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Abstract
The spherical sampling of the incident radiance function entails a high computa-

tional cost. Therefore the illumination integral must be evaluated using a limited set
of samples. Such a restriction raises the question of how to obtain the most accurate
approximation possible with such a limited set of samples. In this thesis, we show
that existing Monte Carlo-based approaches can be improved by fully exploiting the
information available which is later used for careful samples placement and weighting.

The first contribution of this thesis is a strategy for producing high quality Quasi-
Monte Carlo (QMC) sampling patterns for spherical integration by resorting to spher-
ical Fibonacci point sets. We show that these patterns, when applied to the rendering
integral, are very simple to generate and consistently outperform existing approaches.
Furthermore, we introduce theoretical aspects on QMC spherical integration that, to
our knowledge, have never been used in the graphics community, such as spherical cap
discrepancy and point set spherical energy. These metrics allow assessing the quality
of a spherical point set for a QMC estimate of a spherical integral.

In the next part of the thesis, we propose a new theoretical framework for computing
the Bayesian Monte Carlo (BMC) quadrature rule. Our contribution includes a novel
method of quadrature computation based on spherical Gaussian functions that can be
generalized to a broad class of BRDFs (any BRDF which can be approximated by a
sum of one or more spherical Gaussian functions) and potentially to other rendering
applications. We account for the BRDF sharpness by using a new computation method
for the prior mean function. Lastly, we propose a fast hyperparameters evaluation
method that avoids the learning step.

Our last contribution is the application of BMC with an adaptive approach for
evaluating the illumination integral. The idea is to compute a first BMC estimate
(using a first sample set) and, if the quality criterion is not met, directly inject the
result as prior knowledge on a new estimate (using another sample set). The new
estimate refines the previous estimate using a new set of samples, and the process is
repeated until a satisfying result is achieved.
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1 The global illumination problem . . . . . . . . . . . . . . . . . . . . . . . 1
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1 The global illumination problem
One of the most challenging problems in the field of computer graphics is to synthesize
physically-based realistic images given an accurate model of a virtual scene. This
model contains geometric information describing the shape of the objects as well as
their corresponding material characteristics. It also contains a description of the light
sources, and a camera specifying how the scene is ‘seen’.

The light emitted by the light sources will then interact with the objects of the
scene through multiple inter-reflections. The process of synthesizing a realistic image
consists of simulating these interactions and determining how much light enters the
virtual camera. It has been mathematically formulated by Kajya [Kaj86] and is given
by the following equation:

Lo(ωo) = Le(ωo) +
∫

Ω2π
Li(ωi) ρ(ωi,ωo) (ωi ·n) dΩ(ωi) (1.1)

which is referred to as illumination integral. For a given point at a surface, Eq. (1.1)
gives the outgoing radiance Lo in direction ωo. Le is the radiance due to self emission.
Li(ωi) is the incident radiance from direction ωi and ρ is the bidirectional reflectance
distribution function (BRDF). It models the fraction of the radiance arriving from the
direction ωi which is reflected at the surface in direction ωo. The radiance Li(ωi)
arriving at a given surface point can be separated in two main components:

� the direct component due to the radiance arriving at the surface point directly
from the light sources;

� and the indirect component which corresponds to the light arriving at the
surface point after one or more bounces.
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CHAPTER 1. INTRODUCTION

Due to computing power constraints, the first image synthesizers only evaluated the
direct component. Nowadays, all the realistic image synthesis programs allow a full
evaluation of the illumination integral. This task of synthesizing an image taking into
account both the direct and the indirect light components defines the global illumination
(GI) problem.

2 Illumination integral evaluation
The illumination integral (Eq. (1.1)) has no analytical solution except for very partic-
ular cases in which very strong hypotheses are assumed. Several distinct techniques
have been developed to provide a solution to Eq. (1.1). Some approaches are based on
a brute force extensive evaluation of the integral by resorting to classical Monte Carlo
techniques [Kaj86]. Others are based on the observation that there exists a certain
spatial coherence in the illumination and try to exploit this coherence by trading off a
higher error for efficiency. But despite their differences, all these approaches have in
common requiring a sampling phase.

A good sampling of the image plane is necessary to produce a final image free from
aliasing [CPC84]. To simulate effects such as motion blur and depth-of-field one needs
to sample the time dimension and the camera lens respectively. The Monte Carlo
rendering algorithms which operate in the ray paths space, such as bidirectional path
tracing [VG94, LW93], rely on sampling for simulating both the eye paths and the
light paths existing in the scene. As shown by Veach [Vea98], the evaluation of the
direct incident radiance benefits from resorting to a combination of sampling the light
sources and a hemispherical sampling of the outgoing directions leaving the surface
point with a probability proportional to the BRDF. This technique of combining two
different Monte Carlo estimators is referred to as multiple importance sampling. For
evaluating the indirect radiance component, distinct methods such as radiance caching
[WRC88], irradiance caching [KGPB05] and photon mapping [Jen96] require at some
stage hemispherical sampling around the surface normal at a given surface point.

The quality of the result of these sampling operations is strongly dependent on the
samples placement and weighting. Therefore several works have focused on improving
the purely random sampling used in classic Monte Carlo techniques [Kel12]. Their
approach consists of using deterministic sequences which improve the uniformity of
the samples distribution on the domain of integration. The resulting estimator is then
called a Quasi-Monte Carlo (QMC) estimator.

In this thesis we will focus on the case of hemispherical sampling for spherical inte-
gration. We will show that existing approaches can be improved by fully exploiting the
information available which is later used for careful samples placement and weighting.

3 Motivation
The spherical sampling of the incident radiance function entails a high computational
cost. Therefore the illumination integral must be evaluated using a limited set of

2



4. SUMMARY OF CONTRIBUTIONS

samples. Such a restriction raises the question of how to obtain the most accurate
approximation possible with such a limited set of samples. We need to ensure that
sampling produces the highest amount of information possible by carefully placing the
limited set of samples. Furthermore we want our integral evaluation to take into ac-
count not only the information produced by the sampling but also eventual information
available prior to sampling.

The idea of sparse information and the need to fully exploit the few information
available will be present throughout this thesis. Indeed, the contributions summarized
in the next section improve the state of the art solutions in computer graphics by taking
into account information which had so far been underexploited (or even neglected) by
the previous approaches. Examples of this type of information are the hemispherical
nature of the domain of integration, the relative samples position and the statistical
properties of the integrand.

4 Summary of contributions
The contributions presented in this thesis can be summarized as follows:

Spherical Fibonacci Point Sets for Illumination Integrals Quasi-Monte Carlo
(QMC) methods exhibit a faster convergence rate than that of classic Monte Carlo
methods. This feature has made QMC prevalent in image synthesis, where it is fre-
quently used for approximating the value of spherical integrals (e.g. illumination inte-
gral). The common approach for generating QMC sampling patterns for evaluating the
illumination integral is to resort to point sets with low unit square discrepancy and map
them to the hemisphere [KK02, GHSK06]. But such an approach is suboptimal since
these sequences do not account for the spherical topology and their low discrepancy
properties on the unit square are impaired by the spherical projection. We present a
strategy for producing high quality QMC sampling patterns for spherical integration
by resorting to spherical Fibonacci point sets. We show that these patterns, when ap-
plied to the rendering integral, are very simple to generate and consistently outperform
existing approaches. Furthermore, we introduce theoretical aspects on QMC spherical
integration that, to our knowledge, have never been used in the graphics community,
such as spherical cap discrepancy and point set spherical energy. These metrics allow
assessing the quality of a spherical point set for a QMC estimate of a spherical integral.

A Spherical Gaussian Framework for Bayesian Monte Carlo Bayesian Monte
Carlo [RG02] is a non-frequentist integration technique which has recently been success-
fully applied to the computation of the illumination integral. This pdf-free technique
allows a meticulous placement of the samples over the domain of integration. The
samples position is chosen so as to minimize the variance of the estimate. The samples
value is then averaged according to a quadrature rule where the weight of each sample
is determined by resorting to a covariance function. The results obtained by Brouillat
et al. [BBL+09] show that Bayesian Monte Carlo can significantly outperform impor-
tance sampling Monte Carlo thanks to a more effective use of the prior knowledge and

3



CHAPTER 1. INTRODUCTION

of the information brought by the samples. But these results are strictly limited to
diffuse reflections since their strategy for efficiently computing the quadrature coeffi-
cients does not apply to non-diffuse BRDFs. We propose a new theoretical framework
that includes a novel method of quadrature computation based on spherical Gaussian
functions that can be generalized to a broad class of BRDFs (any BRDF which can be
approximated by a sum of one or more spherical Gaussian functions) and potentially
to other rendering applications. We account for the BRDF sharpness by using a new
computation method for the prior mean function and by introducing a new factor in the
method of Brouillat et al. for constructing optimized samples set. Lastly, we propose
a fast hyperparameters evaluation method that avoids the learning step.

Adaptive Sampling with Bayesian Monte Carlo Photo-realistic images synthe-
sized with Monte Carlo and Quasi-Monte Carlo techniques are prone to noise. The
noise is a consequence of the variance of the estimate (or error of estimate in the
case of QMC) which results from a too low sampling rate. In general, the noise is
not evenly distributed in all image regions since the smoothness of the signal to be
sampled varies across the scene. For the same noise level, regions corresponding to
a smoother illumination require fewer samples than regions with a sharper illumina-
tion. The rendering techniques which aim at distributing the samples according to the
noise level detected in the different image regions are called adaptive sampling (e.g.,
[Mit87, LRU85, XFSS07, XSFS10]). The common approach is to make a first pass
using a low sampling rate, detect the image regions for which the noise level is not
acceptable and oversample them until a certain quality criterion is met. Our goal is to
apply BMC with an adaptive approach for evaluating the illumination integral. The
idea is to compute a first BMC estimate (using a first sample set) and, if the quality
criterion is not met, directly inject the result as prior knowledge on a new estimate
(using another sample set). The new estimate refines the previous estimate using a
new set of samples, and the process is repeated until a satisfying result is achieved.

4
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Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 QMC on the unit square . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 QMC on the unit sphere . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 QMC point sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Hemispherical projections . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Spherical Fibonacci point sets . . . . . . . . . . . . . . . . . . . . . . . . 15
4 QMC for illumination integrals . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Tested point sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 RMSE analysis and convergence slope . . . . . . . . . . . . . . . . . 21
6.3 Efficiency and image quality . . . . . . . . . . . . . . . . . . . . . . . 25

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The major contribution presented in this chapter is the introduction of the spherical
Fibonacci point sets for Quasi-Monte Carlo (QMC) integration, based on previous
works [HN04, SP06] from other research areas. We compare the quality of Fibonacci
point sets for estimating the illumination integral with that of state-of-the-art point sets
compliant with QMC such as blue noise [dGBOD12], Larcher-Pillichshammer [LP01]
and the popular Sobol (0,2)-sequence [Sob67]. We show that the Fibonacci point sets
consistently outperform those methods. Furthermore, we introduce theoretical aspects
on QMC spherical integration that, to our knowledge, have never been used in the
graphics community. In concrete terms, we define worst case integration error (w.c.e.),
spherical L2 discrepancy and an energy metric EN based on the inter-sample distance
which allows assessing the quality of a spherical samples set for spherical integration.
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CHAPTER 2. SPHERICAL FIBONACCI POINT SETS FOR ILLUMINATION INTEGRAL

1 Introduction
Among all the methods which have been proposed to speed up Monte Carlo integration
for rendering, QMC methods play an important role as they allow improving the con-
vergence rate as well as controlling the error noise perception. The principle is to use
more regularly distributed sample sets than the purely random sample sets associated
with Monte Carlo integration.

QMC integration is extensively used in computer graphics (see e.g. [SEB08]). In
[Kel12], Keller has shown that QMC techniques can be applied in a consistent way to
deal with a wide range of problems (anti-aliasing, depth of field, motion blur, spectral
rendering, etc.). However, few applications have been reported in the literature specif-
ically addressing hemispherical sampling with a view of computing the illumination
integral.

Unlike the unit square sampling case, no explicit construction of point sets with
minimal discrepancy for spherical sampling is known. Generally, the point sets for
spherical integration are generated by lifting point sets with low discrepancy on the
unit square to the unit sphere through an equal-area transform [MFS04, Ost07]. But
such an approach is suboptimal as the low discrepancy properties of these point sets
on the unit square are impaired by the spherical projection. Recent results from the
numerical analysis literature have focused on a point set which is directly generated
on the sphere called spherical Fibonacci point sets [ABD12, BD11]. They have shown
that these point sets are particularly well-suited to sphere sampling compared to the
traditional low-discrepancy point sets projected from the unit square. In this chapter,
we focus on adapting the spherical Fibonacci point sets for evaluating the illumination
integral.

The rest of this chapter is structured as follows. In Section 2, we introduce theoret-
ical concepts regarding spherical integration using QMC. The related work is presented
in Section 2.5. Section 3 gives a detailed description of the Fibonacci spherical point
sets. In Section 4, we specify how we have implemented BRDF sampling in the context
of QMC integration and make explicit the interest in generating high quality spher-
ical distributions for this particular case. Sections 5 and 6 present the benefits of
using Fibonacci point sets compared to a Sobol sequence, blue noise point sets and
the Larcher-Pillichshammer points. We end the chapter with a conclusion and future
work.

2 Background and related work

2.1 QMC on the unit square
Classic Monte Carlo (CMC) methods are frequently used to approximate integrals of
the form:

I =
∫

[0,1]2
f(x)dx
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where f is a real valued function defined over [0, 1]2. Their approach consists in using
a set PN = {x1, . . . ,xN} of N random points uniformly distributed on [0, 1]s and
computing an estimate Î of I by averaging of the values of f over PN [L’E09]:

Î = 1
N

N∑
j=1

f(xj)

Quasi-Monte Carlo can be seen as the deterministic counter-part of CMC, where the
point set PN is constructed deterministically and not at random. The goal of QMC
integration is to find sampling patterns that yield a better order of convergence than
the O(N−1/2) rate obtained with purely random distributions. In the case of QMC
integration over the unit square [0, 1]2 the best theoretical rate of convergence of the
worst case error is O(N−1√logN) (see e.g. [BD11]). To find point set constructions
that approximate this optimal rate of convergence, the star discrepancy is often used
as a criterion to characterize the uniformity of the point distribution. Given a set of
boxes B with a corner at the origin of the unit square given by:

B = {[0, x]× [0, y]}, (x, y) ∈ [0, 1]2,

the star discrepancy D∗ can be defined as:

D∗(PN ;B) = sup
C∈B

∣∣∣∣∣Card{j : xj ∈ C}
N

− λ(C)
∣∣∣∣∣

where λ(C) is the area of a box C. The above equation leverages the fact that Card{j :
xj ∈ C}/N can be used as an estimator of the area of C. The star discrepancy is thus
given by the largest error of the estimate of λ(C) over all the boxes C ∈ B. For more
details on the star discrepancy we refer the interested reader to [PH10] (Chapter 7,
page 360). The connection between star discrepancy and the worst case error

sup
f

∣∣∣∣∣∣ 1
N

N∑
j=1

f(xj)−
∫

[0,1[2
f(x)dx

∣∣∣∣∣∣
is given by the Koksma-Hlawka inequality [Nie88, BD11]. Each point set construction
entails a certain order of convergence of the star discrepancy toward 0. When the
convergence rate of the star discrepancy toward 0 is of order O(N−1(logN)2), the
point set construction is called low discrepancy.

2.2 QMC on the unit sphere
Unlike the unit square case, QMC rules for numerical integration over the unit sphere
S2 in R3 are less known to the graphics community. Therefore, a brief presentation of
important results on this subject are given in this section.

A set of sampling directions {ω1,N , . . . ,ωN,N} defined as points on the unit sphere S2

is appropriate for Monte Carlo integration if it is asymptotically uniformly distributed,
that is if

lim
N→∞

1
N

N∑
j=1

f(ωj,N) = 1
4π

∫
S2
f(ω)dΩ(ω) (2.1)
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is true for every function f(ω) on the sphere S2, Ω being the surface measure on S2.
Similarly to the unit square case, this property is equivalent to:

lim
N→∞

Card{j : ωj,N ∈ C}
N

= Ω(C)
4π (2.2)

for every spherical cap C with area Ω(C) [KN06]. Informally speaking, Eq. (2.2) means
that a spherical cap of any area has its fair share of points as N → ∞. Among
all sampling patterns complying with this definition, we are interested in point sets
Ps = {ω1,N , . . . ,ωN,N} ⊆ S2 such that the worst case integration error (w.c.e.)

w.c.e. := e(Ps) = sup
f

∣∣∣∣∣∣ 1
N

N∑
j=1

f(ωj,N)− 1
4π

∫
S2
f(ω)dΩ(ω)

∣∣∣∣∣∣
achieves the best rate of convergence as N → ∞. This is equivalent to finding the
point sets Ps which minimize the spherical cap L2 discrepancy [BSSW12]:

L2(Ps) =
∫ 1

−1

∫
S2

∣∣∣∣∣Card{j : ωj,N ∈ C(ω, t)}
N

− Ω(C(ω, t))
4π

∣∣∣∣∣
2

dΩ(ω)dt
 1

2

where C(ω, t) is a spherical cap centered in ω and containing all the points {ωc ∈
S2 : ωc · ω ≤ t}. The L2 discrepancy of a point set Ps is connected to the sum of
the distances between all the points in PS through the Stolarsky invariance principle
[BD11]. This invariance states that

1
N2

N∑
j=1

N∑
i=1
|ωi − ωj|+ 4L2(Ps) = 4

3 .

The above invariance shows that maximizing the sum of distances term∑N
j=1

∑N
i=1 |ωi−

ωj| is equivalent to minimizing the L2 discrepancy, with the advantage of being a much
simpler operation. We can thus define a criterion EN to evaluate the quality of the
distribution of a spherical point set:

EN(Ps) =
4

3 −
1
N2

N∑
j=1

N∑
i=1
|ωi − ωj|

 1
2

, (2.3)

which will be referred to as energy.
As stated above, minimizing the L2 discrepancy is equivalent to minimizing the

w.c.e. But both criteria only follow the same O(N−3/4) rate of convergence toward 0
if the integrand f fulfills a specific smoothness criterion. Roughly speaking, f must be
at least a C0 continuous function. In such a case, the w.c.e. is equal to the energy EN
[BD11, BSSW12].

The order of convergence of the w.c.e. can be higher than O(N−3/4) if the order of
continuity of the integrand is higher than C0. But achieving such a convergence rate
depends on the points construction algorithm since some are more capable of taking
advantage of smooth functions than others [BSSW12].
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The order of convergence of the L2 discrepancy, on the other hand, cannot be better
than O(N−3/4). But there surely exist point sets for which the order of convergence
of the L2 discrepancy is better than O(N−3/4√logN) [Bec84]. In this case these point
set constructions are said to be low-discrepancy sequences. Note that this order of
convergence is lower than the O(N−1(logN)2) rate of low-discrepancy sequences in the
[0, 1]2 unit square.

In contrast with the unit square case, no explicit direct construction of low dis-
crepancy sequences on the unit sphere is known. That is why QMC sequences on S2

are generally produced by lifting a [0, 1]2 low discrepancy point set to S2 through an
equal-area transform. An alternative to this approach consists in generating the pat-
terns directly on the sphere according to an extremal energy criterion [SK97]. Among
the patterns with good EN properties, spherical Fibonacci point sets are particularly
well-suited to QMC integration over the sphere as shown in [HN04], hence our interest
in applying them to illumination integral computation.

2.3 QMC point sets

In this section we present some of the most commonly used point sets for QMC. In
particular, we describe the characteristics of point sets generated using blue noise
[dGBOD12], Larcher-Pillichshammer [LP01] and the Sobol (0,2)-sequence [Sob67]. The
Larcher-Pillichshammer points are known for having very good (unit square) star dis-
crepancy properties even when compared to other low discrepancy point sets [Ken13].
The Sobol (0, 2)-sequence is probably the most used low discrepancy point set and is
particularly well suited to adaptive sampling schemes as will be seen later. The blue
noise generators allow producing high quality uniform distributions. Stemming from a
very active research field, their generation uses a totally different approach to that of
the Sobol and Larcher-Pillichshammer points.

In Fig. 2.1, examples of different unit square point sets are shown. They have been
generated using a random distribution, blue noise, Larcher-Pillichshammer and a Sobol
sequence respectively, from left to right.

Random BNOT L-P Sobol

Figure 2.1 – A comparison of a set of 512 points randomly generated, and three other
sets of 512 points generated using blue noise (BNOT), the Larcher-Pillichshammer
points, and the Sobol (0, 2)-sequence.

9



CHAPTER 2. SPHERICAL FIBONACCI POINT SETS FOR ILLUMINATION INTEGRAL

2.3.1 Blue noise

The blue noise point sets are distributions of points designed such that a minimum
inter-sample distance criterion is met. Moreover, the distribution should be free from
regular patterns [dGBOD12, LD08]. At first sight, it might seem that we would like
the minimum inter-sample distance to be as large as possible but, as noted by Lagae
and Dutré [LD08], a large minimum distance may result in regular patterns. Thus,
the goal is to obtain regularity-free distribution with the largest average inter-sample
distance.

To evaluate the quality of the blue noise distributions it is common to resort to a
spectral analysis. We have mentioned above that the two features which characterize
a blue noise distribution are a large average inter-sample distance and no regularities.
In the frequency domain, on the other hand, a blue noise spectrum is characterized by
a minimal low frequency energy and by the lack of concentrated energy spikes.

The power spectrum associated with a generator of point sets can be estimated
by averaging periodograms of different point sets produced using that generator. As
opposed to the random distributions, whose power spectrum is flat, a blue noise pattern
produces a high frequency error which is less conspicuous to the human eye. Examples
of state of the art blue noise generators can be found in [Fat11, EPM+11, CYC+12,
dGBOD12].

2.3.2 Larcher-Pillichshammer points

The Larcher-Pillichshammer points [LP01] are constructions of (0,m, 2)-nets in base 2
which are a restriction of the general (t,m, s)-nets. Formally, a (t,m, s)-net in base q
is defined as follows [Nie92].

Definition. A (t,m, s)-net in base q is a set of qm points in [0, 1[s enjoying the property
that each elementary interval E in base q

E =
s∏
i=1

[
ai
qbi
,
ai + 1
qbi

[
, ⊆ [0, 1[s

contains exactly qt points, with ai, bi ∈ Z, bi ≥ 0 and 0 ≤ ai < qbi. ∏ is the cartesian
product of sets (or product set). The volume of each elementary interval E is qt−m.

The parameter t works as a kind of quality parameter which controls the num-
ber of points per elementary interval. As a (0,m, 2)-net in base 2, the Larcher-
Pillichshammer’s approach allows generating bi-dimensional sets of 2m points contain-
ing a single point per elementary interval. This is a very interesting stratification
property. Let us take the example in which m = 4. Fig. 2.2 shows a (0, 4, 2)-net
based on the Larcher-Pillichshammer points, as well as the points distribution over the
elementary intervals. It can be seen that the 16 elements fulfill the Latin hypercube
stratification condition. This means that if we divide the unit square in 16 horizontal
or vertical elementary intervals of size

(
1, 1

16

)
and

(
1
16 , 1

)
respectively, each line and

each column only contain a single sample (Fig. 2.2, right). Furthermore, if we divide
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Figure 2.2 – The Larcher-Pillichshammer points.

the unit square in 16 squared elementary intervals of size
(

1
4 ,

1
4

)
there is also a single

sample per square (Fig. 2.2, center).
Although these stratification properties are interesting, they do not necessarily

guarantee a good distribution of points. Two points in neighboring elementary intervals
could be very close to each other, which would increase the discrepancy of the point
set. But this problem does not occur when using the Larcher-Pillichshammer points
and they were shown to have a comparatively large minimum inter-sample distance
[GK08]. For more detail on how to generate these point sets, please refer to [LP01].

2.3.3 Sobol (0,2)-sequence

Introduced by the Russian mathematician I. M. Sobol in [Sob67], the Sobol (0, 2)-
sequence is a particular case of the general (t, s)-sequences. The (t, s)-sequences are
defined as follows [Nie92].

Definition. Let t ≥ 0 be an integer. A sequence of points x0, x1, . . . in [0, 1[s is a
(t, s)-sequence in base q if, for all integers k ≥ 0 and m > t, the point set composed of
the xkqm , . . . , x(k+1)qm−1, is a (t,m, s)-net in base q.

These sequences are specially useful for adaptive sampling schemes. Adaptive sam-
pling consists in generating a first set of samples and, based on some criterion, decide
whether or not to add more samples to the initial set. In case the decision is for adding
more samples, the samples set resulting from the combination of the first and second
samples sets should also be low discrepancy. This roughly means that the second set
of samples cannot generate new samples which are too close to the samples of the first
set.

The definition of (0, 2)-sequences in base 2 (such as the Sobol (0, 2)-sequence) im-
plies that each successive set of 2m points is a (0,m, 2)-net. Moreover, the combination
of a set of 2m points x0, . . . , x2m−1 with the next set of 2m points of the sequence
forms a (0,m + 1, 2)-net. Such a property is interesting because it allows hierarchi-
cal or adaptive sampling schemes as described above. The same cannot be done with
the point set generators which strictly produce (t,m, s)-nets and not (t, s)-sequences
(e.g., the Larcher-Pillichshammer points). Using the Sobol (0, 2)-sequence instead of
the Larcher-Pillichshammer points, however, is not advantageous in every respect since
the latter exhibit lower discrepancy properties.
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2.4 Hemispherical projections
QMC spherical point sets are usually generated on the unit square and then projected
onto the unit sphere. The used projection must be an equal-area projection so that an
area in the unit square corresponds to the same area in the unit sphere. This feature
guarantees that an asymptotically uniformly distributed point set on the unit square,
will also be asymptotically uniformly distributed on the sphere after the projection.
Note that, despite their area-preserving property, these projections cause a distortion
and do not preserve the inter-sample distance. The degree and the location of this
distortion can vary from one projection to another.

In the following of this section we will present the most common hemispherical pro-
jections used in computer graphics: Lambert cylindrical [DHM+01], concentric maps
[SC97] and HEALPix [GHB+05].

2.4.1 Lambert cylindrical projection

Probably due to its simplicity, the Lambert cylindrical projection, also called Archimedes
projection, is the most common hemispherical projection used in computer graphics
[DHM+01]. Using this projection, a given point (x, y) on the unit square is projected
onto the hemisphere as follows:

φ = 2πx
θ = arccos(1− 2y)

where (θ, φ) are the spherical coordinates of the projected point. Although it has no
distortion on the equator, the distortion of this projection increases as we approach
the pole. At the pole, there is a singularity. All points in the unit square with y = 1
are mapped to a single point on the hemisphere (the pole, with θ = 0).

2.4.2 Concentric maps

The concentric maps [SC97] is an equal area projection which allows mapping concen-
tric squares to concentric circles on the hemisphere. The goal of this projection is to
provide a lower distortion than the Lambert map by leveraging the fact that our inter-
est is restricted to the hemisphere. Roughly speaking, using this projection close points
on the unit square will also tend to be close points on the hemisphere. To achieve this,
the unit square points are first mapped onto a unit disk as depicted in Fig. 2.3. It is
only after this first projection that the points are mapped to the unit hemisphere.

Given a point with coordinates (x, y) on the unit square corresponding to the re-
gion 1 in Fig. 2.3 (left), its hemispherical projection is given by:

(x, y) −→ a = 2x− 1
b = 2y − 1 −→ r = a

φd = πa
4b
−→ θ = arcsin

(
r
√

2− r2
)

φ = φd

where (a, b) are the coordinates of a point in a unit square centered at (0, 0). (r, φd)
are, respectively, the radius and the rotation angle of a point on the unit disk. Finally
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Figure 2.3 – The concentric maps of Shirley and Chiu [SC97].

(θ, φ) are the spherical coordinates of the projected points. For the other three regions
similar transforms are applied.

2.4.3 HEALPix projection

The HEALPix projection [GHB+05] was originally developed to address processing and
analysis needs of huge spherical data sets generated by advanced detectors in modern
astronomy. The projection meets several criteria required for the intended applica-
tion among which the need for an equal-area projection. This makes the HEALPix
projection suitable for spherical Monte Carlo integration.

The hemispherical HEALPix projection onto the plane can be appreciated in Fig. 2.4.
Since the HEALPix projection has as primary goal to project points from the sphere
to the plane (and not the reverse), all the points of the sphere have correspondence on
the plane, but there are areas of the plane with no correspondence on the sphere. The
same is true for the hemisphere. The zones of the unit square with no correspondence

Figure 2.4 – HEALPix hemispherical projection [GHB+05].

on the hemisphere are marked in grey in Fig. 2.4. One of the solutions to project a
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set of points onto the hemisphere using HEALPix is to generate six sets of points on
the unit square. The six point sets can then be mapped onto the numbered regions in
Fig. 2.4. It is also possible to use a single square and place it repeatedly in each of the
numbered regions.

An alternative approach is to generate a single set of points on the plane and reject
those which are outside the projectable region. We have experimentally found that this
solution results in visually less pleasant distributions than using the approach described
above.

The mapping of a point (x, y), y ≤ 1/2 on the unit square to a point (θ, φ) on the
unit hemisphere is given by:

θ = arccos
(

4π
3 y
)

φ = 2πx

while for a point on the unit square with y > 1/2, the projection is given by:

θ = arccos
(
1− 1

3(2− 2y)2
)

φ = 2πx− y−1/2
y−1

(
xt − π

4

)
,

where
xt = 2πx× mod π

2 .

Furthermore, for y > π
4 , xt must satisfy the condition∣∣∣∣xt − π

4

∣∣∣∣ < π

2 (1− y)

so as to guarantee that the point is contained in the projectable area shown in white
in Fig. 2.4.

2.5 Summary
The use of low discrepancy sequences is widespread in computer graphics [KPR12].
Their goal is to improve the convergence rate of the QMC integral estimate by using
sample sets which minimize a discrepancy criterion. Among the most popular low-
discrepancy sequences, the Sobol’s (0,2)-sequence [Sob67] guarantees both the min-
imum distance and the stratification criteria in each successive sets of qm samples,
where q is the base of the sequence. Lower unit square discrepancy values can be ob-
tained using the Larcher-Pillichshammer point sets [LP01], but these points cannot be
generated by an (infinite) sequence. Moreover, Kollig and Keller [KK02] showed that
both Sobol and Larcher-Pillichshammer point sets can be easily scrambled to decor-
relate directions for neighboring pixels, thus avoiding artifacts without sacrificing the
discrepancy and stratification properties.

An alternative approach for producing uniform point set distributions on a unit
square is to use a blue noise generator [LD08]. This class of point set generators
produces high quality uniform (yet unstructured) distributions which try to approach
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the spectral characteristics of Poisson disk distributions. The goal is to concentrate
the noise in high frequencies where it is less visible. The resulting distributions exhibit
better uniformity properties when compared to (0,2)-sequences, but this is achieved at
a higher computational cost. Recent works have focused on efficient generation of high
quality blue noise patterns [CYC+12, dGBOD12, EPM+11, Fat11]. The state-of-the-
art solution is currently given by [dGBOD12].

The unit square-based distributions generated by the methods described above
must be lifted to the S2 sphere using an equal-area projection so as to be used for
(hemi)spherical integration. Such projections preserve the property of asymptotic dis-
tribution uniformity, but not the samples distance. As discrepancy and w.c.e. directly
depend on the distance between samples (see Eq. (2.3)), the resulting sets become
suboptimal for (hemi)spherical sampling.

An explicit spherical construction of point sets with small discrepancy has been
proposed by [LPS86], but recently a better order of convergence has been reported by
using spherical Fibonacci point sets [Nye03, Gon10, ABD12]. Throughout this chapter,
we will use a spherical Fibonacci point set based on the work of [SP06]. We will show
that constructing these sets is simpler and more efficient than the Sobol (0,2)-sequence
[Sob67], the state of the art blue noise [dGBOD12] and the Larcher-Pillichshammer
point sets [LP01] when the goal is to evaluate the illumination integral.

3 Spherical Fibonacci point sets
Our goal in this section is to explain how Fibonacci lattices are generated and why
such point constructions are well-suited to spherical sampling. A spherical Fibonacci
(SF) lattice is defined as follows [Sve94, HN04]:

θj = arccos(1− 2j/Fm)

φj = 2π
{
j
Fm−1

Fm

}

where θj and φj are the polar and azimuthal angles respectively of a lattice node ωj.
As the Fibonacci ratio Fm/Fm−1 quickly approaches the golden ratio Φ = (1 +

√
5)/2

as m increases [GKP94], we can write:

lim
m→∞

φj = 2jπΦ−1

due to the periodicity of the spherical coordinates. Hence, setting Fm = N , the coor-
dinates of an N -point spherical Fibonacci set are given by:

θj = arccos(1− 2j/N)
φj = 2jπΦ−1

}
0 ≤ j < N .

Note that in this case, N needs not be a Fibonacci number anymore, which allows
generating point sets with an arbitrary number of points. But the resulting point sets
are no longer lattices since Φ is irrational. Therefore, from now on, these point sets
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will be called spherical Fibonacci point sets (SF). Letting zj denote the z coordinate
of point j, we have:

zj = cos θj = 1− 2j/N

which means that the z coordinates of the points are evenly spaced. Such an arrange-
ment divides the sphere into equal-area spherical ‘rings’ due to the area-preserving
property of the Lambert map [Gon10], each ‘ring’ containing a single lattice node.
Swinbank and Pusser [SP06] slightly improved the point set used in [HN04] by intro-
ducing an offset of 1/N to the zj coordinates (i.e. half the z coordinate spacing) to
achieve a more uniform distribution near the poles. Then we have:

θj = arccos
(
1− 2j+1

N

)
φj = 2jπΦ−1

}
0 ≤ j < N . (2.4)

As observed by [Gon10], the same point set can be produced using Φ−2 = (3−
√

5)/2
instead of Φ−1. The φj angles will then be multiples of the golden angle π(3 −

√
5).

For more details on the properties of the spherical Fibonacci point set we refer the
reader to [SP06, Gon10]. Note that this arrangement of points can also be found in
nature (e.g. the packing of seeds on the sunflowers head [Vog79]), a clear indication
of its near-optimality w.r.t. the distance based energy metric EN (Eq. (2.3)). Other
theoretical approaches proposed in the literature lead to similar arrangements (e.g.
[SK97]).

An example of a spherical Fibonacci point set is shown in Fig. 2.5(a). In Fig. 2.5(b),
we can see the projection of the same point set onto the unit square [0, 1]2, using the
Lambert equal-area cylindrical projection. The spirals on the sphere become parallel
oblique lines on the unit square projection. This arrangement shows that each point
has a different latitude, which allows a fairly good point distribution near the poles
compared to other methods as will be seen hereafter. However, no periodicities or near-
periodicities appear in this point set because the golden ratio is the most irrational
number, that is, the hardest to approximate with a rational number.

In the case of illumination integrals (see Eq. (2.5)), the integration domain is not
the sphere, but the hemisphere Ω2π, where the vertical axis z is aligned with the surface
normal. By modifying Eq. (2.4), an N -point hemispherical SF point set will then be
defined as follows:

θj = arccos(zj)
φj = 2jπΦ−1

}
0 ≤ j < N

where the zj =
(
1− 2j+1

2N

)
are the z coordinates of the points on the hemisphere. Such

a point set can be very easily generated using the pseudo-code presented in Alg. 1.
Image synthesis involves the computation of many illumination integrals. Using the

same point set for computing all illumination integrals results in visible patterns in the
rendered images. To avoid this problem the sample sets must be scrambled at each
illumination integral evaluation. We used a scrambling strategy of the SF sampling
pattern which is made directly in the spherical domain by rotating them about the
z axis with a random angle uniformly distributed over [0, 2π]. This method has the
advantage of preserving the inter-sample distances and thus the energy EN .
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(a) (b)
Figure 2.5 – Example of Fibonacci lattice (N = 512).

Algorithm 1 The spherical Fibonacci point set algorithm.
1: ∆φ← π(3−

√
5) . Golden angle (step on φ)

2: φ← 0 . Initialize φ
3: ∆z ← 1/n . Compute the step on z
4: z ← 1−∆z/2 . Initialize z with offset
5: for all j ← [1 : n] do
6: zj ← z
7: θj ← arccos(zj)
8: φj ←mod (φ, 2π) . Modulo of φ
9: z ← z −∆z . Give a step on z
10: φ← φ+ ∆φ . Give a step on φ
11: end for

4 QMC for illumination integrals
To render an image of a scene, the illumination integral must be computed at each
point of visible surfaces. Let us recall that, as shown in Chapter 1, this integral gives
the reflected radiance Lo(ωo) at a given visible point. For a non self-emitting surface
it can be expressed as follows:

Lo(ωo) =
∫

Ω2π
Li(ωi)ρ(ωi,ωo)(ωi ·n) dΩ(ωi) . (2.5)

A straightforward application of Eq. (2.1) would consist in computing an estimate of
Lo(ωo) by averaging samples of the integrand of Eq. (2.5) with uniformly-distributed
sampling points on Ω2π. Such an approach would be quite inefficient since the product
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ρ(ωi,ωo)(ωi ·n) is generally close to zero in a large part of the integration domain.
In classic Monte Carlo methods, a common solution is to distribute the samples ac-
cording to a pdf proportional to ρ(ωi,ωo)(ωi ·n). In the QMC deterministic context,
as probabilistic distributions cannot be used, instead this function is moved into the
integration variables through an appropriate variable substitution. In the following,
we will show how to reformulate the problem of optimally sampling ρ(ωi,ωo)(ωi ·n)
in the context of QMC integration, starting from a uniform point set distribution.

Eq. (2.5) can be developed as follows:

Lo =
∫ 2π

0

∫ π/2

0
Li(θ, φ)ρ(ωi,ωo) cos θ sin θ dθ dφ (2.6)

where θ and φ are the spherical coordinates of the incident direction ωi w.r.t. the z
axis.

The Phong glossy BRDF is given by:

ρ(ωi,ωo) = k
(max[0, (ωi · ωr)])n

ωi ·n
,

where ωr = 2(ωo ·n) − ωo is the perfect mirror incident direction. A diffuse BRDF
can be seen as a special case for which ωr = n and n = 1 (its albedo is then πk).

Considering that the incident radiance function is zero for incident directions below
the tangent plane (i.e. Li(ωi) = 0 if (ωi ·n) < 0), we can take the hemisphere
Ω(r)

2π centered about ωr as the integration domain. Our coordinate frame will then be
rotated such that its z axis is aligned with ωr and therefore, the azimuthal polar θ of
a point ω on Ω(r)

2π will be defined by θ = arccos(z) with z = (ω · ωr). Consequently,
by making the variable substitution z = cos θ, Eq. (2.6) can be written as follows:

Lo(ωo) = k
∫ 2π

0

∫ 1

0
Li(z, φ)zn dz dφ .

Making the substitution z′ = zn+1, we have:

Lo(ωo) = k

n+ 1

∫ 2π

0

∫ 1

0
L′i(z′, φ) dz′ dφ

where L′i(z′, φ) = Li
(
(z′)1/(n+1), φ

)
. Since the integral bounds still define a hemispher-

ical integration domain, an estimate of Lo(ωo) is obtained using Eq. (2.1):

L̃o(ωo) = 2πk
N(n+ 1)

N∑
j=1

Li(z1/(n+1)
j , φj) (2.7)

where (zj, φj) are the coordinates of a uniformly-distributed samples set PN on Ω(r)
2π .

Eq. (2.7) means that the incident radiance function Li is sampled with a sampling pat-
tern obtained by morphing the z coordinates of the samples of the uniformly-distributed
set PN with the function f(z) = z1/(n+1).

To sum up, the above derivations show how to use a spherical uniform point set to
compute an approximation of the illumination integral while taking into account the
BRDF shape. Although the original samples set PN undergoes a morphing operation,
the w.c.e. of the estimate given by Eq. (2.7) is still strongly dependent on the charac-
teristics of PN (and in particular on the energy EN), as will be seen in the following
sections.
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5 Tested point sets
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Figure 2.6 – Examples of point sets of size 512 produced by different algorithms. Top
row: unit square projection. Second row: Lambert cylindrical projection. Third row:
Shirley-Chiu [SC97] concentric maps projection and, on the right, the Fibonacci point
set generated directly in the spherical domain. The last two rows show the spherical
point sets after morphing according to a Phong lobe with a shininess value of 20.

In this section, our goal is to compare the properties of the presented spherical
Fibonacci point sets with those of the sample sets produced by the following algorithms:

� Sobol (0, 2)-sequence with random digit scrambling as described by [KK02];

� Periodic blue noise, generated with the state of the art algorithm of de Goes et
al. [dGBOD12];
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� Larcher-Pillichshammer points [LP01] with random digit scrambling as described
by [KK02].

Henceforth, we will refer to these three algorithms as Sobol, BNOT and L-P respec-
tively. Fig. 2.6 shows different projections of sets of 512 samples generated using Sobol,
BNOT and L-P, as well as an example of a spherical Fibonacci point set. We used two
different techniques for projecting the unit square point sets to the unit hemisphere:
the Lambert cylindrical projection (e.g., see [ABD12]) and the concentric maps of
Shirley and Chiu [SC97] presented in section 2. In this section we do not consider
the HEALPix projection because experiments we have made showed that it provides
results of lower quality compared to the other projections. Note that these projections
do not apply to Fibonacci point sets since these latter are generated directly on the
sphere. The pattern generated by the Sobol sequence is apparently non-optimal in
terms of discrepancy, since the distance of a sample to its closest neighbour is quite
variable. This can be observed both on the unit square and on the unit hemisphere
projections. On the other hand, the BNOT and L-P sampling patterns (Fig. 2.6(b)
and (c) respectively) seem to be more uniformly distributed than the Sobol sequence.
As for the spherical Fibonacci point set (Fig. 2.6(d)), it exhibits superior uniformity
properties when compared to all the other point sets projected on the hemisphere.

A quantitative analysis of these visual impressions can be made by comparing the
different sampling patterns in terms of the energy metric defined in Eq. (2.3). Let
us recall that, as stated in section 2, the w.c.e. is proportional to energy under a
C0 continuity assumption for the integrand. Fig. 2.7(a) clearly illustrates that the
Fibonacci point set exhibits a lower energy (Eq. (2.3)) than the other tested algorithms
and is thus expected to yield a lower w.c.e. value. In the same line of results, Fig. 2.7(b)
shows that the minimum inter-sample distance is consistently larger for the Fibonacci
point sets, which is an indication of better uniformity properties. All the tested point
sets (except for BNOT using the Shirley-Chiu projection) yield approximately the same
O(N−3/4) rate of decay for EN , which corresponds to the optimum rate of convergence
for the w.c.e., as explained in section 2. Recall that this convergence rate is obtained
under a C0 continuity assumption of the integrand, which is in general not fulfilled
for illumination integrals. Nevertheless, as will be seen in the next section, these
inconsistencies have marginal effects. In particular, we will show experimentally that
the accuracy of the estimates given by Eq. (2.7) strongly depends on the energy EN of
the uniformly-distributed samples set PN .

6 Results

6.1 General considerations
The results presented in this section have been generated with the Mitsuba raytracer
[Jak10] on a 64-bit machine equipped with a 2GHz Intel Core i7 processor and a 8-Gb
RAM. Three different scenes have been used: Cornell Box (185K triangles), Room
(540K triangles) and Cars (1500K triangles). The illumination integral computation
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Lambert Shirley-Chiu

(a) Energy.

(b) Minimum inter-sample distance.
Figure 2.7 – Properties of the tested point sets. For each metrics (energy and mini-
mum distance), the same point set was projected using the Lambert (left) and Shirley-
Chiu [SC97] (right) projections, except for the Fibonacci point set which is generated
directly in the spherical domain.

has been performed in the context of final gathering for photon mapping, using the
estimator given in section 4, Eq. (2.7). We have compared the results produced using
the different point set construction strategies which have been presented in section 5.
A reference image has been computed using a sampling pattern produced by a Sobol
sequence and a large number of samples until convergence was achieved. This reference
image was then used to evaluate the Root Mean Square Error (RMSE) of the images
produced with the different point sets. For SF and BNOT scrambling is performed
on the sphere (as described in section 3), but for L-P and Sobol sampling patterns it
is made on the plane according to the random digit scrambling method proposed by
[KK02].

6.2 RMSE analysis and convergence slope
Fig. 2.8 shows that for the same number of samples, the spherical Fibonacci point
sets yield consistently smaller RMSE values than the other tested methods. Indeed,
we have not registered any case where the Fibonacci lattices have been outperformed
in terms of RMSE value. The convergence slope of QMC methods depends on the
smoothness properties of the integrands. Therefore, it is not guaranteed that the the-
oretical convergence rate for the w.c.e. (O(N−3/4) for C0 continuous functions) can be
obtained for highly discontinuous integrands, such as those commonly met in illumi-
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nation integrals. Nevertheless, in the Cornell Box scene and in the diffuse component
of the Room scene, it was possible to report convergence rates close to the theoretical
O(N−3/4), which means that the integrand for that scene fulfills the C0 smoothness
condition most of the times. A comparison between the convergence rates in Fig. 2.8

Cornell Room Cars
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(b) Diffuse component.
Figure 2.8 – RMSE plots for the three test scenes as a function of the number of
samples. The slopes of the RMSE line fits are displayed in-between brackets.

shows that the convergence slope of the SF point set is in general as good or better than
those of the other tested point sets. Note that when the convergence slope is steeper
for all methods (e.g., diffuse component of the Cornell Box scene) SF point sets clearly
outperform the other tested point sets. This can be explained by the fact that spherical
Fibonacci point sets are more able to take advantage of smooth integrands. According
to [BD11], a convergence rate as high as O(N−2) is possible with SF point sets in the
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case of very smooth integrands. On the other hand, when the rate of decay is close to
O(N−1/2) (e.g., the glossy component of the Cars scene in Fig. 2.8), all the point sets
yield similar performances since QMC in general is inefficient for very discontinuous
integrands.
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6.3 Efficiency and image quality
The benefit of using spherical Fibonacci point sets is thoroughly assessed in Tab. 2.1.
The results show that for 512 samples per shading point, the RMSE of L-P, BNOT
and Sobol point sets w.r.t. to that of SF can be up to +8.7%, +36.6% and +38.7%
respectively. Note that this results in an even higher percentage of saved rays. As an
example, for the same cases pointed out above, L-P needs +17.8% sample rays, BNOT
+49.1% and Sobol +56% to achieve the same RMSE as spherical Fibonacci with 512
sample rays. These results have been computed by extrapolating the RMSE curves
from Fig. 2.8.

The number of rays needed to close the gap between the RMSE of SF with 512
rays and that of the other methods depends on the rate of convergence for the given
configuration: scene, sampling method, spherical projection and radiance component.
This can be clearly seen in Tab. 2.1 for the Room scene using the L-P points and a
Lambert projection. In this case, the relative RMSE of the glossy component (+8.5%)
is more than twice that of the diffuse component (+4.1%), using 512 samples. But
both components require approximately the same number of samples (around 556) to
achieve the same RMSE than SF with 512 samples. The reason for this is that the
glossy component converges faster than the diffuse component (see caption of Fig. 2.8).

The improvement brought by the use of spherical Fibonacci point sets can be ap-
preciated on the close-up views of Fig. 2.9 which show that SF yields less visual noise
compared to the other methods. As for the Room scene in Fig. 2.10, the error images
indicate that SF performs better in critical areas such as the specular highlights. In the
Cars scene (Fig. 2.11) on the other hand, the high discontinuity of the incident radi-
ance makes the performance of all methods be roughly similar (as shown in Tab. 2.1).
Nevertheless, it is still possible to identify image regions where the incident radiance
is smoother, which favors SF point sets as shown on the top row of the close-up views
of Fig. (2.11).

Fig. (2.12) shows images computed with the SF point sets and L-P with a Lambert
projection. We have compared SF with L-P since they both provide the smallest
RMSE in the other test cases. The scene is made up of four plates, each one having a
different shininess coefficient. It contains seven light sources of variable size and variable
radiance producing an incident radiance along the plates of variable frequency. Note
that this frequency increases as we approach the center of the plates. The objective is
to show, through this scene, how SF and L-P point sets behave for different frequencies
of the incident radiance and different shininess coefficients. Both the images generated
with SF and L-P exhibit the same general features: for the same illumination conditions
the noise increases as n decreases, and for the same shininess coefficient n the noise
is higher for sharp variations of the incident radiance. We can notice that the image
generated using SF point sets provides results with a lower noise when compared to
that generated using the L-P points. Furthermore, despite the regularity of the SF
point sets, no regular patterns can be seen thanks to the used spherical scrambling
method. The relative RMSE of the image generated with the L-P points w.r.t. that of
the image corresponding to SF point sets is 7.55% higher.
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Lambert Shirley-Chiu
Ref. Sobol BNOT L-P SF L-P BNOT Sobol

Reference (×4) Close-up views
Figure 2.9 – Cornell Box scene (indirect radiance component only). The rabbit,
the blue box and the back wall material contain a glossy BRDF, while the rest of the
objects have a perfectly diffuse BRDF. Left: reference image multiplied by a factor
of 4. Right: close-up views for all the used methods with 128 and 256 sample rays for
the glossy and diffuse components respectively.

7 Conclusions
In this chapter, we have presented an algorithm for efficient generation of high quality
spherical QMC sequences for approximating illumination integrals. The advantages of
our approach can be summarized as follows:

Simplicity: The SF point sets algorithm is simpler to implement than the other tested
QMC spherical sample sets.

Compactness: A single sequence is needed to synthesize an image. This is achieved by
exploiting the axial symmetry of the BRDF lobes, which allows scrambling the
point sets directly on the spherical domain using just a random axial rotation.
This feature makes SF point sets particularly well-suited to GPU implementa-
tions.

Efficiency: SF point sets outperform L-P, Sobol and blue noise-based QMC in all the
test cases, allowing to save a significant amount of sampling rays for the same
image quality.

The main reason for the improvement brought by spherical Fibonacci point sets is that
they better suit the spherical geometry. The other methods, in contrast, by focusing
on the unit square distribution, neglect the fact that the discrepancy properties of the
samples set on the unit square are unpaired by the spherical projection.

8 Future work
An obvious research line is to develop adaptive sampling schemes while keeping the
high quality of the energy criterion exhibited by the spherical Fibonacci point sets.
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Lambert Shirley-Chiu
Ref. Sobol BNOT L-P SF L-P BNOT Sobol

Reference (×4) Close-up views
Figure 2.10 – Room scene (indirect radiance component only). The teapot, the
teacup and the fruit-dish materials contain a glossy BRDF, while the rest of the objects
have a perfectly diffuse BRDF. Left: reference image multiplied by a factor of 4. Right:
close-up views comparison of the error images for all the used methods using 32 and
128 sample rays for the glossy and diffuse components respectively. The color encodes
the error magnitude.

Lambert Shirley-Chiu
Ref. Sobol BNOT L-P SF L-P BNOT Sobol

Reference (×4) Close-up views
Figure 2.11 – Cars scene. The materials associated with the glasses and the body-
works of both cars contain a glossy BRDF, while the rest of the objects have a perfectly
diffuse BRDF. Left: reference image multiplied by a factor of 4. Right: close-up views
comparison of the error images for all the used methods with 512 sample rays. The
color encodes the error magnitude.

As for increasing the accuracy of integral estimate, one could resort to non-frequentist
approaches, as we will see in the next chapter. They allow adapting the sampling
patterns according to a global covariance function of the incident radiance samples.
Another possible research line is the reduction of the perceived error by introducing
some correlation between the random rotation angles assigned to sample sets used in
illumination integrals of neighbour pixels.
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Spherical-Fibonacci (SF) SF Ref L-P Larcher-Pillichshammer (L-P)

Figure 2.12 – This figure shows how spherical Fibonacci (SF) point sets behave for
an incident radiance function covering a wide range of frequencies and materials of
different glossinesses. Direct lighting of different plates with light sources of varying
size using SF (left) and Larcher-Pillichshammer (L-P, right) point sets. The L-P point
sets have been projected using the Lambert cylindrical projection. The Phong shininess
coefficient n of each of the plates is 10, 50, 80 and 200 from bottom to top respectively,
while the background is perfectly diffuse. The RMSE of the image rendered using the
L-P points is 7.55% higher. The maximum quadratic error per pixel is 0.39 for SF and
0.71 for L-P.
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The Monte Carlo method has proved to be very powerful to cope with global illu-
mination problems but it remains costly in terms of sampling operations. In various
applications, previous work has shown that Bayesian Monte Carlo can significantly
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outperform importance sampling Monte Carlo thanks to a more effective use of the
prior knowledge and of the information brought by the samples set. These good re-
sults have been confirmed in the context of global illumination but strictly limited to
the perfect diffuse case. Our main goal in this chapter is to propose a more general
Bayesian Monte Carlo solution that allows dealing with non-diffuse BRDFs thanks to
a spherical Gaussian-based framework. We also propose a fast hyperparameters deter-
mination method which avoids learning the hyperparameters for each BRDF. These
contributions represent two major steps towards generalizing Bayesian Monte Carlo
for global illumination rendering. We show that we achieve quality improvements over
state of the art spherical QMC integration presented in the previous chapter (spherical
Fibonacci) at comparable computational cost.

1 Introduction
In global illumination rendering, the main issue lies in the computation of multi-
dimensional integrals involving intensive ray-traced sampling. Although the Monte
Carlo method has proved to be very powerful when coping with this problem, it re-
mains costly in terms of sampling operations. As the computational cost of sampling is
very high compared to the sheer quadrature cost, we can ask ourselves if Monte Carlo
methods make an efficient use of information brought by the samples. This question
has been raised by O’Hagan which led him to propose the “Bayes-Hermite quadrature”
[O’H91], a new form of quadrature which is referred to as “Bayesian Monte Carlo”
(BMC) by other authors. While keeping the fundamental property of data dimension
independence of Monte Carlo methods, it considerably broadens the set of theoretical
tools that can be used to exploit the information produced by sampling. In partic-
ular, BMC uses the information regarding the samples location, which is ignored in
the classic Monte Carlo method (CMC). Moreover, BMC offers much more flexibility
in the exploitation of the prior knowledge compared to CMC which mainly relies on
sampling strategies. However, all these advantages are obtained at the expense of the
quadrature complexity and additional preprocessing. Brouillat et al. [BBL+09] have
proposed efficient solutions that make the overhead of computing the BMC quadrature
negligible compared to CMC. Moreover, their results show that BMC can significantly
outperform CMC methods, even when including the preprocessing step. Nevertheless,
their work only considers diffuse reflections and their strategy for efficiently computing
the quadrature coefficients does not apply to non-diffuse BRDFs. A direct application
of the method to view dependent BRDFs would require massive precomputations of
multidimensional tables so as to allow an acceptable rendering time. The prior model
construction strategy presented in Brouillat et al. [BBL+09] would also be inappropri-
ate to the sharpness features of glossy BRDFs. It would require performing a learning
phase for each BRDF present in the scene, which would represent a high computa-
tional cost. Furthermore, the proposed samples set optimization method is not suited
to the highly non-uniform samples distributions needed to efficiently compute glossy
reflections. Applied to glossy BRDFs, their method converges towards local minima
which are very far from the optimal solution.

30



2. RELATED WORK

In this chapter we propose a new theoretical framework that includes a novel method
of quadrature computation based on spherical Gaussian functions that can be gener-
alized to a broad class of BRDFs (any BRDF which can be approximated by a sum of
one or more spherical Gaussian functions) and potentially to other rendering applica-
tions. We account for the BRDF sharpness by using a new computation method for
the prior mean function and by introducing a new factor in the method of Brouillat
et al. [BBL+09] for constructing optimized sample sets. Lastly, we propose a fast
hyperparameters evaluation method that avoids the learning step.

In the following, after a presentation of related work, we introduce the theoretical
aspects of BMC. Then we present the application of BMC to the illumination inte-
gral and develop our theoretical framework. It is followed by a description of the full
rendering algorithm and a presentation of comparative results. Then, we suggest var-
ious research directions in a discussion section. We conclude by summarizing what
was learned from our implementation and mention new perspectives of applications of
BMC.

2 Related work
BMC is a fundamental reconsideration of Monte Carlo integration. Our research work
has thus few connections with previous work on CMC and on computer graphics. How-
ever, it is interesting to note that BMC implicitly includes some of the improvements
that have been brought to CMC. This is the case for example of the integrand pre-
filtering method proposed in [KC08], which is equivalently obtained in BMC through
Bayesian regression as discussed in Section (3.2).

The fundamental difference between BMC and CMC lies in the use of a prior
stochastic model of the function f(x) to be integrated. Note that in the Bayesian
framework the variable x is considered deterministic, as opposed to CMC methods.
Therefore, the randomness is not introduced by random sampling as in CMC but by
the uncertainty (in a Bayesian sense) we put on the function to be integrated before any
samples are drawn. Several approaches have been proposed in the literature regarding
how to model this uncertainty. Our approach is based on the Bayes-Hermite quadrature
of O’Hagan [O’H91] which uses a Gaussian Process (GP) for the prior model. We
have found this method more appropriate for the computation of global illumination
integrals because it easily leads to closed-form solutions. Rasmussen and Ghahramani
[RG02] have shown that GP-based BMC can significantly outperform Monte Carlo
importance sampling (MCIS). Several applications of the Bayes-Hermite quadrature
have then been proposed in the literature and among them, the work of Pfingsten et
al. [PHR06] is particularly interesting in the way they derive a closed-form solution.
However, it is not suited to the particularities of spherical functions we are faced with
in global illumination problems. Brouillat et al. [BBL+09] have proposed solutions in
the context of final gathering for photon mapping and have clearly shown the benefit
of BMC over MCIS. However, their method can only deal with diffuse reflections. The
main goal of this chapter is thus to propose a BMC framework which can efficiently
deal with the problems raised by glossy reflections.
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3 Background and related work
In this section, we introduce the theoretical basis of BMC, and make a short description
of the previous application of BMC to the diffuse BRDF case. Detailed information
can be found in [O’H91, BBL+09, RG02]. The notations used throughout the Chapter
are described in Tab. 3.1.

x Point in RD

p(x) Analytically known function
f(x) Unknown function interpreted as a random quantity

and modeled through a Gaussian Process (GP)
f̄(x) Mean function E[f(x)]
F̄ Vector of mean function values

k(x,x′) General non-stationary covariance function
k(x− x′) Stationary covariance function
k′(x− x) Stationary correlation function

k(x) Vector of covariance values between a position x
and a set of sample locations x1, . . . ,xn

K Noise-free covariance matrix
Q Covariance matrix
Yi Noisy observation of f at location xi (f(xi) + εi)
Y Vector of observations (Y1, . . . , Yn)
εi Sample of an i.i.d. Gaussian noise (E[εi] = 0)
σ2
n Variance of εi
σ2
f Variance of the GP
σ2
y Variance of the observations (σ2

n + σ2
f )

Li(ω) Incident radiance from direction ω
l Lengthscale of the GP which models Li
G() Spherical Gaussian function
ρ() BRDF
m Shininess coefficient of the BRDF
w Gaussian BRDF lobe width w = 1/

√
m

Table 3.1 – Notations description.

3.1 The Gaussian process prior
As in any Bayesian method, we need to state our knowledge prior to performing ob-
servations. This is usually defined as a probability distribution often simply called
the prior. In BMC, the prior is modeled by a Gaussian process as explained in the
following.

Let us consider the computation of the integral:

I =
∫
f(x)p(x)dx , with x ∈ RD (3.1)
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where p(x) is analytically known and f(x) can only be determined through physical
observations or, as in our case, through numerical evaluations. Given the high cost
of these evaluations, it is infeasible to have a detailed knowledge about f(x) in all
its domain. Our knowledge about f(x) is restricted to a limited set of samples while
anywhere else in the domain, we are not sure about the value of f(x). This uncertainty
about f(x) leads us to interpret it as a random quantity. The Bayesian reasoning states
that all forms of uncertainty can be modeled by probability. Consequently, f(x) can be
considered as random because its value is unknown and thus uncertain. To model our
uncertainty about f(x), we will use a stochastic model called Gaussian process (GP).
For a more practical knowledge about GP, the reader may refer to [Gei07]. Formally, a
GP is a collection of random variables, any finite number of which has a joint Gaussian
distribution. A GP is completely defined by its mean function f̄(x) and its covariance
function k(x,x′), which must be positive definite [RW06]:

f̄(x) = E[f(x)] (3.2)
k(x,x′) = E[(f(x)− f̄(x))(f(x′)− f̄(x′))] (3.3)

and will be denoted as:
f(x) ∼ GP [f̄(x), k(x,x′)] .

We use the GP formalized by Eqs. (3.2) and (3.3) as our prior model. f̄(x) is our expec-
tation of f(x) before any observation is made. The covariance function characterizes
the belief we have on the smoothness of f(x), i.e., how correlated are nearby samples.
A strong correlation between the samples implies that f(x) is very smooth. The co-
variance function of the prior GP is often assumed stationary. A covariance function
k is stationary when k(x,x′) := k(x− x′), ∀(x,x′), in which case the variance of f(x),
i.e., k(x,x) = k(0), is constant. The prior covariance function k is parametrized by
a set of hyperparameters which need to be determined in a preprocessing step. This
problem will be addressed in sections 4.2.2 and 5.2. For now, we assume that the
hyperparameters are known.

Figure 3.1 – Examples of different functions drawn at random from a GP prior with
a constant mean f̄ = 0 and a stationary covariance function k. Figure from [RW06].

Fig. 3.1 shows an example of a prior GP with a constant mean f̄ = 0 and a
stationary covariance function k. The grey area represents the interval of confidence of
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95% around the mean value for each input x. The red, green and blue lines are different
realizations of the GP. The largest the covariance (induced by k), the smoother the
realizations of the GP.

3.2 The posterior Gaussian process

Once the prior is defined, we can collect observations of f(x) so as to refine our model
by leveraging the prior GP. The resulting process is also a GP and is called posterior
GP. In this section, we describe how to compute the posterior GP given the prior and
a set of observations.

Let us suppose that we are provided with a set D of noisy samples of f(x):

D = {(xi, Yi) | i = 1, . . . , n} with Yi = f(xi) + εi

the εi being samples of an independent, identically distributed (i.i.d.) Gaussian noise
with zero mean and variance σ2

n, xi being a sample location (the input) and Yi its
corresponding sample value (the output). Given this additive noise assumption, the
covariance of the observations becomes:

cov(Yp, Yq) = k(xp,xq) + σ2
nδpq (3.4)

where δpq is the Kronecker symbol. σ2
n is thus a hyperparameter of the prior model and

represents the variance which is unexplained by the GP. It is important to understand
that this noise component is not only due to measurement errors and computation
inaccuracies. In a very broad sense, the noise term allows to accommodate highly dis-
continuous data that do not fit the smoothness assumption implied by the prior GP.
Indeed, illumination functions are generally discontinuous and cannot be modeled ac-
curately with smooth basis functions. The noise term provides the necessary flexibility
so that when building the posterior process, the most plausible smooth model can be
fitted to discontinuous data. This data fitting has the same effect as the pre-filtering
method proposed by Křivánek and Colbert [KC08] which aims at low-pass filtering
the observed samples to reduce aliasing. However GP model fitting does not assume
any band-limited functions hypothesis. In conclusion, BMC is applicable whatever the
smoothness or the bandwidth of the integrand but of course, it performs better when
the noise level σ2

n is low, that is when the prior fits well the data.
The posterior process results from applying the Bayes’ rule to incorporate the in-

formation brought by the samples. It can be shown that the obtained posterior process
is also a GP with mean and covariance functions given by [RW06]:

E[f(x)|D] = f̄(x) + k(x)tQ−1(Y − F̄) (3.5)
cov[f(x), f(x′)|D] = k(x,x′)− k(x)tQ−1k(x′)
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with:
k(x) = (k(x1,x), . . . , k(xn,x))t

Ki,j = k(xi,xj) with (i, j) ∈ [1, n]2

Q = (K + σ2
nIn) (3.6)

Y = (Y1, . . . , Yn)t

F̄ =
(
f̄(x1), . . . , f̄(xn)

)t
and In being the n × n identity matrix. Y is the vector of observed samples value
while F̄ is the vector of prior GP mean values at the sampling locations. Q contains
the covariance between the samples and is called covariance matrix. Eq. (3.5) gives
an estimate of f(x) for an unobserved input x given the observed data set D. This
particular form of regression is called Bayesian regression.

Fig. 3.2 shows an example of a posterior GP produced by combining five samples
(marked with a +) with the prior GP from Fig. 3.1. Note that the grey area denoting
the 95% confidence region has been drastically reduced, especially around the sampled
values where the uncertainty regarding the value of f(x) is smaller. Consequently, the
functions drawn from the posterior GP (red, green and blue lines in the plot) are much
closer to each other than the ones drawn from the prior GP.

Figure 3.2 – Examples of different functions drawn at random from a posterior GP.
Figure from [RW06].

3.3 Bayesian quadrature
Eq. (3.5) gives a posterior estimate of f(x) given the observed samples. Then, from
Eq. (3.1), a posterior estimate of I, that is Î = E(I|D), is obtained by integrating both
terms of Eq. (3.5):

Î = Ī + ztQ−1(Y − F̄) (3.7)
with:

Ī =
∫
f̄(x)p(x)dx (3.8)

z =
∫

k(x)p(x)dx (3.9)
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It can be seen that the posterior estimate Î results from adding to the prior expectation
Ī a corrective term that represents the effect of the observed samples D. This term
includes three factors: (Y− F̄), which measures how wrong was our prior expectation
for each observed sample value, Q−1, the inverse covariance matrix which accounts for
the relative positions of the observed samples, and the z vector, which captures the
influence of each sample on the deterministic part of the integrand given the covariance
function.

3.4 Variance analysis
3.4.1 Variance of the integral estimate and optimal sampling pattern

The posterior estimate of I given by Eq. (3.7) has a Gaussian distribution of mean Î
and a variance given by:

Var(I|D) = V̄ − ztQ−1z (3.10)

with:
V̄ =

∫∫
k(x,x′)p(x)p(x′) dxdx′ . (3.11)

Note that the estimate of the posterior variance in Eq. (3.10) does not depend on the
observed values Y. It only depends on the location x of the samples. This might
seem not plausible at first sight but actually, the covariance function of our prior
model (Eq. (3.4)) already comprises the statistical information necessary to estimate
Var(I|D). This variance is due to the implicit variability of our observations given our
prior. It can be interpreted as a measure of the confidence we may attribute to our
integral estimate. Note also that BMC does not require drawing the samples randomly
according to a PDF. However, Eq. (3.10) shows that the Var(I|D) strongly depends
on the choice of the samples set position {xi}. An optimal choice consists in selecting
the {xi} that minimizes Var(I|D). This optimal set will reflect both the influence of
the deterministic function p(x) (through the z vector) and that of the prior knowledge
on f(x) (through the covariance function).

3.4.2 Bias considerations

As opposed to CMC, in BMC the observed data are considered as known and thus
deterministic whereas the function f(x) (Eq. (3.1)) is considered as uncertain. The
BMC integral estimate is obtained by computing the integral of the most probable
function among all possible realizations of the posterior GP. The estimator of Eq. (3.7)
is thus unbiased (in the Bayesian sense) as its value coincides with the expected value
of the posterior probability distribution. However this unbiasedness has nothing to
do with the usual interpretation of this term in a classic Monte Carlo framework in
which sampling is produced by a random process. That is why unbiasedness consider-
ations can be misleading when comparing classic and Bayesian Monte Carlo, since the
randomness in each of the methods is of a very different nature.

Specifically, in a frequentist approach such as CMC, the estimate can be refined by
averaging estimates with respect to multiple sample sets whereas a Bayesian method
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uses averaging with respect to the posterior distribution instead. In [Bis06] (Chapter
3, Section 2), Bishop applies a frequentist bias-variance analysis to regression and he
shows on a parametric regression example how the regularization parameter (which,
in BMC, corresponds to the noise ratio introduced in the next section) can be used
to control the frequentist bias. However, Bishop points out that this is of limited
practical interest since averaging w.r.t. multiple sample sets would affect the efficiency
of a Bayesian approach. Indeed, as noted by Bishop, to fully benefit from the Bayesian
approach, a direct application of BMC would combine multiple sample sets into one
large set rather than considering each set individually. Therefore, in our BMC method,
we will consider only a single samples set and apply a full-fledged Bayesian method.
Furthermore, the Bayesian framework offers much more efficient methods to implement
progressive refinement than averaging with respect to multiple sample sets.

3.5 The case of stationary covariance functions and the noise ratio
hyperparameter

In the absence of accurate information on f(x) variations, it is sensible to assume
a stationary covariance function for the prior GP. As mentioned in Section 3.1, the
variance of the prior GP is constant in the case of stationary covariance functions and
we have:

k(x− x′) = σ2
fk
′(x− x′) (3.12)

where σ2
f = k(0) is the prior GP variance and k′(x− x′) is its correlation function. σf

is thus an hyperparameter of our GP model. It represents the confidence we have on
the prior mean value. As the additive noise ε is assumed independent from the prior
GP, the variance σ2

y of the observed samples value can be expressed as follows:

σ2
y = σ2

f + σ2
n .

The above equations reveal the σf and σn hyperparameters as totally independent
variables. However, in global illumination problems, many integrals of the same type
but with different data have to be computed to render a full image. The observed
variance σ2

y can strongly vary from one integral to the other, but in practice, we can
expect that the values of both hyperparameters will roughly have the same order of
magnitude as σ2

y. Therefore, the noise contribution is better characterized by the ratio
σn/σf rather than σn alone. Henceforth, we will thus use the noise ratio hyperparameter
σ′n = σn/σf instead of σn to represent the noise contribution.

In the following of this section, we show that once σ′n has been determined, the
value of σf is not required to compute the integral estimate Î.

Given Eq. (3.12), the Q matrix defined in Eq. (3.6) can be expressed as follows:

Q = σ2
fQ
′

with Q′ = K ′ + σ′2n In (3.13)

where K ′ is obtained by replacing k(x− x′) by k′(x− x′):

K ′i,j = k′(xi − xj) with (i, j) ∈ [1, n]2
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We can now rewrite Eq. (3.7) with terms that depend on σ′2n instead of σ2
f and σ2

n:

Î = Ī + z′tQ′−1(Y − F̄) (3.14)

where the z′ vector is obtained by replacing k(x− x′) by k′(x− x′) in Eq. (3.9). Each
element of this vector can then be expressed by the following convolution integral:

z′i =
∫
k′(x− xi)p(x)dx (3.15)

where xi is a sample location. Assuming that the σ′n hyperparameter is known, the
integral estimate given by Eq. (3.14) does not require determining σ2

f and σ2
n. The

noise ratio σ′n can be interpreted as the level of confidence we have in the GP model
fitting. The higher σ′n, the lower the proportion of the observed samples variance that
can be explained by the GP.

3.6 BMC algorithm overview
To summarize, the BMC method consists of the following steps:

1. Build the GP prior by choosing a covariance function and a mean function.

2. Learn the hyperparameters associated with the covariance function.

3. Select the set of sampling positions {xi} which minimize the variance of the BMC
estimate and compute the inverted covariance matrix Q′−1.

4. Compute the z′ vector and the vector of quadrature coefficients c = z′Q′−1.

5. Collect the observed samples value Yi for each sampling position {xi}.

6. Compute the prior mean value vector F̄.

7. Compute the posterior estimate with Eq. (3.14).

The diffuse BRDF case. As mentioned above, global illumination entails the com-
putation of many integrals of the same type with different data and of course, all these
steps need not be repeated for each integral evaluation. As a matter of fact, in imple-
menting a BMC algorithm, we will try to transfer the most computer intensive steps
to a preprocessing stage. Brouillat et al . [BBL+09] proposed a solution in which the
same set of hyperparameters is used for all integral evaluations. Since the hyperpareme-
ters do not vary locally, the optimal samples set (obtained by minimizing Var(I|D) in
Eq. (3.10)) is also the same for all integrations. This means that sample locations are
known before evaluating the integral. We can thus precompute the covariance matrix
Q′ which only depends on the hyperparameters and on the locations of the samples.
Furthermore, in the case of a purely diffuse BRDF, also the coefficients z′i of the vector
z′ only depend on the sample locations. This feature allows precomputing the vector
of quadrature coefficients c = z′Q′−1. During rendering, only steps 5, 6 and 7 of the
above algorithm are performed.
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The glossy BRDF case. The approach taken in [BBL+09] is not applicable to
the case of glossy BRDFs because of the dependency on the viewing direction. The
deterministic function p(x) that essentially contains the BRDF will then change at
each integral evaluation, and steps 2 and 3 can no longer be preprocessed as we will see
in the following. In the next sections, we will propose a more general approach based
on a spherical Gaussian framework that can be applied to a large class of problems.

4 A spherical Gaussian-based BMC framework
We will now consider the computation of the illumination integral at a given shading
point:

Lo(ωo) =
∫

Ω2π
Li(ωi) ρ(ωi,ωo) (ωi ·n) dΩ(ωi) . (3.16)

In this integral, the analytical part, which corresponds to p(x) in Eq. (3.1) is naturally
the BRDF factor ρ(ωi,ωo)(ωi ·n). The unknown function f(x) in Eq. (3.1), mod-
eled with a Gaussian Process, is the incident radiance Li(ωi) at the shading point in
Eq. (3.16). Our goal is to compute an estimate of Lo(ωo) from a set of samples value
{Li(ωj), j ∈ [1, n]}, where ωj are the samples location (called xi in Section 3.2).

Throughout this section, we describe our approach to the different problems in-
volved in computing the Bayesian quadrature. We start by describing a spherical
Gaussian-based framework for BMC which greatly simplifies the computation of the
integrals for the z′ vector. Then we show how the prior GP covariance and mean
functions are built, and how optimal sampling patterns are determined. Finally, we
elaborate on our rendering algorithm.

4.1 Our theoretical approach

In this section, we essentially address step 4 of the BMC algorithm presented in Sec-
tion 3.6 and more particularly the problem of making the computation of the z′ vector
tractable knowing that it is not possible to precompute the z′j coefficients given their
dependency on ωo. Our approach is to model both the BRDF and the correlation
function with spherical Gaussian functions (SGF), a choice which allows us to reduce
the z′ computation to a simple query to a scene-independent 2-entry look up table.

An interesting property of SGFs is that the product of two SGFs yields a SGF.
This property will be very useful for the computation of the Eq. (3.15) integral. As
far as p(x) can be modeled by a SGFs product or mixture, the method described in
this section can be applied to compute the quadrature of Eq. (3.14) given its linearity
properties.

A SGF results from the restriction of a Gaussian RBF (Radial Basis Function) to
the unit sphere S2. Consequently, for x, y ∈ S2, we have:

|x− y|2 = 2(1− x· y) (3.17)
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since |x| = |y| = 1. A SGF can thus be expressed as follows:

G(x− y;µ, λ) := µ exp
(
x· y − 1

λ2

)
.

Since each point x ∈ S2 corresponds to a direction ω, we model the correlation function
k′ by a SGF Gk′ defined as follows:

k′(ω − ω′) := Gk′(ω − ω′; 1, l) = exp
(

ω · ω′ − 1
l2

)
(3.18)

where l is the lengthscale hyperparameter which controls the smoothness of the prior
GP. We model the BRDF ρ by a SGF Gρ defined as:

ρ(ωi,ωo) := Gρ(ωr − ωi; ks, w) = ks exp
(

ωr · ωi − 1
w2

)
(3.19)

where ks is the specular coefficient. Gρ has an axially symmetric lobe whose axis is
aligned with ωr which is itself function of the outgoing direction ωo. w characterizes
the lobe sharpness, i.e., the “width” of the lobe. It is important to note that this choice
does not restrict the generality of our analysis as several works have shown that most
BRDFs can be approximated by a mixture of SGFs (e.g. in [WRG+09]). In particular,
a single SGF is sufficient to model the glossy term of a Phong’s BRDF. In this case,
the lobe axis direction ωr is the perfect mirror incident direction:

ωr = 2(ωo ·n)n− ωo

and using the following approximation:

cosm θ = em ln(cos θ) ≈ em(cos θ−1) (3.20)

with cos θ = (ωr · ωi), we have w = 1/
√
m, m being the Phong shininess parameter.

The resulting approximation RMSE is below 10−3 when m > 10. Note also that mod-
eling BRDFs with SGFs (which are naturally isotropic) does not restrict our framework
to the isotropic BRDF case since anisotropic BRDFs can be modeled using a weighted
sum of (isotropic) SGFs as mentioned above. Moreover, we have found that the Blinn-
Phong BRDF can be modeled with only three SGFs with a RMSE below 0.05. More
details regarding the potential application of our approach to multiple-lobe BRDFs are
given in Section 6.2 of this chapter.

Given Eqs. (3.15), (3.18) and (3.19), each coefficient of the z′ vector can be expressed
as follows:

z′j =
∫

Ω2π
Gk′(ωj − ω′; 1, l) Gρ(ωr − ω′; ks, w) dΩ(ω′)

where ωj is the direction vector of sample j. As the product of two SGFs is also a
SGF, we have:

z′j =
∫

Ω2π
G(ωm − ω′; cm, lm) dΩ(ω′) (3.21)
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with:

1
l2m

=
∣∣∣∣ωj

l2
+ ωr

w2

∣∣∣∣
ωm = l2m

(
ωj

l2
+ ωr

w2

)
cm = ks exp

(
1
l2m
− 1
l2
− 1
w2

)
.

By developing Eq. (3.21), we have:

z′j = cm Sg(ωm, lm) .

where Sg(ω, l) is the spherical Gaussian integral (SGI):

Sg(ω, l) =
∫

Ω2π
exp

(
ω · ω′ − 1

l2

)
dΩ(ω′) (3.22)

The computation of the z′ coefficients is then reduced to evaluations of the SGI of
Eq. (3.22) which, given its smoothness, can easily be tabulated for quick evaluations.
Only the elevation angle θ between the direction ω and the normal n is necessary to
specify the input direction ω in Eq. (3.22) given the axial symmetry of the SGI about
the normal n. Therefore, only a single 2-entry table with (θ, l) as inputs is necessary
for SGI evaluations. This table is independent of the scene and the used BRDFs. It is
computed just once and used for any BMC integration within this framework.

Fig. 3.3 illustrates the shape of the SGI Sg(θ, l) for (θ, l) ∈ [0, . . . , π] × [0, . . . , 1].
Note that, as the value of θ increases, the value of the SGI decreases. This is because
the part of the lobe which remains inside the domain of integration gets smaller and
smaller. Such an effect is more visible for larger lobes.

Figure 3.3 – Plot of the SGI 2D table values. In this example 25 values have been
used for the θ dimension, and 50 values have been used for the lengthscale l. In our
work we have used 200 values for each dimension. In such a case, the table is of size
160 KB using floating point notation.
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4.2 Constructing the prior GP model
4.2.1 Determining the mean function

To define the GP, a mean function L̄i(ωi) corresponding to f̄(x) in Section 3.1 must
be specified. Our approach to this question is to assume a locally constant mean
function L̄i that will be determined from the observed samples value Li(ωj). A simple
average of the samples value would provide a strongly biased L̄i estimate since the
samples distribution is not at all uniform as explained in Section 4.3. Instead, we
leverage the prior GP as described in Chapter 2, Section 7 of [RW06]. The method
consists in inferring a mean function from the observed samples value through an
explicit basis function model. In our case, we only use one basis function (h(ω) = 1)
and its associated weight is thus the desired constant mean value, which yields:

L̄i = HQ′−1Y

HQ′−1H t
(3.23)

where H = [h(ω1), . . . , h(ωn)] = [1, . . . , 1] and Y = [Li(ω1), . . . , Li(ωn)]t is the vector
of observations. As shown in [RW06], this method slightly increases the estimates
variance but this can be neglected in practice. Then, from Eq. (3.8) and Eq. (3.19) we
have:

Ī = L̄i × µ(ωr) (3.24)

where µ(ωr) is the SGI:

µ(ωr) =
∫

Ω2π
Gρ(ωr − ω; ks, w) dΩ(ω) .

To evaluate this integral, the same 2-entry table as the one required for evaluating
the SGI of Eq. (3.22) can be used. Moreover, since H = [1, . . . , 1], Eq. (3.23) can be
expressed as a weighted sum of the observed samples value:

L̄i = 1
Γ
∑
j

γjYj

where the weight γj is equal to the sum of the coefficients of the jth column of the Q′−1

matrix and Γ = ∑
j γj is the sum of all coefficients of the Q′−1 matrix. All the γj/Γ

weights can be precomputed once the sampling pattern and the hyperparameters have
been determined.

4.2.2 Hyperparameters selection

In the preceding sections, we have shown that only two hyperparameters are required to
compute the integral estimate from Eq. (3.14): the noise ratio σ′n and the lengthscale
l of the correlation function (Eq. (3.18)). Our strategy for determining appropriate
hyperparameter values consists in using the same set of hyperparameters for all illumi-
nation integrals that involve the same BRDF. We shall see in Section 5 that this choice
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is perfectly acceptable since the hyperparameters values mainly depend on the BRDF
shininess. This simplification allows us to learn the hyperparameters per BRDF at
scene level, and then precompute the inverse covariance matrix Q−1 and the optimal
sampling pattern (i.e., steps 2 and 3 of the algorithm of Section 3.6).

To learn the hyperparameters at a scene level for a given BRDF, we use the same
principle as Brouillat et al. [BBL+09]. It consists in numerically estimating the co-
variance between the samples, and then fitting it to our covariance function model
given by cov(ωp,ωq) = σ2

f exp
(

(ωp· ωq)−1
l2

)
+ σ2

nδpq. Nevertheless, the application of
this principle to the glossy BRDF case implies designing a learning algorithm which is
different from that of Brouillat et al.

The conditions in which the covariance is estimated should be as close as possible to
the ones which will be found when evaluating the integral. In particular, the samples
used to compute the expected value for the integration procedure (Eqs. (3.2) and
(3.23)) are distributed according to the lobe of the actual BRDF. Therefore, we have
decided to compute the expected value for the covariance estimation procedure using
the same samples distribution. This decision implies that the covariance is evaluated
separately for each BRDF shininess. Furthermore, to simplify the learning procedure,
we simulated the incident radiance using an environment map.

We propose a learning method in which the training set is built as a superset of
incident radiance {Li(ωj)}. Each of these sets is designed so as to be nearly optimal
for the quadrature equation. As the integral of Eq. (3.16) is strongly dependent on
the BRDF, each {ωj} set will be more or less concentrated around the ωr direction
specified for the BRDF. To take this into account for the determination of the global
hyperparmeters of the Li(ω) GP model, our method proceeds as follows.

1. Generate a set of nr uniformly-distributed direction vectors {ωr} over the S2

sphere (the basic spiral point algorithm proposed in [SK97] can be used for this).
The resulting distribution is depicted in Fig. 3.4, center.

2. For each ωr:

(a) Generate a set {ωj} of n sampling directions (Fig. 3.4, left) using the spiral
points of Algorithm 2 without the polynomial distribution unknown at this
stage. Center {ωj} around the actual ωr (see Fig. 3.4, right). Compute the
corresponding Li(ωj) values.

(b) Compute the Monte Carlo estimate of the mean incident radiance value:

L̄ = 1
n

∑
j

Li(ωj)
ρ(ωj,ωr)

(c) Build a covariance matrix Aωr , the coefficients of which are the products:

aij = aji = (Li(ωi)− L̄)(Li(ωj)− L̄)

3. Compute Ā, the arithmetic mean of the Aωr matrices.
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4. Perform a linear regression on all the Ā matrix coefficients except the diagonal.
For this, we take the square of the Euclidean distance between pairs of sampling
directions (see explanations below) as input variable, and the natural logarithm
of the Ā coefficients value as output variable (see Eq. (3.25)). The slope gives
1/2l2 and the intercept 2 ln(σf ).

5. Subtract σ2
f from the mean of the diagonal coefficients to obtain σ2

n.

The goal of steps 1-3 is to build an average covariance matrix Ā by analyzing the whole
range of incidence directions while keeping a point distribution that fits the BRDF.
Ā can then be considered as an observed sample of matrix Q (Eq. (3.6)). As all Aωr

elements are produced with the same point distribution, the Euclidean distance |ωi -
ωj| between pairs of sampling directions ωi and ωj that are used to compute aij is the
same for all Aωr matrices and thus Ā. Therefore:

|ωi − ωj| = rij .

These distances can then be computed once for all and used in the linear regression
step. Given Eq. (3.17) and Eq. (3.18), we have:

ln[k(ω − ω′)] = 2 ln(σf )−
|ω − ω′|2

2l2 , (3.25)

hence the result of the linear regression. We only consider the range of rij values which
correspond to significant values of covariance. In our implementation, we have obtained
good results with nr = 4K sample sets, each one containing n = 80 samples, yielding
a training set with 320K samples.

Figure 3.4 – Samples set layout for covariance estimation. On the left: samples set
{ωj} uniformly distributed on a SGF BRDF lobe with a given shininess. Center: set
of ωr directions uniformly distributed on the sphere S2. Right: {ωj} centered on each
ωr.

Using the procedure described above, we sample the incoming radiance with a dis-
tribution concentrated within the BRDF lobe. In this way, the fitting of the covariance
function is adapted for the range of interest of the inter-samples distance, that is, a
narrow range of distances for high shininess and a wide one for low shininess. But this
approach has a limitation regarding scenes with several BRDFs since it implies learn-
ing the hyperparameters separately for each shininess parameter used in the scene.
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Although this operation takes just a few seconds per shininess parameter (typically
around 1 to 4 seconds depending on the scene complexity), it would make the BMC
approach inefficient for scenes with different shininess parameters. To cope with this
problem, a fast method to approximate the hyperparameters is proposed in Section 5.4.

4.3 Optimal sampling pattern
The choice of the sample directions {ωj} is crucial to the quality of the rendering inte-
gral estimate, especially in the case of glossy BRDFs. Nevertheless, not only the BRDF
but also the characteristics of the incident radiance function Li should be taken into
account for this choice. These characteristics are represented in a stochastic manner
through the hyperparameters of the prior GP.

The variance estimate in Eq. (3.10) factors in the influence of the BRDF (through
z′), the prior GP hyperparameters, and the sampling pattern defined by the {ωj}
set. Moreover, since the global hyperparameters σ′n and l are known at this stage (see
Section 3.6), the variance only depends on the {ωj} set. This is a strong feature of
the BMC framework since we can optimize the samples direction in order to minimize
Var(I|D).

Optimizing the directions for a large set of samples can become cumbersome. A
naive approach would be to consider that the variance is a function of n variables which
are the samples directions. But minimizing such a function would become intractable
even for medium size sample sets (40 samples or more). Our solution to this problem
consists in modifying the spherical Fibonacci point sets algorithm presented in the
previous chapter as shown in Alg. 2.

Algorithm 2 The modified spiral points algorithm.
1: ∆φ← π(3−

√
5) . Compute the step on φ

2: φ← 0 . Initialize φ for the first sample
3: ∆z ← 1/n . Compute the step on z
4: z ← 1−∆z/2 . Initialize z for the first sample
5: for all k ← [1 : n] do
6: zp ← polyval(coeff , z) . Covariance effect
7: zv ← 1

m
ln[1 + zp(em − 1)] . BRDF effect

8: θk ← arccos(min(zv, 1)) . Compute θ angle
9: φk ← mod(φ, 2π) . Compute φ angle
10: z ← z −∆z . Give a step on z
11: φ← φ+ ∆φ . Give a step on φ
12: end for

The original algorithm generates a discrete spiral on a sphere about the up axis z
with a constant pitch (∆z). In our application, the z axis is aligned with the surface
normal n. The z coordinates of the original spiral points are thus uniformly distributed.
We replace the uniform distribution by a polynomial distribution (whose coefficients
are called coeff in Alg. 2, line 6) to account for the covariance effect (line 6). In
addition, we change this algorithm to produce a discrete spiral on the BRDF lobe (line
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7) rather than on the sphere. This can be obtained by warping the z coordinates with
the following function:

zv = g(z) = 1
m

ln[1 + z(em − 1)]

where m is the Phong shininess parameter. Details regarding the derivation of this
warping function will be given in Section 4.4.

The optimizer will then take the polynomial coefficients coeff as input arguments
to minimize Var(I|D) instead of taking as input all the sampling directions. The
number of parameters to optimize is thus reduced to the number of coefficients of the
polynomial (a polynomial of degree 3 is sufficient). Actually, only the term −ztQ−1z
of Eq. (3.10) needs to be considered since V̄ does not depend on the sampling pattern.
The convergence is very fast (a few seconds) with the BFGS quasi-Newton method
provided by Matlab and the result is not very sensitive to the initial values even if the
initial polynomial is of degree 0.

The variance of the BMC estimate strongly depends on the correlation function
which is, in its turn, parametrized by the lengthscale hyperparameter. We can thus
expect the optimal sample set to depend on the lengthscale value. A very smooth Li
function implies a large lengthscale value. Consequently, a high concentration of sam-
ples around the BRDF apex would be redundant as the samples are highly correlated.
This explains the sparsity of the samples on the lobe (Fig. 3.5(b)). Conversely, if Li has
a low lengthscale value the samples will tend to be concentrated around the BRDF lobe
apex (Fig. 3.5(a)). In a preprocessing step, we compute optimal sampling patterns and
store the sample directions. The sample sets are computed for a discrete set of pairs
(l,m), l and m being the lengthscale and the Phong shininess parameter respectively.
With respect to the noise ratio σ′n, we have experimentally found that using σ′n = 0.25
yields the best results. These optimal sampling patterns are independent of the scene
to be processed. When rendering, we select the appropriate sampling patterns from
the precomputed ones.

Note that the use of an optimized sampling pattern is beneficial to fully exploit
the BMC method. It allows accounting for the prior information about the unknown
function Li on the samples distribution. This aspect is detailed in Section 5.

4.4 The z warping function for Gaussian lobe
Our approach to this problem is to exploit the property of every function f on S2 that:

lim
n→∞

1
n

n∑
j=1

f(ωj,n) = 1
4π

∫
S2
f(ω)dΩ(ω)

for configurations of asymptotically uniformly distributed sampling directions {ω1,n,

. . . ,ωn,n} [SK97]. Therefore, at the beginning of the optimization algorithm, if the
initial sampling pattern is such a configuration, all samples can contribute equally to
the integral estimate, which can be considered as a sensible choice for a starting point.
Our goal in this section is to show how such configurations can be built with the spiral
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(a) l = 0.05 (b) l = 0.17
Figure 3.5 – Optimal sampling patterns of size 20 computed for two different length-
scale values and a purely glossy Phong BRDF with a shininess m = 50. Each blue
point on the lobe corresponds to a sample direction.

points algorithm. In Section 4.3, we have assumed that the lobe central axis is aligned
with the surface normal (ωr = n) and consequently, using the spherical Gaussian
BRDF expression given by Eq. (3.19), the illumination integral of Eq. (3.16) becomes:

Lo(ωo) = ks

∫
Ω2π

Li(ωi) exp[m(n· ωi − 1)] dΩ(ωi) .

This equation can be further developed as follows:

Lo(ωo) = ks

∫ 2π

φ=0

∫ π
2

θ=0
Li(θ, φ)em(cos θ−1) sin θ dθdφ

where (θ, φ) are the polar coordinates of the ωi. If we make the substitution z = cos θ,
we obtain:

Lo(ωo) = ks

∫ 2π

φ=0

∫ 1

z=0
Li(z, φ)em(z−1) dzdφ

If we directly sample the function L(z, φ)em(z−1), the distribution over the hemisphere
Ω2π must be uniform as stated above, which is precisely what the original spiral points
algorithm does. However, if we sample the function L(z, φ) only, another substitution
is necessary to include the BRDF factor into new integration variables. This is possible
by making the substitution:

z′ = g−1(z) = emz − 1
em − 1 (3.26)

and then:
dz′ = m

1− e−m e
m(z−1)dz

which leads to:

Lo(ωo) = ks(1− e−m)
m

∫ 2π

φ=0

∫ 1

z′=0
L′i(z′, φ) dz′dφ,

where L′i(z′, φ) = Li(g(z′), φ). Note that the integration domain remains the hemi-
sphere Ω2π. This domain is then uniformly sampled by (z′, φ). Nevertheless we still
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need to revert to the original z coordinate so that we can sample the original Li()
function. By inverting Eq. (3.26), we have:

z = g(z′) = 1
m

ln[1 + z′(em − 1)]

which gives the warping function we need for our spiral point algorithm. Its effect can
be interpreted as a warping of the distance measure so that inter-samples distances are
measured between points on the Gaussian lobe rather that on the unit sphere.

4.5 The rendering algorithm
The BMC integrator described in Alg. 3 is applied to every shading point. The BMC
function (line 1) has two parameters: the outgoing direction ωo and the surface normal
n. It returns the BMC estimate of Lo(ωo) as defined in Eq. (3.16). All global data for
the whole scene including the hyperparameters (l, σ′n), the inverse covariance matrix
Q′−1, the optimal sampling pattern SS and the BRDF parameters (w, ks) are assumed
to belong to the program global scope and are thus not explicitly declared.

Algorithm 3 The Bayesian Monte Carlo integrator.
1: function BMC(ωo,n)
2: SSrotated ← rotateRandomφ(SS)
3: ωr ← reflect(ωo,n)
4: SSrotated ← centerAroundR(SSrotated, ωr)
5: for all ωj ∈ SSrotated do
6: Y[j]← Li(ωj)
7: end for
8: L̄i ← computeWeightedMean(Y)
9: Ī ← L̄i × µ(ωr)
10: F̄← L̄i ×H
11: z′ ← computeZVector(ωr, w, SSrotated)
12: Lo ← Ī + z′t ×Q′−1 × (Y − F̄)
13: return Lo
14: end function

The optimal sampling pattern, initially centered around the surface normal n, is
rotated around n (line 2) by a random φ value. The idea behind this random rotation
is to introduce a scrambling effect that allows masking the visibility of the regular sam-
pling pattern, hence avoiding the introduction of artifacts in the final image. Note that
since the covariance function is a SGF dependent only on the inter-samples distance, it
is invariant to rotations of the whole sampling pattern. This property allows generating
different optimal sampling patterns by randomly rotating the original optimal sampling
pattern while keeping the same matrix Q′−1. The mirror incident direction ωr is com-
puted at line 3. An additional rotation aligns the central axis of the sampling pattern
with ωr (line 4). The loop beginning at line 5 numerically evaluates the samples value
for each sampling direction ωj. L̄i is computed at line 8 according to Eq. (3.23) and Ī
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is computed at line 9 according to Eq. (3.24). At line 11, z′ is computed as described in
Section 4.1 and Eq. (3.21) through a look up in a scene-independent precomputed table
of SGI values. Finally, the Bayesian quadrature (Eq. (3.14)) is applied to estimate Lo,
which amounts to a vector-matrix and a vector-vector product.

As the sampling pattern SS is centered around ωr, a part of the sampled BRDF lobe
may be located under the plane tangent to the object surface at the shading point; in
other words, some of the directions of the sampling pattern may be occluded by object
surfaces. One way of reconstructing the signal would be to only use the samples within
the integration domain. This would imply recomputing and inverting the covariance
matrix each time one or more samples of the samples set lie outside the domain of
integration. To avoid this computational overhead, we use all the samples (even those
outside the integration domain), which raises the problem of assigning a value to the
occluded samples.

The values of the occluded samples could be naively set to zero, but such a method
could potentially introduce wrong information with an important effect on the esti-
mated integral value (Fig. 3.6 (a)). The reason for this is that although the considered
sampling direction ωj is outside the integration domain, i.e., ωj /∈ Ω2π, it may still
contribute to the reconstruction of the function Li(ωi) within the integration domain.
Setting the value of such samples to zero would introduce wrong information and force
the reconstructed signal to tend towards zero when approaching the surface tangent
plane. Indeed, there is no reason why an artificial discontinuity of the incident radiance
should be introduced at the tangent plane since occlusion due to the surface is already
accounted for through the choice of the integration domain. We have experimentally
found that an efficient solution to this problem is to assign to such samples the value
of the nearest sample that lies in the unoccluded part of the lobe (Fig. 3.6 (b)). In
particular, this solution performs better than assigning the occluded samples the mean
value of the samples within the integration domain.

5 Results

5.1 Experimental setup
The goal of this section is to assess the effectiveness of the BMC method with optimized
sample sets. Its results are compared with those of BRDF-based low-discrepancy QMC
using a Sobol (0, 2)-sequence [Sob67] and also using spherical Fibonacci point sets (SF)
as described in the previous chapter. We refer to these two methods as QMC Sobol
and QMC SF respectively. Moreover, we have also evaluated BMC using a Sobol
(0, 2)-sequence (BMC Sobol) and BMC using spherical Fibonacci point sets (BMC
SF). The efficiency of each method is computed in terms of root mean square error
(RMSE). The reference images are computed using QMC SF with 10000 samples per
pixel. We have chosen to test our framework using Phong shininess coefficients m
varying from 10 to 200, a range of values which we consider illustrative of the common
usage of glossy BRDFs. Six different scenes have been used, the details of which are
presented in Tab. 3.2. In some scenes (i.e., Dragon, Buddha and Horse), for the sake
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(a) (b)
Figure 3.6 – Two examples of a Bayesian regression using occluded samples. On (a)
the value of the occluded samples is set to zero, while on (b) their value is set to the
value of the nearest unoccluded sample. The red dashed line at π/2 marks the limit of
the integration domain. The samples at the right of this line are thus occluded samples
(marked in blue in (a) and green in (b)). The real signal is marked by a black line.
The resulting reconstructed signal is represented by a dashed blue line on the left, and
a dashed green line on the right.

Scene triangles m ll σ′nl
Dragon 100K 20 0.29 0.96
Buddha 170K 50 0.17 0.53
Horse 110K 80 0.13 0.67
VW 440K 20, 50, 80 nd nd
Room 540K 20, 50, 80 nd nd
Cornell Box 110K 80, 200 nd nd

Table 3.2 – Test profiles. Columns list the scene characteristics, the Phong shininess
parameter m and the learned hyperparameters ll, σ′nl. Values of ll and σ′nl tagged as
‘nd’ indicate that the approximate method of hyperparameters is used, as shown in
Section 5.4.

of computation speed, incident illumination is simulated by an environment map, a
simplification that does not limit the significance of our results and conclusions since
our goal is to show that we can obtain better estimates with less samples and a negligible
computing overhead whatever the used global illumination method. In other scenes
(i.e., VW, Room and Cornell Box), the results are generated using final gathering for
photon mapping. The results were generated with the Mitsuba raytracer [Jak10] at a
resolution of 1024 × 1024 pixels for all the scenes, using a 64 bit machine equipped
with a 2GHz Intel Core i7 processor and 8GB of RAM.

5.2 Hyperparameters learning
The validity of our prior model depends on the good choice of the hyperparameters.
Tab. 3.2 lists the hyperparameter values obtained by learning for the scenes Dragon,
Buddha and Horse. The learning method provides us with the hyperparameters that
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allow the best global adaptation of the GP model. But it is not guaranteed that these
hyperparameters yield the best integral estimate. To validate our hyperparameters
learning method, we have measured the RMSE for different values of the hyperparam-
eters (see Fig. 3.7).

(a) Lengthscale l (b) Noise ratio σ′n
Figure 3.7 – Relative RMSE difference when varying one of the hyperparameters.
∆ξ = ξ − ξl, ξ being the RMSE of an image computed when varying one hyperparam-
eter, and ξl being the RMSE of an image computed with the learned hyperparameters
(listed in Tab. 3.2). In (a) σ′n is fixed to its learned value, while in (b) the lengthscale l
is assigned its learned value. The abscissa axis of the lengthscale plot (a) is the relative
difference between the tested lengthscale and the learned value lengthscale ll.

Let ll and σ′nl be the learned hyperparameters listed in Tab. 3.2. To generate the
RMSE plots of Fig. 3.7(a), we have fixed the value of σ′n to σ′nl and computed the RMSE
for different values of l. We have repeated this process for the plot of Fig. 3.7(b) by
varying the value of σ′n while keeping l = ll. Fig. 3.7(a) shows that the RMSE is
minimum around ∆l = ll − l = 0 for the three scenes, which means that the learned
lengthscale value ll is appropriate for integration. Furthermore, Fig. 3.7(b) shows that
we can draw the same conclusion for σ′nl. Note that the RMSE is more sensitive
to negative than to positive deviations from the optimal value. This low sensitivity
to a variation of the hyperparameter values around their optimal values might give
room for skipping the learning step by using approximated hyperparameters instead of
optimal values. A more detailed analysis of this interesting feature will be presented
in Section 5.4.

5.3 Comparison with QMC
Fig. 3.8 illustrates the results obtained with QMC SF and BMC (using optimized
sample sets) for three scenes with a varying number of samples. The rendering times
of both methods are similar. This is because BMC with a single BRDF entails a
negligible overhead compared to QMC. The close-up views demonstrate that BMC
achieves a reduction of high frequency noise as compared to QMC SF for the same
number of samples. The RMSE is also reduced.
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Fig. 3.9 shows the RMSE plots as a function of the number of samples for QMC
Sobol, BMC Sobol, QMC SF, BMC SF and BMC (with optimal sample sets), for the
scenes shown in Fig. 3.8. It can be observed that the RMSE of BMC is consistently
lower than that of the other methods. This result confirms the advantage of BMC
compared to QMC SF observed in Fig. 3.8. The impact of the BMC samples weighting
can be appreciated by comparing the results achieved by BMC and QMC when using
exactly the same sample sets. This impact is particularly visible when comparing the
results obtained with QMC Sobol and BMC Sobol for the Dragon scene, as well as
when comparing QMC SF and BMC SF for the other two scenes. As for the benefits of
using optimized sample sets, it can be assessed by comparing the curves corresponding
to BMC SF with those of BMC Opt. This result shows the importance of optimized
point sets for BMC. It is only through an appropriate samples distribution that the
information brought by the prior covariance function can be efficiently exploited.

A thoroughly analysis of the results can be made by resorting to Tab. 3.3. The
values in the RMSE columns presented in this table are computed relative to the
RMSE of BMC with 80 optimally distributed samples. For a method M , its relative
RMSE is given by:

|RMSEBMC − RMSEM |
RMSEBMC

× 100 .

The number of rays needed by each of the methods to achieve the same RMSE quality
as BMC is also presented relatively to the 80 samples used by BMC. The absolute
number of rays needed for the other methods to achieve the same RMSE as BMC
with 80 optimal samples has been obtained by extrapolating the RMSE curves in
Fig. 3.9. The results show that the current state-of-the-art method for QMC spherical
integration (QMC SF, see previous chapter) required from 7.1% up to 9.8% more rays to
achieve the same RMSE as BMC using optimal sample sets. The relative RMSE of SF
w.r.t. that of BMC ranges from +5.1% to +7.0% (even better results will be presented
in the next section). The improvement registered from BMC SF w.r.t. QMC SF is
due exclusively to better samples weighting, since the used sample sets are exactly
the same. The relative RMSE penalty observed with BMC SF is due to the use of
suboptimal sample sets. These sample sets do not account for the covariance of the
incident radiance.

5.4 Skipping the learning step
A detailed analysis of the sensitivity of the method suggests that BMC can still achieve
good performances using approximated values for l and σ′n, which would allow skipping
the learning step. Indeed, Fig. 3.7(b) shows that for our test cases, we can use any
value of σ′n in the interval [0.4, 1.1] without incurring a significant RMSE increase.
However, we have observed that when increasing σ′n, the error tends to increase faster
in the areas of high variance of the incident radiance and is thus more conspicuous.
We have found experimentally that σ′n = 0.5 is a good trade-off.

Fig. 3.7(a) shows that the estimation of the integral value is not very sensitive to
positive variations of l. Moreover, Fig. 3.10 demonstrates that the learned values of
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Dragon Buddha Horse
Same quality Same quality Same quality

RMSE rays needed RMSE rays needed RMSE rays needed
QMC Sobol +38.4% +61.6%(≈ 129) +30.9% +47.2%(≈ 118) +31.8% +58.5%(≈ 127)

BMC Sobol +30.0% +48.6%(≈ 119) +26.7% +42.8%(≈ 114) +28.9% +49.9%(≈ 120)

QMC SF +7.0% +9.8%(≈ 88) +5.1% +8.4%(≈ 87) +5.2% +7.1%(≈ 86)

BMC SF +5.3% +7.2%(≈ 86) +2.9% +3.9%(≈ 83) +2.9% +4.0%(≈ 83)

Table 3.3 – Comparison of the results obtained using the different tested methods.
For each scene, the first column gives the relative RMSE obtained with a given method
w.r.t. the RMSE obtained using BMC with 80 optimal samples. The second column
shows the relative number of rays required by a given method to achieve the same
RMSE as BMC with 80 sample rays. In-between parentheses is the corresponding
absolute number of rays.

lengthscale exhibit a dependence on the shininess parameter m, such that the learned
lengthscale ll ≈ α/

√
m = α× w where m = 1/w2 as defined in Section 4.1.

A linear regression on the learned lengthscale values yields α ≈ 1.25 (see Fig. 3.10).
To test this fast hyperparameter derivation method, we have compared the perfor-
mances of BMC without hyperparameters learning with those of QMC SF and QMC
Sobol. We have used three different scenes: VW, Room and Cornell Box. The results
are shown in Figs. 3.11, 3.12 and 3.13. The relative RMSE of QMC Sobol and QMC
SF w.r.t. that of BMC is of 0.1%, 13.5% and 18.9% for Figs. 3.11, 3.12 and 3.13 re-
spectively. It is interesting to note that even when the RMSE is roughly the same for
BMC and QMC SF (Fig. 3.12), the image produced by BMC has a noise distribution
which is visually more pleasant. This can be explained by the fact that in BMC the
GP acts as a low-pass filter which smooths out high frequencies from the integrand
without introducing low frequency artifacts.

6 Discussion

6.1 Possible improvements
The results we have obtained demonstrate the soundness of our approach. However,
the implementation of BMC presented in this chapter is far from exploiting the full
potential of the Bayesian approach. Indeed the main advantage of BMC over other
methods lies in its ability to incorporate the prior knowledge, which can be obtained
in two complementary ways. First by specifying a more accurate mean function for
the prior GP with, for example, a rough approximation of incoming radiance using
spherical harmonics or a SGF mixture (to this regard, there are some similarities with
the control covariate method [LW95]). Second by improving the covariance function
adaptation. In particular, the hyperparameters can be adapted locally to better fit the
local radiance function characteristics. For example, different classes of pixels can be
distinguished based on the samples variance. In this way, different hyperparameters
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can be chosen for each class. Indeed, the pixels with high variance have generally more
impact on the visual quality and should be assigned proper hyperparameters value
whereas the hyperparameters choice is much less critical for low variance pixels. Since
these latter pixels represent the great majority, this explains the low RMSE sensitivity
to hyperparameters variation observed in Fig. 3.7.

6.2 BMC with many complex BRDFs

In this chapter, we have focused our attention to single spherical Gaussian BRDF
since it is the basic component in our approach to illumination integral computation.
In Section 4.1 we have given some indications on how to generalize our approach to any
type of BRDF, either analytical or measured, but further research work is necessary
to develop an efficient implementation. In the following, we try to be more specific
on the different possible approaches. If a BRDF is approximated by a weighted sum
of n SGFs, it is easy to see that the illumination integral can be broken down into a
weighted sum of n integrals of the same type as Eq. (3.16). Our method can then be
applied separately to each term of the sum and each integral will be assigned a samples
set of size proportional to its weight. However, this straightforward method cannot be
optimal in terms of sampling efficiency since each integral estimate will not benefit from
the information brought by the samples used in the other integrals. An alternative to
this method is then to use a single samples set for all the BRDF lobes. In this case,
only one global covariance matrix is necessary for computing the integral estimate with
Eq. (3.14). In Eq. (3.15), since the function p(x) that represents the BRDF is expressed
as a weighted sum of SGFs ∑j αjGj(), the z′ vector in Eq. (3.14) will also be expressed
as a weighted sum of vectors ∑j αjz′j and each z′j can be computed with the method
described in Section 4.1. As for samples set optimization, the morphing function can be
built from an approximation of the BRDF leading to a simpler analytical expression.

As mentioned above, one of the main problems to solve in BMC lies in the compu-
tation of the z′ vector and the complexity of this computation depends on the choice
of the deterministic function p(x) in Eq. (3.1). So far, we have considered in a rigid
manner that this function corresponds exactly to the BRDF but actually this choice
can be made more flexible since p(x) does not need to be an accurate approximation of
the BRDF. If a function g(x) (e.g. a weighted sum of SGFs) is a quite raw approxima-
tion of p(x), it is possible to consider that the unknown function is f(x)p(x)/g(x) and
substitute g(x) to p(x) in Eq. (3.15). This will not change very much the behavior of
the unknown function since the factor p(x)/g(x) is generally a very smooth function
but it could greatly simplify the computation of the z′ vector for complex BRDFs.

With respect to the application of BMC for scenes with a large number of different
BRDFs, the single problem that could arise is the need for precomputing an optimized
samples set for each shininess coefficient. This operation is much lighter than learning
the hyperparameters and is scene independent. But still, if one wants to avoid perform-
ing this operation for each different shininess coefficient, the same strategy as the one
applied for the hyperparameters could be used: optimize the sample sets for a subset of
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shininess values (which results in a polynomial of degree 3 as described in Section 4.3)
and interpolate the values of these polynomials for the intermediate values.

6.3 Limitations
As explained in this chapter, the main difficulties that we are faced with in implement-
ing BMC lie in the computation of the inverted covariance matrix and the z′ vector.
Our proposal in this chapter is to solve this problem by precomputing optimized points
sets and using spherical Gaussian mixtures. As far as this solution is applicable, there
is no reason why BMC should not perform better that CMC and QMC methods.

Directly applying our framework to the case of a very large samples set would in-
crease the memory footprint and make costly the preprocessing step because of the
inversion of the covariance matrix and the samples set optimization. One possible so-
lution is to resort to a progressive approach which would refine the integral estimate
by using successive small sample sets. At each iteration, the prior GP for the current
estimate (for the current samples set) would be replaced by the posterior GP of the pre-
vious estimate (for the previous samples set). In this way the estimate is progressively
refined.

The extension of BMC to larger dimensionality, such as illumination integral calcu-
lations requiring image plane sampling, lens sampling and multiple reflections, is not
obvious. Indeed, finding an appropriate prior model (definition of the known and un-
certain functions, determination of the hyperparameters and the mean function) while
keeping a good trade off between efficiency and performance is a difficult task.

7 Conclusion
In this chapter, important steps are given towards the goal of reaching a general
Bayesian Monte Carlo approach for solving global illumination problems, which was
until now limited to the diffuse BRDF case. Modeling the BRDF and the covariance
function with the same family of spherical Gaussian functions is a key point, since it
allows making the computation of the Bayesian quadrature coefficients tractable for
glossy BRDFs. The results confirm that Bayesian Monte Carlo outperforms state-of-
the-art Quasi-Monte Carlo methods. In a context where rendering times are domi-
nated by the cost of sampling, Bayesian Monte Carlo has a clear advantage over low
discrepancy Monte Carlo importance sampling since it exhibits less noise and lower
RMSE for the same number of samples, while having a negligible overhead. Finally, we
demonstrated that Bayesian Monte Carlo outperforms Quasi-Monte Carlo importance
sampling even with a suboptimal hyperparameters setting that avoids the learning
step. Future work will aim at improving the efficiency of Bayesian Monte Carlo as ex-
plained above and also at extending its use to other problems of larger dimensionality,
e.g., measured BRDFs, multiple reflections, depth blur, multi-view rendering, among
others.
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Figure 3.8 – Close-up views for three scenes rendered with Bayesian Monte Carlo
(BMC) and low discrepancy importance sampling (LDIS). The number of ray samples
per visible point is 40 for the Dragon and the Buddha, and 20 for the Horse. Each of
these objects has a purely glossy Phong BRDF with a shininess parameter of 20, 50
and 80 respectively. The figure also shows the RMSE values for each method.

56



7. CONCLUSION

Dragon

Buddha

Horse

Figure 3.9 – RMSE plots as a function of the number of samples n. The slopes of
the line fit for the RMSE curves of each method are given in the legend in-between
parentheses.

Figure 3.10 – Fitting of the learned lengthscales as a function of the shininess
parameter m.
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Figure 3.11 – Indirect radiance component for the Room scene rendered with BMC,
QMC SF and QMC Sobol. The RMSE of BMC is 0.026. The relative RMSE of QMC
Sobol and QMC SF w.r.t. that of BMC is +50.0% and +13.5% respectively. The
rendering times are 2m20s for BMC, and 2m18s for the QMC-based methods. The
images have been multiplied by a factor of 4. The RMSE and the time are computed
by considering only the glossy component. 16 ray samples per visible point were used
for the materials with a glossy BRDF (teapot, tea cup and fruit-dish), while 10000
samples were used for the diffuse BRDFs to ensure convergence since these are not
computed using our spherical Gaussian framework.

Q
M
C

Q
M
C

BM
C

SF
So

bo
l

R
ef

Figure 3.12 – Indirect radiance component for the VW scene rendered with BMC,
QMC SF and QMC Sobol. The RMSE of BMC is 0.020. The relative RMSE of
QMC Sobol and QMC SF w.r.t. that of BMC is +17.7% and +0.1% respectively. The
rendering times are 4m11s for BMC, and 4m09s for the QMC-based methods. The
shown images have been multiplied by a factor of 4. The RMSE and the time are
computed by considering only the glossy component. 16 ray samples per visible point
were used for the materials with a glossy BRDF (VW glass, VW bodywork and VW
roof), while 10000 samples were used for the diffuse BRDFs to ensure convergence since
these are not computed using our spherical Gaussian framework.
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Figure 3.13 – Indirect radiance component for the Cornell Box scene rendered with
BMC, QMC SF and QMC Sobol. The RMSE of BMC is 0.022. The relative RMSE
of QMC Sobol and QMC SF w.r.t. that of BMC is +71.7% and +18.9% respectively.
The rendering times are 3m38s for BMC, and 3m36s for the QMC-based methods.
The shown images have been multiplied by a factor of 4. The RMSE and the time
are computed by considering only the glossy component. 16 ray samples per visible
point were used for the materials with a glossy BRDF (sphere and back wall), while
10000 samples were used for the diffuse BRDFs to ensure convergence since these are
not computed using our spherical Gaussian framework.
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1 Introduction
In global illumination, rendering an image is a very computationally demanding task,
whose execution time depends on the overall number of samples used to estimate the
illumination integrals. A direct approach to render an image consists in assigning a
fixed number of samples to each integral evaluation. Such a choice is not optimal since
different image regions may correspond to different types of illumination and, therefore,
require different numbers of samples to achieve the same quality.

A common approach to solve this problem is to use adaptive sampling. When
using adaptive sampling, a first estimate with few samples is computed. Then, if some
quality criterion of the estimate is not met, a new set of samples is drawn and used to
refine the previous estimate. Consequently, regions of the image which correspond to
sharper variations of the sampled signal will tend to be more densely sampled.

61



CHAPTER 4. ADAPTIVE SAMPLING WITH BAYESIAN MONTE CARLO

Our goal in this chapter is to apply BMC with an adaptive approach for evaluating
the illumination integral. The idea is to compute a first BMC estimate based on a first
samples set and, if the quality criterion is not met, directly use the result as a prior
knowledge for a new estimate. The new estimate refines the previous one using a new
set of samples, and the process is repeated until a satisfying result is achieved.

2 Related work
Most of the work regarding adaptive sampling and refinement criteria has been devel-
oped for image plane sampling (possibly in the spatio-temporal domain such as MDAS
[HJW+08]). The main goal of these works is to detect regions of the image plane for
which the sampling rate does not allow an adequate signal reconstruction. Once these
regions are detected, their sampling rate is increased to remove aliasing. Finally, an
image is produced by combining the samples, either using a simple average or a filter
whose support can be adapted to the resolution at which the image will be displayed.

Lee et al. [LRU85] and later Purgathofer [Pur87] have developed adaptive sampling
algorithms which determine whether or not local oversampling is necessary based on
the variance of the estimate of the pixel values. The samples are normally distributed
around a pixel center, and if the variance of the estimate does not meet the required
quality criterion the local sampling rate is increased.

In [Mit87], Mitchell has proposed a 2-level sampling method. To generate the
appropriate sample sets, he uses a point-diffusion algorithm which generates point sets
having spectral characteristics similar to those of blue noise point sets. As regards the
refinement criterion, Mitchell [Mit87] proposed a contrast metrics which operates per
RGB color channel. This contrast function leverages the work about human visual
perception of Caelli [Cae81], and is given by:

C = Imax − Imin

Imax + Imin

If the contrast, measured on a color channel, is larger than a given threshold then the
estimate is refined. Mitchell suggests to use thresholds adapted to the human visual
system for each of the color channels: 0.4, 0.3 and 0.6 for the red, green and blue
respectively.

The above cited works present complete solutions to the adaptive sampling problem.
Several other works focus only on the refinement criterion. In particular, in [RFS02,
RFS03], the Shannon entropy is used as a criterion for oversampling. Entropy can be
viewed as a measure of the uncertainty associated with a random variable. Given a
discrete random variable X and a set of realizations {x0, . . . , xn}, its entropy is defined
as [Sha48]:

H(X) = −
n∑
i=0

pi log2(pi)

where pi = p(X = xi) and, by convention, 0 log2(0) = 0. Rigau et al. [RFS03] use a
combination between the samples color entropy and the samples geometric entropy to
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derive a contrast metrics which is used as a refinement criterion. Later, a different type
of entropy, called Tsallis entropy, has also been used as criterion [XBZ+05, XFSS07,
XSFS10]. These methods using these criteria rely on the sampled values to compute
the uncertainty of the estimate and use it to decide if the estimate should be refined.

In global illumination, the goal of sampling is not to accurately reconstruct the
incident radiance functions, which would require a huge number of samples. Generally,
much less samples are required to reach an acceptable accuracy when it comes to illu-
mination integral estimation. Despite these differences, there are obvious similitudes
with adaptive sampling for signal reconstruction and adaptive sampling for integral
evaluation. Both methods require a refinement criterion which, based on the infor-
mation brought by the samples already taken, determines if a higher sampling rate
is needed. Moreover, an efficient samples distribution, which guarantees that at each
step new samples are not too close to previous ones, is also required.

Our approach is different from the above presented related work in two points:

� the oversampling does not concern the image plane, but the incident directions
space (to compute the incoming radiance at a surface point as seen from a pixel);

� the posterior of iteration n−1 is used as prior for iteration n (where the adaptive
process consists of several iterations).

3 Overview
The steps required for our approach can be summarized as follows:

1. Draw a set of samples for the first estimate.

2. Apply BMC with a constant mean function and a stationary covariance function
as if it were a single step method.

3. While the quality criterion is not met and the maximum number of iterations is
not reached:

(a) Draw an additional set of samples.

(b) Take as prior the posterior of the previous estimate.

(c) Apply BMC.

Throughout this chapter we will formalize the mechanism of adaptive sampling
using BMC and propose potential answers to the questions raised by the application
of BMC for an adaptive approach. More specifically, we propose solutions to the
distribution of the second level samples set, as well as the computation method of the
z coefficients that reuses the z coefficients value of the first set.
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4 A two-level BMC estimate
In this section we will show how to use the result of a BMC estimate as prior knowledge
for a subsequent estimate. For the sake of simplicity, a two-level estimation method
will be considered, but the same approach could be extended to the the multi-level
case.

The objective is the same as in the previous chapter, that is, the approximation of
the value of the integral:

I =
∫
f(x)p(x)dx , with x ∈ RD, (4.1)

where p(x) is the analytically known part of the integrand. n1 and n2 samples are used
for the first and second steps respectively. Let us suppose we are provided with two
sets D1 and D2 of noisy samples of f(x):

D1 = {(xi1, Y i
1 ) | i = 1, . . . , n1},

D2 = {(xi2, Y i
2 ) | i = 1, . . . , n2}, with Y i

L = f(xiL) + εiL,

εiL being samples of an independent, identically distributed Gaussian noise with zero
mean and variance σ2

n, xiL being a sample location (the input) of the sample set of level
L and Y i

L its corresponding sample value (the output).
The first level estimate Î1 of I is computed using the samples set D1 as described

in the previous chapter. To compute the second level estimate Î2, the posterior GP
resulting from the first estimate will be used as prior. The second level GP prior (GP2)
which models the unknown function f(x) is thus defined as:

f(x) ∼ GP2[f̄2(x), k2(x,x′)],

where

f̄2(x) = E[f(x)|D1]
k2(x,x′) = cov[f(x), f(x′)|D1],

E[f(x)|D1] and cov[f(x), f(x′)|D1] being given by Eq. (3.5). Note that compared to
the first step, the second step prior is refined by the information brought by the first
samples set. Similarly to the first level estimate, the BMC estimate for the second level
is given by:

Î2 = Ī2 + zt2Q−1
2 (Y2 − F̄2) (4.2)

where

Ī2 = Î1

z2 =
∫

k2(x)p(x)dx

k2(x) = (k2(x1
2,x), . . . , k2(xn2

2 ,x))t

Q2 = (K2 + σ2
nIn)

K
(i,j)
2 = k2(xi2,x

j
2) with (i, j) ∈ [1, n2]2

F̄2 = (f̄2(x1
2), . . . , f̄2(xn2

2 ))
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While the terms of the Bayesian quadrature equation of level two in Eq. (4.2) have
roughly the same role as presented in the previous chapter, the covariance function k2
is no longer stationary and has a more complex expression as will be seen in Eq. (4.3).
Ī2 is the prior integral estimate for the second level. Naturally, its value is set to the
posterior estimate Î1 of the first level. z2 is a vector of integrals which accounts for the
influence of each sample of the second level on the deterministic part of the integrand
given the second level covariance function k2. Q−1

2 is the inverse of the covariance
matrix between the level two samples.

5 Making adaptive BMC practical
In this section we tackle the most challenging tasks when applying BMC to an adap-
tive sampling case, that is, the distribution of the second samples set as well as the
computation method of the z2 coefficients.

5.1 Selecting the samples set
As in any Monte Carlo method, a high quality samples distribution is critical for
obtaining a good integral estimate using BMC. As seen in the previous chapter, using
optimal sample sets (which minimize the variance of the estimate) is beneficial for BMC.
Nevertheless, since we are taking an adaptive approach, it is also advantageous that the
samples of the current level samples are not too close to the samples taken previously.
The intuition is obvious: since the prior model already contains the information brought
by the samples used for the previous estimates, sampling again the same positions would
bring no extra information. Moreover, the new samples position should be selected so
as to minimize the variance criterion that characterizes the confidence we have in the
integral estimate.

Sobol (0,2)-sequence An obvious candidate for generating samples for the different
levels which are not too close to each other are the (0, 2)-sequences presented in Chap-
ter 2. These sequences allow incrementing the number of samples while maintaining
the quality of the distribution. Fig. 4.1 shows two examples of two level sample sets
using a Sobol (0, 2)-sequence. Using a (0, 2)-sequence for generating the sample sets
guarantees that new samples can be added without superposing to the existent ones.
Nevertheless, this implies a suboptimal use of BMC, since such sample sets do not
minimize the variance of the estimate, as has been shown in the previous chapter.

Independent optimal sample sets An alternative to the Sobol (0, 2)-sequence is
to use sample sets which are optimized independently for each level. To this end, we
can use the sample sets precomputed in the previous chapter. Such sample sets already
account for the information regarding the covariance of the incident radiance function.
Nevertheless, since the samples set for the second level is computed independently
from the samples set for the first level, this approach has the disadvantage of possibly
resampling previously sampled locations.
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Figure 4.1 – Sample sets for adaptive sampling using a Sobol (0, 2)-sequence. The
top row shows a unit hemisphere while the bottom row shows a Phong lobe with a
shininess factor of 20. The left column shows the first level sample sets, where each
sample corresponds to a blue point. In the middle column, the samples of the second
level can be seen. At the rightmost column the combination of the sample sets for both
levels is depicted.

Incremental optimal sample sets Comparing the two sampling strategies de-
scribed above can be interesting to determine which of the two following characteristics
has a stronger impact on the quality of an adaptive BMC estimate:

� Samples of different levels are not too close to each other.

� An optimal samples distribution in each of the levels.

However, the ideal samples set should combine the two characteristics stated above.
Huszár and Duvenaud [HD12] propose a sampling scheme in which the samples position
is chosen in a sequential fashion. Each new sample is placed in the position of the
domain where it will decrease the most the variance of the estimate (see Eq. (3.10)).
We suggest using an approach inspired by that of Huszár and Duvenaud. The idea is
to start from the optimal samples set of the first level and add the new samples one
by one until we reach the number of samples desired for the second level. Such an
approach would not have the problem of superposing samples, and would also respond
to a criterion of minimal variance of the estimate. Furthermore, it would allow for local
sampling adaptation, but at the cost of extra computations.
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5.2 The vector of integrals z2

Once the sampling locations for both levels are determined, Q−1
1 and Q−1

2 can be pre-
computed to accelerate the Bayesian quadrature computation when rendering. Never-
theless, this optimization is not sufficient for an efficient implementation since calculat-
ing the vectors of integrals z1 and z2 are the most computationally intensive operations.
In the previous chapter, we have proposed a solution for calculating z1 by resorting to
a spherical Gaussian-based framework. In the following of this section, we will show
how z2 can be computed using the same general approach.

Let us assume that, similarly to Chapter 3, k2(x,x′) and the known part of the
integrand p(x) are given by spherical Gaussian functions (see Eqs. (3.18) and (3.19)).
The second level covariance k2(x,x′) is then given by:

k2(x,x′) = k1(x,x′)− kt1(x)Q−1
1 k1(x′) . (4.3)

Consequently, the ith element of the z2 vector from Eq. (4.2) can be expressed as:

zi2 =
∫
k1(x2

i ,x′) p(x′) dx′︸ ︷︷ ︸
SGI

−

T i2∫
kt1(x2

i )Q−1
1︸ ︷︷ ︸

constant

k1(x′) p(x′) dx′ . (4.4)

Note that the leftmost integral of Eq. (4.4) is a spherical Gaussian integral (SGI,
Eq. (3.22)). Its value can thus be precomputed using the same strategy presented in
the previous chapter, that is, by resorting to a compact precomputed 2-entry table.
Recall that this table is only precomputed once and for all, so there is no need to
precompute it again for the adaptive BMC case. In the rightmost integral of Eq. (4.4)
T i2, two terms are constant since they are not dependent on the integration variable x′.
These terms can thus be taken out of the integral and T i2 can be rewritten as:

T i2 = kt1(x2
i )Q−1

1

∫
k1(x′) p(x′) dx′︸ ︷︷ ︸

z1

= kt1(x2
i )Q−1

1 z1 .

The term k1(x2
i ) is a vector containing the covariance (k1(x2

i ,x1
1), . . . , k1(x2

i ,x1
n1)) of

the new sample x2
i with each of the samples x1

j , j ∈ {1, . . . , n1} of the first level. Since
we have assumed that the locations of the level one and level two samples are known,
then this vector can be precomputed. The term Q−1

1 is the inverse covariance matrix of
the first level. This term has been previously precomputed for the first level, so it can
just be reused for the second level estimate. Similarly, the z1 has also been computed
for the previous level and can be reused for the second level estimate.

6 Experimental results
This section has two main objectives. The first one is to verify the effectiveness of
the adaptive approach. To this end, we compare adaptive BMC (ABMC) with non-
adaptive BMC (NABMC) as described in the previous chapter, where both methods
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use the same number of samples for computing each image. We will show that ABMC
achieves a smaller root mean square error (RMSE) than the non-adaptive version for
the same number of samples. Furthermore, we also show that ABMC produces images
which are visually more pleasant than those produced with NABMC.

The second goal of this section is to compare ABMC with adaptive Quasi-Monte
Carlo (AQMC). Such a comparison will be made by comparing the RMSE of images
produced using ABMC and AQMC where the sample sets are exactly the same for both
methods. Finally, we evaluate the performance of the adaptive approach for different
choices of samples distributions.

6.1 Experimental set up
Equipment The results were generated with the Mitsuba raytracer [Jak10] at a
resolution of 1024 × 1024 pixels, using a 64 bit machine equipped with a 2GHz Intel
Core i7 processor and 8GB of RAM.

A simple case test For the moment, the values of the samples are computed from
an environment map. The extension to global illumination will be addressed in a future
work. The reference images are computed using importance sampling.

The oversampling criterion The oversampling criterion used is the samples color
entropy [RFS03]. Note that this is only a partial implementation of the method de-
scribed by [RFS03], since the authors also use the samples geometric entropy based
on the distance traversed by the ray used to collect the sample value. This geometric
entropy is not possible to compute in the context of environment maps, but it will be
used in a future work when adaptive BMC will be extended to global illumination.
We can thus expect some improvements w.r.t. the oversampling criterion used in this
section.

6.2 The effectiveness of BMC adaptive sampling
In this chapter we describe a solution for synthesizing an image using adaptive BMC.
Such an approach is motivated by better distributing the samples across the scene,
depending on the local characteristics of the incident radiance function. With this
approach, we expect to produce better images than with a non-adaptive BMC approach
for the same number of samples, i.e., with a lower RMSE and a lower visible noise.

Fig. 4.2 shows a comparison of adaptive and non-adaptive BMC. The number of
samples used for NABMC is equal to 60 samples per integral evaluation. As regards
ABMC, 40 samples per integral were used for the first sampling level and 40 for the
second, making a total of 80 samples for the latter. Since nearly half of the image has
been oversampled, ABMC uses in average 60 samples per integral, and consequently a
total number of samples roughly equal to that of NABMC.

The close-up views show that ABMC achieves lower visual noise when compared to
NABMC. Furthermore, the RMSE of the image produced using NABMC is 12.1% larger
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Figure 4.2 – Adaptive BMC vs non-adaptive BMC. Each of the methods uses approx-
imately the same number of samples to compute the image (60 samples per integral
evaluation). the NABMC uses 60 samples for all integrations while ABMC uses 40 and
80 for not oversampled and oversampled zones respectively. The RMSE of NABMC is
12.1% larger than that of ABMC.

than that of the images synthesized with ABMC. We have also obtained significant
quality improvement using different number of samples. As an example, when using
NABMC with 30 samples per integral, the RMSE is 8.2% larger than that of ABMC
with 20 samples for the first level and 40 for the second (making an average of 30
samples per integral).

6.3 Comparing adaptive BMC with adaptive QMC
Fig. 4.3 shows a test case used to assess the quality of the images generated using
adaptive BMC and adaptive QMC. The images have been generated using 40 samples
for the first sampling level and 40 for the second level, making a total of 80 samples
for the oversampled zones. The samples position is the same for both methods and is
generated using a Sobol (0,2)-sequence. The image on the right in Fig. 4.3, shows a
sampling map. The zones selected for oversampling are shown in red, while the zones
where only 40 samples are taken are shown in green. The close-up views on the center
of Fig. 4.3 show a comparison between adaptive BMC and adaptive QMC for a zone
of the image which has been oversampled. It can be seen that the BMC-based image
is closer to the reference than the QMC-based image. The RMSE of the oversampled
zone (in red) for QMC is 6.83% higher than that of BMC for the same zone.

Fig. 4.4 shows different RMSE curves calculated by only taking into account the
oversampled zone of the image. The scene used to produce these curves is the sphere
scene from Figs. 4.2 and 4.3. The results were generated using 10 samples for the first
level of sampling and n2 ∈ {10, 30, 70} samples for the second level. The lines in the
plot correspond to the following methods:

� adaptive QMC using a Sobol sequence;
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Figure 4.3 – Adaptive BMC vs adaptive QMC. Left: reference image. Right: sam-
pling map. The zones selected for oversampling are colored in red, while the zones
not oversampled are colored in green. Center: close-up views showing a comparison
between adaptive BMC and adaptive QMC for a zone of the image which has been
oversampled. For the oversampled zone (in red at the right), the RMSE of adaptive
QMC is 6.83% higher than that of adaptive BMC.

� adaptive BMC using a Sobol sequence;

� adaptive QMC using spherical Fibonacci (SF) point sets;

� adaptive BMC using SF point sets;

� adaptive BMC using the same optimized sample sets as in the previous chapter;

Note that the sample sets used in adaptive BMC with optimal sample sets are indepen-
dently optimized for each sampling level. This means that, as explained in Section 5.1,
the samples positions are not optimal as a whole since the second level samples set is
produced without taking into account the samples set from the first level. To alleviate
the effect of superposing samples of different levels, the samples set of level two is
rotated by an angle of π w.r.t. the first level samples set. The same approach is also
taken when using the spherical Fibonacci point sets.

The results show that adaptive BMC outperforms adaptive QMC when using the
same sample sets. For example, the RMSE of adaptive BMC is consistently smaller
than that of QMC when both methods use a Sobol (0, 2)-sequence (roughly 5% lower).
The results also show that Fibonacci point sets and optimized sample sets seem to have
an advantage over a Sobol sequence. Nevertheless, the use of such an approach should
be progressively more and more inefficient as the number of sampling levels increases.
This is because the samples from high sampling levels would be more likely to overlap
with samples from previous levels. In fact this situation is already present in Fig. 4.4
even if only two sampling levels have been used. When using 40 samples (10 for the
first level and 30 for the second) the methods which rely on SF and optimized sample
sets are suddenly less efficient compared to the methods using a Sobol sequence.
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Figure 4.4 – RMSE for adaptive BMC and adaptive QMC using different sample
sets.

6.4 A closer look at adaptive BMC
In this section we will address two questions which can arise when analyzing the re-
sults obtained using adaptive BMC. The first one is whether or not there is a loss of
performance of adaptive BMC w.r.t. non-adaptive BMC when using exactly the same
sampling positions (and thus the same information). The second is whether or not a
different distribution of the samples to be taken between level one and level two would
allow for better performances of BMC than those reported in Fig. 4.4.

The answers to these questions can be found in Fig. 4.5. The RMSE curve named
‘Adapt BMC Sobol’ is the same as in Fig. 4.4 and was taken as a reference. Recall
that this curve was generated using always 10 samples for the first sampling level. The
continuous red curve corresponds to the RMSE of NABMC using a Sobol sequence.
The continuous blue curve gives the RMSE of ABMC using a Sobol sequence, where
half of the samples are used for the first level and the other half for the second.

Figure 4.5 – RMSE for different settings of BMC.

The results show that there is no significant difference, in terms of RMSE, for
each of the methods. Indeed, this result is expected since all three methods use ex-
actly the same information. Nevertheless, there might be some room to improve the

71



CHAPTER 4. ADAPTIVE SAMPLING WITH BAYESIAN MONTE CARLO

RMSE curves of the adaptive sampling methods if the information produced by the
first sampling level were used to determine the sampling positions of the second level.
This would make the adaptive methods use more information than the NABMC and
potentially lead to better results.

7 Conclusion
The application of BMC using an iterative approach, which allows refining previous
estimates, is of particular interest since it exploits the prior knowledge from previ-
ous iterations. The main challenge of this approach is how to maintain the Bayesian
quadrature computation tractable. More precisely, the calculation of the z2 vector of
integrals becomes even more complex than in the single estimate case. In this chapter
we have presented a solution for computing z2 which resorts to the same spherical
Gaussian framework from the previous chapter to perform a fast quadrature computa-
tion. Furthermore, our solutions allow reusing a part of the computations of the first
level estimate. We have also shown that the BMC adaptive approach can outperform
the QMC adaptive approach in terms of RMSE.
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The spherical sampling of the incident radiance function entails a high computa-
tional cost. Therefore the illumination integral must be evaluated using a limited set of
samples. In this thesis we have presented three different contributions which allow bet-
ter estimates for the same number of samples. These contributions improve the state
of the art solutions in computer graphics by taking into account information which
had so far been underexploited (or even neglected) by the previous approaches. In the
following, we summarize our three contributions and suggest ideas for future work.

1 Spherical Fibonacci point sets for illumination inte-
grals

We have presented an algorithm for efficient generation of high quality spherical Quasi-
Monte Carlo (QMC) sequences for approximating illumination integrals. This algo-
rithm is simpler to implement than the other tested QMC spherical sample sets and
yields higher quality results, allowing to save a significant amount of sample rays for
the same image quality. Furthermore, it only requires a single sequence to synthesize
an image, which makes is particularly well-suited to GPU implementations.

The main reason for the improvement brought by spherical Fibonacci point sets
is that they better suit the spherical geometry. The other methods, in contrast, by
focusing on the unit square distribution, neglect the fact that the discrepancy properties
of the samples set on the unit square are unpaired by the spherical projection. The
presented method, however, does not allow for incrementally adding new samples so
as to implement an adaptive sampling strategy. Future work could thus tackle this
problem.
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2 A spherical Gaussian framework for Bayesian Monte
Carlo rendering

This contribution represents a major step toward reaching a general Bayesian Monte
Carlo (BMC) approach for solving global illumination problems. Until now, the ap-
plication of BMC for rendering purposes had been limited to the diffuse BRDF case.
We have proposed a general Bayesian Monte Carlo solution that allows dealing with
non-diffuse BRDFs thanks to a spherical Gaussian-based framework. We have also
proposed a fast hyperparameters determination method which avoids learning the hy-
perparameters for each BRDF.

The results confirm that Bayesian Monte Carlo outperforms state-of-the-art Quasi-
Monte Carlo methods. In particular we achieve quality improvements over state of
the art spherical QMC integration presented in this thesis (spherical Fibonacci) at
comparable computational cost. Future work could aim at extending the use of BMC
to other problems of larger dimensionality, e.g., measured BRDFs, multiple reflections,
depth blur, multi-view rendering, among others.

3 Adaptive sampling with Bayesian Monte Carlo
Our third contribution consists in applying BMC with an adaptive approach for eval-
uating the illumination integral. The idea is to compute a first BMC estimate and, if
the quality criterion is not met, directly inject the result as prior knowledge on a new
estimate. The new estimate refines the previous estimate using a new set of samples,
and the process is repeated until a satisfying result is achieved.

We have presented a solution which leverages the posterior Gaussian Process model
of the integrand produced by the previous iteration. This solution benefits from the
flexibility of the Bayesian approaches for introducing prior knowledge. Furthermore, we
have shown that adaptive BMC can resort to the same spherical Gaussian framework
presented in chapter 3. This is an important feature of our approach since it allows an
efficient implementation of the Bayesian quadrature computation. Future work could
be focused on adapting the sampling rate on a subregion of the domain of integration
for which the incident radiance is sharper. Such an approach would be much simpler
with BMC than with a traditional Monte Carlo technique, since BMC does not require
the samples to be drawn according to a PDF.
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