactive visu-
alization application is demonstrated on a Quad-Core Intel i7 3.2GHz with 8GB
RAM and a Geforce GTX 580 with 1.5GB memory. The preprocessing has been
carried out on an Quad-Core Intel Xeon 2.4GHz MacPro5,1 with 22GB RAM
and a 500GB SSD hard disk, and a Geforce GTX 285 graphics card with 1GB
memory. The test datasets include three µCT volumes: a hazelnut (5123, 128MB,
8bit), a flower (10243, 1GB, 8bit) and a wood branch (20483, 16GB, 16bit) dataset
(see App. A). To avoid excessive type conversions, the input data is preprocessed
in floating point precision and the large data tensors (e.g. 32GB for wood branch)
are accessed from memory mapped files.

As already shown in Sec. 7.5.1, the rendering from TA compressed data is
dominated by the ray caster (see Fig. 7.17). Our multiresolution and multiscale
DVR system shows interactive performance with an average frame rate (fps) of 25
and dropping to about 7 fps only briefly for the flower test data. The decompres-
sion and ray casting are performed in parallel in separate threads on the GPU. The
rendering is performed adaptively according to the zooming factor and the defined
error, which was chosen to be a medium error. The bricks are loaded according to
the previously defined error-reconstruction-rank coupling.

In a multiresolution model, besides the interactive performance, the fit be-
tween the glued bricks is a quality measure. This is briefly analyzed next.
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Figure 7.17: Performance measurements of the flower rendering. Time in ms per frame
as well as number of loaded and rendered blocks per frame. From [Suter et al., 2013].
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7.5.3 Bricking and TA Multiresolution

The multiresolution DVR models base on bricking the input volume into subvol-
umes of equal sizes and of varying resolutions. During rendering the multiresolu-
tion bricks are glued together by the help of interpolating their gradients of brick
border voxels. In the visualization system used for the bricked TA multiresolution
model, it can be seen that even with a lower rank tensor approximation, i.e., by
using less storage and bandwidth, the essential parts as well as details of a certain
feature size can be visualized. Fig. 7.18(b) shows the effects of rank truncation on
gradient quality. As we can see, block boundaries become apparent only at low
ranks. Such artifacts are inherent to all brick-based lossy compression methods,
and can be alleviated, at the cost of higher rendering time, by interblock interpola-
tion through sampling neighboring bricks [Ljung et al., 2006a; Beyer et al., 2008]
or by using deferred filtering approaches [Fout et al., 2005; Fout and Ma, 2007].

(a) veiled chameleon (b) gradients of bricking

Figure 7.18: (a) Chameleon dataset rendered with the per brick multiresolution TA
model; (b) comparison of various rank-(R,R,R) TAs using the gradient vector of the skin
isosurface mapped to RGB colors, from [Suter et al., 2011].

The global mipmapped multiresolution TA model shows more multiresolution
glueing during rendering. This can be explained with the adaptive rank LOD
error selection, which sometimes switches to lower resolutions if the error permits.
Fig. 7.19 indicates that for a full resolution no brick artifacts are visible (left). For
a medium and a higher error, artifacts are mainly visible due to different rank-
reconstructions being selected for close neighboring bricks.

7.6 Summary

In this chapter, the four thesis-relevant implementation stages were elaborated.
First, a template-based C++ implementation with all the relevant tensor approxi-
mation classes was developed and made available within the vmmlib open source
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(a) full resolution (b) medium error (c) high error

Figure 7.19: Mapping of gradient vector of the chameleon datasets’ skin isosurface to
RGB color: (a) Full resolution shows no bricking errors, (b-c) bricking effects for a
medium and high LOD error, respectively. That is, multiple resolution and multiple ranks
were merged into one screen image.

library [vmm, 2013]. This implementation includes memory-optimized and par-
allel executed tensor times matrix multiplications (TTMs), which were one of
the bottlenecks during the tensor decomposition algorithm. Moreover, two dif-
ferent implementations for the higher-order SVD (HOSVD) were presented and
analyzed. One of the approaches was based directly on the LAPACK SVD im-
plementation (HOSVD), the other approach was based the symmetric eigenvalue
decomposition from LAPACK (HOEIGS), which is applied on the covariance ma-
trix of the unfolded input tensor, i.e., on C(n) = A(n)AT

(n). As a conclusion, the
tensor decomposition for smaller input tensors (e.g., octree bricks) the HOEIGS
was faster, while for input tensors (≥A5123) the HOSVD was faster.

Second, a generic octree generation for the global TA bases multiresolution
model was implemented. The implementation sequentially loads blocks of input
data along the third spatial axis and produces the octree nodes. The lower reso-
lution octree nodes are averaged on the fly, once the requested data is available.
Each octree node is represented by a core tensor, matching to the data brick at the
given octree node, and the corresponding submatrices of the global TA matrices.
The core tensors are then stored in their quantized form (logarithmic encoding).

Third, the tensor reconstruction algorithm for interactive visualization was de-
veloped for GPU execution with CUDA. This implementation mainly consists of
parallel TTM multiplications, which significantly reduces the computation time
for the brick reconstructions. In fact, it was shown that the tensor reconstruc-
tion time was negligible compared to the overall rendering time, which is still
the dominating factor. For both multiresolution models, interactive frame rates
could be presented. Finally, multiresolution visualization (spatial axis in global
TA bases) and the multiscalable feature representation (rank axis in the global TA
bases) could successfully be coupled by the help of an error metric computed for
all octree nodes and for different rank-reconstructions of the octree nodes.
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3D direct volume visualization systems have become standard tools to an-
alyze, explore and inspect large amounts of data. Direct volume visualization
(DVR) approaches allow to visualize cross sections through a volume and to dis-
play transparent areas of an object rather than only an iso-surface as usually visu-
alized by mesh approaches. However, DVR approaches are computationally more
expensive. Moreover, 3D data acquisition devices are typically one step ahead
of 3D visualization systems and produce datasets exceeding the graphics unit’s
memory. There are basically two strategies to address these bottlenecks:

• The actual amount of data can be reduced prior to rendering/visualization.

• The actual rendering efficiency can be optimized.

In DVR for large volumes, a key issue to address both these bottlenecks is
an underlying multiresolution data structure, which organizes the input volume
into an octree structure consisting of nodes of (downsampled) subvolumes at dif-
ferent resolutions. During rendering, the subvolumes can be loaded out-of-core
at a certain resolution once requested. Today, it is state-of-the-art to perform the
visualization directly on the graphics card. This makes the dataset size an even
more precious parameter since the graphics memory is limited and data transfer
from CPU to GPU during the interactive visualization is time consuming. Thus,
it was a major thesis goal to reduce the size of the datasets as much as possible. A
second thesis goal was to extract relevant features within a dataset during data re-
duction. Therefrom, the main thesis hypothesis was to find a unified mathematical
framework for large volume visualization, which connects three tasks in one:

(a) Reduce the actual amount of data.

(b) Extract relevant features from the dataset.

(c) Visualize the data directly from the mathematical frameworks’ coefficients.

In this thesis, tensor approximation (TA) was chosen as the unique framework
since it is known, as a higher-order extension of PCA, to be a feature-sensitive
approach. One strength of TA is its sensitivity on statistical properties like the
major direction or periodicity. In contrast, state-of-the-art approaches like wavelet
transform (WT) are rather beneficial when an overall statistical distribution of
the dataset is intended to be reconstructed with fewer details and at a coarser
resolution. Additionally, TA has shown to be effective at preserving actual three-
dimensional features occurring in some of the sample data (e.g., dental growth
structures). Based on this line of thoughts, TA was for the first time integrated
into a multiresolution volume rendering system as part of this thesis. For this
purpose, two different multiresolution TA models were developed and tested.



111

The first multiresolution TA model is a simple brick-based model, which en-
codes every octree node as a single tensor decomposition (bricked TA model).
This basic TA model was further developed into a multiresolution model that con-
sist of global mipmapped TA factor matrices (global TA bases model). Those
global TA bases represent the basis for the whole octree and core tensors at ev-
ery octree node capture the relationship of the original/downsampled data and the
global TA factor matrices. Indeed, the global TA bases model exploits proper-
ties along the spatial dimension of the TA factor matrix bases. Spatial selectivity
within the TA factor matrices is used for view-frustum culling and adaptive brick
selection, spatial subsampling within the TA factor matrices is used for the down-
sampled lower-resolution representation of the full dataset.

Regarding data reduction, especially the global TA bases model reduced the
storage costs significantly. The storage costs of the bricked TA model are roughly
20 percent of the original data elements (0.2 · I3), while the storage costs of the
global TA bases model are reduced to about 15 percent of the original data ele-
ments (0.15 · I3). The coefficients of the tensor decomposition are in fact floating
point numbers. Therefore, a tensor-specific quantization approach for the tensor
coefficients was developed and constitutes another important contribution of this
thesis. An 8-bit logarithmic quantization scheme for all core tensors and a 16-bit
linear quantization have successfully been used for the TA factor matrices. In the
global TA bases model, the factor matrices were, however, not encoded since they
depict only a marginal data amount. In contrast, the TA factor matrices use a sig-
nificant amount of storage in the bricked TA model. Specifically, incorporating
the coefficient quantization, the storage costs for the bricked TA model raise to 25
percent of the input data elements (0.25 · I3).

Furthermore, the results of Chap. 6 indicate that the tensor rank can be used
as a parameter to steer feature visualization at different scales (multiscalability).
The tensor rank defines the number of column vectors and core tensor coefficients
used for the reconstruction. Hence, the tensor rank is a parameter that adjusts (a)
the amount of data used for the reconstruction, and (b) the scale of the features
visualized in a certain reconstruction. Using more ranks adds details as well as
finer scale features to a visualization, using only a few ranks visualizes the most
prominent data structure (main statistical direction of the data distribution). More-
over, the multiscalability available through TA has been successfully coupled with
the above mentioned multiresolution TA DVR models. That means the presented
multiresolution TA DVR system presented in this thesis allows a researcher to
visually explore features at multiple scales and at multiple resolutions.

Tensor approximation consists of two parts: (1) tensor decomposition, and
(2) tensor reconstruction. In context with interactive out-of-core multiresolution
DVR this parts received different attention during the implementation. The tensor
decomposition was used during a non-time critical preprocessing routine to pro-
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duce the TA multiresolution model. Therefore, CPU tensor classes with memory
optimizations for large tensors were developed and contributed to the open-source
library vmmlib [vmm, 2013]. Based on these tensor classes, a generic octree build-
ing procedure was developed. In contrast, the tensor reconstruction is critical to be
performed in real-time. Thus, a parallel GPU-based tensor reconstruction was de-
veloped during this thesis. Interactive frame rates were successfully achieved. In
fact, it could be shown that the imposed tensor reconstruction overhead is marginal
compared to the overall rendering costs. The developed algorithms were tested on
large volume datasets up to 32GB or 64GB when converted to floating point val-
ues, which are needed for the computations.

Finally, some of the acquired microCT datasets will be made publicly avail-
able in order to be used for comparison of algorithms in future work. This is
an important issue, which allows to make research more comparable and permits
other researchers to have a fast access to large volume test datasets.

The summarized thesis achievements and thesis contributions are illustrated
in Fig. 8.1 in an updated visualization of Fig. 1.6.

data 
reduction

feature 
extraction

decompose

3D data 
acquisition

interactive 
visualization

explorative 
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reconstruct

compact data 
representation
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tensor approximation 
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multiresolution DVR

tensor rank

microCT, pcST
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open-source C++ 
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Figure 8.1: The thesis achievements (green): A unified framework (tensor approximation)
was successfully used to enable multiscale and multiresolution visualization to interac-
tively explore features in large volume datasets.
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8.1 Future Work

The achievements and experiments regarding large volume data visualization per-
formed during this thesis pointed out several future research directions and ideas,
which are discussed here.

• Experiments with Larger Volume Dataset Sizes

In this thesis, experiments with multiresolution tensor-based DVR systems
were performed on datasets up to 32GB of input tensor size and up to 64GB
of floating point tensor size needed for computing. This was a tensor of
size A20482×4096. For further experiments, new larger test volumes would
need to be acquired. Another available test dataset would be the visible fe-
male dataset [US National Library of Medicine, 2003], which comprises
a tensor A2048×1216×5189, i.e., roughly 50GB floating point dataset size.
In fact, the visible female dataset is even available in different modalities
(RGB of Cryosections, CT and MRI), which could maximally form a ten-
sor A2048×1216×5189×5. However, the MRI dataset is difficult to register
with the other modalities since it was scanned separately and the scanning
body setup hence differs too much for a meaningful registration. Thus, we
could have a A2048×1216×5189×4 of 200GB floating point dataset size used
for computing, e.g., during the ALS. For this, the current TA DVR frame-
work would need to be extended to higher orders.

• Extension of Framework to Higher Orders

The direct volume visualization system presented in this thesis uses only
third-order tensor approximation so far. However, tensor approximation
itself is extendable to any number of higher-orders. Thus the decomposi-
tion and reconstruction algorithms as well as the visualization system are
predestinated to be extended to deal with higher-order input tensors, e.g.,
4th-order tensors. Here again, the visible female test dataset mentioned
above is an ideal test case, where the fourth mode would be the data modal-
ities. Other 4th-order input tensor applications would be any time-varying
volume dataset, e.g., hurricane simulations.

• Visualization of TA Derivatives

Another approach to extend and improve the available visualization features
in a DVR system is to use gradients computed as central differences of the
data elements. Gradients help to visually highlight depth and structures
in a dataset. This approach could be easily implemented directly on the
tensor factor matrices. Specifically, the central differences needed for the
gradient computation can be computed along the factor matrices columns
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corresponding to ranks. Therefore, this is a promising approach for tensor-
based multiresolution visualization, in particular, for the global TA bases
model presented in this thesis.

• Encoding of Quantized TA Coefficients

Further storage cost reduction or data transmission reduction can be achieved
by applying on the quantized tensor coefficients an encoding scheme such as
a run-length encoding. The chosen method should allow for a fast random-
access during reconstruction. However, since the tensor reconstruction step
is marginal to the overall rendering costs, this aspect is not expected to carry
significant weight on the tensor reconstruction process.

• Sparse TA Representations

So far, only compact tensor approximation representations were used for
the tensor-based multiresolution DVR. However, there is related work suc-
cessfully employing sparse tensor representations, e.g., [Bader and Kolda,
2007; Liu et al., 2012; Chi and Kolda, 2012]. A suitable multiresolution
sparse tensor approximation data structure could save even more storage
costs and data transmission costs. Similar to the encoding of the quantized
TA coefficients, one needs to verify that the time needed for reconstruction
from a sparse multiresolution TA representation stays negligible.

• Evaluation of Feature-sensitive Error Metrics

Finally, the experiments in Chap. 6 have shown that the applied error metrics
were not always good indicators for extant features. Therefore, it would be
worth to investigate and evaluate different error metrics that for any data
reduction method measure both, the approximation quality of a dataset and
the feature extraction quality. Examples of future investigations are given
in [Wu et al., 2010; Lin and Kuo, 2011; Hill et al., 2011]. Such an evaluation
could be further supported by a user study.

To sum up: In this thesis, tensor approximation was chosen as a unique frame-
work for direct volume rendering of large datasets since it provides feature-sensitive
bases. Moreover, TA provides one single parameter (the tensor rank), which en-
ables an efficient data reduction and an effective feature extraction. Finally, the
TA framework offers properties that fit multiresolution and multiscale volume ren-
dering approaches.



AA P P E N D I X

DESCRIPTION OF DATASETS

A.1 Datasets from the Visualization Community

A.1.1 Bonsai

Description Bonsai tree

Resolution A256×256×128

Voxel size 0.585938mm×0.585938mm×1mm

Voxel format unsigned 8-bit

Acquisition modality CT (contrast dye)

Source Christof Rezk-Salama, University of Erlangen-Nuremberg, Germany
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A.1.2 Bonsai256

Description Bonsai tree

Resolution A256×256×256

Voxel size 1×1×1

Voxel format unsigned 8-bit

Acquisition modality CT

Source Stefan Roettger, University of Stuttgart, Germany
http://www.volvis.org

A.1.3 Engine

Description Two cylinders of an engine block

Resolution A256×256×128

Voxel size 1×1×1

Voxel format unsigned 8-bit

Acquisition modality CT

Source General Electric, http://www.volvis.org

http://www.volvis.org
http://www.volvis.org
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A.1.4 Veiled Chameleon

Description Veiled chameleon, field of reconstruction is 94.5mm

Resolution A1024×1024×1080

Voxel size 1×1×1

Voxel format unsigned 16-bit

Acquisition modality CT

Source Digital Morphology Project, University of Texas, Austin, USA
http://www.digimorph.org/specimens/Chamaeleo_calyptratus/
whole/

A.1.5 VIX

Description Feet

Resolution A512×512×250

Voxel size 0.40234375mm×0.40234375mm×1mm

Voxel format unsigned 16-bit

Acquisition modality CT

Source OsiriX, http://www.osirix-viewer.com/datasets

http://www.digimorph.org/specimens/Chamaeleo_calyptratus/whole/
http://www.digimorph.org/specimens/Chamaeleo_calyptratus/whole/
http://www.osirix-viewer.com/datasets
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A.2 Acquired Datasets

A.2.1 Hazelnut (Hnut)

Description Dried Hazelnut

Resolution A512×512×512

Voxel size 148µm×148µm×148µm

Voxel format unsigned 8-bit

Acquisition modality microCT

Source Susanne Suter, University of Zurich, Switzerland

A.2.2 Beechnut

Description Dried beechnut

Resolution A1024×1024×1546

Voxel size 20µm×20µm×20µm

Voxel format unsigned 16-bit

Acquisition modality microCT

Source Susanne Suter, University of Zurich, Switzerland
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A.2.3 Flower (Leucadendron rubrum)

Description Dried flower (Leucadendron rubrum)

Resolution A512×512×512

Voxel size 60µm×60µm×60µm

Voxel format unsigned 8-bit

Acquisition modality microCT

Source Susanne Suter, University of Zurich, Switzerland

A.2.4 Brick64 (Flower Subvolume)

Description Subvolume of dried flower scan A (600 : 663,512 : 576,512 : 576)

Resolution A64×64×64

Voxel size 60µm×60µm×60µm

Voxel format unsigned 8-bit

Acquisition modality microCT

Source Susanne Suter, University of Zurich, Switzerland
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A.2.5 Wood Branch

Description Wood branch (of a hazelnut tree)

Resolution A2048×2048×4096

Voxel size 18µm×18µm×18µm

Voxel format unsigned 16-bit

Acquisition modality microCT

Source Susanne Suter, University of Zurich, Switzerland

A.2.6 Subvolume of Wood Branch

Description Wood branch (of a hazelnut tree)

Resolution A2048×2048×2048

Voxel size 18µm×18µm×18µm

Voxel format unsigned 16-bit

Acquisition modality microCT

Source Susanne Suter, University of Zurich, Switzerland
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A.2.7 Great Ape Molar

Description Great ape molar, 7mm3

Resolution A2048×2048×2048

Voxel size 3.5µm×3.5µm×3.5µm

Voxel format unsigned 16-bit

Acquisition modality PCST (Swiss Light Source)

Source Christoph Zollikofer, University of Zurich, Switzerland

A.2.8 Great Ape Molar Subvolume

Description A great ape molar subvolume (Sec. A.2.7)

Resolution A256×256×128

Voxel size 3.5µm×3.5µm×3.5µm

Voxel format unsigned 16-bit

Acquisition modality PCST (Swiss Light Source)

Source Christoph Zollikofer, University of Zurich, Switzerland
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A.2.9 Dental Subvolume

Description A great ape molar subvolume showing dental growth patterns

Resolution A256×256×256

Voxel size 1×1×1

Voxel format unsigned 16-bit

Acquisition modality PCST (Swiss Light Source)

Source Christoph Zollikofer, University of Zurich, Switzerland

A.2.10 Dental Subvolume

Description A great ape molar subvolume showing dental growth patterns

Resolution A64×64×64

Voxel size 1×1×1

Voxel format unsigned 16-bit

Acquisition modality PCST (European Synchrotron Radiation Facility)

Source Christoph Zollikofer, University of Zurich, Switzerland
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LINEAR ALGEBRA BACKGROUND

In this appendix, some thesis-relevant linear algebra background is given. In this
thesis, we work with so-called tensor approximations, which extend the concept
of the singular value decomposition (SVD) to higher orders. Therefore, the un-
derlying SVD algorithm and the constraints and properties of the decomposition
are summarized in what follows. The SVD is one of the most widely used matrix
factorization method. Another closely related matrix factorization method is the
eigenvalue decomposition, which can under certain constraints replace the SVD.
The relationship is elaborated in this appendix on the basis of real values. Back-
ground literature that served as a basis to produce this summary can be found in
these works [Trefethen and Bau, 1997; Strang, 1998; Madsen et al., 2004; Pers-
son, 2007; Strang, 2007; Moler, 2008; Strang, 2009; Davis, 2012].

B.1 Eigenvalues and Eigenvectors

Eigensystems are most important in modeling dynamic problems (change over
time, growth, decrease, oscillation), which are not solvable by elimination ap-
proaches. The eigenvalue decomposition (EIG) is used to factorize a square matrix
A∈RM×M into a non-singular matrix S∈RM×M and a diagonal matrix Λ∈RM×M

as shown in Eq. (B.1).

A = SΛS−1 (B.1)

The columns of the matrix S are the eigenvectors x j, while the diagonal values
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of the matrix Λ are the eigenvalues λ j. Denoting the j-th column of S with x j,
it can be easily shown that Ax j = λ jx j. The intuition behind an eigenvector is
to find a non-zero vector x j, which has the same direction as Ax j. The scaling
number λ j determines how the vector x j is transformed by A, i.e., whether x j is
unchanged (λ == 1), compressed (λ < 1), stretched (λ > 1) or mirrored (λ <
0). Finally, an eigenvalue decomposition can be seen as a change of basis to
“eigenvalue coordinates”.

Note: The number λ can be a multiple eigenvalue, meaning that multiple
eigenvectors can correspond to one single eigenvalue. The dimension of the
eigenspace Eλ can be interpreted as the maximum number of linearly indepen-
dent eigenvectors that can be found, all with the same eigenvalue λ (geometric
multiplicity, see also algebraic multiplicity). Therefore, the eigenvectors are often
divided by their length in order to receive one unit eigenvector. In practice, for
most matrices the number of eigenvalues and eigenvectors is equal to the rank of
the matrix. The eigenvalue properties can be summarized as:

Eigenvalue Properties

• A number λ is an eigenvalue of the matrix A if det(A−λ I) = 0, where I is
the identity matrix.

• The eigenvalues of A2 and A−1 are λ 2 and λ−1, respectively.

• The product of the M eigenvalues of the matrix A equals the determinant of
the matrix A: λ1 ·λ2 · · · · ·λM = det(A).

• The sum of the M eigenvalues is equal to the sum of the n diagonal entries
of the matrix A, also-called the trace of the matrix A:
λ1 +λ2 + · · ·+λM = trace(A) = a11 +a22 + · · ·+amm.

Special characteristics of the eigenvalue decomposition hold for symmetric
matrices (A = AT ):

Eigenvalue Properties of Symmetric Matrices

• The eigenvalues of a symmetric matrix are real values.

• The eigenvectors of a symmetric matrix can be chosen to be orthogonal.

• All symmetric matrices are diagonalizable (spectral theorem).
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Hence for symmetric matrices the eigenvalue decomposition from Eq. (B.1)
can be written as in Eq. (B.2), where Q is an orthogonal or orthonormal and square
matrix QT = Q−1. Orthonormal vectors are convenient since they never overflow
or underflow.

A = QΛQ−1 = QΛQT (B.2)

While the eigenvalue decomposition only works for square matrices, the sin-
gular value decomposition or short SVD is applicable to any rectangular matrix.

B.2 The Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is a widely used matrix factorization
procedure to solve linear least-square problems. The SVD can be applied to any
square or rectangular matrix A ∈ RM×N . Hence, the decomposition is always
possible. The aim of the SVD is to produce a diagonalization of the input matrix
A. Since the input matrix A is not symmetric, two bases (matrices) are needed
to diagonalize A. Therefore, the SVD produces a matrix factorization into two
orthogonal bases U ∈ RM×M and V ∈ RN×N and a diagonal matrix Σ ∈ RM×N , as
expressed in Eq. (B.3) (matrix form) or Eq. (B.4) (summation form).

A = UΣV−1 = UΣVT (B.3)

amn =
P

∑
r=1

umpσpvnp (B.4)

The bases U and V contain orthogonal unit length vectors u j and v j, respec-
tively, and represent a r-dimensional column space (RM) and a r-dimensional row
space (RN). Hence, the bases U and V are even orthonormal, as indicated in
Eq. (B.3), where the inverse of the matrix V−1 equals its transpose VT. The diag-
onal matrix Σ contains the singular values σi, where σ1 ≥ σ2 ≥ . . .σP ≥ 0, where
P = min(M,N). The number of non-zero singular values determines the rank R
of the matrix A. The SVD can be seen as linear transformation of the orthogo-
nal vectors u j into the orthogonal vectors v j, where σ j is the scaling factor. That
is: A · v j = σ j ·u j or AV = UΣ for the full decomposition. In some applications
truncated versions of the SVD are desired. That is, only the first K singular val-
ues σ1 . . .σK and the corresponding K singular vectors u1 . . .uK and v1 . . .vK are
used for the reconstruction. This approach is referred to as low-rank approxima-
tion of a truncated SVD. The most important properties of the matrix SVD can be
summarized as:
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Matrix SVD Properties

• The matrices U and V are both orthonormal, meaning that their columns
u j and v j are orthonormal; V is even row-orthonormal, since it is a square
matrix.

• The scaling factors (or singular values) σ j are arranged in decreasing order
of magnitude: σ1 ≥ ·· · ≥ σP ≥ 0, where P = min(M,N).

• The SVD is a rank-R decomposition where the number of non-zero singular
values indicates the matrix rank R = rank(A).

B.2.1 Computing the SVD

Most frequently, the SVD is computed by using a Householder reduction to a
bidiagonal matrix followed by a diagonalization using the QR factorization (for
details we refer to [Press et al., 1992; Golub and Van Loan, 1996]). However,
the SVD can also be computed by using symmetric eigenvalue decomposition.
That means, instead of computing the SVD of A, we compute the symmetric
eigenvalue decomposition of AAT or AT A, which are both symmetric matrices
and referred to as covariances matrices of A. In order to find the u1 . . .um, we use
the symmetric matrix AAT (Eq. (B.5)); in order to find the v1 . . .vn, we produce
the symmetric matrix AT A and decompose it as in Eq. (B.6). P is the number of
singular values, where P = min(M,N).

AAT = (UΣVT)(UΣVT)T = UΣ
T VT VΣUT = U




σ2
1

. . .
σ2

P


UT (B.5)

AT A = (UΣVT)T (UΣVT) = VΣ
T UT UΣVT = V




σ2
1

. . .
σ2

P


VT (B.6)

Note that UT U = I and UT = U−1, VT V = I and VT = V−1. Thus in the

example of the matrix V computation, V




σ2
1

. . .
σ2

P


VT has the same form

as an eigenvalue decomposition of a symmetric matrix (Eq. (B.2)), where the
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symmetric matrix is AT A. The columns of V are the eigenvectors of this matrix.
The diagonal matrix produces the squares σ2 of the singular values σ . Note, no
matter with which initial symmetric covariance matrix (AAT and AT A) we start,
the non-zero eigenvalues stay the same.

B.2.2 Full vs. Reduced SVD

The singular value decomposition is usually represented in its compact or reduced
form (Fig. B.1(b)). If we look at the full SVD in Fig. B.1(a), we notice that there
are only P singular values, where P=min(M,N), in the diagonal matrix Σ. There-
fore, the last columns of U will be multiplied by zeros. Hence, it is more economic
to use the reduced form for computations using the SVD. For so-called low-rank
approximations, even smaller decompositions are required known as partial or
truncated SVD (Fig. B.1(c)) and limiting the number of singular values to K < P.
In other words, the full SVD has P singular values, the compact/reduced SVD has
N singular value and the partial/truncated SVD has K singular values.

B.3 Eigenvalues vs. Singular Values

In this section, differences and commonalities between the eigenvalues and singu-
lar values and the eigenvectors and singular vectors are elaborated. The definitions
are taken from [Moler, 2008; Persson, 2007; Madsen et al., 2004].

• An eigenvalue and eigenvector of a square matrix A are a scalar λ and a
non-zero vector x j such that Ax j = λ jx j. An eigenvalue (from German
“Eigenwert”) represents an “own value” or a “characteristic value”.

• A singular value and a pair of singular vectors of a square or rectangular
matrix A are a non-negative scalar σ and two non-zero vectors u j and v j
so that Av j = σ ju j or AT u j = σ jv j. The vectors u j are the left singular
vectors, and the vectors v j are the right singular vectors.

• Eigenvalues are used for systems where the matrix is a transformation from
a vector space to itself. On the other hand, singular values are used when
the matrix is transformed from one vector space to a different vector space.

• An eigenvector x j, or a pair of singular vectors u j and v j, can be scaled by
any non-zero factor without changing any important properties. Eigenvec-
tors of symmetric matrices are usually normalized to have Euclidean length
equal to one,

∥∥x j
∥∥

2 = 1.
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Figure B.1: SVD variants: (a) full SVD (P singular values, where P = min(M,N)), (b)
reduced/compact SVD (N singular values), and (c) truncated/partial SVD (K singular
values). (d)Visualization of the summed form of the SVD as shown in Eq. (B.4).
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• The eigenvalue decomposition (Eq. (B.1)) uses the same basis S for row and
column space, but the SVD (Eq. (B.3)) uses two different bases V, U. More-
over, the eigenvalue decomposition generally does not use an orthonormal
basis, but the SVD does. The eigenvalue decomposition is only defined for
square matrices, but the SVD exists for all matrices.

• For symmetric positive definite matrices A, the eigenvalue decomposition
and the SVD are equal.

• The singular values of the square matrix A are defined as the square roots
of the eigenvalues of AT A or AAT .

This summarizes the most important facts about the matrix SVD. The matrix
SVD extension to higher orders is not unique, but is summarized under the term
tensor approximation, as introduced in Sec. 3.3.





CA P P E N D I X

COMPUTING WITH TENSORS

Here, the most common products used while computing with tensors are outlined.
The notation taken here is mostly taken from [Kolda and Bader, 2009] and follows
the notations proposed by Kiers [Kiers, 2000]. Some notations are, however, taken
from [De Lathauwer, 2009] and [Smilde et al., 2004].

• An Nth-order tensor is defined as A ∈ RI1×I2×···×IN .

• The tensor product is denoted here by ⊗: however, other symbols are used
in the literature, too. For rank-one tensors, the tensor product corresponds
to the vector outer product (◦) of N vectors b(n) ∈RIn and results in an Nth-
order tensor A . The tensor product or vector outer product for a 3rd-order
rank-one tensor is illustrated in Fig. C.1: A = b(1) ◦ b(2) ◦ b(3), where an
element (i1, i2, i3) of A is ai1i2i3 = b(1)i1 b(2)i1 b(3)i3 .

I3I2

I1 A =

b(1)

b(2)

b(3)

Figure C.1: Three-way outer product for a rank-one tensor3 A = b(1) ◦b(2) ◦b(3).
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• The inner product of two same-sized tensors A ,B ∈ RI1×I2×···×IN is the
sum of the products of their entries, i.e., Eq. (C.1).

(A ,B) =
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

ai1,i2,...iN bi1,i2,...iN (C.1)

• The n-mode product [De Lathauwer et al., 2000a] multiplies a tensor by
a matrix (or vector) in mode n. The n-mode product of a tensor B ∈
RI1×I2×···×IN with a matrix C ∈ RJn×In is denoted by B ×n C and is of
size I1× ·· · × In−1× Jn× In+1× ·· · × IN . That is, element-wise we have
Eq. (C.2).

(B×n C)i1...ın−1 jnin+1...iN =
In

∑
in=1

bi1i2...iN · c jnin (C.2)

Each mode-n fiber is multiplied by the matrix C. The idea can also be ex-
pressed in terms of unfolded tensors (reorganization of tensor into a matrix;
see Sec. 3.3.1).

A = B×n C⇔ A(n) = CB(n) (C.3)

The n-mode product of a tensor with a matrix is related to a change of basis
in the case when a tensor defines a multilinear operator [Kolda and Bader,
2009]. The n-mode product is the generalized operand to compute tensor
times matrix (TTM) multiplications, as illustrated in Fig. C.2.

A

B

C

In

In

I1

I1

Jn
Jn

I2

(a) TTM of a tensor3

C

B(n)
In

In

A(n) JnJn

I1 · I2

I1 · I2

(b) TTM of an unfolded tensor3

Figure C.2: Tensor times matrix (TTM) multiplication.
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• The Hadamard product (∗) is the element-wise product between two matri-
ces A ∈ RI×J and B ∈ RI×J of the same size (see Eq. (C.4)).

A∗B =




a11b11 . . . a1Jb1J
... . . . ...

aI1bI1 . . . aIJbIJ


 (C.4)

• The Kronecker product (⊗) multiplies two matrices A ∈ RI×J and B ∈
RK×M block-wise as in Eq. (C.5), while the resulting matrix A⊗B is of
size (IK× JM). The Kronecker product (⊗) is denoted by the same opera-
tor as the outer product and is a generalization of the vector outer product to
matrices. The Kronecker product is in fact a special case of the tensor prod-
uct, but not every tensor product is a Kronecker product [Burdick, 1995].

A⊗B =




a11B . . . a1JB
... . . . ...

aI1B . . . aIJB


 (C.5)

• The Khatri-Rao product (�) [Smilde et al., 2004] is denoted as a column-
wise Kronecker product. The resulting matrix A�B is of size (IJ)×K for
the two matrices A ∈ RI×K and B ∈ RJ×K (see Eq. (C.6)).

A�B =
[
a1⊗b1 a2⊗b2 . . . aK⊗bK

]
(C.6)

Note: If a and b are vectors, then the Khatri-Rao and Kronecker products
are identical, i.e., a⊗b = a�b.

• The Moore-Penrose inverse [Moore, 1920; Penrose, 1955] is a generalized
matrix pseudo inverse A+ ∈ RI×J , which works for rectangular matrices
A ∈ RI×J . There are other matrix pseudo inverses; however, in this thesis
the robust and SVD-based Moor-Penrose inverse is used: A+ = UΣ+VT ,
where Σ+ represents the pseudo inverse of Σ as in Eq. (B.3) of the SVD.

• The norm of a tensor A ∈RI1×I2×···×IN is defined analogously to the matrix
Frobenius norm ‖A‖F and is the square root of the sum squares of all its
elements, i.e., Eq. (C.7).

‖A ‖F =

√√√√
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

a2
i1,i2,...iN (C.7)





DA P P E N D I X

TENSOR DECOMPOSITION
ALGORITHMS

There are a couple of different strategies for how to perform tensor decomposi-
tions or rank approximations. The most popular and widely used group of algo-
rithms belongs to the alternating least squares (ALS) algorithms. The other group
of algorithms use various Newton methods. The respective algorithms differ also
for the computation of the CP model and the Tucker model.

For the Tucker model, the first decomposition algorithms used were a sim-
ple HOSVD, the so-called Tucker1 [Tucker, 1966], the three-mode SVD, and the
HOSVD, the higher-order generalization [De Lathauwer et al., 2000a] that was
described in Sec. 3.3.2. However, the truncated decompositions of the HOSVD
are not optimal in terms of best fit, which is measured by the Frobenius norm
of the difference. Starting from an HOSVD, tensor approximation ALS algo-
rithms [Kroonenberg and De Leeuw, 1980; Kroonenberg, 1983] were developed,
where one of the first Tucker ALS was the so-called TUCKALS [Ten Berge et al.,
1987]. Later various optimizations accelerated [Andersson and Bro, 1998] or op-
timized the basic TUCKALS. The higher-order orthogonal iteration (HOOI) al-
gorithm [De Lathauwer et al., 2000b] is an iterative algorithm to perform a better
fit for a truncated HOSVD version.

Newton methods are used for the Tucker decomposition or rank-(R1,R2, . . . ,RN)
approximation as well. They typically start with an HOOI initialization and then
converge faster to the final point. [Elden and Savas, 2009] developed a Newton-
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Grassman optimization approach, which takes much fewer iterations than the
HOOI - even though one single iteration is more expensive due to the computa-
tion of the Hessian. While the HOOI is not guaranteed to converge, the Newton-
Grassmann Tucker decomposition is guaranteed to converge to a stationary point.
Another Newton method was proposed by [Ishteva et al., 2009], who developed a
differential-geometric Newton algorithm with a fast quadratic convergence of the
algorithm in a neighborhood of the solution. Since this method is not guaranteed
to converge to a global maximum, they support the method by starting with an ini-
tial guess of several HOOI iterations, which increases the chances of converging
to a solution.

For the CP model, one question addressed is how to find the number of rank-
one tensors: CORCONDIA [Bro and Kiers, 2003] is an algorithm that performs a
consistency diagnostic to compare different numbers of components. For a fixed
number of components, there is a CP ALS algorithm, which was presented in
the two original CP articles [Caroll and Chang, 1970; Harshman, 1970]. [Zhang
and Golub, 2001] proposed to use incremental rank-one fitting procedures, which
first fit the original tensor by a rank-one tensor, then subtract the rank-one ap-
proximation from the original and fit the residue with another rank-one tensor
until a certain given number of F incremental rank-one approximations have been
performed. They propose a Jacobi Gauss-Newton (JGN) iteration to execute the
incremental rank-one approximations.

ALS Algorithms Alternating least-squares algorithms are used to find pa-
rameters of a model, which corresponds to an optimization problem. In particular,
if no closed-form solutions to problems are available, iterative algorithms that
gradually improve the estimates and converge to the optimum solution are used.
The tensor ALS produces a tensor decomposition consisting of N basis matrices
U(1...N) and coefficients representing the relationship between the input tensor and
the basis matrices (see Sec. 3.4). The general idea with the multiway/tensor ALS
algorithms is to fix all basis matrices but one and optimize only for U(n). By fix-
ing all bases but one, the optimization problem is reduced to a linear least squares
problem. This procedure is repeated for every mode-n basis. One iteration step
comprises the optimization of all bases individually. The improvement of the so-
lution is measured after each iteration by a predefined set of convergence/stopping
criteria, which decides if the current fit is considered to be the best fit.

Often it is difficult to define the stopping criteria [Kroonenberg, 2008]. In
order to have a termination of the algorithm, a maximum number of iterations
should be set since ALS algorithms typically suffer from converging neither to
a global maximum nor a stationary point. It is, however, possible that we only
arrive at a local maximum instead of a global one, e.g., by performing many small
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steps. Likewise, the definition of some restrictions on the step size should be con-
sidered (e.g., larger steps at the beginning, smaller ones towards the end). Gen-
erally, it can be said that the more structure there is in the dataset, the greater
the chance that a global optimum can be reached. This means that one of the
ALS convergence criteria is the maximum number iterations allowed. The num-
ber of iterations needed also depends on the goodness of the initial starting point,
called the initial guess. Common solutions are to start either with a random ini-
tial guess or with the HOSVD initial guess. Nevertheless, we could end up with
multiple solutions by choosing different initial guesses. Another typical conver-
gence criterion is the so-called fit, which basically computes the differences of the
least-squares cost function Eq. (3.19). That is, in tensor approximation, the norm
of the tensor decomposition is compared to the norm of the original data. If this
difference changes, i.e., the improvement of the fit from the last step is below a
certain threshold, the ALS algorithm exits after the current iteration.

In the following, we describe the two ALS algorithms selected by [De Lath-
auwer et al., 2000b]: HOOI for the Tucker ALS and HOPM for the CP ALS.
However, we would like to mention that many other authors have come up with
variants of the ALS algorithms, and these can be looked up in [Kolda and Bader,
2009].

Tucker ALS Given an Nth-order tensor A ∈ RI1×I2×···×IN the optimization
problem to be solved for Ã

def
= B×1 U(1)×2 · · · ×N U(N) is the minimization of

the least-squares cost function Eq. (3.19). This problem can be turned into a max-
imization problem (Eq. (D.1)) in order to get a maximized basis matrix U(n) along
mode n (details see [Andersson and Bro, 1998; De Lathauwer et al., 2000b; Kolda
and Bader, 2009]). The maximization problem is implemented in the HOOI ALS
as described in Alg. 16. Both, the formula and the algorithm are given for or-
thogonal basis matrices, where U(n) ∈RIn×Rn . In the case of non-orthogonal basis
matrices, each matrix transpose has to be replaced by a matrix inverse.

max
U(n)

∥∥∥A ×1 U(1)T ×2 U(2)T · · ·×N U(N)T
∥∥∥ (D.1)

In fact, [De Lathauwer et al., 2000b] show that we can substitute the mini-
mization problem for orthonormal bases such that Eq. (D.2) holds, which is used
in line 13 in Alg. 16.

argmin(Ã ) = ‖A ‖2−‖B‖2 (D.2)

CP ALS For a CP-ALS, the least-squares problem to be solved can be de-
scribed as follows [De Lathauwer et al., 2000b]: Given a real Nth-order tensor
A ∈ RI1×I2×···×IN , find a scalar λ and unit-norm vectors U(1),U(2), . . . ,U(N) such
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Algorithm 16 The higher-order orthogonal iteration: HOOI(A ,R1,R2, . . . ,RN).
1: Input: A ∈ RI1×I2×···×IN , (R1,R2, . . . ,RN)
2: Output: factor matrices U(n) ∈ RIn×Rn , core tensor B ∈ RR1×R2×···×RN

3: init basis matrices U(n) (random, HOSVD)
4: compute max norm ‖A ‖F
5: set fit change tolerance: 1.0e−4
6: set max number of iterations: typically, we use 10
7: while fit change greater than tolerance AND max number of iterations not reached do
8: fitold = fit
9: for mode n = 1,2,3, . . . ,N do

10: optimize mode n: P ←A ×1 U(1)T · · ·×n−1 U(n−1)T ×n+1 U(n+1)T · · ·×N U(N)T

11: compute new basis matrix: U(n)← HOSV D(P(n))
12: end for
13: compute core: B = P×N U(N)

14: compute Frobenius norm on current core tensor: ‖B‖F

15: compute norm residual: ‖Aδ‖F =
√
‖A ‖2

F −‖B‖2
F

16: compute fit: 1− ‖Aδ ‖F
‖A ‖F

17: compute fit change: | f itold− f it|
18: end while

that the rank-one tensor Ã
def
= λ ·U(1)◦U(2)◦· · ·◦U(N) minimizes the least-squares

cost function Eq. (3.19) over the manifold of rank-one tensors. In other words, a
rank-one approximation is defined as minimization of the distance between the
given tensor and its approximation on the rank-one manifold. In [De Lathauwer
et al., 2000b] they show that this is equivalent to the maximization of the norm
of the projection of the original tensor onto the rank-one manifold. The actual
computation of the CP tensor approximation is performed by the HOPM ALS, as
described in Alg. 17. Note: The norm of the

∥∥∥Ã
∥∥∥

F
(Alg. 17, line 12) can be ap-

proximated by computing ‖A ‖2
F , adding the squared norm of the Kruskal tensor,

subtracting twice the inner product of the Kruskal tensor, and taking the square
root of it (see [Kolda and Bader, 2009; Bader et al., 2012]). This approach saves
significant computing time.

The described HOOI ALS and HOPM ALS produce tensor approximations
for either a given rank R or a given multilinear rank (R1,R2, . . .RN), respectively.
In particular, for the Tucker model truncated approximations are often desired
in order to compress the amount of data, while in the CP model the number of
chosen ranks is an important factor as well, as described in the previous section.
In fact, we can distinguish, for the CP decomposition, between algorithms that
directly compute a rank-R decomposition and algorithms that incrementally com-
pute rank-one decompositions [Zhang and Golub, 2001]. In the latter approach
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Algorithm 17 The higher-order power method: HOPM(A ,R).
1: Input: A ∈ RI1×I2×···×IN , R
2: Output: factor matrices U(n) ∈ RIn×R, coefficients λ ∈ RR

3: init basis matrices U(n) (random, HOSVD)
4: compute max norm ‖A ‖F
5: set fit change tolerance: 1.0e−4
6: set max number of iterations: typically, we use 50−100
7: while fit change greater than tolerance AND max number of iterations not reached do
8: fitold = fit
9: for mode n = 1,2,3, . . . ,N do

10: optimize mode n: V←U(1)T U(1)∗· · ·∗U(n−1)T U(n−1)∗U(n+1)T U(n+1)∗· · ·∗U(N)T U(N)

11: compute new basis matrix: U(n)← A(n)(U(N)�·· ·�U(n+1)�U(n−1)�·· ·�U(1))V+

12: normalize new U(n) (norm becomes λ )
13: end for
14: compute norm residual: ‖Aδ‖F =

∥∥∥Ã
∥∥∥

F

15: compute fit: 1− ‖Aδ ‖F
‖A ‖F

16: compute fit change: | f itold− f it|
17: end while
18: sort decomposition

some computationally expensive steps can be skipped; however, the reconstruc-
tion step used for the incremental approach is expensive as well.
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Veränderungen der oberen Luftwege beim Sprechakt, Master thesis, Department
of Informatics, University of Zurich, March 2005.

Fellowships

Forschungskredit, University of Zurich, 2009-2011


	Abstract German
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Large Volume Data Visualization
	1.2 Compact Data Representations
	1.3 Higher-order Data Decompositions
	1.4 Summary

	2 Materials
	2.1 Non-invasive Tissue Analysis
	2.2 Structures and Periodicity in Dental Tissue

	3 Methods
	3.1 Direct Volume Rendering (DVR)
	3.2 Out-of-core Multiresolution DVR
	3.3 Tensor Approximation (TA)
	3.4 Tensor Decompositions
	3.5 Tensor Rank Truncation
	3.6 Tensor Reconstruction

	4 Results: Multiresolution Modeling with TA
	4.1 Two Multiresolution Models
	4.2 Application 1: Brick-wise TA Bases Model
	4.3 Useful TA Properties for Multiresolution DVR
	4.4 Application 2: Model with Global TA Bases
	4.5 Summary

	5 Results: Data Reduction and Compression
	5.1 Data Reduction and Compression with TA
	5.2 Tucker Tensor-specific Quantization 
	5.3 Discussion
	5.4 Summary

	6 Results: Multiscale Features in Volume Visualization
	6.1 Multiscale Volume Visualization
	6.2 Application: Dental Microstructures
	6.3 Multiscalability and Multiresolution in One
	6.4 Discussion
	6.5 Summary

	7 Results: Implementation
	7.1 TA Rendering Pipeline
	7.2 Tensor Decomposition Implementation
	7.3 Octree Build
	7.4 Parallelization of the Tensor Reconstruction
	7.5 Visualization and Interactive Performance
	7.6 Summary

	8 Conclusions
	8.1 Future Work

	A Description of Datasets
	A.1 Datasets from the Visualization Community
	A.2 Acquired Datasets

	B Linear Algebra Background
	B.1 Eigenvalues and Eigenvectors
	B.2 The Singular Value Decomposition (SVD)
	B.3 Eigenvalues vs. Singular Values

	C Computing with Tensors
	D Tensor Decomposition Algorithms
	Bibliography
	Curriculum Vitae

