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y a otros tantos que seguro he olvidado incluir. ¡Gracias!

Una mención especial he de hacerle a Ainhoa, que se ha mantenido
a mi lado durante todo este tiempo y más. Ha aguantado mis eternas
explicaciones, ha sabido animarme siempre que lo he necesitado, ha sabido
motivarme cuando yo ya estaba harto, en resumen, por estar siempre donde
yo más la necesitaba. Sin ella, y sin su ánimo cuando mi motivación fallaba,
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Por último, también me gustaŕıa agradecer a la Universidad de Navarra
tanto por permitirme cursar el doctorado con ellos como por la beca
Universidad de Navarra que me concedieron, sin ellos esta tesis no hubiese
sido posible. De la misma manera me gustaŕıa agradecer a Alejo Avello y
al Director del Departamento, por permitirme desarrollar esta tesis en el
Departamento de Mecánica del CEIT.



Abstract

Virtual reality computer simulation is nowadays widely used in various
fields, such as aviation, military or medicine. However, the current
simulators do not completely fulfill the necessary requirements for some
fields. For example, in medicine many requirements have to be met in
order to allow a really meaningful simulation. However, most current
medical simulators do not adequately meet them. One of these requirements
is the visualization, which in the case of medicine has to deal with
unusual data sets, i.e. volume datasets. Additionally, training simulation
for medicine needs to calculate and visualize the physical deformations of
tissue which adds an additional challenge to the visualization in these types
of simulators.

In order to overcome these limitations, a prototype of a patient specific
neurosurgery simulator has been developed. This simulator features a
fully volumetric visualization of patient data, physical interaction with the
models through the use of haptic devices and realistic physical simulation
for the tissues. This thesis presents a study about the visualization methods
necessary to achieve high quality visualization in such simulator.

The different possibilities for rigid volumetric visualization have been
studied. As a result, improvements on the current volumetric visualization
frameworks have been done. Additionally, the use of direct volumetric
isosurfaces for certain cases has been studied. The resulting visualization
scheme has been demonstrated by an intermediate craniotomy simulator.

Furthermore, the use of deformable volumetric models has been studied.
The necessary algorithms for this type of visualization have been developed
and the different rendering options have been experimentally studied. This
study gives the necessary information to make informed decisions about
the visualization in the neurosurgery simulator prototype.
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Resumen

La simulación por ordenador con realidad virtual es ampliamente utilizada
hoy en d́ıa en diversos campos tales como la aviación, la medicina
o el entrenamiento militar. Sin embargo, los simuladores actualmente
disponibles no son capaces de cumplir todas las necesidades en algunos
de estos campos. Por ejemplo, en la simulación médica existen varias
restricciones que han de cumplirse para proporcionar una simulación
útil. La mayoŕıa de simuladores médicos actuales no cumplen estos
requerimientos, lo que reduce su utilidad. Uno de estos requisitos es la
visualización, que requiere el uso de datos volumétricos además del cálculo
y visualización de las deformaciones f́ısicas, añadiendo un reto adicional.

Para poder superar estos retos, un prototipo de simulador de
neurociruǵıa capaz de usar datos de pacientes ha sido desarrollado. Este
simulador dispone de un visualizador totalmente volumétrico, una interfaz
de interacción f́ısica a través de controladores hápticos y una simulación
reaĺıstica para los tejidos blandos. Esta tesis presenta un estudio sobre los
métodos de visualización necesarios para dicho simulador.

Se han estudiado las diferentes opciones disponibles para visualización
volumétrica ŕıgida, desarrollando mejoras sobre las infraestructuras de
visualización existentes. También se ha estudiado el uso de isosuperficies
volumétricas en ciertos casos, pudiendo apreciarse el resultado en un
prototipo intermedio de simulador de craneotomı́a.

También se han estudiado los métodos de visualización volumétrica
deformable necesarios para un simulador de dichas caracteŕısticas. Los
algoritmos necesarios para esta visualización han sido desarrollados y se
ha realizado un estudio experimental para indagar en los resultados de
las diferentes opciones disponibles que permitirá una toma de decisiones
justificada con datos emṕıricos.
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Chapter 1

Introduction

Science is a way of thinking much more than it
is a body of knowledge.

Carl Sagan

Through the last century, medicine has exponentially improved its
understanding of the human body and its illnesses. At the same time, it
has discovered many different ways to cure or prevent them. However, this
increase of the knowledge has brought along an increase of the necessary
knowledge, and thus, higher learning times to master the different possible
fields in medicine.

It is widely known that practice is one of the best methods when
it comes to teaching the necessary knowledge. Regrettably, practising in
medicine is highly risky as the cost of an error can be tremendous. For
this reason, simulators are particularly coveted in medicine as they allow
to practice and learn a procedure without risking a patient’s life.

1.1 Surgery simulation

In the early days of modern medicine, most learning and practice was done
using cadavers. By performing procedures or dissecting them in front of an
audience the techniques and details about the human body were taught, as
seen in Figure 1.1.

Later on, this practice was reduced mostly to surgery practice for
students in order to give them some experience before performing any

3



4 Chapter 1. Introduction

Figure 1.1: A painting by Rembrandt called The Anatomy Lesson
of Dr. Nicolaes Tulp. It shows the dissection of a cadaver to
explain the musculature of the arm in 1632.

real task. Nonetheless, the lack of other appropriate alternatives has made
the practice with cadavers the standard teaching method up to this day.
However, the scarcity of cadavers available and their cost encouraged the
pursuit of a more available, more economic teaching method.

The advent of simulators in the 1930s with the invention of the Link
Trainer, a pioneering flight simulator, showed the potential of this teaching
method. As a result, many researchers found in simulation the perfect
combination of cost, availability and accuracy needed for medical training.
However, the technical limitations and the limited medical knowledge
available at the time delayed the creation of medical simulators.

One of the first simulator presented, was called Resusci-Anne (Laerdal,
Wappingers Falls, New York, USA). This simulator consist of a mannequin
that can be used to train cardiopulmonary resuscitation (CPR). This
mannequin was presented in 1960, and thanks to its simplicity and usability
is still used nowadays with some minor modernizations.

However, the first computer controlled medical simulators presented
was not presented until 1969, when the Sim One (JS and S, 1969) was made



Section 1.2. Evolution of virtual reality 5

available. This simulator was a computer controlled mannequin capable
of replicating physiologic responses such as dilating pupils, heartbeat or
chest movement due to breathing. This allowed the students to gain more
experience, and at an increased speed.

Sim One proved that the simulation of physiologic responses was
not only desirable, but possible. However, due to the limited technology
available at the time, the simulator’s price was too high as it required
much more computational capability than the one usually available.

The evolution of the computers led to a rapidly decreasing price
as well as a exponentially increased computational power. Thanks to
these advances, the computers needed nowadays for these calculations are
commonplace, making the spread of simulators a reality.

1.2 Evolution of virtual reality

It is evident that simulators offer a high variety of solutions for learning,
and that they present an enormous potential for medicine. However, the
physical construction of the needed devices is a costly operation.

Virtual reality simulators are the natural evolution of the
aforementioned simulators. They can be used to simulate virtually any
known procedure, be it a simple wound stitching to a complex neurosurgical
procedure, with a relatively low cost. However, this has not been always
possible, as the computers available a mere decade were not capable
of performing this complex calculations efficiently. As the computational
power has grown, so have the simulators and the fidelity of its models.

One of the components with a major impact in this increase is the
graphic processing unit (GPU). The GPU is responsible for the visual
fidelity a simulator can offer, and their improvement has enabled the
evolution of graphic fidelity, and with it, the evolution of virtual reality
simulators.

In the last decade, the computational power of the GPUs have increased
at an accelerated rate as it can be observed in Figure 1.2. Thanks to this,
nearly photo realistic visualizations can be achieved in real time greatly
enhancing the immersion of the user in the virtual world, increasing the
teaching capabilities with it.
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Figure 1.2: Chart illustrating the increase of the computational
power of NVIDIA GPUs.

Figure 1.3: A 6 degree of freedom (DoF) haptic device, the
Sensable Phantom Premium.

Additionally, the proliferation and evolution of force feedback capable
input devices (haptic devices) added a missing information vector to virtual
reality. Thanks to the use of haptic devices, such as the one shown in Figure
1.3, the user can feel the virtual world response to its interaction, in contrast
to just seeing it. This exponentially increases the teaching capabilities of
virtual reality, as it enables them the teaching of motor skills.

Thanks to this exponential improvement of virtual reality and its visual
accuracy a whole new group of medical simulators appeared, virtual reality
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medical simulators. These have the advantage that do not require a physical
copy of the object to simulate, decreasing their costs. And, thank to the
offered realism and accuracy, are the most rapidly evolving simulators
nowadays.

1.3 Virtual reality surgery simulator overview

In order to compete in terms of quality and teaching prowess a virtual
reality simulator must have physical interaction, physical accuracy and
visual fidelity. As it is shown in Figure 1.4, these features require the
combination of different technologies and algorithms.

Image 
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Figure 1.4: Basic diagram of a virtual reality surgery simulator.

The physical interaction will allow the user to interact with the virtual
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world by manipulating objects as well as feeling them. To do so, a fast
and accurate collision detection algorithm is needed to realistically convey
the interactions between the virtual tool and the rest of the virtual world.
Additionally, a correct haptic interaction must be developed, so that the
user can feel these interactions.

These interactions must be coupled with a realistic physical behaviour
to increase the immersion of the user and present them with the correct
reactions to their actions. This will enable showing the user the reactions
of the world to the performed interaction. Additionally, the physical
simulation will feed the forces back to the haptic device, increasing the
accuracy. For this purpose, first the properties of the materials and objects
to be simulated must be known. With this information, and the input from
the haptic, the physical simulation will calculate the corresponding result.

But, in order to make the most of the simulator, the user must be
able to see the results of the interactions beside feeling them. For this
reason, the visual fidelity becomes a major necessity. In order to achieve
the highest possible visual fidelity, using patients’ real data is desirable,
in order to account for the small individual differences. Although that is
not always possible, the use of at least one medical dataset is mandatory.
This volumetric dataset must be segmented to select which parts to be
visualized, and with which rendering mode. Once this segmentation is done,
these data have to be rendered with highest quality possible, be it using the
usual polygonal approach (by extracting surfaces from the data) or directly
visualizing the data with volumetric rendering.

1.4 Motivation

Simulation is widely used for training and rehearsing difficult or unusual
actions in several fields. Moreover, the use of simulators has become
mandatory in many fields such as aviation. However, the simulators
available for some disciplines do not completely fulfil the requirements
of reliability and accuracy needed. For example, due to the lack of
adequate alternatives, every year neurosurgery students must attend real
interventions carried out by expert neurosurgeons in order to learn specific
procedures. The primary goal of medical training simulators is to transfer to
the trainees the skills and experience needed to perform surgical procedures
before practising on patients.
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Two primary factors have to be taken into account to achieve these
goals: presence and immersion. Presence is the feeling of being part of the
virtual world by interacting and feeling the virtual objects by means of
a haptic device, which boosts the learning of motor skills. On the other
hand, immersion is the feeling of being in the virtual world, not just
through interaction but also through hearing and sight. Immersion can be
increased through the use of bigger and more immersive displays such as
head mounted displays, and by improving the realism of the virtual world
which covers the graphical appearance as well as the physical behaviour. It
has been proven in various experiments (Bétrancourt and Tversky, 2000;
Goldstone and Son, 2005) that the visual realism of the virtual world
significantly improves the knowledge transferring capability of a simulator.

Neurosurgery simulators require of a high degree of precision and
realism, which have not been achieved in simulators to this date. However,
as medicine is an ever-changing and continuously updating field, simulators
are being actively researched and many promising advancements have been
done over the last few years (Thomas, 2013). The main sources of difficulties
are the haptic interaction, the realistic visualization of the medical data and
the physical simulation of the tissues.

In order to overcome these difficulties, the goal of this work is to
develop a visualization module for a neurosurgery simulator focused on
patient-specific training of brain tumour resection surgery. The use of
patient specific data in the simulator, coupled with a high quality rendering,
will provide a very precise and realistic visualization. To achieve this realism
different areas will have to be combined: medical imaging, visualization,
real time volume rendering, physical modelling and simulation, collision
handling and haptic interaction.

The high visual realism and simulation accuracy will improve the
experience gained by the users with the simulator, offering clear advantages
over other simulators. Additionally, the use of patient specific data will
allow the inclusion of all the contained information, further increasing the
potential gain. Combining this with an accurate haptic interaction with the
data will give a high immersion and high presence simulator.

This work will focus on the visualization module of the aforementioned
neurosurgery simulator. This simulator aims to become a platform for
training students in real surgery procedures. Students will get experience
in the tasks involved in these operations, considerably reducing the number
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of hours they need to spend attending interventions. Additionally, it will
realistically visualize and emulate patient-specific tissues, allowing residents
and surgeons to use the simulator for rehearsal.

1.5 Objectives

The main goal of the project this dissertation is part of is the development
of a realistic and immersive neurosurgery simulator oriented towards brain
tumour resection. This neurosurgery simulator will feature realistic haptic
feedback, high quality visualization and accurate simulation of the tissues’
deformation. This simulator will be able to be used as a training platform
for students or as a rehearsal platform for surgeons.

As a part of the project, the collisions and haptic interaction has
been researched and implemented, as presented by (Echegaray, 2012). Said
dissertation presented a high degree fidelity haptic interaction, for which
the needed rigid and deformable collision detection modules were developed
and implemented.

The main objective of this dissertation is the research and development
one of the remaining modules, the visualization module. One of the most
important parts of the simulator is the visualization module, which will
provide the immersive sensation needed as well as the level of realism
desired. Additionally, the integration of the present work with the work
done by (Echegaray, 2012) will result in a simulator prototype capable of
at least simple interactions with the brain. However, the development of the
complete neurosurgery simulator falls outside the scope of this dissertation.

As it has been previously said, the visual quality and the accuracy
of the models used in the simulator greatly affects the immersion and the
transfer of knowledge. In order to achieve the best quality possible, medical
images of the skull and brain of real patients will be used not only for the
simulation but also for rendering.

For the accuracy needed for rehearsal of a procedure, data from the
patient must be used. For the skull, a CT of the head offers a high contrast
of the bone, which enables its use for a quality rendering of it. On the other
hand, the brain needs to discern the different tissues present in it. For this
purpose, a MRI of the head will allow its use for the visualization of the
brain. Finally, the physical simulation module requires a tetrahedral mesh
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of the tissue, so it will have to be created from the medical images of the
patient.

Consequently, the visualization module will have to be capable of
rendering patient specific data with high quality and realism in real time.
Additionally, it will be able to render the result of the physical simulation
and interactions of the user. This visualization module has three main goals:

� The realistic visualization of patient specific rigid volumetric data
such as the skull. This visualization must achieve real time rendering
times whilst maintaining the highest possible quality. Additionally, it
must be able to cope with rigid interactions such as drilling.

� The ability of volumetrically rendering deformable soft tissue, such
as the brain, with a high degree of fidelity. Moreover, it must be able
to perform said rendering and simulate the deformable tissue in real
time.

� Both rendering types, the rigid and the deformable, must be
seamlessly integrated in one unique simulator. Additionally it will
have to communicate and interact with the rest of the modules such
as the collision detection module or the haptic interaction module.

An additional fourth stage would involve the expansion of the simulator
to a final neurosurgery simulator, but as it is been previously stated, it falls
outside the scope of this thesis. In addition to the features mentioned above,
it would include the option of cutting the brain tissue in order to let the
surgeon access the tumour and resect it. The resulting simulator would
enable surgeons to practice actual operations.

A first stage of the development will focus on the two key elements
needed to obtain the required realism: visual representation and interaction.
Both elements will be optimized to offer the most realistic sensations
possible whilst maintaining real time computing times.

The second stage will involve the addition of a physical simulation,
along with the visualization of the deforming tissue. For this purpose a
framework for deformable volume rendering will be developed, in order to
maintain the highest quality possible.

This simulator’s ability to use only volume data as input without data
loss is a key advantage over state of the art simulators. In order to allow



12 Chapter 1. Introduction

the use of the complete volumes, a framework for interacting with and
rendering deformable volumes will be developed. Thanks to this framework
the simulator will be able to run with real patient data, allowing its use for
both medical training and surgery simulation.

1.6 Dissertation organization

This dissertation is organized as follows. Chapter 2 presents the present
state of medical simulators. Furthermore, it gives some base information
on image acquisition. Chapter 3 presents the most used volumetric
rigid visualization methods, and presents various improvements and
optimizations. Chapter 4 describes the problems presented by deformable
volumetric objects and proposes a method to solve them. Additionally, a
performance study of this method is presented. Chapter 5 presents the
simulator prototype developed in this dissertation, as well as explaining
which visualization methods have been used in each stage and why. Finally,
Chapter 6 presents the conclusions of this dissertation and comments the
possible future research lines.



Chapter 2

State of the art

No man is an island entire of itself,
every man is a piece of the continent,

a part of the main.

John Donne

The use of virtual reality and haptic devices in medical simulation
can greatly improve the skills of the user (either a student or a surgeon).
Because of this, the use of simulation in medicine has been continuously
growing since the 1990s. This thesis is focused in the visualization module of
neurosurgery simulators. In order to better grasp the needs and gaps in this
field the evolution of neurosurgery simulators is presented with a special
focus on the visualization methods. Additionally, as many specialized fields
are intertwined in this area, some helpful definitions and descriptions will
be given.

2.1 Neurosurgery simulators

One early work was presented in 1994 (Gleason et al., 1994). In this work
Gleason et al. used an augmented reality approach by superimposing a 3D
virtual image of a polygonal surface extracted from a CT or MRI from
the patient. To do so, the surgeon inspects the data from the patient and
chooses the optimal approach for the surgery. Once the desired approach is
set, a workstation is prepared in the operating room and the virtual data
is registered with the real patients position using markers. After this the
surgeon is presented with a combined image from the real data and the

13
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virtual data to use it as a guidance.

In a similar approach, Giorgi et al. proposed a computer assisted
toolholder to help the surgeon control and check the orientation of
different approach trajectories (Giorgi et al., 1994). By using a Virtual
Reality system it guides a mechanical toolholder in a space of stereotactic
neuroanatomical images by using high precision encoders on the arm are
attached to the stereotactic frame.

Another early medical simulation framework is Dextroscope1, presented
in the mid-1990s, which focuses in neurosurgery applications. It uses rigid
full volume rendering from CT and MRI images along with polygonal tools
as it can be seen in Figure 2.1. Additionally, polygonal models can be used
for certain anatomical models if needed. Dextroscope also has stereoscopic
imaging capacity, and uses positional controllers to manipulate models
with natural movements. However, this mechanism does not have haptic
feedback. This framework can be used for planning, simulation or to inspect
data from patients. However, the lack of haptic feedback and deformable
volume rendering limits its utility.

Figure 2.1: The visualization mode of the Dextroscope simulation
framework.

1http://www.volumeinteractions.us/innovation.html

http://www.volumeinteractions.us/innovation.html
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In the 2000’s a company called ImmersiveTouch was created as part
of a technology program at the National Institute of Standards and
Technology2. As a result, they developed a medical simulation framework,
also called ImmersiveTouch (Luciano et al., 2005).

Figure 2.2: The prototype of ImmersiveTouch, showing a user
interacting with the virtual workspace (Image from (Luciano
et al., 2005)).

It uses an stereo visualization system, force feedback and head and hand
tracking to create a virtual workspace where the user can interact, see and
feel an object as if it were in their hands as shown in Figure 2.2. The objects
are polygonal models extracted from volume data (usually CT and MRI)
using the Visualization Toolkit (VTK)3. This conversion implies a loss of
information as the rest of the volumes are not used and, as a result, lesser
quality visualizations are achieved.

ImmersiveTouch has been used as the base for many simulators. For
example, in the case of neurosurgery, Lemole et al. used it to create a
training simulator of ventriculostomy and intended to expand it to be a
trainer for different neurosurgical critical tasks (Lemole et al., 2007).

2http://www.nist.gov/
3The Visualization Toolkit http://www.vtk.org/

http://www.nist.gov/
http://www.vtk.org/


16 Chapter 2. State of the art

Later in the 2000’s, thanks to the flexibility it offered, Dextroscope was
used for many tasks. For instance, a platform called VizDexter (Kockro
et al., 2007) provides tools to coregister data, perform segmentations
manually, make measurements and simulate multiple intraoperative
viewpoints using Dextroscope. However, the main improvement of
VizDexter from Dextroscope is the ability to interact with the data while
sharing the information with a larger audience. This allows a wide range of
activities for the simulator, i.e. training by showing the work of an expert
or to collaboratively create and discuss a surgical planning. Another work
using Dextroscope presented a intracranial aneurysm clipping simulator
(Wong et al., 2007). This simulator uses patient specific data and covers
the whole clipping process: head positioning, craniotomy and aneurysm
clipping.

(a) (b)

Figure 2.3: Different parts of the simulator presented in (Pflesser
et al., 2002; Petersik et al., 2002): (a) the physical system and (b)
the visualization of the inner ear with multiple volumes.

Following the same basic scheme a simulator of petrous bone surgery
was presented by (Pflesser et al., 2002; Petersik et al., 2002). This simulator
also features a stereo visualization system along a 3 degree-of-freedom
(DoF) haptic device as seen in Figure 2.3a. This work presents an advanced
haptic rendering system as well as a volume visualization with adaptative
sampling. To achieve the necessary rendering results 30 object models were
extracted from a CT volume, discarding the rest of the volume. Afterwards
it is rendered using a multi volume rendering as shown in Figure 2.3b.

Morris et al. developed a framework for temporal bone dissection
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(a)

(b) (c)

Figure 2.4: The resulting visualization of the developed presented
in (Morris et al., 2005; Morris et al., 2006) in different stages: (a)
surface extraction pipeline, (b) interacting with the skull and (c)
drilling the bone.

(Morris et al., 2005; Morris et al., 2006). They used a hybrid data
representation: bone is represented by volumetric data for haptic simulation
of bone removal, and triangulated surfaces extracted from the volume are
used for graphic rendering, resulting in the visualization shown in Figure
2.4. In order to achieve a good polygonal model, isosurfaces are extracted
from the data obtained from CT or MR by using the Marching Cubes
method (Lorensen and Cline, 1987).

These isosurfaces are then capped using the 3ds Max4 software package
and a set of texture coordinates is generated on the isosurface mesh, a
process that must be manually performed for each dataset. Afterwards,
a flood-filling technique is used to build a voxel grid used for the haptic
simulation. When bone voxels are removed as a consequence of the collision,
the burred zone has to be re-tessellated because of the use of polygonal
models. To do so triangles that contain the centres of the new surface
voxels as vertices are added to the polygonal model.

With a similar idea, He and Chen presented a skull bone drilling

4http://www.autodesk.es/products/autodesk-3ds-max/

http://www.autodesk.es/products/autodesk-3ds-max/
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(a)

(b) (c)

Figure 2.5: Simulator presented in (He and Chen, 2006). (a)
the preprocessing, (b) the drilling process and (c) the polygonal
models.

simulator (He and Chen, 2006). In this simulator a 6 DoF haptic device
is used for the interaction and force feedback in contrast to the simulator
presented by (Morris et al., 2005; Morris et al., 2006) that uses 3 DoF haptic
device. In order to achieve a good drilling simulation, the haptic simulation
is performed with a volumetric model of the skull.

However, only a part of the volumetric skull model is created to speed up
the calculations. For this purpose, a volumetric model of the skull is created
from the polygonal model and the space to be drilled is selected with the
haptic device as shown in Figure 2.5a. After this the selected volumetric
part and the polygonal model are integrated. The drilled volume is rendered
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Figure 2.6: Different surgical actions like prodding, pinching and
cutting in (Wang et al., 2006; Wang et al., 2007).

along a polygonal skull extracted using the Marching Cubes method as
shown in Figure 2.5. For the haptic rendering the preselected area of the
volume is used, forcing the user to interact only with that preselected area.

Another neurosurgical simulator was presented by (Wang et al., 2006;
Wang et al., 2007), where a realistic modelling of the cutting and retraction
procedures were used. This simulator used polygonal models to recreate
deformable tissues. Realism was added by texturing the models as shown
in Figure 2.6. However, the main focus of this work is to realistically
simulate the cuts and retractions. For this purpose they developed a system
which allows two handed procedures by using two independent 3 DoF
haptic devices. By fusing the advanced interaction system with the physical
model of the cuts, they achieved a high realism in the interaction with the
simulator.
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The visible ear simulator5, created by (Sorensen et al., 2009), is a
freely available simulator. It uses data from the Visible Ear digital image
library, which was gathered through cryosections of a 85 year old woman’s
temporal bone. Thanks to this, a very high resolution model with the
tissue’s real colours can be used but limits its usage to the predefined
volume. This largely reduces the use of the simulator as a training platform
as differences between datasets, such as illnesses or deformations, cannot
be easily introduced. This method leads to a very realistic visualization as
shown in Figure 2.7. Additionally, this simulator allows the use of a 3 DoF
haptic device for interaction and force feedback.

Figure 2.7: A snapshot of The visible ear simulator, showing the
high quality rigid volumetric visualization.

More recently Delorme et al. presented NeuroTouch, a simulator for
microsurgery training (Delorme et al., 2012). The setup of the simulator
is an updated version of previously presented works, a stereoscopic
visualization system combined with dual haptic devices (optionally 3 or

5http://ves.cg.alexandra.dk/

http://ves.cg.alexandra.dk/
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6 DoF). For the visualization in the planning stage the user is presented
with a volumetric visualization of the head, shown in Figure 2.8a. But for
the actual training task, in order to show deformable tissues, high quality
polygonal models with high resolution textures are used (Figure 2.8b).
Coupling the high quality visualization with a finite element simulation
results in a realistic training simulation.

(a)

(b)

Figure 2.8: NeuroTouch offers: (a) a volumetric visualization in
the planning stage and (b) a realistic polygonal visualization in
the simulation stage (Images from (Clarke et al., 2013)).

This simulator has been recently expanded to enable its use for rehearsal
and planning instead of just training (Clarke et al., 2013). For this purpose,
a whole pipeline was developed where, starting form the MRI image, the
desired tissues are segmented and registered and then polygonal models of
the surfaces are extracted. For the planning stage, a volumetric visualization
of the head is used. However, a polygonal visualization of the extracted
brain surface is used for the interaction.
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2.2 Medical Imaging

In order to achieve the highest possible accuracy in the models most
simulators use medical image data, either directly or extracting surfaces
from it. The origin and method of the image acquisition defines its utility for
different simulators and uses. Because of this dependence in this section the
main three data acquisition methods in medicine will be briefly explained:
Computerized Tomography (CT), Magnetic Resonance Imaging (MRI) and
Cryosection.

2.2.1 Computerized Tomography

The first non-invasive methods to allow the inspection of a living person
was the X-ray. It allows physicians to inspect the state and the extent
of the damage of a patient without much risk. But the X-ray lacks the
perception of depth, making it difficult to use in certain areas. This hurdle
was overcome when the X-ray computed tomography (CT) was presented
in (Hounsfield, 1976).

The CT provides the density of the tissues codified in intensities, as
shown in Figure 2.9. Additionally, these values have been studied (Lehmann
et al., 1997) and after standardization are easily identifiable as shown in
Table 2.1. As it can be observed it provides a high range for bones and
some tissues, but the range for most soft tissues is short and overlapping.
As a result, CTs are widely used when the objective is to inspect bones,
but they are not well suited for soft tissue inspection.

Tissue Value

Air -1000
Lung tissue -900 to -200

Water 0
Liver 35 to 60

Tumour 35 to 55
Bones 45 to 3000

Table 2.1: Some values of tissues in CT (Lehmann et al., 1997).
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Figure 2.9: A slice of a CT of a human head. It can be seen that
the skull is easily detectable in good contrast, as opposed to the
brain.

2.2.2 Magnetic Resonance Imaging

Around the same time CT was presented, a different imaging technique was
proposed (Lauterbur et al., 1973): Magnetic Resonance Imaging (MRI).
Instead of X-rays, this technique relies on the magnetic properties of
hydrogen atoms. The nucleus of a hydrogen atom is a single proton, allowing
the interaction through a strong magnetic field. By studying this interaction
of the hydrogen molecules in the body with the magnetic field, information
about the tissues can be extracted (Mansfield, 1977).

The hydrogen atoms needed for this technique will mostly be located in
water molecules in the tissues. As a result MRI is not very efficient for bones,
but provides a larger contrast in soft tissues than CT, as shown in Figure
2.10. On the other hand in MRI data the tissue values are largely variable.
Although a range of values for the tissues can be set large variations within
that range occur even in the same dataset. For a radiologist this is not a
large problem, as they are able to discern the tissues, but computationally
this variability creates an added difficulty.
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Figure 2.10: A MRI image of a human head, where the brain and
the different tissues it is composed of are easily differentiable.

2.2.3 Cryosection

In medicine, cryosection is usually used to prepare tissue for its inspection
in a microscope e.g. when removing a tumour it can be used to inspect it
and check its properties. The procedure consists in embedding the tissue
in a medium and then freezing it. This frozen block is then thinly sliced
using a microtome obtaining a very thin slice of the tissue, usually just a
few micrometers thick.

In order to create a volume this procedure can be slightly modified.
In the modified procedure instead of just slicing the frozen block it is
photographed, effectively creating a stack of photographs and thus a volume
of the embedded tissue. This method created high quality images, as shown
in Figure 2.11 but, it is clear that is not usable with a living patient.
However, the high quality and the inclusion of colour information makes
them desirable for certain simulators i.e. only training simulators which
need an high quality anatomically correct model.

Accounting for the scarcity of the available volumes created with this
method, several projects have appeared. One of the first projects was the
Visible Human Project6 from the University of Michigan where the whole

6http://vhp.med.umich.edu/

http://vhp.med.umich.edu/
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Figure 2.11: A cryosection of a head from the Visible Human
Project.

body of a man was scanned with CT and MRI and then cryosectioned.

2.3 Discussion

This chapter has presented the evolution of neurosurgery simulators
through the years, and the various solutions given to the visualization
problems used in them.

As it has been shown, most simulators use volumetric visualization for
rigid objects avoiding the loss of data caused by surface extraction. But
due to the additional difficulty of interaction with the volume they switch
to polygonal surfaces for interaction.

In more recent simulators, as the The visible ear simulator, volumetric
visualization has been used for rigid interaction, i.e. drilling. This change
has been fuelled by the increase in the computational power of graphics
cards, which has rendered volumetric visualization capable of achieving
interactive times with high quality rendering.

Nevertheless, even in the latest simulators such as NeuroTouch, the
deformable interaction is still visualized with polygonal surfaces.
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The extraction of polygonal surfaces for interaction creates a data loss,
as it takes only the information from the selected surface. This means that
the interaction will be performed with only that information, and that if
more detail of the anatomy is wanted it has to be artificially created or
extracted from a volume, having to select and extract all the anatomical
features wanted in the simulation.

In contrast, if the whole volume was used, there would be no need to
manually select all the features that are wanted to visualize, as all the
information would be contained.

The purpose of this dissertation is to research the methods needed
for the development of simulator capable of taking advantage of all the
information contained within the volume. This means that it will need
to interact with rigid and deformable volumes, calculating collisions and
restoring forces realistically. In order to have a useful deformation it will
need to have a physical simulation for the deformable volume. Additionally,
it will have to volumetrically render both the rigid volume and the
deformable volume to correctly visualize all this, .
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Chapter 3

Volumetric Visualization of
Rigid Models

Part of this chapter has been published in:

Herrera, I., Buchart, C., and Borro, D. “Adding refined isosurface
rendering and shadow mapping to vtkgpuvolumeraycastmapper”. VTK
Journal (Midas Journal), October, 2012.

Herrera, I., Buchart, C., and Borro, D. “Preserving coherent
illumination in style transfer functions for volume rendering”. In
Information Visualisation (IV), 2010 14th International Conference
DOI - 10.1109/IV.2010.16, pp. 43–47. 2010.

3.1 Introduction

Volumetric visualization of rigid models is widely used in scientific,
industrial and medical visualization due to its high versatility and potential
image quality. In the medical field, for example, it can be used for
examination of patient data, planification of surgeries or simulation. In the
context of this dissertation, rigid volumetric rendering will be necessary for
the first stage of the simulator, as it can be seen in Section 5.2.

Because of its widespread use there are many algorithms and variations
to fulfill the various requirements, from object order methods such as
texture mapping or splatting to image order methods such as raycasting.
Additionally, the high interest on volumetric visualization has triggered the
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development of various frameworks and libraries capable of handling these
type of data. Nonetheless, volumetric visualization covers a high variety of
data sources making the creation of a generic library a highly difficult task.

Although widely used, volumetric visualization also has some
disadvantages that limit its usage in simulators. One of this disadvantages
is its relatively high computational cost, which is one of the main reasons
some simulators fall back to extracted polygonal models when using rigid
volumes. However, thanks to the increase on computational power of
commodity computers and algorithm- improvements, volumetric rendering
can be used nowadays for high quality rendering with interactive frame
rates in most modern PCs.

Even though the use of polygonal models simplifies and accelerates the
rendering pipeline, it reduces the volume data to a mere surface thereby
losing most of the information contained in the volume. Usually, the desired
surface or information is set and the surface extracted and used. However,
if the selection or the volume changes, the volume has to be reprocessed to
extract the new surface. This forces such applications to store the volume
and to reprocess it as soon as the selection has changed.

Additionally, as a result of the loss of information, transparency and
translucency become nearly unusable with the polygonal models. This
becomes an important issue in many stages of a simulator, especially in
the planning stage, as these two visual effects can greatly improve the
information given by the visualization to the user. For example, by using
translucency, a surgeon can see both the organ and a tumour inside it,
allowing a better understanding of the space. Another usage can be in
training, as it can be used to help a beginning trainee see and learn the
spatial relations.

Volume rendering, on the other hand, does not suffer from these
inconveniences. As the whole volume is maintained, all the needed
information is available. This avoids any processing needed for the
visualization, since the information is used directly. This allows to
seamlessly change the selection or visualization mode with nearly zero
overhead.

Moreover, just by changing the visualization mode it can realistically
render the tissue or highlight special zones or organs. All these advantages
give volumetric rendering a high versatility and allows the user to perfectly
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adapt the image to the specific needs.

This chapter will first introduce various algorithms and works presented
in the field of rigid volumetric visualization. Secondly, it will study the
different needs and problems a volume rendering modules for surgery
simulation faces and it will address these needs and issues by presenting
different methods.

Additionally, the inclusion of the proposed methods in a well known
visualization framework will be presented. This will allow non experimented
users to use the methods presented in this chapter for the development
of applications with volume visualization, such as surgery simulators or
medical image visualizers.

3.2 Background

In most commons visualization pipelines, models are defined only by their
surfaces modelled with polygons, usually triangles. This allows the highly
specialised Graphic Processing Units (GPU) to efficiently render a high
number of models in real time.

However, the basic primitive of a volumetric dataset is not a polygon,
but a three-dimensional polyhedron. In the same sense that surfaces can
be represented by different types of polygons, volume datasets can be
defined with different types of polyhedra. A coarse classification of the
representations modes is to define them by their structure. Structured
volumes are those that follow a know pattern, whereas unstructured
volumes are those that do not posses a regular layout. Figure 3.1 shows
types of volumetric representation used for different purposes and fields.

As it has been explained in Chapter 2.2, medical imaging captures
slices of the scanned object creating an uniform rectilinear volume. The
basic primitive of this type of volume is called voxel, which is a rectangular
hexahedra. As this type of structured volume is the most common, in this
dissertation it will be referred simply as structured volume unless noted
otherwise.

In order to visualize this type of data, the participation of each voxel
in the final image must be calculated. For this purpose, the interaction of
the light with the volume has to be calculated, which is a computationally
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Structured volumes

Unstructured volumes

Figure 3.1: Two-dimensional representation of different volume
types. The upper representations are a type of structured volumes,
uniform rectilinear datasets, more often used in medical imaging.
The unstructured volumes are more usually used in scientific
visualization and simulations.

intensive calculation. Because of this, several simplified models have been
developed:

• Absorption only: The only participation of the volume taken into
account is light absorption. This would achieve a rendering of a only
black volume.

• Emission only: The only participation of the volume taken into
account is light emission. The resulting rendering would consist in a
light emitting volume.

• Emission-Absorption: The volume absorbs and emits light. This
achieves a good visualization with shadowing at a reasonable cost.

• Single scattering: The volume absorbs, emits and scatters light
coming from outside light sources. Shadows are calculated with the
exterior lights only.
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• Multiple scattering: All interaction models are considered. This
achieves the highest quality but it is the most time consuming.

The Emission-Absorption model is the most common one, as it allows
a good visualization of the volume with a reasonable cost. All the methods
presented in this work will use this models unless otherwise stated. This
model is defined by the Volume-Rendering Integral (Equation 3.1). A
complete and detailed derivation of this formula can be found in (Engel
et al., 2006).

I(sf ) = I0e
−
sf∫
s0

k(t)dt

+

sf∫
s0

q(s)e
−
sf∫
s
k(t)dt

ds (3.1)

I(sf ) is the final light coming out of the volume from the exit point of
the ray, sf . I0 is the light incoming into the volume from the starting point
of the ray, s0. k(t) is the light absorption function whereas q(s) is the light
emission function. To simplify, the repeating part of the equation can be
defined as Equation 3.2. It can be seen that this equation calculates the
amount of light that passes between the points s1 and s2 of the ray.

B(s1, s2) = e
−
s2∫
s1

k(t)dt

(3.2)

Basically, in Equation 3.1, the amount of the background light hitting
the camera (I0B(s0, sf )) is calculated and then the accumulation of the
light emitted by the volume along the ray (integrate q(s)B(s, sf )ds) added.

In order to use it in a real time rendering engine it must be further
simplified, resulting in Equation 3.3. It must be noted that all volume
rendering methods evaluate this integral in one way or another.

I(sf ) =

n∑
i=0

Ci

i−1∏
j=0

(1− αj) (3.3)

The term αi derives from Equation 3.2, and expresses the amount of
light absorbed at that sample. From this, Equation 3.4 can be extracted
which can be iteratively calculated from the camera to the final point of



34 Chapter 3. Volumetric Visualization of Rigid Models

the ray (front to back order). The term Ci is the the colour of that sample
multiplied by the opacity term of the same sample point, Ci = Colouri×αi
and the term C ′i is the colour accumulated up to that point. This is called
opacity weighted colour, and it has been proven that its use is necessary
when interpolating to achieve correct results (Wittenbrink et al., 1998).
Similarly, the term α′i denotes the α accumulated up to that point.

C ′i = C ′i−1 + (1− α′i−1)Ci

α′i = α′i−1 + (1− α′i−1)αi
(3.4)

Additionally, by modifying this equation, it can be calculated from the
initial point of the ray to the camera (back to front order) easily:

C ′i = Ci + (1− αi)C ′i (3.5)

One of the fastest methods for the CPU to evaluate the rendering
integral is the shear-warp algorithm (Lacroute and Levoy, 1994). This
method consists in projecting the volume into the viewing plane, for which
the volume has to be sheared and warped to fit the viewpoint.

In a similar manner, volume slicing renders the volume slice by
slice, using polygons to represent the slices and using the GPU for
their renderization, significantly speeding up the process. The 2D texture
mapping version uses volume aligned polygons textured with the volume,
such as the ones in Figure 3.2. These textures are then bilinearly
interpolated (Cabral et al., 1994). This method achieves very fast rendering
times, but it creates artifacts. These artifacts arise from the alignment of
the slices with the volume and the need to change said alignment depending
on the viewpoint.

With the advance of the GPUs, 3D texture mapping made available the
storing of the entire volume as a unique texture, and using it in arbitrary
planes defined by 3D texture coordinates. Thanks to this method some
of the artifacts created by the 2D texture mapping could be fixed, as the
polygons does not have to be aligned with the volume. Instead, texture
slicing with 3D texture mapping uses viewpoint aligned slices, efficiently
reducing the artifacts and improving visual quality while maintaining a
low computational cost. Additionally, as the polygons are aligned and thus
the number of samples per pixel is exactly the number of contributing
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Volume bounding box XY aligned slices ZY aligned slices XZ aligned slices

Figure 3.2: The three different alignments possible when using
2D texture mapping. The chosen alignment has to be changed in
order to match as close as possible the viewpoint, which creates
a flickering artifact.

polygons, it allows to control the number of samples per pixel (points of
the volume evaluated) by increasing or decreasing the number of polygons
used, as Figure 3.3 shows.

Volume bounding box Polygons from the point of view Increasing the number of samples

Figure 3.3: The view aligned polygons created to use with 3D
texture mapping. These two versions map the volume at different
sampling rates by duplicating the number of polygons from the
central one.

Other object order volume renderings exist, such as splatting (Westover,
1991) or cell projection (Weiler et al., 2003). These method create different
primitives (cell projection usually uses tetrahedra while splatting uses
spheres) and project them onto the viewing plane. Although their rendering
quality is among the lowest, their speed and the fact that they can be used
with unstructured volumes make them interesting choices in certain cases.

The most straightforward algorithm to evaluate the volume rendering
integral is raycasting (Levoy, 1988). This is a image order method that
consists on shooting a ray from each pixel in the final image and evaluate
the rendering integral by sampling points along the ray. This calculation



36 Chapter 3. Volumetric Visualization of Rigid Models

is very costly, but with the the increase of the computational power of the
GPUs along with the intrinsic parallel nature of the algorithm made it
suitable for real time.

The first algorithms to render a structured volume through raycasting
had to deal with the limitations on the conditions and loops of the GPUs
at that time (Kruger and Westermann, 2003; Roettger et al., 2003). Said
limitations increased the complexity of the algorithms and limited their
speed. Nevertheless, these methods achieved high frame rates and good
quality images. Modern GPUs have eliminated these restrictions while
improving their computational power, with the resulting increase in the
rendering speed.

Even though many methods exist, most ray casting algorithms have
a common base pipeline. Figure 3.4 shows a flow chart of the usual ray
traversal algorithm. It can be divided into two stages: ray creation and
evaluation. In the creation stage the initial position and direction of the rays
have to be calculated per pixel, taking into account if parallel or perspective
projection is used.

Calculate 
starting 
points

Evaluate 
current 
sample

End of 
the ray?

Calculate 
illumination

Set final 
colour

Update 
sample 
position

Yes

No

Figure 3.4: Flow chart illustrating the basic ray traversal pipeline.
Note that these pipeline includes early ray termination and
illumination.

A simple but effective way to create the rays is to render a proxy
geometry (usually the bounding box of the volume) colour encoded with the
corresponding volume coordinates (Kruger and Westermann, 2003). This
creates the entry and exit points for each pixel, as shown in Figure 3.5.

In the ray evaluation stage the rays are traversed in order to evaluate
the volume rendering integral. This evaluation is performed by sampling the
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Figure 3.5: The colour encoded front faces (left) and back faces
(right) of the proxy geometry of a volume in a perspective
projection.

volume contribution one point (and optionally calculating the shading in
the sample), accumulating it, and then going to the next sampling point. A
very important part, in terms of quality and speed, is the distance between
samples (sampling distance) also defined by the number of samples per
distance unit (sampling rate). According to the Nyquist-Shannon sampling
theorem, the sampling rate must be more than two times the sampling
frequency of the sampled data. With a higher the sampling rate better
visual results are obtained, but at the cost of a higher computational cost,
thus an equilibrium must be achieved between quality and costs.

The ray traversal is usually done front to back order, as it allows to
stop the ray when its maximum opacity has already been achieved thus
avoiding unnecessary computations. Additionally, the use of raycasting also
allows a variety of optimizations such as adaptative sampling (modifying
the sampling distance depending on the materials properties) or empty
space skipping (entirely jumping the samples in empty parts of the volume).

All these methods can achieve coloured images from the volume but, as
it has been already said in Section 2.2, most volume acquisition methods
only provide scalar volumes (intensity). This intensity has to be interpreted
and the desired opacity and colour for each material decided, which is done
using transfer functions and for the illumination lighting models such as
Goraud, Phong, etc., are used taking the gradient at the sample point as
the normal.
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3.2.1 Transfer functions

Transfer functions assign optical properties to the values of the volume.
They can be roughly categorized by the amount of data taken into account
to evaluate one sample of the volume. For example, one of the simplest and
most usual transfer function is one-dimensional which assigns an opacity
and a colour to a single value. This simplicity enables easy manipulation and
creation but also includes some disadvantages. These include the inability
to discern some types of tissues if their values are not different enough and
the difficulty to represent the interfaces between materials. Some examples
of visualization with different one-dimensional transfer functions are shown
in Figure 3.6.

Figure 3.6: A tooth dataset rendered with different
one-dimensional transfer functions. The leftmost image renders
the interface between the tooth itself and the air, the image in
the middle shows the hardest tissue in the tooth, and the last is
the result of combining those two transfer functions.

By taking more data into account, these problems can be reduced or
completely eliminated. A usual method to extract additional data from the
volume is calculating the derivative. By calculating the first derivative (the
gradient) more data is gathered, with the second more information about
the interfaces between materials is added, and so on. Transfer functions
that use this data are called multi-dimensional transfer functions. The most
common is the two-dimensional transfer function where, in addition to the
value, the magnitude of the gradient at the point is taken into account. This
greatly enhances the differentiation between materials (Figure 3.7) and can
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potentially improve the image quality. On the other hand, by increasing the
number of data used in the transfer function, the creation and modification
become exponentially more difficult.

Figure 3.7: Trying to render the root of the tooth with
one-dimensional transfer functions results in the image on the
left. This is due to the fact that the interface between the tooth
and the air has the same value as the root. The image of the right
shows the root rendered with two-dimensional functions, which
allow to differentiate between the air and the tooth by taking the
gradient into account.

The creation of the necessary transfer functions is not a trivial task.
Even the design of one-dimensional transfer function is not direct, and
in many cases it derives into a trial and error method. As it has been
said, the more data used in the transfer function the more detailed
the rendering can be, but the more dimensions a transfer function has
the more complex it is to create. Because of this, there is an ongoing
effort in creating user interfaces that would allow an intuitive creation of
multi-dimensional transfer functions (Correa and Ma, 2011; Wang et al.,
2012). User aided design offers a great flexibility as the user can modify the
created transfer function, generate it from scratch, or guide the algorithm
in its creation. However, the need for the user intervention raises the
knowledge required to use the application. Moreover, transfer function
definition is not trivial and therefore it may become into a trial and
error method. For example, to overcome this, Correa and Ma created a
user guided interface that semiautomatically creates transfer functions and
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iteratively refines it through user interaction (Correa and Ma, 2011).

Another alternative is to remove the need for user interaction
altogether, by generating the transfer functions completely automatically.
This automatic transfer function generation usually focuses on the features
(Maciejewski et al., 2009) or contour (Zhou and Takatsuka, 2009) of the
volume. These kinds of methods face a major challenge when dealing
with the flexibility of the method, as the transfer functions needed for
different fields are very diverse, and even inside the same task the transfer
function may differ completely for each volume. By detecting the desired
visualization and the appropriate transfer function, these methods make
volume visualization available for a wider population, as it does not require
any additional skill to use it. More recently other methods have been
presented to create the transfer function using information about the target
visualization, for generic applications (Ruiz et al., 2011) or for specific
applications (Lathen et al., 2012).

3.3 Improvements on Rigid Volumetric
Visualization for Simulation

There are many rendering modes usable in volumetric visualization such as
maximum intensity projection (MIP) where only the highest value on the
ray is shown, or full volume rendering (FVR), where the ray is evaluated
and its transparency and colour accumulated which is the most common.
Another method is called direct volumetric isosurfaces, which can be used
to visualize completely opaque materials without extracting the surfaces.

FVR raycasting offers the highest quality rendering among the
volumetric rendering methods, but it is not free of rendering artifacts.
However, thanks to the high flexibility offered, many improvements can
be made in order to correct the artifacts or at least mitigate its effects.
Additionally, many effects can be added to improve the quality and usability
of the visualization.

The most common artifact in volume rendering algorithms is the
woodgrain artifact, shown in Figure 3.8. This artifact is a direct result
of the used sampling distance, and the bigger this distance is the more
visible it becomes. It is not, however, possible to fix it by just increasing
said distance, as it is also the result of the discrete nature of the algorithms.
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Figure 3.8: The bonsai CT dataset rendered with a translucent
transfer function for the bark. In the close up image the woodgrain
artifact is easily visible due to the sudden colour changes in the
transfer function.

In the case of FVR raycasting, the problem arises from the interfaces
of the materials and the discrete sampling of the rays. When a ray arrives
to the frontier between two materials, it will evaluate a sample outside and
another inside the volume (as expected). Additionally, the neighbouring
rays will also do so, but if the rays and the object are not perfectly
perpendicular in all the image the distance at which the ray will meet
the interface will vary. This, coupled with the fact that all rays are sampled
at the same regularly spaced points, creates the woodgrain artifact. Figure
3.9 shows an image illustrating this effect.

As it can be seen, it is not only the change from one material to the
other that creates the wood grain like pattern but the regular sampling of
the ray. It is evident that it is not possible to avoid the interface between
the materials, so the problem to be tackled is the regular sampling of the
rays.
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Figure 3.9: A simplified illustration of the raycasting algorithm,
shows an example of how the woodgrain pattern is formed. As
the rays start from the same distance and the sampling distance
is regular, a pattern is created in the resulting image.

In order to disrupt the pattern a very useful tool is stochastic jittering
(Engel et al., 2006). This method introduces a random variation in the
starting point of the ray (in the direction of the ray) producing a random
variation of the sampling points between the rays, as shown in Figure 3.10.

Figure 3.10: The inclusion of a random variation in the starting
point converts the woodgrain pattern into a more random one.
It should be noted that such variation is only included in the
direction of the ray.

As a result of this controlled randomization the woodgrain pattern
is disrupted and transformed into a random noise pattern. Due to the
difficulty the human eye has to detect random noises in contrast to its
ability to detect regular patterns, the woodgrain artifact disappears and
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Figure 3.11: Comparison of a skull rendered without (left) and
with (right) stochastic jittering.

the introduced noise becomes barely noticeable, as it can be seen in Figure
3.11. This method is, of course, limited with the used sampling distances as
magnitude of the noise needed to efficiently mask the artifact grows along it.
But the increase noise magnitude also makes it more noticeable eliminating
its advantages. For this reason the magnitude of the noise is usually set
beforehand and kept constant regardless of the sampling distance.

3.3.1 Direct volumetric isosurfaces

In the simulator prototype presented in this dissertation, there will be two
volumes, a rigid skull and a deformable brain. The data for the skull comes
from a CT and, as aforementioned, the value for the skull is very well
defined.

As the skull is completely opaque and well defined direct volumetric
isosurfaces can be used, providing a better quality and performance than
FVR. This method renders the isosurface using a modified version of the
ray traversal in FVR raycasting. The samples in which the value is smaller
than the given isovalue are completely discarded, and the renderer proceeds
to evaluate the next sample position. Samples with a value equal or bigger
than the isovalue stop the ray traversal. The rest of the calculations, such as
lighting or shadows, are done normally. In this rendering mode the opacity
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property is not given by the transfer function but is set to be completely
opaque.

As a consequence of these changes, the number of calculations done
per ray is drastically reduced, giving a huge performance boost. However,
due to the discrete nature of the sampling and the volumetric data, some
errors appear when the sample location does not exactly correspond with
the isosurface. This artifact arises for the same reasons woodgrain artifact
appears, but even though stochastic jittering is an option, a better solution
exists for this case.

As the value of the surface to show is known, instead of inserting random
noise to mask the error, the exact position in which this value is found
at the ray can be searched. This method is called intersection refinement
(Hadwiger et al., 2008), and consists in iteratively searching for the correct
intersection point of the ray with the isosurface. This is performed by a
binary search algorithm, shown in Equation A.1. This search is not usually
performed until the desired precision is met, instead it is iterated a fixed
number of times. Usually with as few as four iterations a very good result
can be achieved.

Xnew = (Xnext −Xprev)
isovalue− Vprev
Vnext − Vprev

+Xprev (3.6)

The iteration starts when a sample is evaluated to have a value higher
or equal to the isovalue. Then Equation A.1 is evaluated, Xprev being the
previous sample point, Vprev its value, Xnext the point where the isovalue
was surpassed first and Vprev its value. From this a new point is calculated,
Xnew, and its value, Vnew, fetched. Then the usual binary search step is
performed, as shown in Equation 3.7, and then it proceeds to the next
iteration.

{
Vnew ≥ isovalue Xnext = Xnew

Vnew < isovalue Xprev = Xnew

(3.7)

As a result, the quality of the isosurface rendering is greatly increased,
as it can be seen in Figure 3.12, enabling its use in high quality visualization
as a replacement for extracted polygonal isosurfaces.

Even though direct volumetric isosurfaces present evident
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Figure 3.12: A CT of two feet rendered with direct isosurface
rendering. The image on the left is rendered without intersection
refinement whereas the image on the right is rendered with
intersection refinement.

computational advantages over FVR, it is possible to perform it using
specially created opacity transfer functions. However, refined intersection
isosurfaces have an additional capability: is to achieve very good quality
images even with high sampling distances. This can be used to further
increase the performance of the rendering, and this optimization, along
with the intersection refinement, gives direct volumetric isosurfaces a clear
advantage over FVR. Figure 3.13 shows a piggy bank volume rendered
with different sampling distances using both FVR and direct isosurface
rendering. It can be easily seen that the isosurfaces maintain a very high
quality even with very large steps, in contrast to FVR.

Furthermore, an additional optimization can be performed when the
sample distance is small enough, that is, if the new position will still be
contained between the previous and the next voxel. Taking into account
the fact that the values between voxels are usually interpolated, the change
of the values from the first sample to the next it is know to have been
interpolated. Thus, if said conditions are met, with just one evaluation of



46 Chapter 3. Volumetric Visualization of Rigid Models

4.10.1 1.1 2.1 3.1

Sampling distance

Figure 3.13: The piggy bank dataset illustrates how isosurfaces
with intersection refinement (down) maintain quality with the
increase of the sampling distance, while quality of the isosurface
with transfer functions (up) steadily decreases.

Equation A.1 the correct point is met, as it will calculate the point in
which the interpolation achieves the desired isovalue. This optimization is
specially important in older systems, where performing a condition in the
GPU is computationally costly, as it avoids the evaluation of Equation 3.7.

The resulting pipeline of ray traversal with isosurfaces is shown in
Figure 3.14. As it can be seen the modifications needed to accommodate
this pipeline are minimal and it adds several improvements, as it has been
explained beforehand.

3.3.2 Differences with polygonal rendering

As it has been already explained, volumetric rendering has some
key advantages over polygonal rendering of extracted surfaces. These
advantages arise mainly from the fact that extracting the surfaces from
a volume ignores the rest of the information, whereas volumetric rendering
allows the use of all the information contained within the volume. This
allows the use of transparencies and translucencies naturally and with
high quality renderings, as well as easy on the fly changes on the optical
properties of the materials.
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Figure 3.14: Flow chart illustrating the modifications made to the
basic ray traversal pipeline for direct volumetric isosurfaces with
intersection refinement.

Additionally, even when using volumetric isosurfaces where
transparencies and translucencies are no longer an advantage, the
use of raycasting allows pixel accurate isosurfaces regardless of the
viewpoint or distance to the object. This is due to raycasting being an
image order rendering algorithm in contrast to polygonal rendering, which
is an object order algorithm. Thanks to this, the only limit on the image
comes from the volume resolution. Polygonal rendering, on the other hand,
is constrained by both the volume resolution and the extracted surface’s
polygon count and distribution. This difference can be observed in Figure
3.15, where a direct volumetric isosurface is compared to an extracted
polygonal surface.

But these advantages do not come without problems. For example,
while the hardware for rendering (GPU) is very specialized for polygonal
rendering and it is very efficient in this task, volume rendering algorithms
are forced to find ways to take advantage of said specializations in order
to take full advantage of the hardware. In the last years, however, the fast
increase on the GPUs capabilities and the generalization of their pipelines
is steadily closing this gap.

One of these problems arise when mixing polygonal and volumetric
objects, and comes from the fact that rendered volumes do not have a
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Figure 3.15: A close up view of a Menger Sponge dataset. The
image to the left shows the render using an extracted isosurface
with nearly eleven million triangles. The image of the right shows
the direct volumetric isosurface rendering of the same dataset.

specific depth per pixel as polygons do. Because of this the usual depth
culling methods do not work, and it must be performed inside the ray
traversal. The most common solution is to first render the polygonal objects
and, with the created depth map, test each sample in the ray against it to
ensure that the samples behind any of the objects are properly culled. This
method works correctly as long as there is only one volume at a time in
a specific point, as the resulting depth from one volume rendering cannot
be correctly used to render the next. Instead, they must be rendered at
the same time, increasing the complexity of the method and reducing its
scalability.

In the case of volumetric isosurfaces, however, there is a clearly defined
depth value as in a polygonal rendering. Thanks to this, just by rendering
them after the polygonal objects but before the full volume rendered objects
any number of volumetric isosurfaces can be rendered correctly without any
changes in the algorithms.

Another problem volumetric visualization has in comparison with the
usual polygonal rendering is the calculation of the shadows. As volumetric
objects are no longer mere surfaces and can be translucent, their shadows
can be translucent and the calculation of both the shadows cast and received
is more complex.

A very common shadowing algorithm for polygonal rendering is called
shadow mapping. This method renders the objects that will cast shadows
from the light’s perspective and stores the depth map. Then, when the
main rendering is performed, this map is consulted per each pixel and the
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transformed depth is compared to the depth of the current pixel, casting the
shadows in the desired surfaces. However, as it has been said, this algorithm
cannot be directly used to cast shadows from volumes, but modified versions
are available.

Several approaches exist to this problem and can be grouped in three
main types: no volume cast shadows, hard volume cast shadows and soft
volume cast shadows (Hadwiger et al., 2008). The first approach just ignores
the volumes when casting the shadows, but allows the volumes themselves
to receive shadows. Although it is a rather simple solution it is very well
suited to a vast range of applications, as many of them only have one
volume in the scene. Additionally, that volume will usually be the centre
of the visualization, and while the shadows cast by a polygonal object may
be important, the shadows cast by the volume itself are not as relevant.
This approach also allows to completely avoid an additional volumetric
renderization. This is the case of many medical simulators, where it is
common to have one main volume and polygonal instruments interacting
with it.

The hard volume cast shadow methods avoid the problem by managing
volumes as if they were not translucent, thus the usual shadow mapping
algorithm can be used just by including a modified volume rendering. This
volume rendering is simplified by ignoring transparency and treating the
first hit as completely opaque. This creates hard shadows for the volume
that do not correspond to the actual transfer functions, but enables the use
of shadows without greatly increasing the cost.

The soft volume cast shadow methods completely changes the shadow
mapping technique, taking into account the whole volume and its
translucency. The most common method in this category is the deep
shadow maps algorithm. This algorithm is similar to the normal shadow
map algorithm: it renders the scene with the shadow casting objects from
the lights point of view, but instead of creating a single map it creates a
set of maps at different depths with the absorbed light up to that point.
This creates a volume describing how much light arrives at each depth.
Although this method creates the highest quality shadows, the need of a
full volumetric render for the creation of the deep shadow map in addition
to the main volume render as well as the increase of the cost of checking
the map makes this method computationally very expensive.

In the case of the simulator prototype presented in this dissertation, the
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Figure 3.16: A comparison of the rendering of a sphere without
(left) and with (right) casting shadows onto the volume. It is easily
observed that the shadow greatly increases the perception of the
spatial location of the sphere.

main focus of the visualization are two volumes, the skull and the brain.
Taking this into account, and the fact that the brain will only be visible
through the holes drilled on the skull, the first option is perfectly valid, as
the shadow from the skull onto the brain will be mostly out of sight but the
shadow of the tools on the skull and brain are necessary clues that increase
the depth perception as it can be seen in Figure 3.16.

The pipeline resulting of applying all aforementioned improvements and
optimizations shown in Figure 3.17 is able to efficiently render volumetric
objects along other polygonal objects with high quality.

3.3.3 Style transfer function designer

The creation of the transfer functions is not a trivial task, specially when
multiple types of visualizations, such as illustrative visualization or realistic
visualization, are involved. The mixing of these two kinds of visualization
increases the complexity of the creation of the transfer functions, as they
can be as different as to require different illumination calculations.

In order to simplify the creation of illustrative transfer functions, style
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Figure 3.17: Flow chart illustrating the complete pipeline for
FVR, including stochastic jittering, shadows and intersection with
polygonal objects.

transfer functions were proposed (Bruckner and Groeller, 2007), where the
transfer function maps a sphere map (instead of just a colour) to the
voxel density and computes the final colour with the style and the voxel’s
normal (approximated with the gradient of the voxel). (Rautek et al., 2007)
continued this work, adding a semantic layer to the style transfer function
definition simplifying its design. Furthermore, (Herghelegiu and Manta,
2008) proposed the use of style transfer functions to achieve illustrative
rendering through differently lit sphere maps.

Figure 3.18: Lit sphere shading in style transfer functions
(Bruckner and Groeller, 2007). It can be seen how the illumination
model for the sphere is stored in the final style.
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Thanks to styles, the illumination of different artworks could be
transferred to the rendering, as styles implicitly store an illumination model.
Once the style of the corresponding voxel has been decided, the gradient
is used to create an approximation of the normal in eye space coordinates
and then to choose the colour of the voxel from the map (Figure 3.18),
effectively transmitting its illumination model to the final rendering.

In this way, the illumination from the sphere is transferred to the
corresponding part of the volume, each one with its implicit illumination,
and so the need of illumination calculations is removed from the raycasting.
On the other hand, as every style has its own illumination model, and
multiple styles are usually used in one volume, there is some risk of having
styles with incoherent illumination models. This may be acceptable or even
desirable in some styles of illustrative rendering, but in most cases, and
especially in realistic rendering, it is utterly important to have a coherent
illumination model, i.e., each one of the styles, even having their own
independent models, must be coherent with all the other styles. In order
to maintain the coherency manually, the user would need to use external
programs and require additional skill in order to change the pictures used
in the styles while maintaining everything with the same implicit model.

All this work is based on predefined styles, adding different layers to
simplify their use and modification. In this dissertation a style editor is
presented, which will allow the user to create the styles without having to
rely on predefined styles (that are usually edited in third party applications
such as photo editors). Using this approach, the user can easily manipulate
the lighting model, which is maintained coherent through all the styles by
the editor, or change the optical properties of the material by changing the
base colour or applying a texture. The editor also allows applying different
effects to the style as contour highlighting (Bruckner and Groeller, 2007)
or central transparency (Buchart et al., 2009). Moreover, thanks to the
implicit storage of the illumination information, the mixing of illustrative
and realistic visualization is greatly simplified.

The proposed interactive designer gives the user total control over the
styles and at the same time ensures that the styles will maintain a coherent
illumination (independently of the changes made to them). Doing that, the
time and skill previously required are dramatically reduced. Additionally,
as styles are not simple pictures, but stored information (texturex, effects,
colors, etc.) prepared to be rendered when needed, the illumination of the
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Figure 3.19: Sphere maps differently illuminated created with the
proposed designer. It can be seen that the different styles (the
small spheres) are coherently illuminated and maintained.

styles can be changed interactively, making it possible to interact with the
light as easily and intuitively as with normal transfer functions and direct
illumination (Figure 3.19).

Figure 3.20: The proposed style designer with three defined styles
for skin, bone and metal.

The designer enables the interactive use of style transfer functions
through an easily usable style design and modification interface. The
interface (Figure 3.20) shows the existing styles in the library, as well
as the specific information of the selected style. Nevertheless, the general
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property that all the styles share, the direction of the light, can be modified
independently of the selected style (using a click and drag operation on the
selected sphere). While the modification of the light’s direction is done in
the selected style, the changes will be reflected equally in all styles (shown
in the left panel). In this way, the user can have a preview of the result
without having to select the other styles.

The user can choose, through the editor, a texture for the selected style,
so a real photo of the material to be rendered can be used. For example,
in medical visualization, the user could import a photo of a part of a bone
in the style to be used to render the skull. Also, the user can select a plain
colour, allowing an easily controllable illustrative style that, even though
not realistic, it will be illuminated in the same direction as the other styles.

Albeit uncommon, the user might not want the illustrative style to
be shaded in order to be more strongly highlighted. The editor makes this
possible by means of the direct control of the way the light interacts with the
styles. As it can be seen in Figure 3.20, the editor also gives the user power
over the styles light’s ambient, diffuse, and specular values. By modifying
these values, the user can create shaded or not shaded styles, as well as
any combination of them. This offers a great flexibility when the styles are
being created. Then the user can choose to mix the two types of rendering
without losing the realistic illumination, as it can be seen in Figure 3.21a
where the left style shades the bone in a realistic way and the right style
highlight the teeth.

In addition to the usual properties, the editor allows the inclusion of
illustrative effects. One of these effects is contour highlighting, introduced
by (Bruckner and Groeller, 2007), where based on the normal projection
on the sphere map, a different color can be assigned to the edge of the style
in order to highlight contours in the rendered volume (Figure 3.21b). The
color of the edge will be independent of the properties of the illumination,
ensuring that even if the style is shaded the contours will be correctly
rendered with the selected color.

Another effect, introduced by (Buchart et al., 2009), is the illustrative
central transparency. This effect creates a smooth void in the center of the
style, resulting in the material rendered with transparency in the zones that
faces the viewer. The user can then see through other materials in order to
have a better view of the key materials, without completely eliminating the
materials in the middle (Figure 3.22a). This effect can be combined with
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(a) (b)

Figure 3.21: Images showing different effect types: Mixing of
realistic and illustrative styles (a) and highlighting a skull using
its contour (b).

the edge highlighting to create purely contour highlighting styles in order
to see only the contour of a material (Figure 3.22b).

3.3.4 Extending Volumetric Visualization in VTK

In the previous sections has been explained that volume rendering is a
highly variable field. Because of this variability, the development of a
generic volumetric visualization library is a difficult task. Even if a library is
developed, said variability forces the need of flexibility and personalization.
Nevertheless, various libraries have been developed trying to fill this gap,
with variable success.

One such library is the aforementioned Visualization Toolkit (VTK),
which encompasses many fields and visualization modes including volume
rendering. One key feature that has made VTK widely used is its modular
approach and extensibility. Thanks to this, and to the fact that is an open
source project, many modules are created by the users and later added to
it.
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(a) A style with the central
transparency effect increases the
visibility of the inner material and
maintaining the outward material
visible.

(b) Using an style which renders only
contours, increases the perception of the
context of the rest of the image by
suggesting the contour of the surrounding
material.

Figure 3.22: It is possible to add multiple effects to the styles and
mix them using the proposed designer.

In addition to the standard rendering pipeline, VTK offers several
volume rendering algorithms such as texture slicing or raycasting. However,
the lack of the aforementioned improvements, such as stochastic jittering,
shadow receiving volumes or direct volumetric isosurfaces, poses a problem
in certain situations, such as a medical visualization using CTs. In order
to fill this gap, in this dissertation a raycasting module for VTK has been
developed and made available to the VTK community, allowing its use in
any application already using VTK.

The first necessary addition to VTK for its use in surgery simulators is
enabling the volumes to receive shadows. As it has been already explained,
shadowing greatly increases the users ability to spatially locate the tool and
its relation to the volume. It can be seen that this increases the potential
learning done through a simulator as the interaction becomes much more
natural.

VTK has the necessary modules to create a shadow mapping pipeline
for polygonal objects. It does not, however, feature any volume rendering
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module able to cast or receive shadows. To enable shadow receiving for the
volume rendering, the shadow mapping pipeline must feed the resulting
depth map to the new volume rendering module. With this information,
the new module is able to perform volumetric rendering with hard shadows.
Moreover, thanks to the use of the native VTK pipeline for the creation
of the shadow maps, the coherency between shadows received by polygons
and volumes is ensured.

As it has been previously said the use of isosurfaces can be desirable
given that some conditions are met. In the case of medicine, in some
cases opaque tissues want to be visualized making the use of isosurfaces
an evident choice. In VTK, there is no other option than the extraction
of polygonal isosurfaces and their use for this type of rendering. For this
reason, the presented new module features the use of direct volumetric
isosurfaces.

Thanks to this added feature, there is no need to sacrifice visual quality
for speed while continuing using the rest of VTK as before. Additionally,
as it also has intersection refinement, the sampling distance can be varied
to meet the necessary frame rate with nearly no visual quality loss.
Additionally, in order to increase the quality of the FVR of the new module,
stochastic jittering has been also added, greatly reducing the image quality.

These additions enable the use of VTK with the presented module for
surgery simulation development, allowing developers to easily use it in their
projects. It must be noted that shadow receiving is available in both FVR
and isosurface rendering. To summarize, the additions done to VTK are
these:

• The shadow receiving mode has been added, which is controlled in the
same way it is controlled for polygonal objects seamlessly integrating
with VTKs pipeline.

• A new rendering mode has been added, the volumetric isosurface
mode. This mode also implements the intersection refinement allowing
high quality renderings.

• Additionally, stochastic jittering has been added to further increase
image quality.

Specific details about the changes in the class hierarchy and the modules
themselves can be found in Appendix A.
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3.4 Discussion

This chapter has presented the methods and algorithms necessary for rigid
volumetric visualization in surgery simulation. Using these methods, the
quality of the volumetric visualization can be increased with minimum
impact on the frame rate. Additionally, some of them can be used to greatly
increase the performance in certain cases.

In addition to presenting the methods, they have been implemented
within VTK and published. This gives the developers easy access to these
methods, which they can use without any specific knowledge of volumetric
rendering.

Furthermore, an extension of the style transfer functions has been
presented in the form of a style designer. This designer allows the user
to easily create or modify style transfer functions to suit their needs. It can
be used to create traditional transfer functions by uploading the image to
be used and deactivating the illumination, to create realistic style transfer
functions (with or without a texture) and to create illustrative style transfer
functions using the different presented effects.

It should be noted that much more methods exist to improve a
volumetric visualization, but they have not been explained as they fall
outside the scope of this dissertation. That is the case of the methods
for purely illustrative rendering methods, where much work has been done
during the years, from cutaway and shading methods as in (Grau and Puig,
2009) or radically different rendering pipelines as in (Nagy et al., 2002) or
(Ji et al., 2008).



Chapter 4

Volumetric Visualization of
Deformable Models

Simplicity is a great virtue but it requires hard
work to achieve it and education to appreciate it.

And to make matters worse: complexity sells
better.

Edsger W. Dijkstra

Part of this chapter has been published in:

Herrera, I., Aguinaga, I., Buchart, C., and Borro, D. “Study of ray
casting techniques for the visualization of deformable volumes”. IEEE
Transaction on Visualization and Computer Graphics, 2013. Accepted
with Major Revision.

4.1 Introduction

Deformable body simulation plays a very important role in many areas,
such as engineering and medicine. In some cases, the models to simulate
are generated completely by computer, e.g., when a CAD model is tested by
computer simulation prior to the development of a physical prototype. This
method has the downside that the created model can contain differences
or omission in comparison to the real model. And even in the case
of considering a perfect model it cannot take into account individual
differences, which is something to be taken into account in some cases.

59
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In many other cases the models will simulate real objects, e.g. medical
simulation, where the tissue to be simulated is usually extracted from
volumes. One way to do so is by scanning the real object in order to generate
a computerized version without having to manually create it. This way,
using a very precise scanning a nearly perfect model will be achieved. And
in the case where high quality scanning is not possible, as when scanning
living beings, it allow to use models with individual differences.

These models need to be processed before being usable in a simulation
pipeline. Usually this means the creation of a tetrahedral or hexahedral
mesh from the original volume or point cloud. When using point clouds,
the cloud is converted to a surface and then to a polyhedral volume by
assuming uniformity inside the model. In contrast, when using volume data
to create a polyhedral mesh, the information of the inside of the object no
longer has to be guessed, as accurate information is provided. By using this
information a more exact physical model can be created.

Usually, after the creation of the model the volume is no longer used and
the visualization is performed with the model itself or by processing said
model. But in the case of simulations performed in structures extracted
from volumes, the volume’s information can be added to the resulting
shape to increase the quality of the visualization as well as the quantity
of information given by it.

Volume rendering is required to perform this visualization, but most
volume rendering pipelines do not allow the deformation of the volume.
One of the most common volume rendering technique is raycasting, which
does not allow the deformation of the volume without additional work. The
common pipeline performs a raycasting in the original structured volume,
requiring substantial changes in the algorithm to visualize the deformed
model.

One option is to resample the volume using the deformation of the
volume but this is a costly operation, both in terms of memory and time
consumption, and therefore it is better to avoid it. The second option is
the inverse deformation of the cast rays.

When inversely deforming the rays, two different spaces have to be
considered: world space and volume space. The world space is the main
space, in which all the objects in the scene are defined. Volume space is
the space where the volume is sampled. This space is deformed (without
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deforming what is inside it), and the casted rays are deformed when
transforming them from world space to volume space.

This deformation renders some assumptions of the usual raycasting
pipeline invalid, such as the continuity of the rays or the static gradients
of the volume. Therefore, additional corrections must be made in order to
face these challenges. For example, as the volume itself is not modified, the
gradients of the volume (usually used for illumination calculation) must
be corrected to match the deformation. In the last decade several methods
have been developed to perform the inverse deformation of the rays in
interactive rendering times, allowing the rendering of deformable models.
In the context of this dissertation, deformable volumetric rendering will be
necessary for the second stage of the simulator, as it can be seen in Section
5.3.

This chapter will present the methods that have been developed to
perform the inverse deformation of the rays in interactive rendering times
as well as the challenges found in said development. Furthermore, different
optimizations and additions will be presented. Finally, a comparison of the
performance and visual result of the methods will be shown, providing an
experimental background to those seeking to develop an application with
such needs.

4.2 State of The Art of Deformable Volumetric
Visualization

Many volume rendering methods for deformable models have been proposed
through the years, creating two clearly different categories: non physics
based and physics based deformation visualization.

The first category encompasses methods to visualize a deformed volume
without having any precise physical background for the deformation. In this
category a common technique is the deformation of rays, first proposed
in (Kurzion and Yagel, 1997). Using this idea, Chen et al. proposed a
deformation model specified by a Free Form Deformation (FFD) and
visualized with a raycasting and inverse ray deformation (Chen et al., 2001;
Chen et al., 2003). In this way the volume can be deformed using the FFD
instead of relying on predefined deflectors, thus achieving a more general
deformation scheme. Extending this idea, (Westermann and Rezk-Salama,
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2001) presented a method where the deformation is not specified by a whole
FFD but by arbitrary surfaces in the volume, which are then used to deform
the volume using texture slicing.

More recently, a method able to render a deformed volume using
inverse ray deformation was presented by (Correa et al., 2010), where the
deformations mimic physical simulations by adding different constraints to
the each tissue.

Another commonly used method in this category is the use of skeletons
to deform the volume. In this direction, (Gagvani and Silver, 2001)
presented a skeleton guided volume deformation scheme usable for volume
animation. Continuing this work, (Singh and Silver, 2004) presented a
method to interact with the volume by extending the method and adding
the capability to select and manipulate different parts of the volume. More
recently, a method to deform a volume maintaining the correctness of the
anatomy was presented by(Rhee et al., 2011).

This type of deformation can be very useful in certain tasks such as
illustrative visualization (Correa et al., 2007) or browsing volumetric data
(McGuffin et al., 2003; Birkeland and Viola, 2009) as shown in Figure 4.1.
On the other hand, for a simulation application a rough approximation
of a physical deformation is not enough. For these cases physics based
deformation visualization is needed to achieve the desired accuracy.

Figure 4.1: The sequence of a volumetric hand being peeled away
in order to show the carpal bone of the middle finger (Image from
(Birkeland and Viola, 2009)).

This second category groups the methods that include a physical
simulation and those that, given their algorithms, can be used to visualize a
simulated deformation. These methods are able to visualize a deformation
from a physical simulation such as a finite element simulation or mass spring
system with a underlying structured volume. One of the first methods
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was proposed by (Zhu et al., 1998) where they solve that problem by
using the result of a finite element method (FEM) simulation to resample
a deformed structured volume allowing the use of traditional volumetric
rendering methods.

Although the resampling method allows any type of volume rendering,
the computational cost of the resampling and the need to store two volumes
(the original and the deformed) make it inefficient for interactive rendering
or big structured volumes. Because of this, most methods developed are
based on the idea of avoiding that operation. One early method able
to do this was proposed by (Rezk-Salama et al., 2001) et al. where the
deformation is achieved by deforming the texture space. Although this
method is not directly usable with physical simulations it can be modified
by adding an intermediate step to enable the use of simulation results, with
the resulting overhead.

Another method is presented in the OpenGL Volumizer API
(Bhanirantka and Demange, 2002; Jones and McGee, 2005), which renders
a structured grid using a tetrahedral mesh as a proxy geometry usable
with a FEM simulation. More recently, (Nakao et al., 2010) implemented
a method simplifying this approach by using a single pass rendering. The
main drawback of these methods is that they limit the rendering technique
to be used to volume slicing, greatly restricting the possibilities of the
visualization.

However, currently the most used volume rendering method is
raycasting as it offers higher quality visualizations and a great flexibility.
But before being able to use ray casting with an additional unstructured
volume, an algorithm able to render a unstructured volume using raycasting
is needed. The most used unstructured volumes are tetrahedral meshes, as
they are the result of most used simulations, and are used to represent the
state of a material in different aspects such as temperature or stress. As
a result, most developed tetrahedral mesh rendering algorithms render the
volume itself, without any underlying structured volume.

One of the first methods that uses raycasting to perform such rendering
of tetrahedral meshes was presented by (Weiler et al., 2003). Continuing
with this work, an improved algorithm was presented (Weiler et al.,
2004), where the structures were optimized for the GPUs. Continuing with
this work, an improved algorithm was presented (Weiler et al., 2004),
where the structures were optimized for the GPUs. Later, an improved
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calculation of the entry faces using a depth peeling technique was presented
by (Bernardon et al., 2006). In the same year, (Marmitt and Slusallek,
2006) presented a raycasting algorithm for the CPU with an improved ray
tetrahedron intersection method using Plücker coordinates. More recently
in (Muigg et al., 2007; Muigg et al., 2011) a method able to render more
general grids, e.g. hexaedral grids, has been presented. These algorithms
achieve high quality visualizations, as shown in Figure 4.2. However these
methods only deal with unstructured volumes without taking into account
any other volume.

Figure 4.2: Raycasted images of some unstructured volumes
resulting from computer simulations (image from (Muigg et al.,
2011)).

In the last years, with the increase in the available computational power
and the reduction of the price of these components, applications where
real-time simulation and structured volumes are be mixed are becoming
common. It can be seen that in order to visualize a structured volume
with the deformation defined by a unstructured volume using raycasting
both visualization modes have to be mixed. An algorithm to visualize
unstructured grids with an underlying structured volume was first presented
in (Tejada and Ertl, 2005) where the inside of the tetrahedra was rendered
with pre integration. In that direction, (Georgii and Westermann, 2006)
presented a raycasting method requiring the sorting of the tetrahedra,
which they avoid by using a set of spherical shells.

However, these algorithms were molded by the restrictions of the
hardware, which have rapidly evolved from that time. GPUs have greatly
increased their features power and abilities over the years and by
taking advantage of this improvements, a new raycasting algorithm for
unstructured volumes with underlying volumes can be developed with
higher capabilities. Additionally, these advances enable the addition of new
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features and the increase of the rendering quality.

4.3 Deformable Volumetric Visualization

One of the most flexible and promising methods to render a deformable
model is to have the shape of the object and its appearance separated and
rendering the deformable volume using inverse ray deformation.

An unstructured volume can be used to define the shape of the object,
which changes with the physical simulation. At the same time, a structured
volume will define the appearance of the object, in a similar way to a 2D
texture defining the appearance of a polygonal surface. This can be seen
as the definition of two different spaces: world space and volume space.
The world space is the usual space in which the models in the scene are
defined, including the unstructured mesh. The volume space, on the other
hand is the space of the structured volume. The relation between these two
spaces is defined by the unstructured mesh, as the tetrahedral mesh is the
container of the volume space.

It should be noted that the rendering pipeline presented in this
dissertation uses only tetrahedral volumes, as they are the simplest
three-dimensional polyhedra. As a result, any other can be converted to
a set of tetrahedra, making the tetrahedra a sensible choice for the base
representation. Additionally, as the algorithm is executed in the GPU, the
mesh must be uploaded using a data format suitable for its by shaders.
Tetrahedra are easily defined only with their vertices, by implicitly storing
the connection between them by using a consistent ordering to store
them. Furthermore, by storing only one additional neighbouring tetrahedra
information per tetrahedron, a full tetrahedral mesh is completely defined.

In order to store all this data in the GPU, three textures are used. The
vertices texture contains all the vertices of the tetrahedral mesh, saving
memory space as duplicated nodes are avoided. The tetrahedra texture
stores the indices of the nodes that conform each tetrahedra in a specific
order defining the four faces with the known combinations. The neighbours
texture contains the index of the neighbouring tetrahedron for each face
of each tetrahedron, once again in a known order to avoid additional
information storage.

The initial change to the pipeline is the use of raycasting to render the
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tetrahedral mesh instead of the structured volume. Raycasting a tetrahedral
volume requires a modified pipeline which usually resembles the flow chart
shown in Figure 4.3.

Find 
initial 

tetrahedron

Calculate 
intersection

End of 
tetrahedral 

mesh?

Ray 
traversal 

Set final 
colour

Get next 
tetrahedron

Yes

No

Figure 4.3: Flow chart illustrating the usual raycasting pipeline
for tetrahedral meshes.

A common method to find the initial tetrahedron is to extract the
surface of the tetrahedral mesh and then use spatial partitioning structures
(such as kd-trees) to find the initial tetrahedron for every pixel. But given
that this method is aimed to be executed directly in the GPU, it is highly
desirable to avoid these kind of data structures.

Instead of finding the initial tetrahedron for each ray through a spatial
partitioning structure, a method similar to the one presented in (Weiler
et al., 2004) is used. Under this scheme, the surface tetrahedra are rendered
as polygons encoded with the index of the tetrahedra. This completely
avoids the use of additional data structures completely, reducing the
overhead.

This method includes an additional step to allow the use of non convex
meshes: a depth peeling technique is applied to the surface in order to
extract the reentrant faces. With this information, when a final tetrahedron
is found (one without neighbours in the exit face), instead of ending the
traversal, the next reentrant face for the ray is fetched. In addition to
calculating the entry point of the rays into the tetrahedra, this method
directly skips the empty spaces inside the unstructured volume. This step
has been simplified in the presented algorithm by setting a maximum
number of reentrant layers in order to reduce its computational cost
and avoiding the need for multiple volume rendering passes. It has been
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Figure 4.4: The first and second layers of entry tetrahedra of
the Stanford Bunny. As the bunny is empty inside, the ray exits
from the tetrahedral mesh in the gap inside it and enters the
tetrahedron in the second layer to continue the ray traversal. It
should be noted that although some faces may seem to share a
colour due to the encoding, each face has a unique code.

experimentally found that some of the most common types of meshes need
as few as three layers. However, in order to take into account possible
variations in this number, five layers have been used in the performed tests.
It should be noted, though, that the overhead introduced by increasing the
number of layers affects mostly to the needed memory, as the impact in
performance is nearly nonexistent.

The usual method to perform the depth peeling discards the back faces
of the surface and then compares the depth of the different layers, obtaining
the different entry layers. In most cases this method is perfectly valid, as the
orientation of the tetrahedra, and therefore of the faces, is known. However,
in the event of not knowing the orientation or it being arbitrary, a modified
version must be used. For this purpose, instead of not rendering the back
faces, the faces can be rendered regardless of orientation with the depth
peeling. If there are no self intersections in the tetrahedral mesh, it can be
known that the odd layers of the depth peeling will be the entry faces, and
the even will correspond to the exit faces. Then, by storing the odd layers
the result will be equal to the first method.

Figure 4.4 shows an example of the different entry layers, where each
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tetrahedron is coded by a different colour for illustrative purposes. Since this
colour coding introduces rounding errors when retrieving the original index
(due to the floating point precision), the algorithm avoids it by directly
using the element’s index. This is made possible by using frame buffer
objects, as they allow to render to a texture without the limitation of each
pixel to be between 0 and 1. This enables the direct use of the index number
as the colour when rendering, removing the rounding errors.

Once the first tetrahedron is found, the intersection of the ray with
this tetrahedron is calculated and the exit face is found. Combined
with the stored neighbouring information, the next tetrahedron can be
fetched without any additional calculations. Once a tetrahedron without a
neighbour in the exit face is found, the next layer of entry faces is fetched
and the process continues.

In most algorithms, the traditional ray tetrahedron intersection method
of (Haines, 1991) is used , as in (Tejada and Ertl, 2005). In the method
presented in this dissertation, however, Plücker coordinates are used to
calculate the ray tetrahedron intersection using a version of the algorithm
presented (Platis and Theoharis, 2003), modified for its efficient use in the
GPU.

Plücker coordinates define a ray in three-dimensional space as shown in
Equation 4.1. As it can be seen, Plücker coordinates assign a six dimensional
representation for the lines.

πr = {L : L× P} = {Ur : Vr} (4.1)

Being P a point in the ray, L its direction and πr the resulting ray
representation. Plücker coordinates have their own properties that are not
going to be discussed in this dissertation, for further information please
consult (Stolfi, 1987). Instead, the most interesting property of the Plücker
coordinates will be presented, an operation called permuted inner product
(Equation 4.2).

πr � πs = Ur · Vs + Us · Vr (4.2)

With the resulting scalar of the permuted inner product, the orientation
of s relative to r can be known using Equation 4.3.
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πr � πs > 0 Ray s goes counter clockwise around r

πr � πs < 0 Ray s goes clockwise around r

πr � πs = 0 s and r are coplanar

(4.3)

This information can be used to calculate the intersection of a ray with
the faces of a tetrahedron by performing the permuted inner product of the
ray with each of the segments of the face. If the result of these calculations
have the same sign, the ray intersects with the face, otherwise the ray does
not intersect. Furthermore, if the orientation of the faces is controlled, it
can be known if the ray enters or exits the tetrahedron by checking the
sign of the results, as shown in Figure 4.5. If all the values are positive
the ray enters the element, while, if they are all negative the ray exits it
(assuming outwards oriented tetrahedra). Finally, if they are all zero the
ray is coplanar to the face. If none of this criteria is met, the ray does not
intersect the current face.

All positive All negative Different signs

Figure 4.5: The ray triangle intersection performed with Plücker
coordinates. Note that the case of coplanar rays is not shown in
this figure.

This method reduces the number of operations required to calculate
the intersection of the ray. Additionally, when the ray intersects a face the
permuted inner product of the ray with the different edges directly provides
the unscaled barycentric coordinates of the intersection point, avoiding
the extra calculations to calculate them. The barycentric coordinates are
computed as uki = wki /

∑3
i=0w

k
i being wki = πr � πei and ei the Plücker

coordinates for each edge of the face.

Summarizing, the ray tetrahedron intersection method using Plücker
coordinates starts by calculating the intersection of the ray with the first
tetrahedron. For this purpose, the intersection is calculated with each face
so that the entry and exit face are known. This needs the checking of two
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conditions per face, to check whether they are all negative (exit) or all
positive (entry), as it can be seen in Algorithm 4.1.

Algorithm 4.1 Base Plücker ray tetrahedron intersection test.

1: function Ray-Tetrahedron Intersection(Ray, TetraEdges,
InPoint, InFace, OutPoint, OutFace)

2: for i = 0→ 4 do
3: π0 = Ray � TetraEdges[i][0]
4: π1 = Ray � TetraEdges[i][1]
5: π2 = Ray � TetraEdges[i][2]
6: if π0 >= 0 ∧ π1 >= 0 ∧ π2 >= 0 then
7: InPoint = ConvertToBarycentric(π0, π1, π2)
8: InFace = i
9: else if π0 < 0 ∧ π1 < 0 ∧ π2 < 0 then

10: OutPoint = ConvertToBarycentric(π0, π1, π2)
11: OutFace = i
12: end if
13: end for
14: end function

Knowing that the ray must intersect with one of the faces and that the
exit point of the current tetrahedron will be the entry point of the next, in
the rest of intersections only the exit point needs to be calculated, removing
the entry face condition, although it should be noted that the condition to
be met is comprised of three comparisons, one for each edge of the face.
In addition, as only one checking has to be done the loop that calculates
the intersection with the faces can stop when the desired point has been
found without extra condition checking. Furthermore, the reusing of the
exit point ensures that there are no incoherences between the exit point of
the current tetrahedron and the entry point of the next, something that
happens when both points computed due to numerical errors.

However, as one ray per pixel is used, it can be assumed that rays
will intersect with the whole tetrahedra and that rays passing the edges of
the faces will have to be calculated. With the aforementioned method, in
these cases numerical errors can cause not to find the entry or exit point,
causing pixel sized artifacts as shown in Figure 4.6. These artifacts are
most noticeable in moving models or with a moving camera as they rapidly
flicker.
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Figure 4.6: Visualization of a kidney, showing the visual artifacts
created by the numerical errors in the intersection calculation.

But, as it is known that rays will always intersect with the tetrahedron,
the algorithm can be modified to avoid these artifacts. This modification
must ensure that an entry and exit point are calculated, regardless of
meeting the exact conditions or not. To do so, a method to determine
how close each set of values is to meet the conditions must be used and
then select the face closest to meeting those conditions.

In the case of the entry point, π0, π1 and π2 are taken and clamped to
be in (−∞, 0.0]. By doing so, the positive values are clamped to zero while
the negative are maintained. By adding the three numbers, a numeric value
of how close that face is to meet the entry face condition (the three values
are positive) is achieved. By taking the face with this value closest to zero
the entry point can be calculated. The same procedure is used with the exit
point, clamping to (0.0,∞].

With this method, when the ray does not incur in any numerical errors,
the correct faces are selected. And when numerical problems arise, the
faces closest to meeting the conditions are selected, effectively fixing the
visual artifacts. It should be noted though, that when the entry and exit
points are very close together, this method may occasionally give them
inverted (the entry point as exit point). Instead of clamping to zero, a
small error magniturde (ε) can be used: clamping to (−∞, ε] for the entry
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face and (−ε,∞] for the exit face, avoiding the inversion problem. It has
been empirically found that ε can be left aside in most cases, and that in
the cases where it was required values between 0.1 and 1 gave equally good
results.

Algorithm 4.2 Plücker ray tetrahedron intersection test modified to avoid
visual artifacts.
1: function Improved Ray-Tetrahedron Intersection(Ray,
TetraEdges, InPoint, InFace, OutPoint, OutFace)

2: MaxV alue = −∞
3: MinV alue =∞
4: for i = 0→ 4 do
5: π0 = Ray � TetraEdges[i][0]
6: π1 = Ray � TetraEdges[i][1]
7: π2 = Ray � TetraEdges[i][2]
8: Sum = Min(π0, ε) +Min(π1, ε) +Min(π2, ε)
9: if Sum > MaxV alue then

10: MaxV alue = Sum
11: InPoint = ConvertToBarycentric(π0, π1, π2)
12: InFace = i
13: end if
14: Sum = Max(π0,−ε) +Max(π1,−ε) +Max(π2,−ε)
15: if Sum < MinV alue then
16: MinV alue = Sum
17: OutPoint = ConvertToBarycentric(π0, π1, π2)
18: OutFace = i
19: end if
20: end for
21: end function

Algorithm 4.2 shows the modified method to calculate the intersection.
It can be seen that it requires more conditions than the previous, as each
min() and max() require an additional comparison, needing a total of four
comparisons per face. Additionally, some calculations are now performed
per each face instead of calculating it only for the correct one. However,
the added cost is nearly unnoticeable in the performed tests as most GPUs
perform better by calculating a value more than once than performing a
comparison to check whether it should be calculated or not. Furthermore,
as with the previous method, once the entry and exit points for the first
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tetrahedra have been found, the rest of the intersections only have to
calculate the exit point.

Algorithm 4.3 Plücker ray tetrahedron intersection test modified to
include orientation checking.

1: function Improved Ray-Tetrahedron Intersection(Ray, V tx,
TetraEdges, InPoint, InFace, OutPoint, OutFace)

2: ...
3: Or = −TripleProduct(V tx[1]−V tx[0],V tx[2]−V tx[0],V tx[3]−V tx[0])
4: for i = 0→ 4 do
5: π0 = (Ray � TetraEdges[i][0]) ∗Or
6: π1 = (Ray � TetraEdges[i][1]) ∗Or
7: π2 = (Ray � TetraEdges[i][2]) ∗Or
8: ...
9: end for

10: end function

Another consideration is that, in a similar manner to the finding of
the initial tetrahedron, this method is dependant of the orientation of the
tetrahedra. If the orientation is controlled, it is known which comparison
gives the entry point and which gives the exit point. If the orientation is not
is arbitrary or unknown, an additional control is needed. The orientation
of the tetrahedra can be easily calculated using the scalar triple product.
The resulting scalar will be negative if the faces are oriented outwards
whereas if the faces are oriented inwards it will be positive (if it is zero the
tetrahedron is collapsed onto a single plane). The additional comparison
can be avoided by multiplying the πi with the negative of the triple scalar,
avoiding the need to further change the aforementioned algorithm, as shown
in Algorithm 4.3 where Or is the result of the triple product while V tx are
vertices of the tetrahedron being checked.

However, in most tetrahedral meshes the orientation is known or it can
be controlled in the creation process. Due to this, most cases that may need
to check for inverted tetrahedra arise from the deformation of the mesh by
a simulation. Additionally, the inversion of a tetrahedron also renders the
assumption of no self intersections within the tetrahedral mesh invalid. This
requires changing the initial face finding, because the orientation and the
order of the faces are no longer useful, the ray traversal in the tetrahedral
mesh as the same ray segment can traverse more than one tetrahedra at the
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same time, and the next tetrahedron finding as there may not be a single
exit face.

Nevertheless, this case is rather uncommon as the inversion of
tetrahedra in physical simulations is usually unwanted and can lead to
a failure in the simulation. Taking this into account, Algorithm 4.2 will be
used in the rest of the dissertation and the usual depth peeling, without
correction for arbitrary orientation, for the initial faces. This way, the
presented results will be more useful for the development of these methods
in surgery simulation applications.

Before deformation:

After deformation:

World space Volume space

World space Volume space

Figure 4.7: The triangular model is shifted rightwards and the ray
(in volume space) is deformed leftwards to match the deformation.
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All the calculations up to this point have been performed in world space,
as the rays and the tetrahedra are defined in it. Now, in order to perform the
ray traversal in volume space, the ray segments must be transformed from
world space to volume space. For this purpose, the barycentric coordinates
of the entry and exit points in their respective faces current tetrahedron
are calculated. Using these coordinates, a barycentric interpolation of
the structured volume coordinates of the nodes is performed, as shown
in Equation 4.4. To do so, the position in volume coordinates (in the
structured volume) of each vertex of the tetrahedral mesh in the initial
position is stored beforehand.

This coordinates dictate the initial and ending point of the current
ray segment in volume space, effectively transforming the ray segment
from world space to volume space. In volume space the ray segment will
have sustained a deformation inverse to the deformation of the tetrahedral
mesh, achieving the same effect as deforming and resampling the structured
volume. Figure 4.7 shows a two-dimensional example of this deformation,
where the left side is the world space and the right side is the volume space.
It can be seen that for the undeformed triangular mesh the two spaces are
equal, but when the mesh is deformed the ray is inversely deformed in
volume space.

In addition to deform the ray, by interpolating in the same way the
world position of the vertices, the positions of the ray in world are easily
calculated. With this information, the depth information necessary for the
calculation of the shadows, the intersection with polygonal objects or for
a correct depth calculation is easily obtained. For example, in the case
of the entry point this is the data available: b0, b2, b3 are the barycentric
coordinates of the entry point respect to the entry face, v0,v1,v2 are the
volume coordinates of the nodes of the entry face and w0,w1,w2 are the
world coordinates of the nodes of the entry face. With this data, we can
calculate both the entry point in volume coordinates (EntryPointVolume)
and world coordinates (EntryPointWorld) with:

EntryPointVolume = b0 ∗ v0 + b1 ∗ v1 + b2 + v2

EntryPointWorld = b0 ∗w0 + b1 ∗w1 + b2 + w2
(4.4)

Summarizing, this method allows the use of a tetrahedral mesh to
deform the visualization of a structured volume. This algorithm allows
maintaining the quality of raycasting and the use of methods commonly
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Figure 4.8: Flow chart illustrating the proposed raycasting
pipeline for tetrahedral meshes with underlying structured
volumes.

used with minor modifications, and avoid resampling the structured volume.
As a result, thanks to this method, the ray traversal inside each ray segment
can be calculated as explained in Chapter 3, and the presented improvement
methods can also be used. In order to give an overview of the algorithm, a
flow chart of the final improved algorithm is shown in Figure 4.8.

As the ray traversal is performed in volume space, where the ray is
deformed, some assumptions made in the traditional raycasting pipelines
are invalid, such as the linearity of the ray. As a result, additional steps must
be added to the raycasting pipeline to achieve high quality renderings, as
explained in the following sections.



Section 4.4. Pipeline improvements 77

4.4 Pipeline improvements

4.4.1 Ray traversal

One of the differences this method presents, is that as it can be seen
in Figure 4.7, the ray is transformed from a single line into a series of
connected segments with C0 continuity. But when sampling the segments
an additional problem arises, as additional errors can appear when the given
sample distance does not exactly reach the ending point. There are three
main options to deal with this:

1. Traverse the entire ray from the first to the last point of the ray. In
this case, the traversal is continued until the next sample is outside
the ray. This method adds additional samples at the end of each ray,
which causes visual artifacts in certain cases making the tetrahedra
very noticeable.

These artifacts can be mitigated by moving the first sample of the
next ray with the distance left from the previous ray to complete a
step. Additionally, the opacity of the first and last samples of the ray
are corrected to match the used distance. Although these methods
greatly improve the quality, some artifacts continue being visible. We
have called this no rounding .

2. Start the ray segment on the last sampling point of the previous
tetrahedra. This way, no additional calculations have to be performed
and no additional samples are taken, completely avoiding the visual
artifacts.

This method creates a deviation from the original ray, but this
deviation does not create any artifacts. We have called this ceil
rounding .

3. Traverse the ray inside the tetrahedra from the entrance point to the
exit point, but stopping if the distance to the exit point is smaller
than the step size. We have called this floor rounding .

Instead of sampling the final point of the ray and correcting the
opacity, in this method the last point is not sampled if the distance
requirement is not met. Then, the first sample of the next ray is
moved so that the sum of the distance left in the previous ray and
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the distance to the first sample is the desired sample distance. Thanks
to this, no artifacts are visible using this method.
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Figure 4.9: Comparison between the render times of the three
options: no rounding , ceil rounding and floor rounding .

Within these methods, ceil rounding and floor rounding options
give the best visual results with no differences between them. However, as
it can be seen in Figure 4.9, floor rounding is significantly slower than
ceil rounding making it a better option. It should be noted that the
no rounding option is the slowest of the three, because of the need of
additional corrections.

4.4.2 G1 continuity

In some cases additional continuity may be desirable, as the current method
only ensures C0 continuity. Theoretically this could allow the smoothing
of the final visualization, resulting in less noticeable artifacts due to the
underlying tetrahedral mesh.

Cubic Hermite splines offer a good choice in this regard as only two
points and two tangents are needed to define them: the entry (p0) and
exit (p1) points. To calculate the tangents of these points (m0 and m1

respectively) the previous starting point and the next starting point are
also needed. Equation 4.5 defines cubic Hermite spline.
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p (t) = b00p0 + b01m0 + b10p1 + b11m1 (4.5)

where:

b00 = 2t3 − 3t2 + 1

b01 = t3 − 2t2 + t

b10 = −2t3 + 3t2

b11 = t3 − t2

(4.6)

Additionally, it has been found that the quality of the image rendered
with smoothed rays can be improved by modulating the tangents’ length
according to the ray segment’s length. This converts the C1 continuity
into G1 continuity, but the results improve and the possibilities of errors
decrease dramatically as the speed of the spline is modulated according to
its length.

Although using Hermite splines ensures G1 continuity, it adds an
additional problem when sampling the ray. The problem appears when
calculating the desired step (∆t) in curve coordinates in order to use the
desired sample distance.

If the correct distance in the curve space is desired the arc length has
to be calculated by integrating the curve, as shown in Equation 4.7 where
d is the objective sampling distance.

t+∆t∫
t

p(t)dt = d (4.7)

However, in addition to being computationally intensive, this distance
will not give an equal sampling distance in volume coordinates. If instead
of calculating the correct distance in curve space it is calculated in
volume space, an desired sampling distance is achieved while being less
computationally intensive. Using this option, the next point in the curve at
the desired sample distance in volume coordinates from the current point
can be found. In this sense, Equation 4.8 must be fulfilled.

|p(t+ ∆t)− p(t)| = d (4.8)
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By taking only the p(t+ ∆t)− p(t) part:

p0

((
2 (t+ ∆t)3 − 3 (t+ ∆t)2 + 1

)
−
(
2t3 − 3t2 + 1

))
+

m0

((
(t+ ∆t)3 − 2 (t+ ∆t)2 + (t+ ∆t)

)
−
(
t3 − 2t2 + t

))
+

p1

((
−2 (t+ ∆t)3 + 3 (t+ ∆t)2

)
−
(
−2t3 + 3t2

))
+

m1

((
(t+ ∆t)3 − (t+ ∆t)2

)
−
(
t3 − t2

))
(4.9)

Developing and simplifying these terms leaves Equation 4.10.

p (t+ ∆t)− p (t) = g0p0 + g1m0 + g2p1 + g3m1 (4.10)

where:

g0 = 2∆t3 + ∆t2
α1︷ ︸︸ ︷

(6t− 3) +∆t

β1︷ ︸︸ ︷(
6t2 − 6t

)
g1 = ∆t3 + ∆t2

α2︷ ︸︸ ︷
(3t− 2) +∆t

β2︷ ︸︸ ︷(
3t2 − 4t+ 1

)
g2 = −2∆t3 + ∆t2

α3︷ ︸︸ ︷
(−6t+ 3) +∆t

β3︷ ︸︸ ︷(
−6t2 + 6t

)
g3 = ∆t3 + ∆t2

α4︷ ︸︸ ︷
(3t− 1) +∆t

β4︷ ︸︸ ︷(
3t2 − 2t

)

(4.11)

By grouping and rearranging Equation 4.10 the following result is
achieved. Note that k3 is equal to the first derivative of the cubic Hermite
spline (Eq. 4.5).

p (t+ ∆t)− p (t) = ∆t3k1 + ∆t2k2 + ∆tk3

k1 = 2p0 + m0 − 2p1 + m1

k2 = α1p0 + α2m0 + α3p1 + α4m1

k3 = β1p0 + β2m0 + β3p1 + β4m1

(4.12)

Then, continuing with Equation 4.8:
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|p(t+ ∆t)− p(t)|2 =
∑

i=x,y,z

(
∆t3k1i

+ ∆t2k2i
+ ∆tk3i

)2
(4.13)

Expanding this expression:

∑
i=x,y,z

k1i

2∆t6 + 2k1i
k2i

∆t5 +
(
2k1i

k3i
+k2i

2
)
∆t4 + 2k2i

k3i
∆t3 + k3i

2∆t2

(4.14)

Rearranging and grouping these terms leaves Equation 4.15.

|p (t+ ∆t)− p (t)|2 = c1∆t6 + c2∆t5 + c3∆t4 + c4∆t3 + c5∆t2 (4.15)

where:

c1 = k1x
2 + k1y

2 + k1z
2

c2 = 2k1xk2x + 2k1yk2y + 2k1zk2z

c3 = 2k1xk3x + 2k1yk3y + 2k1zk3z + k2x
2 + k2y

2 + k2z
2

c4 = 2k2xk3x + 2k2yk3y + 2k2zk3z

c5 = k3x
2 + k3y

2 + k3z
2

(4.16)

As it can be seen in Equation 4.15, the result is a sextic equation and,
therefore, does not have an analytical solution. However, an approximation
can be calculated by taking into account only up to the quadratic terms.
This way an easily solvable equation is reached which can be used to
calculate an approximation to the solution. Note that

√
c5 is the length

of the first derivative of the function, p′(t).

It follows that d2 ≈ ∆t2c5, then d2 ≈ ∆t2 |p′(t)|2 and it resolves with
∆t ≈ d/ |p′(t)| by taking the positive root. This linear approximation (called
∆t0) can be improved by iterating through Equation 4.15 with the Newton’s
method to get an improved approximation (∆tn). As Newton’s method may
not converge depending on the starting point two additional constraints,
shown in Equation 4.17, must be used to avoid overshooting.
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∆t =

{
∆tn if 0 < ∆tn ≤ 1

∆t0 otherwise
(4.17)

During numerical tests, the refined approximation with just two
iterations gave better results than the linear approximation, as it can be
seen in Figure 4.10. It is important to take the dataset size into account
when interpreting these results. For example, a volume with a size of 2563

means that in volume coordinates a single voxel’s length is 3.9×10−3 . This
means that the ∆t0 error is barely within the same order of magnitude while
∆tn is one order more accurate.

2.24E-03
2.71E-04

-1.0E-02

-2.0E-03

6.0E-03

1.4E-02

Linear approx. Refined approx.

Figure 4.10: A comparison of the error using the linear
approximation (left) and the refined approximation with two
iterations (right).

Figure 4.11 shows the differences in the consistency of the sampling
distances observable in the woodgrain artifacts, showing the linear
approximation on the left and the improved on the right. The woodgrain
artifact may be mitigated using stochastic jittering but this it has been
intentionally left to better illustrate the sampling differences. It can be seen
that an important improvement can be achieved with this method, without
nearly any addition to the final computational cost. For this reason, when
smoothed rays are used in the rest of the study, they will always be using
the refinement with two iterations.

The increase on the level of continuity slightly improves the
visualization quality, but before making a decision about the desired level of
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Figure 4.11: Comparison between G1 continuity preserved using
just a linear approximation (left), or using the refined result
(right) with two iterations. The woodgrain artifacts gives visual
clues of the sampling uniformity.

continuity to use, the rendering type and models to render have to be taken
into account. As it can be seen in Figure 4.12, the difference can be seen
when large deformations have taken place, and more notoriously around
the edges. Additionally, this difference is more noticeable when isosurfaces
are used, as FVR usually smooths the edges.

Figure 4.12: An isosurface rendering, showing the differences
between C0 (left) and G1 continuity (right).
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In addition to the quality, the rendering cost has to be taken into
account. The use of Hermite splines implies the calculation of ∆t and the
corresponding point in the curve per sample, increasing the computational
cost of the algorithm. As it is shown in Figure 4.13, the impact of ray
smoothing varies depending on the chosen integration method, but it is a
sizeable increase of computational cost. In the tests performed, isosurfaces
show a more stable overhead than FVR, mainly given by the fact that
in isosurfaces fewer tetrahedra are traversed. Section 4.5 gives expanded
information on the performance of the smooth rays and the interaction
with other methods.
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Figure 4.13: This chart shows the increase in rendering time when
using G1 continuity. The number of samples is constant among
models (horizontal axis).

4.4.3 Illumination correction

The illumination of each sample is usually calculated using lighting models
such as Phong or Goraud. The normal procedure in volume rendering is to
approximate the normal with the gradient at the sample, but in the case
of deformable rendering the structured volume’s space is different to the
world space so it cannot be directly used for this calculation: it must be
transformed from the structured volume coordinates to world coordinates,
as it can be seen in Figure 4.14.
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Figure 4.14: A deformed brain rendered without illumination
correction (left) and with illumination correction (right). The red
sphere is placed as a reference of the direction of the light and
shows the correct lighting.

To correct the illumination, the gradient from the volume must be
transformed to convert it from volume coordinates to the world coordinates.
The deformation gradient (F), described in Section 5.3.2, converts a
point from volume coordinates (undeformed state) to spatial coordinates

(deformed state), so by multiplying F−1T to the original gradient we can
correct it to match the deformed state. The main drawback of this method
is that F is constant within each tetrahedron resulting in a discontinuous
gradient correction, as it can be observed in Figure 4.15.

In a similar way to vertex normals that can be interpolated inside the
faces of polygonal models to achieve a smoother illumination, F can be
calculated for each vertex of the tetrahedron and interpolated inside it.
This creates a smooth transition of the illumination from one tetrahedra to
another. Figure 4.15 shows an illustration of the effect. As many methods
exist to calculate the per-vertex-Fs, in this study it has been chosen to
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Figure 4.15: Simulation of gradient correction on triangles. Using
constant F inside (left) to correct the normals creates abrupt
changes in their directions. However, using interpolated F (right)
creates a smooth transition of the direction of the normals
between the triangles.

compute it outside the rendering pipeline to avoid interferences on the
performance due to the method. The visual effects of the discontinuity and
the smoothing can be observed in Figure 4.16.

Figure 4.16: Comparison of a detail of the Stanford Bunny without
(left) and with (right) smooth gradient correction. The difference
can be seen in the ears of the bunny, which have been pushed
downwards.

In terms of computational cost, when using a constant F it must
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be either calculated or read for each tetrahedron. In this last case, and
depending on the implementation, it may imply three or four texture
fetches.

When using interpolated gradients, the computational cost may vary
considerably depending on whether the ray is smoothed or not. In the case
rays are linear, F can be computed at the entry and exit points (Fentry and
Fexit respectively) by interpolating it from tetrahedron’s vertices, and then
linearly interpolated along the ray:

F(t) = (1− t)Fentry + tFexit (4.18)

On the other hand, if rays are smoothed (as described in Section
4.4.2) then the only solution is to perform a barycentric interpolation
per contributing sample as described in Equation 4.19, where q are the
barycentric coordinates of the sampling point.

F(q) = F0q0 + F1q1 + F2q2 + F3q3 (4.19)

Figure 4.17 shows the performance difference when using smooth rays.
As expected, the impact of smoothing the F is very small when using direct
volumetric isosurface rendering, as the calculation of the light is performed
just once. As a result, if properly optimized, the interpolation is performed
just once per pixel. However, it can be seen that the cost of smoothing the
gradients when using FVR is considerable.

In order to reduce the impact of smoothing the gradients, another
method can be used. Instead of deforming the gradients, the light and
camera directions can be transformed using F−1. This correction not only
creates an equivalent illumination but also allows the use of additional
optimizations:

• In the case of a constant F per tetrahedra, the corrected light and
camera directions are calculated once per tetrahedron instead of
performing a matrix vector multiplication per contributing sample.

• In the case of using interpolated Fs and linear ray segments, light
and camera directions are calculated at the entry and exit points
and interpolated along the ray, reducing the calculations to a linear
interpolation of two vectors.
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Figure 4.17: Chart showing the increase on rendering time when
using smooth rays, with and without using smooth gradients in
direct volumetric isosurfaces and FVR.

• In the case of interpolating F and using smoothed ray segments,
instead of using four matrices to perform the barycentric interpolation
(as shown in Equation 4.19), the corrected light and camera directions
are used, reducing the necessary computation considerably.

The results of these optimizations can be clearly seen in Figure 4.18.
Note that the improvement applies to all the methods described up to this
point. The isosurface rendering has been let out of this chart as it has been
shown in previous results that the effect of illumination cost are minimal
in this render mode. Nevertheless the improvements shown here are also
applied to it in a smaller degree.

Additionally, as this optimization deals with the illumination
calculation, the number of samples performed for each ray is very
significant. In Figure 4.19 the increase of the performance in the
aforementioned three cases is shown with varying sample numbers and a
constant tetrahedral model (with 12k vertices and 53k tetrahedra). As it can
be seen, with a low number of samples the basic approach (constant F and
linear ray) benefits most from the optimizations. However, as the number
of samples increases the approach with smooth gradients and ray achieves
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a higher benefit. Nevertheless, this chart confirms the increase on the
performance with the transformation of light and camera directions instead
of the correction of the gradient. As the tests show, the improvement can
be as high as a 32% increase of performance over non-optimized versions.

It can be seen that the correction of illumination is needed in order
to have a realistic rendering of the object. The use of a constant F can be
justified if a non uniform structured volume is used, as its gradient will vary
enough. With this variation, if small or smooth deformations are performed,
the use of a constant F can barely be noticed. Furthermore the cost of using
the interpolated Fs is large when using FVR.

On the other hand, if a uniform volume is used or large deformations
take place, the artifacts created due to the constant F are noticeable. Using
FVR the viability of smooth gradients will depend on the volume and user
transfer functions. However, when using direct volumetric isosurfaces, the
improvement is much more noticeable as shown in Figure 4.20, and the
impact on the performance is minimal.

Figure 4.20: Comparison of an isosurface rendering of a deformed
cube without (left) and with (right) smooth Fs.

4.4.4 Further improvements

Many other improvements are possible on the ray traversal of deformable
volumes, but they fail out of the scope of this dissertation. For example,
thanks to the use of a traditional ray casting within each tetrahedron , most



Section 4.5. Rendering performance study 91

existing improvements for raycasting can also be used, such as adaptative
sampling (Roettger et al., 2003) (as the means to achieve the desired steps
have been presented) and empty space skipping (Kruger and Westermann,
2003). As the position of the samples in both volume space and world space
is also known in the ray traversal, shadowing methods such as shadow
mapping or deep shadow maps can also be directly used with the method.

However, some specific improvements or modifications of the raycasting
pipeline are used in particular fields to achieve their objectives. For
example, in the case of medical visualization applications, it is common
to render only parts of a dataset for its exploration to improve the
visualization. In these cases where this is performed using the usual
raycasting method, such as in (Monclús et al., 2009), the presented method
can be used without major modifications.

On the other hand, some methods cannot be used directly. This happens
when the whole volume needs to be preprocessed and stored for its later
use, as in volumetric ambient occlusion (a desirable feature for certain
applications). In this case, as the on-the-fly processing of the necessary
data is a very time consuming task, other options must be used. A good
solution is the use of image space ambient occlusion algorithms, such as
the one presented in (Bavoil et al., 2008) or more recently in (Dı́az et al.,
2010).

4.5 Rendering performance study

As shown in Section 4.3, there are many options and features that can
be used in the visualization of deformable models. Although some of the
choices have clearly surpassed the others, the choice of the rest of the
options is not a trivial task. Additionally, the interactions between the
methods also have to be taken into account when making this decisions.
Therefore, a performance study has been done to drive these decisions.

The tests in this study have been performed in an end user application,
in order to provide accurate and useful information. For this purpose all
the renderings in the study used a viewport sized to 1000 × 1000 pixels,
where the volumes occupied around 70% of the window space. In order to
test the impact of the rendering with the tetrahedra, the volumes used in
the test have all the same size, 2003, which is around the volume sizes used
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in said application. The complexity of each model is shown in Table 4.1.

Vertices 0.5k 2.7k 12k 30k 69k 110k

Tetrahedra 1.7k 11k 53k 135k 320k 520k

Table 4.1: Table showing the details of the used models.

The testing machine is a Intel Core i7 CPU at 2.80 GHz with 3GB of
RAM. The GPU is a GeForce GTX 470 with 1280MB of dedicated memory.
The system runs MS Windows 7 (32 bit version).

As aforementioned, some methods have been proved to give better
results so in this section only the best will be used, i.e., when talking about
ray traversal ceil rounding will be used and the illumination will always
be calculated transforming the light and camera direction.

Leaving those obvious choices aside, there are still two main options:
the desired level of continuity of the ray and the use of constant gradients
or smoothed gradients.Thus, the first option is using C0 continuity and not
smoothed illumination calculation, which we have called Basic. The second
option is using G1 continuity and not smoothed gradient correction, which
in the charts is called Smooth ray. The third option is the use of C0 and
using smoothed gradient correction using the transformation of the light
and camera direction, which we have called Smooth gradients. The last
option is the combination of both methods, that is, using G1 continuity and
smooth gradient correction, called Smooth ray and gradients.

Additionally, the rendering mode to be used must be taken into account,
as it has been shown that some options have a bigger impact (visually or
computationally) in some cases. So both full volume rendering (FVR) and
direct volumetric isosurfaces have to be tested with those four options.

Figure 4.21 shows the frames per second (FPS) achieved with the
different methods using FVR. It can be seen that it is always a
computationally demanding tasks, but by adequately choosing the method
and quality, interactive frame rates can be achieved in most cases.

The chart shows that when using FVR rendering, an equilibrium
between visual quality, speed and rendering framerate must be reached.
This equilibrium will greatly depend on its intended use, but from the
previous experiments some suggestions can be made. As aforementioned,
the use of a higher level of continuity in the rays does not give a significant
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Figure 4.21: Chart showing the frame rate obtained with the
different options with FVR.

quality increase in this case. Having that into account, as well as the cost
increase when using smooth rays alone or combined with smooth gradients
seen in the chart, the use of smoothed rays with FVR should be the first
option to disable if needed.

In the case of smooth gradients, they have demonstrated to deliver an
important visual quality increase. This increase is tightly tied to the size of
the deformations, being less noticeable with small deformations. However,
the chart shows that smooth gradients are an important burden in the
rendering pipeline. In this case, a choice between quality and rendering
speed must be made, taking into account the size of the tetrahedral model
as well as the size of the viewport (it should be noted that the viewport
used for these tests is bigger than common volume rendering windows).
Additionally, as the visual improvement is tied to the size of deformations,
the expected deformations should be taken into account when making this
decision.

On the other hand, direct volumetric isosurface rendering is able to
achieve interactive rates with nearly all tested models, as shown in Figure
4.22. This fact, coupled with the aforementioned higher quality, makes
direct isosurface rendering a good alternative to extracted isosurfaces or
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polygonal rendering of the tetrahedra. The direct volumetric isosurface
rendering performed for these tests include the iterative intersection
refinement (set to four iterations).
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Figure 4.22: Chart showing the FPS of the different options with
isosurface rendering.

It can be seen that direct volumetric isosurfaces enable the use of the
options more easily. In a similar manner to the options with FVR gradient
smoothing is the one with highest visual impact but, in contrast to FVR,
isosurface rendering calculates the lighting only once, greatly reducing the
cost of smooth gradients.

Another difference respect FVR is the effect of smoothed rays, which
have a noticeable impact when isosurface rendering is used. However, as ray
smoothing has to be performed through the whole ray traversal, it does not
benefit from direct volumetric isosurface rendering as much as FVR. Taking
these facts into account, the use of both smooth gradients and smooth rays
is recommended when possible. And, if the conditions of the application
or the model do not allow it e.g. the application must reach high frame
rates or the models are very big, smooth gradients should be preferred over
smooth rays, as they have a higher visual impact and benefit from a reduced
computational cost with models up to medium size compared to smooth
rays.
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For the sake of completeness these tests where also performed with
varying sample numbers. Figure 4.23 shows the frames per second achieved
with the model of 135k tetrahedra and a structured volume of 2003 using
FVR with different combinations of the presented methods. It provides
an accurate example of the scalability of these algorithms in terms of the
resolution of the structured volume.
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Figure 4.23: Chart showing the FPS with a varying sampling rate
using FVR with different combinations of the presented methods.
The used tetrahedral model has 135k tetrahedra and 30k vertices.

This chart shows that smooth gradient calculations are slightly less
affected by an increase in the number of samples along the ray in comparison
to smooth rays. This comes from the fact that smooth gradient calculations
add more calculations per tetrahedron and not that much per sample, in
contrast to smooth ray calculations, which are more dependant on the
number of samples. When using direct volumetric isosurfaces, this difference
becomes more acute as it adds to the natural advantage of smooth gradients
in this method.

The tests described in this chapter have been performed over synthetic
models, so some variation in these numbers may appear with real data.
To give a better outlook on the possibilities, Figure 4.24 shows the visual
result of some models rendered using the studied options as well as their
frame rate.
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The images have been rendered with a viewport of 700× 700. All these
images have been created correcting the light and camera direction as well
as using stochastic jittering. The used models’ details and rendering modes
are shown in Table 4.2, in descending order.

Dataset name
Rendering

mode

Number
of

vertices

Number
of

tetrahedra

Dimensions of
structured

volume

Synthetic 1 Isosurface 2.7k 10k 2003

Stanford Bunny FVR 4.1k 13k 512×512×361

Brain FVR 7k 40k 216×128×142

Lung FVR 7k 36k 229×275×241

Table 4.2: Table showing the details of the models used in Figure
4.24.
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Figure 4.24: Demonstration of different models using the studied
raycasting techniques. The frame rate shown in each image is the
one achieved in that specific configuration and viewpoint. Details
of the models can be found in Table 4.2.
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4.6 Discussion

This chapter has presented and studied a method to visualize a
deformable volume using volumetric rendering. The proposed method
avoids resampling altogether, while maintaining a high image quality and
good performance. And, thanks to the use of a tetrahedral mesh for the
deformation, the method is specially suitable for applications with physical
simulations such as surgery simulators, which usually have to resort to
polygonal rendering. This chapter has presented and studied a method to
visualize a deformable volume using volumetric rendering. The proposed
method avoids resampling altogether, while maintaining a high image
quality and good performance. And, thanks to the use of a tetrahedral
mesh for the deformation, the method is specially suitable for applications
with physical simulations such as surgery simulators, which usually have to
resort to polygonal rendering.

Additionally, different improvements on quality and performance have
been developed. Using these methods, the quality of the rendering can
be improved by increasing the continuity of the ray or using a smooth
illumination, akin to the use of Goraud shading instead of flat shading in
polygonal rendering.

Furthermore, performance tests have been conducted for the different
options available and their combinations. These tests give the necessary
information to make good decisions about the available visualization
options, in order to get the best quality while conforming with the
restrictions of the objective application.

Summarizing, the presented method and its study allow the use of
raycasting for applications with deformable models with a method that
is easy to modify and adapt, giving the developers the freedom to choose
the level of quality and the improvements to be used in it.



Chapter 5

Neurosurgery Simulator

The art of medicine was to be properly learned
only from its practice and its exercise.

Thomas Sydenham
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5.1 Introduction

This dissertation is part of a bigger project whose main goal is the
development of a realistic and immersive neurosurgery simulator oriented
towards brain tumour resection. Although the development of the complete
neurosurgery simulator falls outside the scope of this dissertation, three
intermediate prototypes have been developed:

• Craniotomy simulator: This stage deals with the first part of the
procedures, drilling the skull in order to access the brain. In this
stage rigid models are used, so rigid volumetric visualization and rigid
model haptic interaction are needed.

• Brain interaction simulator: This stage deals with the interaction
with the brain, which is restricted to touching and pushing. In this
stage the behaviour of the tissues will be simulated, so deformable
volumetric visualization and deformable model haptic interaction are
needed. Additionally, the deformation of the brain must be calculated
in real time.

• Integrated simulator: In order to develop a combined simulator
prototype, both simulation modes have to be integrated into a single
pipeline. This simulator will be used as a first step in the development
of a full neurosurgery simulator.

As it can be observed, the first two prototypes have very specific
visualization needs. The methods necessary to fill said needs have been
presented in the previous sections. This chapter will present how these
methods have been used in each stage and why. Additionally, although
the main focus of this dissertation is the visualization, some of the other
modules for the simulators developed in the department will be briefly
explained.

In terms of hardware, the presented prototypes use the same machine
as in Chapter 4: A a Intel Core i7 CPU at 2.80 GHz with 3GB of RAM with
a a GeForce GTX 470 GPU with 1280MB of dedicated memory running
on MS Windows 7 (32 bit version).
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5.2 Craniotomy simulator

Neurosurgery procedures are complex and delicate surgeries which need a
precise control of the tools and a vast knowledge. Existing procedures are
very varied and can be radically different. Craniotomy, however, is the first
step of most neurosurgery procedures as it gives access to the brain by
drilling the skull in the appropriate place. It can be seen that skull drilling
is an important procedure, requiring a steady hand and a precise control of
the drilling depth, in order to avoid unnecessary damages to the underlying
tissue.

Medical simulators can be divided in six stages, image segmentation,
3D visualization, physical modelling, physical simulation, collision handling
and haptic feedback. This section describes the steps given to perform
these stages, including different disciplines such as visualization, collision
detection, visual feedback and haptic feedback. A real time volumetric
framework has been developed for its use in a craniotomy simulator,
enabling the use of patient specific data.

Figure 5.1: Craniotomy simulator configuration.

The developed craniotomy simulator simulates a craniotomy procedure
using a haptic device to control a virtual drilling tool. The system enhances
the immersion when drilling bone through high quality visualization and
haptic response. It provides visual and haptic feedback correspondent to an
actual craniotomy intervention. Figure 5.1 shows the configuration of the
simulator.
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The Craniotomy Simulator involves the design and development of the
following areas: interface, haptics, collisions and visualization. In order to
cope with all the necessary calculations these needs have been separated in
two threads. The main thread generates all the components, including the
second thread, and manages the interface and visualization. The second
thread, the haptic thread, runs separately in the background managing
the haptic device and the connection with the collision module. Figure 5.2
shows a schematic diagram of the system architecture.

Figure 5.2: Diagram of the craniotomy simulator.

Although this thesis is focused in the visualization, a brief explanation
of the other parts of the simulator will be given in order to allow a broader
view of the issues and their solutions.

5.2.1 Haptic feedback and collision detection

The objective of the haptic module is to manage the user input from the
haptic device, and respond adequately to the interaction. For this purpose,
it must communicate the input to the collision detection module and
calculate the matching force feedback from the its result. The haptic device
used in the craniotomy simulator is a Phantom Omni with 6 DoF1 input

1Degrees of Freedom
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and 3 DoF force feedback. As this haptic only respond with translation
forces, the calculation of the rotating forces can be avoided.

This module reads the input from the haptic device, and resolves it
to a position in space. This position is then fed to the collision detection
algorithm, which returns the position the virtual tool should adopt as well
as the normal of the collision, if any.

With the correct position calculated, the virtual tool is updated to
reflect said position visually. In addition, the magnitude and direction of
the force to be returned to the user is calculated and fed to the haptic
device. All these calculations must be performed in less than 1 millisecond
so that the forces are returned with a frequency higher than 1000 Hz in
order to give a good haptic response.

5.2.1.1 Collision detection

The collision module is responsible of detecting any intersection between
the virtual tool and the skull. Additionally, it must calculate the direction
of said collision so that a correct force feedback can be calculated.

The research and development of the algorithm used in the craniotomy
simulator is one of the focuses of the dissertation by (Echegaray, 2012), and
further information about these topics are available in it. It should be noted
that, in contrast to the majority of other simulators, this collision detection
algorithm does not convert the data to polygonal surfaces. Instead, it works
directly with the volume, retaining the complete dataset.

5.2.2 Volumetric visualization

In previous chapters different volumetric visualization algorithms have been
presented. In the craniotomy simulator, only rigid models are used, as only
rigid interactions are considered for the drilling. As a result, the algorithms
presented in Chapter 3 are used in order to achieve the best quality possible.

The patient data used to visualize the skull is a CT, as it has a very
good contrast for the bones. Furthermore, the renderization of the skull is
opaque, so further optimizations can be used.

Taking all the aforementioned facts into account, it is easily seen that
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the use of direct volumetric isosurfaces for the skull is a very good choice
as it allows the use of high quality visualizations at very fast speeds.
Additionally, thanks to the fact that in terms of depth calculation direct
volumetric isosurfaces behave as regular polygons, another volume can be
added to the visualization without any changes in the pipeline.

Thanks to this, the simulator can visualize a skull from a CT with direct
volumetric isosurfaces and a brain from a MRI inside it with full volume
rendering (FVR). This achieves a great quality visualization with a reduced
computational cost.

The casting of shadows into the volumes by polygonal models further
increases the visual quality and, at the same time, greatly enhances the
depth perception and control of the user.

The resulting visualization can be observed in Figure 5.3, where
different parts of the craniotomy procedure are shown.

(a) (b)

Figure 5.3: Two captures of the skull drilling process: (a) starting
the drilling and (b) the brain exposed.

5.2.3 Graphical user interface

The graphical user interface (GUI) of the simulator at first presents a
four panel view, showing the CT of the patient from three points of view
(sagittal, axial and coronal) and the volumetric visualization in one screen
(Figure 5.4).
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Figure 5.4: Main screen of the craniotomy simulator.

After the user has planned the entrance, the simulator will change to
a full screen mode where only the volumetric visualization is visible. Once
there the drilling process starts and the user chooses the desired drill size
through an interface operated with the haptic device, seen in Figure 5.5. It
should be noted that the drill size can be change in any moment.

Figure 5.5: Drill changing interface, operated by rotating the
haptic device.

5.3 Brain interaction simulator

After gaining access to the brain through a craniotomy, the surgeon
interacts with the brain. In this prototype the interaction of a surgeon
with a patient specific brain is simulated, allowing the user to touch the
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brain trough the use of a haptic device.

In order to realistically and accurately interact with the brain, a
physical simulation is needed to calculate the resulting deformations.
Additionally, this prototype must deal with a physical deformation of the
patients brain so specific algorithms are needed to deal with the changing
volume. It can be seen that the necessary changes greatly increase the
computational cost, so the architecture must be redesigned to fit these
needs.

In this prototype, each main module has its own thread in order to take
advantage of the actual multi-core central processing units as it can be seen
in Figure 5.6. It should be noted that this simulator is very GPU intensive,
as both the simulation and the rendering are calculated with it.

Figure 5.6: Diagram of the brain interaction simulator.

5.3.1 Haptic feedback and collision detection

The haptic module serves the exact same purpose it does in the craniotomy
simulator. Its job is to manage the haptic devices input and feed it to the
visual and collision detection modules.

In contrast to the haptic thread presented in the craniotomy simulator,
in the brain interaction simulator each module runs in its own thread as
a result of the increase on the computation time needed for the collision
detection.
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This increase comes from the change on the collision detection primitive
(which are tetrahedra in this case) and the added needs due to a deformable
collision. More information and details about the collision detection module
can be found in (Echegaray, 2012).

5.3.2 Physical simulation

In order to reach the necessary realism, the interaction of the user must
trigger a physical response on the brain. Additionally, as the objective is an
accurate medical simulation, this response must be as physically realistic
as possible.

The most relevant algorithm, when accuracy in the simulation is an
important factor, is the Finite Element Method (FEM) (Bathe, 1996).
Traditionally, computer graphics applications used implementations based
on linear elasticity. These approach is suitable for the simulation of objects
that undergo small deformations and whose material behaviour can be
considered linear. The behaviour of soft-tissue, such as brain, is notoriously
non-linear, and in many cases large deformations are also common. Because
of these reasons, a non-linear FEM simulation with a tetrahedral mesh is
preferable in this simulator.

The non-linearity is handled using a total Lagrangian non-linear explicit
dynamics (TLED) approach (Irving et al., 2004). In a Lagrangian approach,
the dynamic analysis is performed by tracking the material particles
forming a body. In particular, two sets of coordinates can be defined, the
spatial coordinates x which represents the position of one particle in the
deformed state, and its original position or material coordinate X. Either
representation can be used to identify each material particle. In a total
Lagrangian representation, all forces, deformations and material stresses
are expressed in the material coordinate system X.

The deformation gradient tensor is a basic measure of the local
deformation of the material Fij = ∂xi

∂Xj
. Once this value is computed

other deformation measures can be computed directly. For example,
the Green-Lagrange strain tensor can be written as E = 1

2

(
FTF + I

)
.

In this case, the interpolation of the deformation is linear within
the tetrahedron and stress is constant. In this case, it can be
demonstrated (Irving et al., 2004) that F can be expressed as F =
[x2 − x1,x3 − x1,x4 − x1] [X2 −X1,X3 −X1,X4 −X1]−1 where xi are



108 Chapter 5. Neurosurgery Simulator

the deformed positions of the nodes of the element and Xi are their material
coordinates (i.e. their initial position). The second part of this expression
can be precomputed and stored in memory to improve the performance of
the method.

In TLED elastic forces have to be computed with regards to the initial
configuration of the body. This leads to an expression of the elastic forces
affecting a node of an element a such as (Irving et al., 2004):

f ea =

∫
Ωm

P
∂Na

T

∂X
dX =

∫
Ωξ

P
∂Na

T

∂X
d

∣∣∣∣∂X∂ξ
∣∣∣∣ ξ (5.1)

where, Ωm and Ωξ represent the volume of the element in either
the global framework and in an ideal system based on isoparametric
coordinates. Na represents the interpolation function for node a, X the
material coordinates of a particle, and P is the first Piola-Kirchoff stress
tensor, which relates the deformation of the element and the mechanical
stress in the material, expressed in material coordinates. Except for P, all
the values of the integral are referred to the initial configuration of the
element and, again, can be precomputed and stored in memory for future
use.

The value of P can be obtained from the deformation gradient F using
the constitutive law of the material. P is constant within tetrahedron and
the integrals can be easily computed, leading to a force generated by each
element in each node a equivalent to (Teran et al., 2003):

f ea = −1

3
P
∑
i6=a

AiNi (5.2)

where AiNi are the area weighted normals of the faces of the
tetrahedron incident in node a in the original position which can be
precomputed.

Adding the contributions from all the elements, the resulting elastic
forces depend directly on the nodal displacements fa = Ka (u) through the
first Piola-Kirchhoff strain tensor, and therefore, through the constitutive
law of the material. In this work, the St Venant-Kirchhoff material model
is used for simplicity, but more complex material models can be easily
handled.
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Due to the non-linearity of the motion equations, its time integration is
specially well suited for explicit integration schemes, where the computation
is performed with quantities defined in the current time step and with a
known configuration of displacements. In this work a semi-implicit Euler
integration is used. This scheme is conditionally stable, therefore, the
integration time step has been set to a value where stability is guaranteed.

Thanks to this approach the algorithm can be easily parallelized, since
all computation can be performed independently for each element. This
enables an easy implementation on parallel systems and in particular in
GPUs, as in this case, in which the physical simulation is performed in the
GPU using CUDA.

Figure 5.7 shows a flow chart explaining the resulting algorithm. It can
be seen that two very distinct phases exist, the calculation of the forces on
the nodes performed for each tetrahedra and the calculation of the resulting
force and consequent movement per each node.

Calculate 
the stress 

in the 
tetrahedron

Add the 
matching 
force on 

each node

Accumulate 
all the forces 
from different 

tetrahedra

Move the 
node with the 

final force

Calculations performed per tetrahedron Calculations performed per node

Figure 5.7: Diagram of the FEM simulation algorithm.

It can be seen that although each tetrahedron is completely independent
in the calculation of the stress the accumulation of the forces on the nodes
is not. As many tetrahedra will try to accumulate their forces in one node,
a race condition arises, where a tetrahedron can overwrite the value of a
node in the middle of an operation rendering it incorrect. To solve this race
condition, three different options exist.

The first, and most straightforward, method is the use of atomic
operations (operations that cannot be interrupted, introduced in CUDA
1.1) avoiding the problem altogether. Although this method performs better
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than barriers and locks, it still creates delay in the operation.

As the use of atomic operations slows down the simulation altogether,
another alternative must be used. The second method overcomes this hurdle
by avoiding the accumulation in the calculation of the tetrahedrons. To do
this, this method stores the contribution on each node per tetrahedron by
creating an array per node with one element per tetrahedron in which the
node takes part (Figure 5.8).

Per node

Per tetrahedra in which the node takes part

CUDA thread per node

Figure 5.8: Diagram of the first possible structure to avoid racing
conditions.

This removes the problem from the tetrahedral phase, and moves it
to the node phase where no racing condition exists, but another problem
arises. CUDA uses one thread per element, nodes in this phase, and
by prefetching the adjacent memory positions it can greatly reduce the
needed time. However, as the used memory structure does not store values
adjacently, as seen in Figure 5.8, the calculation is greatly slowed down.
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In order to take full advantage of CUDA, the structure must be
reorganized so that the values fetched by the nodes are adjacent (called
coalesced memory). This can be done by storing the values in a matrix
where the values can be stored adjacent in memory, as seen in Figure 5.9.

Per tetrahedra in which the node takes part

CUDA thread per node

Figure 5.9: Diagram of the second possible structure to avoid
racing conditions. The green squares are allocated memory storing
information, and the red squares are allocated memory with no
information.

Using this structure, the race condition is avoided and the memory is
mainly coalesced, allowing very fast calculation times. On the other hand,
part of the memory allocated does not store any information, so it allocates
more memory than the strictly needed. However, with the used tetrahedral
models this has not proven to be a problem, as the modern GPUs have high
quantities of memory. Thanks to this methods speeds of less than 0.2ms
with models with 12k tetrahedra (without volumetric rendering) can be
achieved.
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5.3.3 Volumetric visualization

In the brain interaction simulator, only deformable models are used, as
deformable interactions are the focus of the simulator. As a result, the
algorithms presented in Chapter 4 are used in order to achieve the best
quality possible.

In this simulator, the patient data used as the input is a MRI as
it provides a great contrast for the different tissues in the brain. This
structured volume is then manually segmented to extract the brain.
Additionally, once the brain is segmented a tetrahedral mesh is constructed
to match it with a custom application implemented using iso2mesh2.

Figure 5.10: The tetrahedral model of a brain and the resulting
visualization.

With the segmented brain as the structured volume and its matching
tetrahedral mesh as the unstructured mesh, the previously presented
methods can be used in order to achieve a high quality rendering in real
time (Figure 5.10).Additionally, this tetrahedral mesh is also used for the
physical simulation (Explained in previous Section, 5.3.2). As it can be
seen, a FVR rendering mode is used, as the brain cannot be adequately
rendering with isosurfaces.

Furthermore, as the simulation is performed in the GPU, there is no
need to upload the updated model to the GPU in order to render it. By

2http://iso2mesh.sourceforge.net/cgi-bin/index.cgi

http://iso2mesh.sourceforge.net/cgi-bin/index.cgi
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just copying it from CUDA to the necessary graphic storage the rendering
algorithm can have the correct data with no or little overhead. However,
it should be noted that even though the continuous upload of the nodes
can be avoided, a periodic download from the GPU cannot be completely
avoided as the collision detection algorithm runs in the CPU.

As a result of all the calculations performed in the GPU, the quantity
of processing time used by the rendering process must be as low as possible.
Additionally, the usual interaction with the brain will only deal small
deformations to the brain.

Taking all these into account, smooth gradients are not used in the
simulator, as its use greatly increases the rendering times. Additionally, as
the gradients of the brain are not uniform, by using a FVR rendering mode
the artifacts created by the use of constant F are smoothed.

Moreover, as FVR is used and only small deformations are expected,
the use of smooth rays will not improve the rendering quality in a
noticeable manner. It can be deduced then that their use will increase the
rendering times without major improvements. As a result, their use is not
recommendable in this case.
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Figure 5.11: A graph showing the needed simulation calculation
time per step with increasing FPS in a 1680× 1050 viewport.

Using this algorithm frame rates higher than 20 frames per second
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(FPS) can be achieved with 1680 × 1050 resolution. But as it has been
previously said, this simulator uses the GPU heavily, and the visualization
and the physical simulation must share the same computational time. To
illustrate this problem, Figure 5.11 shows a graph with the increase of the
time needed to calculate a simulation step due to the increasing FPS of
the volumetric rendering of the deformable model. It is easily seen that a
compromise must be reached, for which the time step needed for the model
in the physical simulation has to be taken into account.

5.4 Integrated simulator

The last stage of the prototypes consist in the integration the craniotomy
simulator (Section 5.2) and the brain interaction simulator (Section 5.3).
This integrated simulator is still included within the early stages of the
development of a full fledged neurosurgery simulator.

The integrated simulator offers a seamless experience by allowing
the user to first drill the skull and then interact with the brain inside.
This experience is further enhanced by the use of a haptic device for
the interaction, improving the presence. Additionally, the high quality
interactive visualization of the patient specific models immerses the user,
completing the experience. The GUI of the final simulator prototype is
shown in Figure 5.12.

Both visualizations (the rigid and deformable volumetric visualizations)
could be integrated without many modifications. As the skull is rendered
using direct volumetric isosurfaces, it will occlude the rest of the objects
using the same pipeline as the polygonal objects. This way, the addition
of the second volume to be rendered is done without problems, as it is the
only object requiring special depth checking. Figure 5.13 shows a diagram
of the union of the two visualization modes.

Additionally, as the access to the brain is the drilled hole, the part of the
brain rendered is comparatively small. This is specially important because
the brain is rendered using FVR, and, as explained in Section Section 5.3,
the GPU is also needed for the physical simulation.

The integration of the collision detection method, however, requires
special treatment as the used primitive changes. For this purpose, both the
drilling task and the interaction with the brain have a flag to inform whether
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Figure 5.12: GUI of the integrated simulator.

+

+

Figure 5.13: A diagram of the union of the rigid and deformable
volumetric visualization.
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one or the other is being performed. With this information, the algorithm
activates one module or the other. It must be noted, however, that the
deformable collision detection algorithm is active when the craniotomy flag
is active. This way, the user can be warned when the drill is touching the
brain, although it is not deformed at this stage as the simulation is not
active. More detailed information about this integration and the additions
can be found in (Echegaray, 2012).

The final integrated simulator, the result of the fusion if the craniotomy
simulator and the brain interaction simulator, presents the user with patient
specific skull and brain models. It allows the user to perform a virtual
craniotomy to the patient (Figure 5.14) and interact with its brain (Figure
5.15), making possible its use as a training platforms for students or a as
rehearsal platform for surgeons.

Figure 5.14: Sequence showing a drilling work in the integrated
simulator.

Figure 5.15: Sequence showing the brain interaction.

Thanks to all these optimizations, the resulting simulator (Figure 5.16)
runs at interactive times, around 15-20 FPS, with a 1680× 1050 viewport
and achieves the necessary 1000 Hz frequency in the haptic device.
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Figure 5.16: Final visualization of the simulator which achieves
interactive times with 1680× 1050 viewport.

5.5 Discussion

This chapter has presented the developed neurosurgery simulator
prototype. The simulator makes use of the methods presented in Chapter
3 for the rigid visualization of the skull, achieving high framerates and
quality.

In order to provide the most accurate simulation possible, a finite
element simulation has been implemented in the GPU using CUDA.
This achieves real time simulation times with high accuracy, which is
highly desirable in a medical simulation. Furthermore, using the methods
presented in Chapter 4, the results of the simulation can be visualized in real
time without resampling the volume. And, using the information given by
the study presented in said chapter, the best compromise between quality
and performance is achieved.
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Adding the haptic device and a precise collision detection and response,
a quality neurosurgery simulator prototype is achieved. This simulator is
able to simulate the craniotomy procedure and the posterior interaction
with the brain accurately.



Part III

Conclusions





Chapter 6

Conclusions and Future
Work

We can only see a short distance ahead, but we
can see plenty there that needs to be done.

Alan Turing

6.1 Conclusions

This thesis studies the different volumetric rendering techniques needed
for the visualization module of a patient specific surgery simulator. For
this purpose the limitations of the state of the art surgery simulators have
been studied, along with the problems of the actually available volumetric
rendering methods.

In the first stage, the capabilities of the currently available volumetric
visualization frameworks have been studied (such as VTK) and, in order to
meet the needs of patient specific surgery simulators, improvements on these
methods have been developed. These improvements increase the rendering
quality maintaining real time rendering speed.

In addition, an special ray traversal method for direct volumetric
isosurface rendering has been developed allowing high quality fast isosurface
rendering. Thanks to this method, surface extraction is avoided which
allows the change of the desired surface without any additional calculations.
Additionally, the use of intersection refinement greatly increases the quality
with average sampling rate and maintains the quality without major
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changes if the sampling rate is decreased to speed up the calculations.

These methods have been made available for the public by creating
an extended VTK volumetric rendering class with the aforementioned
methods. Thanks to this, any developer can use the presented improved
framework’s features, such as shadow receiving volumes, stochastic jittering
or direct isosurface rendering, without any additional effort. Additionally,
to further increase the ease of use of style transfer functions, a designing
interface has been proposed which allows the user to easily create realistic
or illustrative style transfer functions.

The second stage has been focused in the volumetric rendering of
deformable volumes, such as soft tissue. For this purpose, a high quality
deformable volumetric rendering pipeline has been developed. This pipeline
deforms the space of the volume, resulting in an inverse ray deformation
and the visualization of the deformed volume. A higher level of continuity
for the rays has been proposed, which allows a smooth transition between
tetrahedra and increases the quality of the visualization.

In order to correctly render the scene, the volume’s illumination must be
corrected to reflect the changes in volume space. For this purpose, different
illumination correction methods have been presented and studied, i.e. the
correction of the structured volume’s gradient and the correction of the light
and camera direction. Additional improvements have been also studied,
such as the use of constant corrections inside each tetrahedra or the use of
smoothed corrections between the nodes, which greatly increases the result
of the illumination.

The different options in the presented method have been studied
so that informed choices and decisions can be made. Furthermore, the
different options and all of their combinations have been empirically
studied in different usage scenarios, in order to cover the different possible
applications.

Finally, using the methods studied in this dissertation, a neurosurgery
simulator prototype has been developed. This simulator is within the first
stage of a complete neurosurgery simulator, and is capable of simulating
the craniotomy procedure (visualized using volumetric rendering of rigid
volumes) with a haptic feedback to the user.

It is also able to simulate the interaction with the brain, which is
simulated as a deformable body. For this purpose, a physical simulation



Section 6.2. Future research lines 123

has been implemented in the GPU so that real time simulation times could
be achieved. Thanks to the simulation module was specifically developed
for the GPU, not only the simulation speed is increased, but the necessary
data transference is kept at a minimum between the simulation and the
visualization modules. At the same time, the previously presented methods
have been used to visualize the deformed volume while avoiding the
resampling of the volume and the use of extracted isosurfaces. With the data
from the study, the most efficient options have been selected, thus ensuring
interactive visualization while maintaining the highest quality possible.

6.2 Future research lines

Although the presented methods allow the use of high quality visualization
in real time, several research lines that could further improve the quality
and performance are still open:

• As raycasting is a highly flexible volume rendering method, most
rendering modes and effects can be directly used even if the ray
is deformed, as it has been done with the stochastic jittering.
However, other methods exist that may need further modifications
or optimizations to use them with deformed rays. For example, some
methods to calculate scattering or ambient occlusion use additional
rays exiting from the sample point.

• The deformable rendering method only uses tetrahedra as the
primitives for the rendering. However, many simulations use mixed
representations, often hexahedra and tetrahedra. The generalization
of the rendering method would allow the direct use of other primitives,
as well as potentially allow further improvements using the additional
information.

• The simulator prototype presented in this dissertation should be
validated by the users. This users must be both expert and trainees in
order to better asses the achieved knowledge transfer and the realism
of the procedures, tools and interactions in the simulator.

• In order to continue the progress towards a full neurosurgery
simulators many task must be included in the simulator. One of such
task is the cutting and retraction of tissue, for which the simulation
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must be adapted. Additionally, the tumour resection or extraction
tasks need to be correctly visualized. It would be highly desirable to
maintain the volumetric rendering by creating a method capable of
visualizing these methods using the volume.

• The creation of the tetrahedra depends heavily in the segmentation
of the brain in the MRI volume. However, nowadays segmentation
of the brain is a task that cannot be performed in a completely
automatic way. The research and development of an automatic brain
segmentation algorithm would allow the use of a fully automatic
tetrahedral mesh creation procedure, which would be a very desirable
feature.

• The used tetrahedral mesh assumes constant properties through
the whole brain, which is known not to be accurate. A process to
create a more exact tetrahedral mesh is necessary as, in order to
progress towards a full neurosurgery simulator, the properties of the
different parts of the brain have to be taken into account in the
simulation. Additionally, this information could be used to enhance
the visualization of the underlying volume.

• The developed CUDA implementation for the FEM simulation can be
expanded and improved. The used data structure can be reorganized
so that only the necessary memory is allocated, which would greatly
decrease the impact on the memory.
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Appendix A

Implementation of Direct
Volumetric Isosurface

Rendering and Shadow
Mapping for VTK

This appendix describes the extension of a Visualization Toolkit (VTK)1

mapper for the rendering of refined direct volumetric isosurfaces.
Additionally, it also adds shadow mapping for volume rendering in both
rendering modes, full volume rendering (FVR) and direct isosurface
rendering.

Refined direct volumetric isosurface rendering allows faster rendering
times when visualizing isosurfaces from volume data. Also, the resulting
rendering provides a much higher quality rendering. However, VTK does
not provide the necessary classes to perform this type of rendering.
Additionally, VTK’s pipeline does not allow the volumes to receive shadows,
which is a highly desirable feature when developing simulators. This
two limitations are tackled by the presented class, while maintaining
full compatibility with VTK. The implementation details and necessary
changes to seamlessly include these features in VTK are documented in
this appendix.

1http://www.vtk.org

127

http://www.vtk.org


128 Appendix A. Isosurface Rendering and Shadow Mapping for VTK

A.1 Introduction

Volumetric rendering is a key technique in scientific and medical
visualization. This rendering method enables the direct use of volumes as
data for the rendering pipeline, avoiding the need of preprocessing and the
possible loss of data and accuracy it could bring. Volume rendering allows
the inspection of the whole volume at once or, at least, in an interactive and
intuitive mode. This makes it possible to inspect the results of a simulation
as a whole, or see patients’ internal organs without inspecting an MRI scan
slice by slice.

But sometimes the user might want to inspect certain specific values
of the volume, such as the organs or bones from a CT scan or a shock
wave in a simulation. Usually, in order to visualize said isosurfaces, an
isosurface extraction method such as marching cubes would be used and a
regular polygonal rendering would be performed with the result. Another
method would be using a transfer function set to be completely opaque at
the desired isosurface, but this method has the high computational cost of
volume rendering without taking advantage of its strong points, i.e., the
rendering of semitransparent volumes.

Another method for the visualization of isosurfaces is volumetric
isosurface rendering. With this the extraction method is skipped and the
volume is directly rendered by setting an isovalue. In addition, by using an
intersection refinement method the step size can be increased with little or
no quality loss. In this way the method offers the flexibility and quality of
volume rendering without its high computational cost.

The Visualization ToolKit (VTK) offers a wide range of the said
methods, but the lack of a volumetric isosurface rendering poses a problem
in certain situations, such as a medical visualization using CTs. Moreover,
VTK does not allow the volumes to receive the shadows cast by polygonal
surfaces, a much needed feature when dealing with user’s depth perception
of such polygonal actors.

So, in order to fill this gap, a a extension of the
vtkOpenGLGPUVolumeRayCastMapper is presented (called
vtkOpenGLGPUVolumeRayCastMapper2 to allow compatibility and
simultaneous use) which allows the use of a volumetric isosurface mode
with intersection refinement and receiving shadows from polygonal actors
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without modifying the shadow rendering pipeline.

A.2 Changes on the design

The proposed changes do not require new classes by themselves, but
in order to allow a easier usability and avoid potential problems with
the different versions of the vtkOpenGLGPUVolumeRayCastMapper
and vtkGPUVolumeRayCastMapper two new classes have
been created that are basically an extension of the
originals: vtkOpenGLGPUVolumeRayCastMapper2 and
vtkGPUVolumeRayCastMapper2. Both classes have been created in
order to maintain the usual distribution of code in the original classes and
to maintain the same design as shown in Figure A.1.

vtkAbstractVolumeMapper 

vtkVolumeMapper 

vtkGPUVolumeRayCastMapper 

vtkOpenGLGPUVolumeRayCastMapper 

vtkGPUVolumeRayCastMapper2 

vtkOpenGLGPUVolumeRayCastMapper2 

Figure A.1: The resulting design with the new classes.

To summarize the additions and changes done to the classes:

• A new rendering mode has been added, the volumetric isosurface
mode. For this a new GLSL shader was created, which implements
the isosurface ray traversal mode with the refinement. Additionally,
a variable to set the isovalue has been added along with the methods
to access and modify it.

• The shadow receiving mode has been added, which is controlled in
the same way it is controlled for polygonal objects. Three new GLSL
shaders have been created too, implementing different shadow modes:
no shadows, hard shadows and soft shadows. Several variables and
methods to access said variables have been added.
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• Additionally, the code for stochastic jittering has been added as
well as several variables and methods to control it. Two GLSL
shaders have also been created, stochastic jittering enabled and
disabled. Note that the methods and variables for the stochastic
jittering maintain the nomenclature from VTK, using noise instead
of stochastic jittering.

A.2.1 Volumetric isosurface rendering

To include refined isosurface rendering to the original VTK volume mapper,
an additional ray traversal mode has to be added. This mode will traverse
the entire ray until the sample found is higher than the isovalue. With this
sample position an intersection refinement will be performed by iterating
using the Eqaution A.1.

Xnew = (Xnext −Xprev))
isovalue− fprev
fnext − fprev

+Xprev (A.1)

With the new intersection point, the value of the new point is read. That
new value is then compared to the isovalue, if its bigger then Xnew and the
new value are assigned to Xprev and fprev respectively. Otherwise, Xnew

and the new value are assigned to Xnext and fnext. The Algorithm A.1,
presents the raytraversal for isosurface rendering with intersection refined.

This rendering allows a increase in performance while maintaining a
high quality visualization, as it has been shown in Section 3.

A.2.2 Shadows

Shadows are a key feature to enhance both realism and depth perception
as shadows help the user to locate the position of an object, i.e., a tool in
a simulator. Thus they are a very desirable feature in many visualizations.

VTK includes a method to create a pipeline with shadows, using
vtkShadowMapPass and vtkShadowMapBakerPass. In this pipeline, the
polygonal actors are rendered as usual and after this the shadows are
rendered onto the previous rendering.

When adding shadows to the volume, if the usual pipeline were to be
used, the volume would have to been rendering twice, with the evident result
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Algorithm A.1 Ray traversal for direct volumetric isosurface rendering
with intersection refinement.
1: function Ray traversal for direct isosurface rendering(...)
2: while InsideTheV olume(CurrentPoint) do
3: V alue = V alueFromPoint(CurrentPoint)
4: if V alue ≥ Isovalue then
5: for i = 0→ 10 do
6: Fraction = Isovalue−PreviousV alue

CurrentV alue−PreviousV alue
7: Diff = (CurrentPoint− PreviousPoint)
8: NewPoint = Diff ∗ Fraction+ PreviousPoint
9: NewV alue = V alueFromPoint(NewPoint)

10: if NewV alue < IsoV alue then
11: PreviousV alue = NewV alue
12: PreviousPoint = NewPoint
13: else
14: CurrentV alue = NewV alue
15: CurrentPoint = NewPoint
16: end if
17: end for
18: Shade(IsoV alue,NewPoint)
19: return
20: end if
21: CurrentPoint = NextPoint
22: end while
23: end function

in performance loss. In order to avoid this loss, a more common approach
was taken. Instead of rendering the shadows separately, the shadowing is
checked when the ray traversal is performed. As a result, shadows from the
polygons can be cast onto the volume with little additional computational
cost, resulting in an improved depth perception as it has been already shown
in Section 3.

A.3 Usage examples

Along with the source code of the new classes, a example application has
been prepared, where the examples presented below are demonstrated. The
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minimum version of VTK to use these classes is 5.8, as the shadows pipeline
was changed from 5.6 to 5.8

A.3.1 Isosurface mode usage

The usage method for this rendering mode slightly differs from the usual
choice of blending mode in volumetric rendering. The reasoning behind this
difference is that to maintain the usual pipeline, further changes should
be made to other classes, and it was deemed undesirable at the current
development stage. If in the future these classes are merged into VTK the
usage method will change to the usual VTK mode. An example of how to
set the isosurface to value:

vtkGPUVolumeRayCastMapper2 * mapper =
vtkGPUVolumeRayCastMapper2::New();

...
mapper->SetIsovalue(value);
mapper->SetBlendModeIsosurface(true);

When BlendModeIsosurface is set to true, the blending mode
chosen by the usual means will have no effect, and it will be always rendered
as isosurface. To use any other blending mode, BlendModeIsosurface
has to be set to false. Note that the original blending mode is not changed
by changing BlendModeIsosurface so just setting it to false will force
the mapper to fall back to the previous blending mode.

A.3.2 Receiving shadows

Enabling the shadows for the volume rendering is performed as usual
in VTK. A rendering pipeline including vtkShadowMapPass and
vtkShadowMapBakerPass must be set up, and the polygonal objects
properties for the shadows are set in the original way. In order to enable the
volume to receive shadows, a vtkShadowMapBakerPass::RECEIVER
must be set (regardless of to 0 or 1). If in addition to shadows, soft shadows
are wanted they must be activated by setting SoftShadows to true. The
offset of the soft shadow is controlled with SoftShadowsOffset and it
represents the offset in pixels. Note that although it represents pixels, it
does not need to be integer as linear interpolation is used for the shadow
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texture.

vtkGPUVolumeRayCastMapper2 * mapper =
vtkGPUVolumeRayCastMapper2::New();

...
vtkVolume * volume = vtkVolume::New;
volume->SetMapper(mapper);

vtkInformation * info = vtkInformation::New();
info->Set(vtkShadowMapBakerPass::RECEIVER(), 0);

volume->SetPropertyKeys(info);

//For soft shadows:
mapper->SetSoftShadows(true);
mapper->SetSoftShadowsOffset(1.0);

A.3.3 Using stochastic jittering (Noise)

To enable the use of stochastic jittering Noise must be set to
true. Additionally, the noise texture size and the maximum inserted
stochastic jittering can be controlled through NoiseTextureSize and
MaxNoiseFactor respectively.

vtkGPUVolumeRayCastMapper2 * mapper =
vtkGPUVolumeRayCastMapper2::New();

...
mapper->SetNoise(true);
mapper->SetMaxNoiseFactor(0.75);
mapper->SetNoiseTextureSize(64);

A.4 Conclusions and Future Work

The presented mapper allows the use of direct volumetric isosurface
rendering with intersection refinement efficiently, allowing the visualization
of isosurfaces with great quality and performance. In addition, the volume
has been enabled to receive shadows from VTKs pipeline while avoiding
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the need for costly additional volumetric render passes. These two features
increase the possibilities offered by VTK in terms of immersion. Moreover,
the activation of the stochastic jittering further increases the visualization
quality.

The presented mapper for VTK adds these highly desirable features,
while maintaining all the existent functionality that VTK offers. This will
allow any non expert developer the use of these methods to increase the
realism and immersion of their applications easily.

The future work will be focused in these points:

• Right now the mapper only uses one light for the illumination (like
the original mapper), having all or more light into account may be a
desirable expansion

• The shadows are only received from one light, the same as the lighting,
and it may be desirable to expand this along the number of lights

• Although volumes can receive shadows, they do not cast shadows. It
is a desirable feature to expand this mapper and the VTK passes for
the shadows in order to allow the use shadows from the volumes.
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Bétrancourt, M. and Tversky, B. “Effect of computer animation on users’
performance: A review”. Le travail humain, Vol. 63, N. 4, pp. 311–329.
2000.

Bhanirantka, P. and Demange, Y. “Opengl volumizer: a toolkit
for high quality volume rendering of large data sets”. In
Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM
SIGGRAPH Symposium on, pp. 45 – 53. oct., 2002.

Birkeland, A. and Viola, I. “View-dependent peel-away visualization for
volumetric data”. In Proceedings of the 25th Spring Conference on
Computer Graphics, SCCG ’09, pp. 121–128. New York, NY, USA.
2009.

Bruckner, S. and Groeller, M. E. “Style transfer functions for
illustrative volume rendering”. COMPUTER GRAPHICS FORUM,
Vol. 26, N. 3, Sp. Iss. SI, pp. 715–724. 2007. 28th Annual
Conference of the European-Association-for-Computer-Graphics (
EUROGRAPHICS 2007), Prague, CZECH REPUBLIC, SEP 03-07,
2007.

137



138 REFERENCES

Buchart, C., San Vicente, G., Amundarain, A., and Borro, D. “Hybrid
visualization for maxillofacial surgery planning and simulation”. In
INFORMATION VISUALIZATION, IV 2009, PROCEEDINGS, pp.
266–273. 2009. 4th Information Visualization Conference, Barcelona,
SPAIN, JUL 15-17, 2009.

Cabral, B., Cam, N., and Foran, J. “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware”. In
Proceedings of the 1994 symposium on Volume visualization, VVS ’94,
pp. 91–98. New York, NY, USA. 1994.

Chen, H., Hesser, J., and Männer, R. “Fast volume deformation
using inverse-ray-deformation and ffd”. In International Conference
Graphicon. 2001.

Chen, M., Silver, D., Winter, A. S., Singh, V., and Cornea, N. “Spatial
transfer functions: a unified approach to specifying deformation in
volume modeling and animation”. In Proceedings of the 2003
Eurographics/IEEE TVCG Workshop on Volume graphics, VG ’03,
pp. 35–44. New York, NY, USA. 2003.

Clarke, D. B., D’Arcy, R. C., Delorme, S., Laroche, D., Godin, G., Hajra,
S. G., Brooks, R., and DiRaddo, R. “Virtual reality simulator:
Demonstrated use in neurosurgical oncology”. Surgical Innovation,
Vol. 20, N. 2, pp. 190–197. 2013.

Correa, C. and Ma, K.-L. “Visibility histograms and visibility-driven
transfer functions”. Visualization and Computer Graphics, IEEE
Transactions on, Vol. 17, N. 2, pp. 192–204. 2011.

Correa, C., Silver, D., and Chen, M. “Illustrative deformation for
data exploration”. Visualization and Computer Graphics, IEEE
Transactions on, Vol. 13, N. 6, pp. 1320 –1327. nov.-dec., 2007.

Correa, C. D., Silver, D., and Chen, M. “Constrained illustrative volume
deformation”. Computers & Graphics, Vol. 34, N. 4, pp. 370 –
377. 2010. Procedural Methods in Computer Graphics Illustrative
Visualization.

Delorme, S., Laroche, D., DiRaddo, R., and F. Del Maestro,
R. “Neurotouch: A physics-based virtual simulator for cranial
microneurosurgery training”. Neurosurgery, Vol. 71, pp. –. 2012.



REFERENCES 139
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2011.

Echegaray, G., Herrera, I., Sánchez, E., and Borro, D. “Design of a
neurosurgery simulator for tumour resection”. In Medicine meets
Virtual Reality - Italy: Applications of Virtual Reality to Medicine
and Surgery. Aula Magna dellaScuola Superiore Sant’Anna, Pisa, Italy.
December 14, 2010.

Engel, K., Hadwiger, M., Kniss, J., Lefhon, A., Rezk-Salama, C., and
Weiskopf, D. Real-time volume graphics. AK Peters. 2006.

Gagvani, N. and Silver, D. “Animating volumetric models”. Graphical
Models, Vol. 63, N. 6, pp. 443 – 458. 2001.

Georgii, J. and Westermann, R. “A generic and scalable pipeline
for gpu tetrahedral grid rendering”. IEEE TRANSACTIONS ON
VISUALIZATION AND COMPUTER GRAPHICS, Vol. 12, N. 5,
pp. 1345–1352. SEP-OCT, 2006. IEEE Visualization Conference (Vis



140 REFERENCES

2006)/IEEE Symposium on Information Visualization (InfoVis 2006),
Baltimore, MD, OCT 29-NOV 03, 2006.

Giorgi, C., Pluchino, F., Luzzara, M., Ongania, E., and Casolino, D. S. “A
computer assisted toolholder to guide surgery in stereotactic space”.
Acta neurochirurgica. Supplement, Vol. 61, pp. 43–45. 1994.

Gleason, P., Kikinis, R., Altobelli, D., Wells, W., III, E. A., Black, P. M.,
and Jolesz, F. “Video registration virtual reality for nonlinkage
stereotactic surgery”. Stereotactic and Functional Neurosurgery, Vol.
63, pp. 139–143. 1994.

Goldstone, R. L. and Son, J. Y. “The transfer of scientific principles using
concrete and idealized simulations”. Journal of the Learning Sciences,
Vol. 14, N. 1, pp. 69–110. 2005.

Grau, S. and Puig, A. “An adaptive cutaway with volume context
preservation”. In Bebis, G., Boyle, R., Parvin, B., Koracin, D.,
Kuno, Y., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A.,
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