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Summary

The processing of human motion data constitutes an important strand of research with many appli-
cations in computer animation, sport science and medicine. Currently, there exist various systems
for recording human motion data that employ sensors of different modalities such as optical, iner-
tial and depth sensors. Each of these sensor modalities have intrinsic advantages and disadvantages
that make them suitable for capturing specific aspects of human motions as, for example, the over-
all course of a motion, the shape of the human body, or the kinematic properties of motions. In
this thesis, we contribute with algorithms that exploit the respective strengths of these different
modalities for comparing, classifying, and tracking human motion in various scenarios. First, we
show how our proposed techniques can be employed,e. g., for real-time motion reconstruction
using efficient cross-modal retrieval techniques. Then, we discuss a practicalapplication of iner-
tial sensors-based features to the classification of trampoline motions. As a further contribution,
we elaborate on estimating the human body shape from depth data with applications to person-
alized motion tracking. Finally, we introduce methods to stabilize a depth tracker inchallenging
situations such as in presence of occlusions. Here, we exploit the availability of complementary
inertial-based sensor information.

Zusammenfassung

Die Verarbeitung menschlicher Bewegungsdaten stellt einen wichtigen Bereich der Forschung
dar mit vielen Anwendungsm̈oglichkeiten in Computer-Animation, Sportwissenschaften und Me-
dizin. Zurzeit existieren diverse Systeme für die Aufnahme von menschlichen Bewegungsda-
ten, welche unterschiedliche Sensor-Modalitäten, wie optische Sensoren, Trägheits- oder Tiefen-
Sensoren, einsetzen. Alle diese Sensor-Modalitäten haben intrinsische Vor- und Nachteile, welche
sie bef̈ahigen, spezifische Aspekte menschlicher Bewegungen, wie zum Beispiel den groben Ver-
lauf von Bewegungen, die Form des menschlichen Körpers oder die kinetischen Eigenschaften
von Bewegungen, einzufangen. In dieser Arbeit tragen wir mit Algorithmen bei, welche die je-
weiligen Vorteile dieser verschiedenen Modalitäten ausnutzen, um menschliche Bewegungen in
unterschiedlichen Szenarien zu vergleichen, zu klassifizieren und zu verfolgen. Zuerst zeigen wir,
wie unsere vorgeschlagenen Techniken angewandt werden können, um z. B. in Echtzeit Bewegun-
gen mit Hilfe von cross-modalem Suchen zu rekonstruieren. Dann diskutieren wir eine praktische
Anwendung von Tr̈agheitssensor-basierten Eigenschaften für die Klassifikation von Trampolin-
bewegungen. Als einen weiteren Beitrag gehen wir näher auf die Bestimmung der menschlichen
Körperform aus Tiefen-Daten mit Anwendung in personalisierter Bewegungsverfolgung ein. Zu-
letzt führen wir Methoden ein, um einen Tiefen-Tracker in anspruchsvollen Situationen, wie z. B.
in Anwesenheit von Verdeckungen, zu stabilisieren. Hier nutzen wir die Verfügbarkeit von kom-
plemenẗaren, Tr̈agheits-basierten Sensor-Informationen aus.
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Chapter 1

Introduction

1.1 Motivation

Human motion data is used in many fields of research such as computer animation, sport sciences,
and medicine. Furthermore, many practical applications such ase. g.movie and game productions,
or medical rehabilitation scenarios, rely on algorithms that process human data.

In these contexts, many different systems have been developed that record motion data of various
types and in different levels of expressiveness. In particular, these systems have been designed to fit
the specific application intended. Examples of such systems are optical systems based on (color)
cameras, inertial systems, or systems using depth sensing devices. All of these systems have
intrinsic advantages and disadvantages as far as acquisition cost, setup complexity and quality of
recorded data is concerned.

In scenarios related to computer animation, such as the production of feature films and high quality
computer games, one typically uses marker-based opticalmotion capture(mocap) systems. These
systems are based on a set of calibrated cameras to track the 3D-positions of 30–50 markers fixed
to the body of an actor. From the movement of these markers over time, motion representations
such as joint angles, which can easily be used to animate artificial human or non-human characters,
can be computed. While these systems provide the highest quality of motion data obtainable, they
are very expensive and difficult to set up. Also, because of the large setup overhead and costs,
capture sessions need to be well-planned in advance. Furthermore, the usage of (infrared) cameras
imposes constraints on the location such systems can be operated. Optimal tracking results are
typically achieved in studios with controlled lighting conditions. As a consequence, high-quality
optical mocap systems can only be afforded by a small number of people.

To overcome for some of the disadvantages of optical systems, other systems have emerged that
use alternative types of sensors. One example are systems using inertial sensors that capture orien-
tations with respect to a global coordinate system. Such inertial systems do not require extensive
setup procedures and can be used in non-studio environments or even outside. Furthermore, iner-
tial mocap systems are less expensive and less intrusive compared to marker-based optical mocap
systems. As a consequence, they are available to a larger group of users and applicable in a wider
range of scenarios such as sports training or medical rehabilitation. Also,they are found in many
modern devices such as video game consoles or smartphones, where theyserve as an additional

1



2 CHAPTER 1. INTRODUCTION

input modality. Unfortunately, inertial sensors do not provide as rich dataas the optical systems
mentioned above. Thus, about 20 inertial sensors are required to trackthe local configuration
of the body, which renders them still too expensive to enable full-body motion tracking in home
application scenarios.

Another alternative for tracking human motion are systems based on so-called depth cameras.
Such devices capture the scene similar to a traditional color camera by observing it from one point
of view. But instead of color they provide an image, where each pixel captures the distance of a
point in the scene to the camera. Research on how to obtain human motion data from depth im-
ages has a long tradition. However, the price of the available sensors andthe noisy characteristics
of the their provided data made them unattractive for applications intended for a great number of
people. This changed, when Microsoft launched their Kinect sensor that was an order of magni-
tude less expensive compared to previously available depth sensors. This paved the way for the
application of full-body motion tracking to home user scenarios. Since then, intense research has
been conducted on full-body motion estimation from depth images, where recent approaches show
promising result. However, many challenges are yet unsolved. Firstly, model-based approaches
require the creation of a model of the person to track. But, obtaining such amodel is time con-
suming and requires expensive equipment such as full-body laser scanners or the help of an artist.
Secondly, current tracking approaches are still prone to errors thatstem from the limited informa-
tion provided by depth data. Here, one example is estimating the rotation of certain body parts,
such as arm and legs, which is difficult to deduce from depth images. Finally, occlusions, where
parts of the body are not visible to the camera renders it impossible for a depth tracker to deduce
any meaningful information of that portion of the body.

1.2 Contributions and Organization

In this thesis, we address some of the challenges that arise when dealing withhuman motion data
originating from various sensors modalities. To better understand, why thischallenges exist and
why they are important to solve, we begin, in Chapter 2, by introducing the three sensors modal-
ities that are used throughout this thesis. In particular, we will explain how the different sensor
modalities—optical, inertial, and depth—work in principle and what kind of data they provide.
Furthermore, we will discuss their specific advantages and disadvantages and elaborate on how
this affects their applicability to scenarios such as motion comparison, motion classification, or
motion reconstruction.

In Chapter 3, we will discuss various motion representations that originate from different sensor
modalities and investigate their discriminative power in the context of motion identification and
retrieval scenarios. As one main contribution, we introduce mid-level motion representations that
allow for comparing motion data in a cross-modal fashion. In particular, we show that certain
low-dimensional feature representations derived from inertial sensors are suited for specifying
high-dimensional motion data. Our evaluation shows that features based ondirectional informa-
tion outperform purely acceleration based features in the context of motionretrieval scenarios.
This work was published in Heltenet al. [2011b]. We conclude the chapter by presenting an
application of the discussed techniques in the context of human motion reconstruction, which was
published in Tautgeset al. [2011].

In Chapter 4, we extend the methods introduced in Chapter 3 and apply them toa practical mo-
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tion classification scenario. In particular, we consider the scenario of trampoline motions, where
an athlete performs a routine consisting of a sequence of jumps that belong topredefined motion
categories such as pike jumps or somersaults. As main contribution, we introduce a fully auto-
mated approach for capturing, segmenting, and classifying trampoline routines according to these
categories. Since trampoline motions are highly dynamic and spacious, opticalmotion capturing
is problematic. Instead, we reverted to a small number of inertial sensors attached to the athlete’s
body. To cope with measurement noise and performance differences, we introduce suitable fea-
ture and class representations that are robust to spatial and temporal variations while capturing the
characteristics of each motion category. The experiments show that the approach reliably classifies
trampoline jumps across different athletes even in the presence of significant style variations. This
work has been published in Heltenet al. [2011a].

Then, in Chapter 5, we will focus on reconstructing a three-dimensional representation of human
motion in real-time from the input of a depth sensor. Previous tracking approaches often required
a body model resembling the human to be tracked. Without such a personalization, the tracking
accuracy degrades drastically. However, obtaining such a personalized model often involves ex-
pensive equipement such as full-body laser-scanners, which is prohibitive for home application
scenarios. For this reason, we contribute with a robust algorithm for estimating a personalized
human body model from just two sequentially captured depth images that is more accurate and
runs an order of magnitude faster than the current state-of-the-art procedure. Then, we employ the
estimated body model to track the pose in real-time from a stream of depth images using a track-
ing algorithm that combines local pose optimization and a stabilizing database look-up. Together,
this enables accurate pose tracking that is more accurate than previous approaches. As a further
contribution, we evaluate and compare our algorithm to previous work on a comprehensive bench-
mark dataset containing more than 15 minutes of challenging motions. This dataset comprises
calibrated marker-based motion capture data, depth data, as well as ground truth tracking results.
This work is published in Heltenet al. [2013a].

Existing monocular full body trackers, as the tracker presented in Chapter 5, often fail to capture
poses where a single camera provides insufficient data, such as non-frontal poses, and all other
poses with body part occlusions. In Chapter 6, we present a novel sensor fusion approach for real-
time full body tracking that succeeds in such difficult situations. It takes inspiration from previous
tracking solutions, and combines a generative tracker and a discriminativetracker retrieving closest
poses in a database. In contrast to previous work, both trackers employdata from a low number
of inexpensive body-worn inertial sensors. These sensors provide reliable and complementary
information when the monocular depth information alone is not sufficient. We also contribute
by new algorithmic solutions to best fuse depth and inertial data in both trackers. One is a new
visibility model to determine global body pose, occlusions and usable depth correspondences and
to decide what data modality to use for discriminative tracking. We also contribute with a new
inertial-based pose retrieval, and an adapted late fusion step to calculate thefinal body pose. The
main ideas of this work are published in Heltenet al. [2013d].

In Chapter 7, we conclude and give some outlook on future work.
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1.3 Publications of the Author

[Heltenet al.2011b] Thomas Helten, Meinard Müller, Jochen Tautges, and Hans-Peter Seidel.
Towards Cross-modal Comparison of Human Motion Data. InProceedings of the 33rd
Annual Symposium of the German Association for Pattern Recognition (DAGM), 2011.

In this article, we consider the cross-model retrieval approach presented in Chapter 3. In
particular, we focus on how to compare motion data that originates from optical mocap
systems with motion data coming from systems that use inertial sensors.

[Heltenet al.2011a] Thomas Helten, Heike Brock, Meinard M̈uller, and Hans-Peter Seidel.
Classification of Trampoline Jumps Using Inertial Sensors. InSports Engineering, Vol-
ume 14, Issue 2, pages 155–164, 2011.

In this article, we show how trampoline motions can be classified using the techniques
presented in Heltenet al. [2011b]. Specifically, we describe the use of real-valued motion
templates that were inspired by work of Müller and R̈oder [2006]. This publication consists
of the main concepts introduced in Chapter 4.

[Heltenet al.2013a] Thomas Helten, Andreas Baak, Gaurav Bharaj, Meinard Müller, Hans-
Peter Seidel, and Christian Theobalt. Personalization and Evaluation of a Real-time Depth-
based Full Body Tracker. InProccedings of the third joint 3DIM/3DPVT Conference (3DV),
2013.

Obtaining a personalized model for a model-based tracker is a challenging problem which is
time consuming and requires expensive specialized equipement. In this article, we focus on
obtaining a personalized model from only two sequentially shot depth images. Using an un-
derlying parametric shape model and adaptive model-to-data correspondences, we achieve
a shape reconstruction quality comparable to other state-of-the-art methods but in a fraction
of the runtime and without user intervention. This publication covers the central ideas from
Chapter 5.

[Heltenet al.2013d] Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Christian
Theobalt. Real-time Body Tracking with One Depth Camera and Inertial Sensors. In Pro-
ceedings of the International Conference on Computer Vision (ICCV), 2013.

Here, we show how an existing depth-based human motion tracker can be extended to better
deal with challenging tracking scenarios that originate from occlusions. To this end, we
fuse the information from the depth camera with complementary information from inertial
sensors, see Chapter 6.

Publications with related application scenarios which are not further detailedin this thesis:

[Pons-Mollet al.2010] Gerard Pons Moll, Andreas Baak,Thomas Helten, Meinard Müller,
Hans-Peter Seidel, Bodo Rosenhahn. Multisensor-Fusion for 3D Full-Body Human Motion
Capture. InProceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2010.

In this publication, we show how inertial sensors can be used to stabilize the tracking results
of an optical marker-less motion tracker. The main idea is that inertial sensors are not prone
to occlusions and provide in form of orientations a complementary type of information. This
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information can only hardly be obtained from optical data such as silhouette images that are
used by many marker-less tracking approaches.

[Baaket al.2010] Andreas Baak,Thomas Helten, Meinard Müller, Gerard Pons-Moll, Bodo
Rosenhahn, and Hans-Peter Seidel. Analyzing and evaluating marker-less motion tracking
using inertial sensors. InProceedings of the 3rd International Workshop on Human Motion.
In Conjunction with ECCV, volume 6553 ofLecture Notes of Computer Science (LNCS),
pages 137–150. Springer, September 2010.

In this article, we describe how the orientations of inertial sensors can be used to reveal
typical tracking errors that are common to optical markers-less trackers.Many of these
errors stem from occlusions or from rotational ambiguities. The described algorithms make
use of the fact, as mentioned above, that inertial sensors are not proneto occlusions and
provide information that is complementary to the positional information provided by optical
systems such as cameras.

[Tautgeset al.2011] Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber,
Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Bernd Eberhardt. Motion Re-
construction Using Sparse Accelerometer Data. InACM Transactions on Graphics (TOG),
Volume 30, Issue 3, May 2011.

In this contribution, we introduce an approach to reconstruct full-body human motions us-
ing sparse inertial sensor input. In particular, only four 3D accelerometers are used that are
attached to the hands and feet of a person. The obtained sensor data is used in two ways.
Firstly, it serves as query in a cross-modal retrieval context to find similarmotions in a prere-
corded database containing high-quality optical motion data. Secondly, the sensor readings
control an motion synthesis step that fuses the retrieved motions, sensor readings and kine-
matic constraints in a unified optimization scheme. The main ideas, are briefly discussed in
Section 3.5.
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Chapter 2

Sensor Modalities

In this thesis, we focus on motion capture systems based on three different sensor modalities,
optical, inertial, and depth sensors, which differ largely in acquisition cost, in the requirements
on the recording conditions, and in the kind of data they provide. To this end, we summarize
in this chapter some of the fundamental properties of such systems, introduce several motion
representations and fix notations used throughout this thesis. In particular, in Section 2.1, we give
an introduction to optical sensor systems which are often used in high-qualitymovie and game
productions. Then, in Section 2.2, we focus on inertial sensor-based systems, which have been
developed as a less expensive alternative to optical systems. Finally, in Section 2.3, we elaborate
on depth sensor-based systems, which are suitable to be used in home userscenarios.

2.1 Optical Sensors

The highest quality of human motion data can be obtained from mocap systems that employ optical
sensors. In particular, optical systems use a set of calibrated and synchronized cameras that are
facing a so-called capture volume. Inside this volume, one or more actors areperforming the
motions to be recorded. The size of the capture volume is chosen in a way thatevery interior point
is always seen by multiple cameras. By using multiple views of the same object, expressive 3D
information can be deduced by triangulation. Depending on the underlying techniques, optical
approaches can be classified into two different kinds: marker-based and marker-less approaches.

2.1.1 Marker-based Approaches

Optical marker-based approches (Figure 2.1 (a)), as usede. g. in the passive marker-based Vicon
MX system1 or the active marker-based PhaseSpace system2, allow for recording human motions
with high precision. This is achieved by tracking the positions of so-called markers that are at-
tached to suits worn by the performing actors. The term “passive” or “active” refers to the kind
of markers used. Passive markers are retro-reflective and are illuminated by light sources closely

1www.vicon.com
2www.phasespace.com

7
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(b)(a)

Figure 2.1. Typical optical motion capture approaches.(a): Marker-less motion capture system with
actor in general apparel. The background is colored for easier foreground/background segmentation.(b):
Marker-based system, where the actor wears a suite with retro-reflecting markers attached to it. Here, no
background segmentation is required.

placed next to each camera, see also Figure 2.2 (a) and (b). In contrast, active systems use LEDs
as markers that emit light without being illuminated externally. The idea behind using markers is,
that they are easily detectable in the images recorded by the cameras in an robust and automatic
manner. From synchronously recorded 2D positions of the markers, thesystem can then recon-
struct 3D coordinates of marker positions using triangulation techniques, see also Figure 2.2 (c).
These marker positions build the foundation for computing other useful motiondata representa-
tions. The advantage of active marker-based systems over passive systems is that they can include
an encoded labeling in the emitted light. Thus individual markers can be easily identified, which
is—in practice—a non-trivial problem for passive systems.

2.1.2 Motion Data Representations

Marker positions. The simplest motion data representation obtainable from optical marker-
based systems are the global 3D-positions of the markers. In our experiments, we use a set of
aboutM = 40 markers which are attached to an actor’s suit at well-defined locations following a
fixed pattern. In this thesis, we modelmarker positionsby the vectorP := (p1, . . . , pM), see also
Figure 2.3 (a).

Pose parameters. The captured marker positions can then be used to deduce other motion data
representations. One important example are parameters of so-calledkinematic chains, which ap-
proximate the human skeleton as a set of rigid bodies, the bones, that are connected and con-
strained in their movement by a set of joints. We now give a mathematical introduction into
kinematic chains and their parametrization. In this context, we use unit quaternions for represent-
ing rotations. Note that this is only one possible representation, alternativesare discussed,e. g., in
Murrayet al. [1994]. From now on, if we mention quaternion, we always mean unit quaternion.

In the following, letQ be the space of quaternions, where one quaternion can be described using
four scalar parametersq = (w, x, y, z) ∈ R4. Alternatively, we refer to a quaternion usingq(φ, a) ∈
R × R3, which represents a rotation around an axisa by an angleφ. Furthermore, letq1 ◦ q2 be
the quaternion multiplication andq[v] be the rotation of a vectorv ∈ R3 using the quaternionq.



2.1. OPTICAL SENSORS 9
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Figure 2.2. (a): Typical marker-based mocap equipment consisting of cameras, a light source mounted
close to the camera, and a set of retro-reflecting markers.(b): The set-up mocap system consisting of
multiple cameras surrounding a capture volume. One actor isstanding inside, wearing a suit with markers
attached to it.(c): The obtained 3D positions of the captured markers.

For further reading on quaternions, we refer to Shoemake [1985]. Let B be the number of bones
in the kinematic chain, whileJ stands for the number of joints. We assume that for every bone
b ∈ B = [1 : B] := {1, . . . , B} there is a corresponding coordinate systemFb rigidly attached to it.
This allows for a pointp ∈ R3 to defined relative to a bone.

Now, we describe a joint connecting two rigid bodiesb1 ∈ B andb2 ∈ B as 2-tupelj = (b1,b2) ∈
J = B2. For each joint, the spatial relationship between two bones is described by atransformation

T j := (q, r) ∈ T = Q ×R3. (2.1)

Here,q models a rotational offset between the two bones, whiler stands for a transitional offset.
In addition, we define the concatenation of two transformationsT1 andT2 as

T1 · T2 = (q1, r1) · (q2, r2) := (q1 ◦ q2, q1[r2] + r1). (2.2)

Finally, transformations can be used to transform points relative to one rigidbody b1 to points
relative to the other rigid bodyb2. Let F1 andF2 be the coordinate systems of the two rigid bodies
b1 andb2 that are connected by a jointj = (b1,b2) with transformationT j . The transformation of
a pointv1 ∈ R

3 relative toF1 to a pointv2 ∈ R
3 relative toF2 is given by

T j [v1] = (q, r)[v1] := q[v1] + r. (2.3)

In practice, we use two parametrized versions of this transformation. The first one is therevolving
joint which models a joint that can rotate along an axisa0 ∈ R

3. Its transformation is described as

Trev
j (χ) := (q j ◦ q(χ, a j), r j). (2.4)

Here,χ represents the angle the joint is rotated, whiler j is a constant translational offset andq j

is a constant rotational offset. Similarly, theprismatic jointdescribes a translation along an axis
a j ∈ R

3. Its transformation is defined as

Tpri
j (χ) := (q j , r j + χa j), (2.5)
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where a j represents the axis along which the joint is moved. The quantitiesr j ,a j , andq j are
referred to asjoint properties. Complex joints that can rotate about more than one axis can be
modeled using two or three consecutive revolving joints.

Now, we can define a kinematic chain asK := (B,J ,b0), whereB = [1 : B] are the bones and
J ⊂ J are the joints. Additionally,b0 ∈ B marks one bone as so-calledroot of the kinematic
chain. This bone is considered to be fixedw.r.t. some global coordinate systemFGO = Fb0. Note
that the kinematic chain can be interpreted as a graph, with the bones as nodes and the joints as
edges. In this thesis, all kinematic chains are trees that are directed graphs with a designated root
node (b0). For each joint (revolving or prismatic) a transformationT j , j ∈ J is defined. Also,
since we get one parameterχ j for every transformationT j , we denote a vector of all parameters
by

χ := (χ1, . . . , χJ)T . (2.6)

Since a kinematic chain is used to approximate the human skeleton with its bones andjoints, we
will refer to it askinematic skeletonor simply skeletonin the rest of this thesis. Also, since the
parameter vectorχ defines the pose of the skeleton it is calledpose parametersor pose. A skeleton
in a poseχ is denoted byKχ.

Given a positionp ∈ R3 within the skeleton relative to some boneb ∈ B, we can reconstruct its
global positionrelative toFGO for every given poseχ. Its global position is given as

Kχ[ p] :=



















∏

j∈J(p)

T j



















[ p], (2.7)

whereJ(p) represents the unique ordered list of joints that connects the boneb to the rootb0. To
model a global motion of the skeleton, the first tree joints are normally prismatic joints with their
axes parallel to the cardinal axesX, Y, andZ of the global coordinate systemFGO. The process of
obtaining global positions of points inside the skeleton—as for example joint positions—is called
forward kinematics. For further reading, we refer to Murrayet al. [1994].

Reversely, three steps are required, to obtain pose parametersχ from a set ofcaptured marker
positions. Firstly, one must design a skeleton that resembles the actor whosemotion data is to be
transformed into pose parameters. This involves an accurate estimation of thejoint propertiesa0,
r0, andq0 for every joint of the skeleton. Secondly, one has to model the placement of the markers
used with relation to the bones of the skeleton. The placement of this modeledvirtual markers
is then considered fixed for the actual conversion process. Finally, anoptimization scheme is
employed to find those pose parameters that induce a pose of the skeleton, where the positions
of the virtual markers best explain the positions of the captured markers. This process is called
inverse kinematic. For details, we refer to Bregleret al. [2004].

Surface mesh. Another important representation that is used in this thesis, are meshesM, which
represent the surface,e. g., the skin and/or cloth of a virtual character in a movie or computer game,
see Figure 2.3 (c). Mathematically, a mesh is given as graph, where its nodes are called vertices.
Small groups of neighboring vertices now form faces. The most common form of a mesh is the
triangle mesh, where each face consists of exactly three vertices. To reduce the number of pa-
rameters, meshes are often parametrized usingi. e. the skeleton and joint angle concept mentioned
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(a) (b) (c)

Figure 2.3. Different kinds of optical motion data representations for a person striking a so-called T-pose:
(a): The marker positionsP. (b): The kinematic chainKχ with pose parametersχ that were obtained using
the marker positionsP. (c): The triangle surfaceMχ defined byKχ.

above. To this end, a process calledskinningis used, which relates the position of each vertex in
the mesh to a combination of joint positions. If now the skeleton is striking a poseχ, the vertex
positions can be reconstructed from the joint positions that by itself have been reconstructed using
forward kinematics. The resulting mesh is denoted byMχ. For details on mesh skinning, we refer
to James and Twigg [2005]. The acquisition of such a surface mesh for a give person is a non-
trivial task and is in practice mostly done by manual modeling or by measurementusing a laser
scanner. Both processes are costly and time consuming. In Chapter 5, wecontribute an approach
that is easy and fast using only one inexpensive depth sensor, as introduced in Section 2.3.

In this thesis, the last two representations are also referred to asbody models, since they mimic the
overall appearance of the human body.

2.1.3 Marker-less Approaches

In contrast, marker-less approaches deduce full-body human motion datafrom multi-view images
without requiring the actors to wear any special garment or markers, seealso Figure 2.1 (b). This
makes such systems easier to use and less intrusive than marker-based approaches. While eliminat-
ing some of the disadvantages of marker-based approaches, this generalization implies challenges
in its own and is still subject to active research, seee. g.Bregleret al. [2004]; Deutscher and Reid
[2005]; Bălanet al. [2007]; Pons-Mollet al. [2010, 2011]; Stollet al. [2011]. The following
overview over state-of-the-art approaches was published in Heltenet al. [2013c].

Most marker-less approaches use some kind of underlying body model such as skeletons aug-
mented by shape primitives like cylinders (Bregleret al.[2004]), surface meshes (Gallet al.[2009];
Pons-Mollet al. [2010]; Liu et al. [2011]) or probabilistic density representations attached to the
human body Stollet al. [2011]. Optimal skeletal pose parameters are often found by minimiz-
ing an error metric that assesses the similarity of the projected model to the multi-viewimage
data using features. Local optimization approaches are widely used due totheir high efficiency,
but they are challenged by the highly multi-modal nature of the model-to-image similarity func-
tion Stollet al. [2011]; Liu et al. [2011]. Global pose optimization methods can overcome some
of these limitations, however at the price of needing much longer computation times, seee. g.
Deutscheret al.[2000]; Gallet al.[2009]. Some approaches aim to combine the efficiency of local
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methods with the reliability of global methods by adaptively switching between them(Gall et al.
[2009]). Even though marker-less approaches succeed with a slightly simpler setup, many limi-
tations remain: computation time often precludes real-time processing, recording is still limited
to controlled settings, and people are expected to wear relatively tight clothing. Furthermore,
marker-less motion capture methods deliver merely skeletal motion parameters.

In contrast, marker-less performance capture methods go one step further and reconstruct de-
forming surface geometry from multi-view video in addition to skeletal motion. Somemeth-
ods estimate the dynamic scene geometry using variants of shape-from-silhouette methods or
combinations of shape-from-silhouette and stereo, seee. g. Starck and Hilton [2005, 2007a,b];
Matusiket al. [2000]. But, in such approaches, establishing space-time coherence isdifficult.
Template-based methods deform a shape template to match the deformable surface in the real
scene, which implicitly establishes temporal coherence (de Aguiaret al.[2008]; Vlasicet al.[2008]),
also in scenes with ten persons. All the developments explained so far aim towards the goal of
high-quality reconstruction, even if that necessitates complex and controlled indoor setup.

2.1.4 Advantages and Disadvantages

One particular strength of optical marker-based systems is that they provide positional motion data
of high quality. In particular, the data can be used to compute several othermotion representations
that are of practical use in many fields. However, requiring an array ofcalibrated high-resolution
cameras as well as special garment equipment, such systems are cost intensive in acquisition
and maintenance. This drawback is partly removed by marker-less mocap systems, but overall
the effort to setup and calibrate the system stays high. Furthermore, many of the available optical
mocap systems are vulnerable to bright lighting conditions thus posing constraints on the recording
environment (e. g.illumination, size of the capture volume, indoor).

2.2 Inertial Sensors

In contrast to marker-based reference systems, inertial sensors impose comparatively weak con-
straints on the overall recording setup with regard to location, recording volume, and illumination.
Furthermore, inertial systems are relatively inexpensive as well as easyto operate and to main-
tain. Therefore, such sensors have become increasingly popular andare now widely used in many
commercial products. However, inertial sensors do not provide positional data relative to a global
coordinate system, which renders them difficult to use as a direct replacement for optical mocap
systems.

2.2.1 Inertial Measurement Unit

The key-component of an inertial sensor-based mocap system is the so-calledinertial measurement
unit (IMU), which consists of two inertial sensor types, the accelerometer andthe rate-of-turn
sensor and one additional magnetic field sensor, see Figure 2.4 (a). All these sensor are nowadays
put together into a small box that can easily be attached to an object or person. By fusing the
information from all three sensor types, the IMU is able to tell its orientationq with respect to
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Figure 2.4. Working principle of inertial sensor-based mocap.(a): An inertial measurement unit (IMU)
consists of an accelerometer, a rate-of-turn sensor, and a magnetic field sensor. By fusing all these informa-
tion, an IMU can determine its orientation with respect to anglobal coordinate systemFGS. (b): To capture
human motion data, several IMUs are attached to a person.(c): The resulting data are the orientations of
all IMUs with respect to the common global coordinate systemFGS.

some global coordinate systemFGS. As mentioned above, inertial sensors cannot be used to infer
meaningful positional information relative to a global coordinate system. Thisstems from the fact
that positions have to be deduced from measured accelerations by twofoldintegration. Because of
the measurement noise, this induces a large drift to the derived positions. Without compensating
for that drift, the derived positions cannot be used practically. However, by attaching several IMUs
to the limbs of an actor’s body (Figure 2.4 (b)), one can obtain dense rotational information and
deduce relative positional information about the actor’s limb configuration,see Figure 2.4 (c).

The process of obtaining the orientationq involves several steps, which we will explain briefly
in the following. The three sensors included in the IMU provide three basic measurements: the
accelerationa ∈ R3, the rate-of-turn or angular velocityω ∈ R3, and the vector of the magnetic
field µ ∈ R3. Note that the measured acceleration always contains, as one component,the acceler-
ation caused by gravity. Therefore, the measured accelerationa can be thought of a superposition
a = q[m + g] consisting of the gravityg and the actual accelerationm of the motion, see also
Figure 2.5 (a). Here, the quantitiesa, ω, andµ are given in the sensors’s local coordinate system
FLS, while m and g are given in the global coordinate systemFGS. The termq[·] represents the
transformation from the global coordinate system to the sensor’s local coordinate system (see also
below).

If ‖m‖ is small with respect to‖g‖, a can be used as approximation ofg. This fact is often exploited
in many portable devices such as recent mobile phones to calculate the device’s orientation with
respect to the canonical direction of gravity (Lee and Ha [2001]). We use this fact, to define one
axisZ of our global coordinate systemFGS:

g ≈ a, if ‖m‖ ≈ 0, (2.8)

⇒ ĝ :=
g
‖g‖
≈

a
‖a‖

, (2.9)

Z := ĝ. (2.10)

In order to obtain a valid global coordinate system, we need to define another axis. Most IMUs
use the measurements of the magnetic field sensor to derive the canonical direction “north” N̂.
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(a)
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FLS
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g

m

m

a

(b) ‖m‖ ≈ 0⇒ a ≈ g

X ‖ µ⊥g

µ

Z := ĝ

FGS

X
Y

FLS

(c) ‖m‖ ≈ 0⇒ a ≈ g

X

Y := Z × X
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X
Y
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q

Figure 2.5. Measurement of the global coordinate systemFGS. (a): The measured accelerationa is a
superposition of the acceleration induced by gravityg and the acceleration due to motionm. (b): If m
is negligible, the measured accelerationa can be considered a good approximation forg. The direction
of gravity ĝ defines the first axis of the global coordinate systemFGS. The second axis,X, is defined
by the components of the magnetic field vectorµ that are perpendicular toZ. (c): The axisY is defined
to be perpendicular to bothX andZ so that all three axes form a right handed coordinate system.The
transformation fromFLS to FGS is denoted byq.

This involves calculating the offsets inclination and declination between the direction to the north
magnetic poleN andN̂, which depend on the position on earth, whereN is measured. For further
reading on this topic we refer to Baak [2012]. In the following, we useµ instead ofN̂ to define
FGS. By projectingµ onto the horizontal plane defined by its normal directionZ, we obtain the
direction of theX-axis of the global coordinate systemFGS. To be precise, we define

µ⊥g := µ − ĝ 〈µ, ĝ〉 ,and (2.11)

X :=
µ⊥g

‖µ⊥g‖
, (2.12)

see also Figure 2.5 (b). Here,〈·, ·〉 is the inner product of two vectors. Furthermore, we define
Y := Z×X, where× is the cross-product of two vectors inR3. Finally, the orientationq is defined
as the rotation to transform a vector fromFLS to FGS. As in Section 2.1.2, the transformation itself
is denoted byq[·] and represented as unit quaternion, see Figure 2.5 (c). The inverserotation is
referred to byq.

2.2.2 Stabilization using Rate-of-Turn

The above definition ofFGS has one important flaw. It assumes that‖m‖ is small. This might be
true in some situations such as when the sensor is in rest or moves at constant speed. In general,
however, this is not true. In particular, when capturing human motions which, involves complex
muscle driven dynamics, the assumption does not hold. For this reason, themeasurements from
the rate-of-turn sensor are employed to stabilize the estimation ofFGS. To be precise,ω represents
the angular velocity of the inertial sensor or how the local coordinate system FLS changes its
orientation with respect to the global coordinate systemFGS over time, see Figure 2.6 (a). Equally
one can say that−ω represents how the global coordinate systemFGS changes with respect toFLS,
see Figure 2.6 (b). To compute the change over time (Ẋ, Ẏ, Ż) of the axes (X,Y,Z) of the coordinate
systemFGS, one has to convert the quantity−ω from FLS to FGS. This can be done by usingq,
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Figure 2.6. Prediction of howFGS changes over time usingω. (a): ω is measured by the sensor and
describes howFLS changes with respect toFGS. Here,ω is defined insideFLS. (b): In contrast,−ωGS

represents howFGS changes with respect toFLS. Note that here,−ωGS = q[−ω] is defined insideFGS.
(c): The changes of the coordinate axes (X,Y,Z) of FGS can now be expressed with: (Ẋ, Ẏ, Ż) = (−ωGS×

X,−ωGS× Y,−ωGS× Z).

and is mathematically expressed by

−ωGS = q[−ω]. (2.13)

Now, the change of the coordinate axes is defined as

Ẋ = −ωGS× X, (2.14)

Ẏ = −ωGS× Y,and (2.15)

Ż = −ωGS× Z, (2.16)

see also Figure 2.6 (c). For further reading, we refer to Murrayet al. [1994]. With (Ẋ, Ẏ, Ż) given
at a point in timet and the axes (Xprev,Yprev,Zprev) of FGS defined at some previous timetprev, one
can calculate a prediction fore. g.theX-axis ofFGS with

Xpred := Xprev+

∫ tpred

tprev

Ẋ dt. (2.17)

This holds analogously forYpred, andZpred.

To recapitulate, one can useω to predict the orientation ofFGS with respect toFLS in situations‖m‖
can not considered to be small. However, this prediction only works for a small amount of time,
sinceω is subject to noise and integrating over a longer time will likely result in the prediction of
FGS drifting away from the definition ofFGS usinga andµ, if ‖m‖ ≈ 0.

In practice, the computation ofFGS is often realized in a predictor/corrector scheme using a
Kalman filter, which was presented in Kalman [1960]. Here, the angular velocity ω serves in
a predictor forFGS. As corrector, the definition ofFGS usinga andµ is employed. This results in a
drift-free definition of the global coordinate systemFGS, which is—to a great extend—independent
of the individual IMU. This last fact is especially important in the context ofhuman motion data
acquisition, where the measurements of several IMUs is related to each other. For details and
further reading, we refer to Lee and Ha [2001]; Kempet al. [1998]; Luinge and Veltink [2005].
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2.2.3 Motion Data Representations

Besides the directly measured quantities such as the accelerationa, the angular velocityω, the
magnetic fieldµ, or the orientationq, inertial sensors can be used to derive many more interesting
motion data representations that are used in practice. For example, when placing IMUs densely
(in general one per limb) on a person to track, the orientations of the sensors can be used to derive
a skeleton representation—including joint angles—which is similar to the one obtainable using
optical sensor-based systems. This is for example used in the commercial solution provided by the
Xsens MVN system3. However, the usage of a feasible number of IMUs is constrained by their
cost. Furthermore, an estimation of the global position of the skeleton with respect toFGS is not
possible.

2.2.4 Advantages and Disadvantages

Inertial sensors in the context of human motion data acquisition have one important advantage:
they do not need visual cues and work in almost every environment. This enables their application
in places, where optical systems do not work reliably or where optical systems cannot be set
up. In other words, inertial sensor-based systems can be used, where large recording volumes
are required or where the lighting conditions can not be controlled. Furthermore, their reduced
acquisition and setup costs make them available to a larger number of users. For these reasons,
they are often used in low-cost movie productions or in sports training analysis. However, they
have the drawback that they only measure their orientation and not their position with respect to
some global coordinate system. For that reason, it is not possible to tell the global position of
a person to be captured or the relative positions of several actors in the same scene. Also, the
number of IMUs that are required for full body motion capture renders itstill impractical to be
used in home application scenarios.

2.2.5 Virtual Sensors

Local accelerations and directional information, as provided by inertial sensors, can also be gener-
ated from positional information that comes from an optical mocap system. Thisconcept is called
virtual sensor, since it simulates the output of a sensor, which does not exist in reality. Inthis con-
text, we assume that a skeleton representation is present and its pose parameters can be obtained
using the techniques described in Section 2.1.2. Now, a virtual sensor is considered to be rigidly
attached to one bone of the skeleton. Given pose parametersχ, one can calculate the location
and orientation of the sensor’s local coordinate systemFLS with respect to the global coordinate
systemFGO, which is defined by the optical marker-based tracker. Note that the global coordinate
systemFGO is not the same as the global coordinate systemFGS defined earlier in this section.
Nevertheless, since it is the same for all virtual sensors, it can be used tocalculate a meaningful
orientationq. Similarly, the positionp of the sensor with respect to the global coordinate system
FGO can be computed. The global accelerationm is now obtained by double differentiation ofp.
By adding the gravity vectorg and transforming this quantity to the virtual sensor’s local coordi-
nate systemFLS usingq, one finally gets the local accelerationa = q[m+ g]. In the same way, also

3http://www.xsens.com/en/general/mvn

http://www.xsens.com/en/general/mvn
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(a) (b) Front Side

Figure 2.7. (a): Intensity images obtained from a traditional RGB-camera.(top-left): Red channel.(top-
right): Green channel.(bottom-left): Blue channel.(bottom-right): Reconstructed color image.(b):
Typical data obtained from a depth sensor. Red pixels are points close to the camera. Blue pixels are points
far away from the camera.(left): Displayed from the front.(right): Displayed from the side.

suitable values forω andµ could be computed. In this thesis, however, we will only use virtual
sensors to obtain values forq anda.

2.3 Depth Sensors

The third sensor modality covered in this thesis are so-called depth sensors. This sensor modality
is related to optical sensors, described above, in the sense that they alsouse a camera to capture a
scene from a given point of view. However, the provided data fundamentally differs. Traditional
cameras, as used by optical mocap systems, provide a so-called intensity image. Here, each pixel
of the image represents the intensity of light of a specific wavelength. In case of a standard RGB-
camera, by combininge. g.the intensities of red, green, and blue light, a colored image covering a
large portion of the color-space perceptible by humans can be reconstructed, see Figure 2.7 (a).

In contrast, depth cameras provide an image, where each pixel contains the distance of a point in
the scene with respect to the camera. From such a so-called 2.5D depth map,a point cloud can be
deduced, which gives an approximate 3D reconstruction of the scene. Since depth sensors are not
much larger than intensity-based cameras, they provide an attractive way toobtain 3D geometry
from a single viewpoint. However, since the scene is only captured from asingle viewpoint,
only surfaces are captured that are directly visible to the camera. An example can bee seen in
Figure 2.7 (b).

2.3.1 Time of Flight Approaches

Currently, among depth sensors, there exist two different approaches using eithertime-of-flight
(ToF) or structured light. Time-of-flight cameras measure the time∆t the light takes to fly the
distance∆x between a point in the scene and the camera. Since the speed of lightc is constant,
this yields

∆x = c · ∆t. (2.18)
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Figure 2.8.Working principle of a time-of-flight depth sensor.(a): The sensor seen from the front with the
infrared light source surrounding an infrared camera.(b): The light source emits modulated light, which is
reflected by the scene and captured by the camera.(c): The light modulation follows a sinusoidal pattern
(top) with frequencyfmod, which is attenuated and phase shifted, when received from the scene (bottom).
From the phase offsetϕ, measured by four samplings A,B,C, and D per full modulationcycle, the distance
of a point in the scene can be deduced.

However, measuring∆t directly is not feasible, for that reason current ToF cameras use indirect
techniques. Exemplarily, we will sketch the approach used by the SwissRanger camera by Mesa
Imaging4. Other ToF-based depth sensors are constructed by PMD5 or SoftKinetic6. Some of
the images in this section are inspired by the manual for the SwissRanger SR4000 camera. The
mathematical background is based on Kolbet al. [2009].

The main components of the SR4000 camera are same as for every other camera using the ToF
approach: a controllable infrared light source and an infrared camera, see Figure 2.8 (a). In the
case of the SR4000, the infrared light source emits modulated light, which is reflected by the scene
and captured by the infrared camera, see Figure 2.8 (b). This modulation can be thought of as a
sinusoidal change in the intensity of the emitted light and could be modeled by the function

s(t) := cos(ω t),with (2.19)

ω := 2π fmod. (2.20)

Here, fmod is the modulation frequency of the light source. An example of such an intensity change
is depicted in Figure 2.8 (c, top). Now, the received light in each pixel of the sensor of the camera
is represented by the function

r(t) := b+ a · cos(ω t + ϕ). (2.21)

Here,a < 1 represents the attenuation of the signal,b is some constant bias, andϕ is the phase
offset between the emitted signals and the received signalr, see also Figure 2.8 (c, bottom). This
phase offsetϕ originates in the time the light took to travel from the light source into the scene
and back to the camera. As a consequence,∆x can be deduced by calculatingϕ. In practice, the

4www.mesa-imaging.ch
5www.pmd.com
6www.softkinetic.com
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parametersa, b andϕ, are obtained by sampling a so-called mixing functionm, defined as

m(τ) = s⊗ r (2.22)

= lim
T→∞

∫ T/2

−T/2
s(t) · r(t + τ) dt (2.23)

=
a
2

cos(ωτ + ϕ), (2.24)

at different phase offsetsτi =
π
2 i, i ∈ {0, . . . ,3}. The four resulting samples are calledA = m(τ0),

B = m(τ1), C = m(τ2), andD = m(τ3), see also Figure 2.8 (c). Now, we can compute

ϕ = arctan2(D − B,A−C),and (2.25)

∆x = c · ∆t =
c

2ω
ϕ =

c
4π fmod

ϕ. (2.26)

This procedure is conducted for each pixel in the depth image independently.

Note that, using the above formulation, the effective measurable distance∆x of any point is
bound to the interval [0, c

4π fmod
), which is dependent on the modulation frequency of the light.

For example, if the modulation frequency is around 15 MHz, the interval is around [0,10) m. All
distances outside this interval are implicitly mapped into this interval. For example, incase of
fmod = 15 MHz, an object at 12 m distance would appear to be at 2 m distance and so forth. In
practice, the phase offset is determined using not only one set of samples but several, which are
drawn over time. This is required to reduce the influence of noise to the measurement. Unfor-
tunately, this also gives rise to systematic errors in situations, where the distance to be measured
changes during the measurement,e. g., when parts of the scene move. In this case, some of the
measurements might stem from an object in the static background and some of the measurements
origin from an object in the foreground. This also happens, in static scenes, close to corners of
an object in the foreground. The resulting distance is some kind of average between the depth
of the background and the foreground. As consequence, these depth pixels seem to fly, detached
from geometry, in the scene. For this reason, this kind of error is called “flying pixels”, see also
Figure 2.10 (a).

Another typical error related to ToF-based Depth sensors is that originally sharp concave corners
look rounded and smooth in the measured depth image. This error is related to the fact that light
does not always take the shortest path from the light source to the camera. An example is shown
in Figure 2.10 (b), where a part of the light is not directly reflected to the camera but bounces of
the wall a second time. In this case, since the sensor averages over several measurements, the
measured distance is higher than the real distance. This kind of error is called “multi path error”.
For further details on ToF imaging and its applications, we refer to Daviset al. [2013].

2.3.2 Structured Light Approaches

The other approach to obtain depth images is by means of structured light projection as,e. g.,
employed by sensors using the design by Primesens7 such as the first Microsoft Kinect8 or the

7www.primesense.com
8www.microsoft.com/en-us/kinectforwindows

www.primesense.com
www.microsoft.com/en-us/kinectforwindows
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Figure 2.9. Working principle of depth cameras that use the structured light approach such as the Asus
Xtion or the Microsoft Kinect.(a): Depth camera with locations of the infrared projector and the infrared
camera. The distance between projector and camera is calledbaseline.(b): The projector projects a point
pattern into the scene.(c): From the 2D-location of a point group in the pattern, seen from the camera
(red), relative to the 2D-location of the same point group “seen” from the projector (gray), the distance of
the point group to the sensor can be deduced.

Asus Xtion PRO LIVE9. The central components of such sensors are an infrared projector and an
infrared camera that are separated from each other by a fixed offset, called thebaseline, see also
Figure 2.9 (a). Note that the middle “eye” depicted in the figure is a standard RGB intensity camera
that is not used for obtaining 3D information and which is ignored in the following discussion.

The projector is used to project a fixed point pattern into the scene, see also Figure 2.9 (b). Depend-
ing on the distance and the baseline between the infrared camera and the projector, the observed
pattern is distorted compared to the projected pattern. This effect is called depth dependent dis-
parity. In the following, we consider the observed pattern and the projected pattern as two images
of the same pattern. Algorithms which infer the original depth from two such images are called
depth-from-stereo approaches or depth-from-disparity approaches. Here, for every point in the
one image, the semantically same point is identified in the other image and their relative offset—
their disparity—is calculated. Finally, the distance of the point can be deduced from the disparity,
if the baseline of the cameras and their intrinsic parameters are known.

The näıve approach to identify semantically similar points would be to search for everypoint in the
projector image the corresponding point in the camera image. However, the process of identifying
semantically same points for general images is computationally complex and proneto errors, when
the appearance or lighting differs too much in both images. For this reasons, practical implemen-
tations use different approaches for identifying corresponding parts of the images. Unfortunately,
the exact technical details how this is done are not disclosed by the camera manufacturer10.

The most probable approach to speed up the process of finding correspondences would be to design
a pattern that by looking at an arbitrary group of points, the position with respect to the whole
pattern can be deduced. This could be achieved by either encoding coordinates in the pattern or
by making each point group of the pattern somehow unique. Independentof how exactly this is
achieved, the design needs to be robust to strong distortions of the patternand partial occlusions.
Now, independent of what actual algorithm was chosen to identify correspondences, the depth is

9www.asus.com/Multimedia/Xtion_PRO_LIVE
10PrimeSense Patent WO 2007/043036 A1

www.asus.com/Multimedia/Xtion_PRO_LIVE
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Figure 2.10. (a): “Flying pixels” effect that occurs if an object in the foreground is moving relative to a
ToF-sensor. Light for the depth measurement of one pixel might stem from both, the foreground and the
background.(b): The light for measuring the distance from one point in the scene might have taken not only
the shortest path but multiple, possibly longer paths. This“multi-path” effect resultse. g.in sharp concave
corners observed by a ToF-sensor to appear rounded.(c): Artifacts of structured-light-based approaches.
(left): Cloudy appearance of the depth data.(right): Quantized depth values.

calculated based on the disparity of two corresponding point groups, see Figure 2.9 (c).

Structured light-based approaches, in contrast to ToF approaches, only need a single image or
measurement per time frame to obtain an depth estimate. This makes them robust to motion
related artifacts such as flying pixels. Furthermore, multi-path-related problems also do not occur.
However, the use of point groups for estimating the distance results in distance measures that are
not point accurate but appear cloudy, see Figure 2.10 (c, left). Also,since the 2D-locations of
the single points of the group are measured by a camera sensor with a finite spatial resolution,
the resulting depth values are quantized, see Figure 2.10 (c, right) For further information on how
structured light approaches work in detail, we refer to Zhanget al. [2003].

2.3.3 Motion Data Representations

Depth image. The most fundamental data representation that is obtained from a depth sensors
is a so-called depth imageI, which is similar to a color image but encodes in each pixel the
distance to a point in the scene. An example of a depth image is shown in Figure 2.7 (b, left) and
Figure 2.10 (c, left).

Point Cloud. Using the intrinsic and, optionally, extrinsic parameters of the depth camera, one
can deduce a point cloud of the scene from the depth image. Note that for each pixeli in the depth
image maximal one pointpi ∈ R

3 in the scene can be reconstructed. This also implies that there
is no information of points that are not exposed to the camera. An example of such a point cloud
is shown in Figure 2.7 (b, right) and Figure 2.10 (c, right). Here, only the front half of the person
is visible in the point cloud.

Joint angles and surface mesh. Determining pose parameter or mesh representations from
depth images is an active field of research. In this thesis, we will contribute tothis field tech-
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niques and concepts that are presented in Chapter 5 and Chapter 6. An elaborated introduction
into algorithms that deduce such high-level representations of human motion data from depth im-
ages is given in Section 5.1.

2.3.4 Advantages and Disadvantages

Depth camera-based systems present an easy way to obtain rich 3D geometry information from a
scene. Additionally, the 3D data enables easier foreground/background segmentation compared to
optical marker-less systems. Furthermore, even monocular depth data provides information rich
enough for many full-body human motion capture approaches in controlled scenarios. in general,
however, tracking from depth data is a challenging problem as depth data issubject to noise and
systematic artifacts such as “flying pixels” or coarse quantization. Furthermore, monocular track-
ing approaches are susceptible to occlusion, where no information can bededuced. Here, one
näıve idea would be the use of multiple depth sensors at the same time.

But, the use of several depth sensors simultaneously bears its own challenge since these cameras,
in contrast to color cameras, interfere with each other’s measurement. In order to reduce the inter-
ference of multiple Kinects (structured light approach), Maimone and Fuchs [2012]; Butleret al.
[2012] apply vibration patterns to each camera. These vibrations have theeffect that the point
pattern projected by one Kinect looks blurred when seen from a different Kinect. In contrast, the
pattern does not look blurred for the Kinect it is projected from, since its projector is moved in the
same way its camera is.

In case of ToF-based depth sensors, interference can be avoided by using different modulation
frequencies for each camera. However, even when using multiple depth cameras, occlusions are
difficult to prevent in many scenarios. Also, similar to optical systems, depths cameras cannot be
used outside because the IR-light in the sun-light interferes with the IR-light emitted by the depth
camera. Additionally, depth data, compared to color images, only reveals little information about
the configuration of rotational symmetric parts of the body such as arms and legs. We will address
some of these challenges in Chapter 6.



Chapter 3

Cross-modal Comparison and
Reconstruction of Motions

The analysis and synthesis of human motion data plays an important role in various application
fields ranging from computer animation (seee. g.Dontchevaet al. [2003] or Leeet al. [2002]) to
sports sciences (seee. g.Boissyet al. [2007]) and medicine (seee. g.Liu et al. [2009]). For ex-
ample, in movie animations, one key objective is to create naturally looking motion sequences
(Arikan et al. [2003]). Here, a standard procedure is to use prerecorded human 3D motion capture
data to animate virtual characters (seee. g.Chai and Hodgins [2005], Pullen and Bregler [2002],
or Shiratori and Hodgins [2008]). In online scenarios, such as computer games, low-dimensional
control signals are often used to generate a wide range of task-specifichigh-quality motion se-
quences (seee. g.Leeet al.[2002] or Shiratori and Hodgins [2008]). In medical care and rehabili-
tation scenarios, motion capturing techniques are employed for monitoring patients and for detect-
ing abnormal motion patterns (Boissyet al.[2007]). In sport sciences, motion data is recorded and
analyzed in order to better understand and optimize the motions performed by athletes (Liuet al.
[2009]). In all of these application fields, the comparison of human motion sequences is of fun-
damental importance. Here, the notion of similarity used in the comparison does not only depend
on the respective motion representation but also on the specific application (Müller [2007]). For
example, in a rehabilitation scenario, one may be interested in only comparing selected parts of the
human body with previously recorded motions of the same patient in order to measure the progress
over the period of treatment (Boissyet al. [2007]). This may require a rather strict notion of sim-
ilarity. In other applications such as data-driven computer animation, one objective is to retrieve
full-body motions from a motion database allowing spatial and temporal variations in the com-
parison, which requires rather coarse notions of similarity (seee. g.Kovar and Gleicher [2004]
or Müller et al. [2005]). Finally, the comparison of motion data obtained from different sensor
modalities has gained in importance in applications such as data-driven computer animation (see
e. g.Slyper and Hodgins [2008], Wang and Popovic [2009], or Tautgeset al. [2011]).

In Tautgeset al. [2011] a real-time animation system is described, which allows for presenting
high-quality mocap sequences that were reconstructed from motions of a given database using
low-cost accelerometers as input devices. Here, the central component is a cross-modal matching
of continuously generated accelerometer readings against accelerations computed from existing
mocap data. Using four 3-axis accelerometers fixed at the hands and the feet, the authors report on

23
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Figure 3.1. (a): Actor wearing a suit with 41 retro-reflective markers as usedby an optical mocap system.
(b): Actress wearing a suit with 5 Xsens MTx Sensors.(c): Positions of 41 markers provided by the optical
system. (d): Locations of the sensors.(e): Limbs’ positions and orientations defined by the positions
of markers. (f): Inertial sensors measuring the orientation of the limb theyare attached to.(g): Limb
orientation expressed with respect to a global coordinate system.

promising reconstruction results. In the matching step, the authors use a mid-level representation
based on accelerometer data. To enhance the descriptiveness of the mid-level representation and
to reduce false positives, a so-calledlazy neighborhood graphis employed. This run-time efficient
data structure compares motions based on a time window to filter out accelerationtrajectories that
are not supported by motions in the database.

Contributions. In this chapter, we address the issue of cross-modal motion comparison while
investigating the expressiveness of various motion representations in the context of general motion
identification and retrieval scenarios. As one main contribution, we introduce various mid-level
feature representations that facilitate cross-modal comparison of various motion types. Here, the
main challenge consists of finding a good trade-off between robustness and expressiveness: on
the one hand, a mid-level representation has to be robustly deducible fromthe data outputted by
different mocap systems; on the other hand, the representation has to contain enough information
to found the basis for discriminating motions within a certain application task. In particular, we
show that certain low-dimensional orientation-based motion features are suited for accurately re-
trieving high-dimensional motion data as obtained from optical motion capturing.As a further
main contribution of this chapter, we introduce a general framework for expressing separation and
classification capability of different types of motion representations. These contributions have
been published in Heltenet al. [2011b]. For this reason, this chapter follows closely the explana-
tions in Heltenet al. [2011b], while adding some additional information.
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Figure 3.2. Illustration of the different feature values.(a): Measured accelerationas with respect to the
sensors local coordinate system.(b): Pitchθs of a sensor with respect to the plane defined by ˆa respectively
ĝ. (c): Roll ϕs of a sensor with respect to the plane defined by ˆa respectively ˆg.

Organization. The remainder of the chapter is organized as follows. In Section 3.2, we present
our general framework for evaluating the discriminative power of feature representations. Then,
Section 3.1, we introduce various mid-level feature representations that can be derived from the
different sensor modalities. Our experiments using this framework are described in Section 3.3,
where a special focus is put onto the investigation how the various featurerepresentations be-
have under motion variations such as changes in the execution speed. In Section 3.4, extending
this evaluation, we study the performance of different mid-level representations in the context of
cross-modal motion retrieval. In Section 3.5, we present the application of cross-model motion
comparison in the context of motion reconstruction. To this end, we give an introduction into the
approach presented by Tautgeset al. [2011] and explain how their approach employs techniques
presented in this chapter. Finally, in Section 3.6 we conclude with an outlook onfuture work.

3.1 Features

In order to compare human motion data across different sensor modalities, one needs common
mid-level representations that can be generated from the data outputted bythe different sensors.
On the one hand, such mid-level representations should be robustly computable from all modali-
ties, and, on the other hand, they should contain sufficient information to realize the intended ap-
plication. In the context of this chapter, our goal is to retrieve full-body motions from a database.
The motion data inside the database was captured utilizing an optical, marker-based mocap system
with 41 markers. The the query is given in form of a motion clip captured by five inertial sensors
s1, . . . , s5 that are placed at the hip next to the spine (s1), both lower arms (lefts2, right s3), and
both lower legs (lefts4, right s5), see Figure 3.1(a)–(d). Since all information supplied by the five
inertial sensors can be simulated using the 41 marker position (as shown in Section 2.2.5), we use
features close to the inertial data as common mid-level representation. Figure3.1(e)–(g) shows an
example of a common mid-level representation, where the direction of a limb is computed using
both optical and inertial data. In the following subsections, we introduce three different feature
representations based on local accelerations and directional informationbased on local and global
coordinate systems.
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Figure 3.3.Motion sequence consisting of six arm rotations, where the speed of the arm rotations increases
with each repetition. The pitch of the left forearm is shown,calculated by using̃θ2 (gray) andθ2 (black).

3.1.1 Local Acclerations

As a first simple feature representation, we directly use the local accelerations as outputted by the
accelerometers. We refer to Section 2.2 for an introduction into inertial sensors and the data they
provide. Using five inertial sensor unitss1, . . . , s5, this results in five local accelerationsas ∈ R

3

for s ∈ [1 :5]. We then simply stack these five acceleration vectors to form a single vector

va = (aT
1 , . . . , aT

5 )T/Ca ∈ Fa. (3.1)

Here,Fa := R15 denotes the resulting feature space andCa a constant used for normalization.
In our experiments,Ca = 20 turned out to be a suitable value. This normalization serves to
make the distances functions as introduced in Section 3.2.1 comparable across the various features
representations. Even though it is straightforward to derive local accelerations from inertial as well
as from marker-based mocap data, this feature representation is not onlyprone to noise but also
sensitive to motion variations as occurring when motions are performed by different actors. In
particular, accelerations crucially depend on local and global differences in the speed a motion is
executed, as will be discussed in Section 3.3.

3.1.2 Directions Relative to Acceleration

We now introduce a more robust motion representation which measures directions rather than
magnitudes. To this end, we define a global up-direction using the direction of the gravity vector
g. By doing so, We are able to define a two degrees of freedom orientation of the sensor’s local
coordinate system relative to this global up-direction. Inspired by aviation, we call these two
parameterspitch θs androll ϕs, see Figure 3.2.

Recall from Section 2.2 that each measured acceleration is a superpositionas = qs[ms+ g] consist-
ing of a componentms that corresponds to the acceleration due to the movement of sensorsand a
componentg that corresponds to the gravity (which is independent of the respectivesensor). Here
qs, s ∈ [1 : 5], are the orientations of the five inertial sensors. In other words,an accelerometer
always measures the acceleration caused by gravity, which is overlayedby the actual acceleration
caused by the motion. If the sensor does not move (ms = 0) the measured accelerationas is equal
to the gravity vectorqs[ g].

We can use this fact to calculate an approximation of the sensor’s pitch and roll using the direction
of as as approximation for the global up-direction. The smaller the accelerationms is the more
accurate this approximation becomes. These approximations denoted byθ̃s andϕ̃s, are defined as
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follows:

âs =
as

‖as‖
, (3.2)

θ̃s = 1−
2
π

arccos
〈

âs, (1,0,0)T
〉

, (3.3)

ϕ̃s = 1−
2
π

arccos
〈

âs, (0,1,0)T
〉

. (3.4)

Here, note that if the sensor’s localY-axis is perpendicular to the global up-direction, the pitch is
determined by the rotation around theY-axis. The resulting angle can be approximated by using
an inner product between theX-axis and ˆas approximating the up-direction, see Figure 3.2 (b).
Similarly, the roll can be derived from the inner product between theY-axis and the upward direc-
tion, see Figure 3.2 (c). In our definition, the resulting pitch and roll features, which we also refer
to asacceleration-based directional features, are normalized to lie in the range between−1 and 1.
Again, we stack these features for all five sensorss1, . . . , s5 to form a single vector

vâ = (θ̃1, ϕ̃1, . . . , θ̃5, ϕ̃5)T ∈ Fâ, (3.5)

whereFâ := R10 denotes the resulting feature space. Similar features are widely used in com-
mercial products, as for example smartphones or game consoles. As notedbefore, such features
are meaningful as long as the motion’s acceleration componentms is small. However, this as-
sumption does not hold for dynamic motions, which exhibit significant accelerations that in many
cases reach or even exceed the magnitude of gravity. In such cases, the measured accelerationas

may significantly deviate fromg, which leads to corrupted pitch and roll values during dynamic
motions, see Figure 3.3.

3.1.3 Directions Relative to Gravity

To address the above mentioned problem, one needs to approximate the global upward direction in
a more robust way—in particular during dynamic phases, wherems is not negligible. To achieve
such an estimation, simple accelerometers do not suffice. We therefore use an inertial measurement
unit (IMU) that outputs not only the local accelerations but also the sensor’s orientation with
respect to global coordinate system, see Section 2.2.1 and Section 2.2.2. Then, the direction ˆg can
be estimated by transforming the direction of the globalZ-axis by means of the sensor’s orientation
qs. More precisely, we define

ĝs = qs

[

(0,0,1)T
]

, (3.6)

θs = 1−
2
π

arccos
〈

ĝs, (1,0,0)T
〉

, (3.7)

ϕs = 1−
2
π

arccos
〈

ĝs, (0,1,0)T
〉

. (3.8)

Now, the valuesθs andϕs exactly define (up to measurement errors of the IMU) pitch and roll as
introduced in Section 3.1.2. The improvements in the case of highly dynamic motionsare illus-
trated by Figure 3.3, which shows the values ofθ̃2 andθ2 over a motion sequence containing six
arm rotations between (frames 210 and 575). Here, the arm rotations areperformed at increasing
speed, where the last rotation is performed almost three times faster than the first one. Whileθ2
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clearly shows the periodic fluctuation of the pitch during the rotation,θ̃2 fails to display any mean-
ingful information when the motion becomes faster. As before, we stack the pitch and roll features
for all five sensorss1, . . . , s5 to form a single vector

vĝ = (θ1, ϕ1, . . . , θ5, ϕ5)T ∈ Fĝ, (3.9)

whereFĝ := R10. The components are also referred to asgravity-based directional features.

The sensors we used here to determine the robust global upward direction provide the orientation
qs with all threedegrees of freedom(DoF). But, since were are only transforming one direction
(the global upwards direction) to the sensor’s local coordinate system, we actually only need two
DoF of the orientationqs. Hence, one can also use combinations of inertial sensors which only
consist of an accelerometer and a rate gyro, see also Luinge and Veltink [2005].

3.2 Evaluation Framework

In this section, we introduce a framework which is used to analyze the discriminative power of a
given feature representation. A similar framework was used in Müller and Ewert [2009] for com-
paring audio representations. LetQ be a query motion clip and letD be a document of a database
collection. The goal is to identify every sub-sequence ofD which is similar toQ. Figure 3.3 shows
an example were the document contains a motion sequence of roughly 15 seconds length captured
at 50 Hz. The sequence contains six instances (I1, . . . , I6) of arm rotations of both arms, rotated
in forward direction, beginning at frame 210 and ending at frame 575. The speed of the arm rota-
tions increases over time. This example sequence is also used in Figure 3.4 and in Figure 3.5 (top).
ConsideringI3 as query, the task is now to identify the other arm rotations within the sequence.

3.2.1 Distance Function

The first step for the retrieval of those instances is the transformation of the queryQ and the
documentD to suitable feature sequencesX = (X(1), . . . ,X(K)) with X(k) ∈ F for k ∈ [1 : K]
and (Y(1), . . . ,Y(L)) with Y(ℓ) ∈ F for ℓ ∈ [1 : L], respectively. HereF denotes the underlying
feature space. For instance, if we consider the feature representationva, one hasF = Fa = R15.
Furthermore, we define acost measure c: F × F → R. In the following, we simply use the
L2 distance as cost measure for the proposed feature representations. This is useful since our
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features are normalized—so theL2 is not mislead by strong outliers in the data—but other features
representations may require other suited cost measures.

In order to identify a sequenceX as sub-sequence insideY we usedynamic time warping(DTW)
to define a distance function∆ by

∆(ℓ) :=
1
K

min
a∈[1:ℓ]

(DTW (X,Y(a:ℓ))) . (3.10)

Here,Y(a : ℓ) denotes the subsequence ofY starting at framea and ending at frameℓ ∈ [1 :
L]. Furthermore, DTW(X,Y(a:ℓ)) denotes the DTW distance with respect to the cost measurec
(see M̈uller [2007] for details). To avoid degenerations in the DTW alignment we use the modified
step size condition with step sizes (3,1), (1,3), (2,1), (1,2), and (1,1) (instead of the classical step
sizes (1,0), (0,1), and (1,1)).

The interpretation of∆ is as follows: a small value∆(ℓ) for someℓ ∈ [1 : L] indicates that
the subsequence ofY starting at frameaℓ (with aℓ ∈ [1 : ℓ] denoting the minimizing index in
Equation (3.10)) and ending at frameℓ is similar toX. To determine the best match betweenQ
and D, one can simply select the indexℓ0 ∈ [1 : L] minimizing ∆. Then the best match is the
motion sequence corresponding to the feature subsequence (Y(aℓ0), . . . ,Y(ℓ0)). The value∆(ℓ0)
is also referred to as thecost of the match. To look for the second best match, we exclude a
neighborhoodaround the indexℓ0 from further consideration to avoid large overlaps with the best
match. In our case we exclude half the query length to the left and to the rightby setting the
corresponding values of the distance function∆ to ∞. To find subsequent matches, the above
procedure is repeated until a certain number of hits have been retrieved or the costs of the matches
are larger than a given threshold. Note that the retrieved matches can be naturally ranked according
to their costs.

3.2.2 Quality Measures

In the context of motion retrieval and classification, the following two properties of ∆ are of
crucial importance. Firstly, the semantically correct matches (in the following referred to as the
true matches) should correspond to local minima of∆ close to zero thus avoiding false negatives.
Similar to Müller and Ewert [2009], we capture this property by definingµX

T to be the average of
∆ over all indices that correspond to the local minima of the true matches for a given queryX.
Secondly,∆ should be well above zero outside a neighborhood of the desired local minima thus
avoiding false positives. Recall from Section 3.2.1 that we use half the query length to the left and
to the right to define such a neighborhood. The region outside these neighborhoods is referred to as
false alarm region. We then defineµX

F to be the average of∆ over all indices within the false alarm
region. For our example shown in Figure 3.4, these values are indicated bysuitable horizontal
lines. In order to separate the true matches from spurious matches, it is clear thatµX

T should be
small whereasµX

F should be large. We express these two properties within a single number by
defining the quotientαX := µX

T/µ
X
F . In view of a good separability,αX should be close to zero. The

quality measureαX is rather soft, since unrelated regions with very large∆-values may result in a
smallαX-value. We therefore introduce a stricter quality measure by considering only the smallest
∆-values in the false alarm region. To this end we define the quantityµ

X,5%
F which represents only

the mean of all those values of∆ within the false alarm region which are smaller than the 5%
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Figure 3.5. Distance functions shown for the motion sequences containing arm rotations (EX 1, top) and
jumping jacks (EX 2, bottom) which are performed at increasing speed. The following feature representa-
tions were used:va (thin gray),vâ (thick gray), andvĝ (thick black).

quantile of this region. The corresponding measure is referred to asβX := µX
T/µ

X,5%
F , which is

stricter thanαX.

3.3 Feature Evaluation

In order to evaluate the presented feature representations, we use captured motion sequences using
five Xsens MTx sensors. The sensors were placed on the lower arms, the lower legs and the hip
of the body (see Figure 3.1). The relative orientations of the attached sensors with respect to the
limbs were chosen such that the localX-axis of a sensor is parallel to the bone of the corresponding
limb. As a consequence, pitch and roll of the sensor can be directly relatedto the pitch and roll of
the corresponding limb.

3.3.1 Speed Dependence

In a fist experiment, we continue with our arm rotation example. Based on the quantitative mea-
suresαX andβX, we now study the discrimination capability of various feature representations.
Using the same instanceI3 of the arm rotations as queryQ as in Figure 3.4, all instancesI1, . . . , I6

are considered as true matches. The corresponding distance functionsfor all three feature rep-
resentation introduced in Section 3.1 are shown in Figure 3.5 (top). It can be seen that only the
distance function of the feature representationvĝ (thick black) has distinct local minima at every
location of the true matches that are indicated by the vertical red lines. Besides the instanceI3

(which served as query), the other distance functions only show a localminimum at the end of
instanceI4. This can be explained as follows. While instanceI4 was performed at almost the
same speed as the query instanceI3, the other instances were performed at considerable different
speeds. The instancesI1 andI2 were performed slower and the instancesI5 andI6 were performed
faster. Although, the DTW based distance measure is able to compensate forthe length differences
imposed by performance variations, there are other variations among the motion instances beside
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EX 1 µX
T µX

F αX µX
T µ

X,5%
F βX

va 0.173 0.161 1.071 0.173 0.119 1.452
vâ 0.087 0.135 0.647 0.087 0.080 1.096
vĝ 0.027 0.131 0.209 0.027 0.056 0.489

EX 2 µX
T µX

F αX µX
T µ

X,5%
F βX

va 0.245 0.276 0.887 0.245 0.246 0.992
vâ 0.109 0.237 0.459 0.109 0.202 0.538
vĝ 0.038 0.158 0.238 0.038 0.134 0.282

Table 3.1.Values of the quality measures for the different feature representations. The values belong to the
two experiments described in Section 3.3.1.

simple length differences. Here, the large warping costs between the query and the database in-
stances do not stem from temporal deformations but disagreeing featurevalues. In other words,
speed variations do not only impose length differences but also varying feature values. We want
to stress that this effect largely depends on the used feature set.

Such behavior can be explained by recalling the way the feature representations have been com-
puted. The feature representationsva andvâ make use of the locally measured sensor acceleration
as. As said before, the measured accelerationas is a superposition of the acceleration due to move-
mentms and the acceleration due to gravitygs. While g is always constant,ms largely depends on
the execution speed of the motion. Let us consider two instances of the same motion performed at
different speeds. If the motion is performed with doubled speed the acceleration due to movement
will be four times larger. As a consequence the value ofas largely dependents on the speed of the
motion and so the feature representationsva andvâ do as well. In contrast,vĝ does not make use
of the measured accelerationas and is therefor not affected by the variations of the performance
speed.

Another example illustrating this effect is shown in Figure 3.5 (bottom), where six jumping jacks
(frames 210–510) were performed with increasing speed. Here, the first repetitionI1 was taken
as query. Although all three distance function clearly exhibit local minima at all six true match
positions, the distance function with respect to the feature representationva rises continuously
during the performance of the jumping, resulting in very high values at the true matching positions
compared to the regions of the distance function where no jumping jacks wereperformed. This
is also indicated by the values of the quality measures shown in Table 3.1, where EX 1 is the first
experiment with arm rotations and EX 2 is the second experiment with jumping jacks. In case
of EX 1 the value ofβX is 1.452 when using the feature representationva and 0.489 when using
vĝ. In case of EX 2, while all feature representations perform better, this relative improvement
stays the same. To conclude, in both cases the feature representationvĝ outperforms the other two
representations due to its immunity to the effects imposed byms.

3.3.2 Discriminative Power

In the following, we want to take a closer look on how the different feature representations perform
for the task of discriminating different motion classes. To this end, we set up a database consisting



32CHAPTER 3. CROSS-MODAL COMPARISON AND RECONSTRUCTION OF MOTIONS

CW
cartwheel
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GF
grab floor

JO
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JJ
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KI
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RF
rotate arm
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WA
walk

Figure 3.6. Motion classes used for the experiments in Section 3.3.2 andSection 3.4.

of ten motion classes with ten instances each. The motion classes used in the database are shown
in Figure 3.6. The motions are performed by three different actors in different styles and speeds
and recorded using five Xsens MTx devices. The resulting database consisting of 100 motion
documents is denoted as DBxse. For the evaluation of the discriminative power of the feature
representations, we use sub-sequence retrieval instead of documentbased retrieval. In document
based retrieval, the database consists of a set of pre-segmented motion documents. During the
retrieval the query motion is compared to each of the motion documents in a globalmanner. The
most similar motion documents are considered as the hits for a given query. Since such pre-
segmentation is unlikely to occur in practical retrieval scenarios, we evaluate the performance
of the proposed feature representations in a sub-sequence retrievalscenario. Here, a short query
motion is located as a sub-sequence within one large continuous database document. To this
end, we concatenate all 100 motion documents of the database DBxse to form one single database
documentDxse. Concatenating the motions in the mentioned way leads to more confusion during
the retrieval but it better resembles a realistic scenario.

We keep the knowledge which part of the documentDxse belongs to which of the original mo-
tion documents in a supplementary data structure. This knowledge is not usedfor retrieval but
only for the automatic evaluation of retrieval results. Each of the previouslymentioned 100 mo-
tion instances also serves as query to compute a total of 100 distance functions for every feature
representation. For each of these distance functions the values ofµX

T , µX
F , µX,5%

F , αX andβX are
calculated. In order to get a quality measure for a given feature representation over a set of queries
we average the values ofµX

T , µX
F , µX,5%

F , αX andβX over all distance functions which were cal-
culated using the same feature representation. We refer to the averaged quality measures asµT ,
µF , µ5%

F , α andβ. Table 3.2 (top) shows the results for this unimodal retrieval scenario. The rows
contain the values ofµT , µF , µ5%

F , α andβ for each of the feature representationsva, vâ andvĝ. It
can bee seen that the feature representationvĝ (α = 0.429,β = 0.753) outperforms the other two
feature representationsva (α = 0.537,β = 0.862) andvâ (α = 0.533,β = 0.839). Compared to the
two examples discussed in Section 3.3.1 the differences between the three feature representations
are not that big. But here, the retrieval scenario is more complex since several motion class can be
mixed up especially if they look similar under a given feature representation.
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unimodal µT µF α µT µ5%
F β

va 0.132 0.234 0.537 0.132 0.160 0.862
vâ 0.120 0.222 0.533 0.120 0.150 0.839
vĝ 0.088 0.205 0.429 0.088 0.125 0.753

cross-modal µT µF α µT µ5%
F β

va 0.194 0.233 0.822 0.194 0.166 1.275
vâ 0.160 0.211 0.752 0.160 0.151 1.093
vĝ 0.129 0.206 0.618 0.129 0.135 0.963

Table 3.2. Averaged quality measures for the different feature representations belonging to(top): the
unimodal scenario described in Section 3.3.2, and(bottom): then cross-modal scenario described in Sec-
tion 3.4.

3.4 Cross-modal Comparison

In Section 3.3.2 we evaluated the discriminative power of the feature representations in an uni-
modal scenario where both the queries and the database document consisted of measured inertial
motion data. In this section, we evaluate the feature representations in the context of a cross-
modal scenario, where the queries and the database contain different data modalities. In par-
ticular, we want to search in a database which comprises of high-dimensional 3D mocap using
low-dimensional inertial sensors as query input. In the following, we use the documents in the
database DBxse as queries. The database we want to search in consists of motion excerptsfrom
the HDM05 database described in Müller et al. [2007]. This database consists of high quality mo-
tions recorded by a 12 camera Vicon optical mocap system. Here, we use theC3D data containing
the marker positions to compute the virtual inertial sensors, see Section 2.2.5.These virtual sen-
sors enable us to calculate the inertial-based feature vectors as described in Section 3.1 for the
position-based data of a optical mocap system. Analogously to the DBxse database, we use ten
instances from the ten motions classes shown in Figure 3.6. This again sums upto a total of 100
motion documents denoted as DBc3d. To create a realistic retrieval scenario where we do not want
to assume a pre-segmentation of the motion data, we again concatenate all documents in DBc3d to
form one large continuous database document Dc3d. The frames of this document are annotated
by the corresponding class labels, which are used as ground truth in the evaluation below.

3.4.1 Quality Measures

To evaluate the discriminative power in a cross-modal scenario, we calculate the distance functions
on the database Dc3d for every query taken from DBxse as well as for every feature representation.
Analogously to Section 3.3.2, Table 3.2 (bottom) shows the averaged quality measures for the
cross-modal scenario. Here, the feature representationvĝ (α = 0.618,β = 0.963) performs best
again. Both acceleration based feature representationsvâ (α = 0.752, β = 1.093) andva (α =
0.822,β = 1.272) perform considerably worse. Compared to the unimodal scenario described in
Section 3.3.2 both measuresα andβ are worse for all feature representations. One reason for this
general degradation is the fact that the inertial data origins from two different sources (virtual and
real sensors). Another reason is that actors performing the motions arealmost disjunct for both
data sources; only one actor participated in both recording sessions.
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Figure 3.7. Confusion matrices(top) and true match distributions(bottom) of the three different feature
representations.

3.4.2 Class Confusion

The above presented quality measures are well suited to compare the behavior of different feature
representations in a quantitative manner. We now examine how motion classes are confused with
regard to a given feature representation.

As described in Section 3.2.1, we obtain for each match a corresponding interval [aℓ : ℓ] within
the database. Counting the ground-truth class labels for the frames within [aℓ : ℓ], we assign to
the underlying match the class label with the largest count. When the class label of a match is
equal to the motion class of the query, we call this atrue matchotherwise afalse match. As
there are ten instances of each motion class inside the database we get at most ten true matches.
Since we can assign costs to each retrieved match based on the distance function ∆, we get a
natural ranking of the retrieved matches. Considering the distribution of motion classes among
the ten best matches—those with the lowest matching costs—one gets a good impression how the
motion classes are mixed up under a given feature representation. A commonmeans to visualize
this areconfusion matrices, which are shown for the three feature representationsva, vâ andvĝ in
Figure 3.7 (top row). The rows of a confusion matrix represent the motion classes of the query,
whereas the columns represent the motion classes of the match. Dark entriesindicate a large
percentage of a motion class, whereas light colors indicate a low percentage. For example, the
matrices show that most of the motion classes are confused with the motion classCW (first column)
when using the feature representationva. One reason is that most of the motion classes appear as
short sub-sequences within the relatively long instances of theCW motion class, which are then
confused when using a local, sub-sequence retrieval. Here, a global,document-based retrieval
strategy may circumvent this problem, which, however, would require a suitable pre-segmentation.
Another reason is that the motion classCW shows a lot of variance among the different motion
instances even when performed by the same actor. In particular, the risk of confusion with the
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CW EK GF JO JJ KI PU RB RF WA Ø

va 0.29 0.72 0.80 0.74 0.87 0.40 0.58 0.37 0.32 0.59 0.57
vâ 0.56 0.67 0.53 1.00 0.65 0.45 0.63 0.40 0.48 0.81 0.62
vĝ 0.98 0.75 0.69 0.98 0.92 0.58 0.50 0.65 0.83 0.84 0.77

Table 3.3. Averaged maximal F-Measures for every feature representation and motion class. The last
column shows for every feature representation the average over all motion classes.

motion classCW is high for short and dynamic motions classes such asKI, PU, RB, andRF. In
contrast, using the directional feature representationvĝ the confusion is reduced significantly.

Another way of visualizing the matches retrieved for the queries of a givenmotion class is shown
in Figure 3.7 (bottom column). These matrices visualize the distribution of the truematches among
all retrieved motions. Every row of a matrix represents one query to the database. The columns
indicate the rank of a match from least cost (at the left) to largest costs (atthe right). Within one
row the color indicates whether a match for a given query (row) and a given rank (column) is a
true match (white) or a false match (black). The red line separates the ten matches with the highest
ranks from the rest of the matches. This kind of visualization gives a goodimpression whether a
given feature representation describes a given motion class well or not.For example, the motion
classJO is well represented when using the feature vectorsvâ andvĝ, whereas the motion classCW
is only well represented using the feature vectorvĝ. Examples of motion classes which are poorly
represented areRB andRF using the feature vectorva. This is due to the noise imposed by high
velocity differences—and resulting acceleration differences—among the arm rotations (see also
Section 3.3.1).

3.4.3 F-measure

To further quantify the retrieval results, we use another measure from the retrieval domain referred
to asmaximum F-measure. Let k, k ∈ [1 : K] be the rank of a given match, whereK is the
maximum rank (in our caseK = 100). Now, for everyk precision Pk andrecall Rk are defined as
Pk := |T ∩ Mk|/|Mk| andRk := |T ∩ Mk|/|T |. Here,Mk is the set of all matches up to rankk andT
the set of all possible true matches (in our case|T | = 10). Combining precision and recall values
for a given rankk yields the (standard) F-measureFk := 2 · Pk · Rk/(Pk+Rk). Now, the maximum
F-measure is defined asF := maxFk, k ∈ [1 : K]. Table 3.3 shows the maximum F-measure for
each motion class and every feature representation. The value was calculated by averaging the
maximum F-measures over all queries of each motion class. Finally, the last column shows the
average of all previous values over all motion classes. The better a given feature representation
discriminates a motion class against all other motion classes the larger is the corresponding entry
in the table. It can be seen that the feature representationvâ is well suited to identify instances
of motion classJO (1.00), whereas the feature representationvĝ performs particularly well for the
motion classesCW (0.98),JO (0.98), andJJ (0.92). Furthermore, the identification ofCW shows a
drastic improvement under the feature representationvĝ (0.98) in comparison tova (0.29). Also,
the arm rotationsRB andRF perform much better under the feature representationvĝ (0.65 and
0.83) compared to the acceleration based feature representationsva (0.40 and 0.48) andvâ (0.37
and 0.32). Interestingly, there are some exceptions wherevĝ does not outperform the other to
feature representations, as with the motion classesGF andPU. For example, in case of motion
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Figure 3.8. Overview of the motion reconstruction approach presented by Tautgeset al. [2011].

classPU, vĝ (0.50) is worse compared tovâ (0.63) and evenva (0.58). Here, on the one hand,
the orientations of both arms—including roll and pitch—shows large variationsamong the actors,
While, on the other hand, all punching motion exhibit characteristic peaks in the acceleration data.
But, in general, againvĝ is much better suited to identify most motion classes than the feature
representationsva andvâ.

3.5 Applications

in this section, we discuss an application of cross-modal motion retrieval. To this end, we take a
look on the approach presented in Tautgeset al. [2011], where the authors use techniques similar
to the ones presented in this chapter to facilitate real-time full-body reconstruction of motions
from sparse inertial input. In particular, they use the sensor data of four accelerometers s1, . . . , s4,
placed at the wrists and ankles of a person, to control the reconstruction. An overview of the
employed framework can be seen in Figure 3.8.

In a preprocessing step, a database containing high-dimensional mocap data, which has been
recorded using a traditional marker-based optical mocap system, is set up. As next step, the
authors employ a virtual sensor concept similar to the one presented in Section 2.2.5 to simulate
accelerometer readings of the four sensors mentioned above. These accelerations are then used to
compute a mid-level representation, which consists of the stacked accelerations of the four sensors.
Similar to Section 3.1.1 this a featureva defined by

va := (aT
1 , . . . , aT

4 )T ∈ R12. (3.11)

Now, during the online motion reconstruction, the readings from the four accelerometers serve
as input for retrieving a motion from the database that is similar to the performedmotion. The
retrieved motion is then used as basis for a motion synthesis step, which combines the motion re-
constructed so far, the retrieved motion and the sensor readings in a unifying optimization scheme.
This scheme ensures temporal coherence, similarity to the retrieved motion andsimilarity of the
accelerations induced by the reconstructed motion to the sensor readings.

Remember from the previous sections that the featureva has performed worst compared to the
other featuresvâ or vĝ. The authors in Tautgeset al. [2011] use pure accelerations as features to
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Figure 3.9. Schematic of the motion retrieval approach used by Tautgeset al. [2011]. (left): The sensor
readings a timet are converted into a mid-level representationva. (middle): Using ak-d tree theK (here,
K = 4) most similar frames in the database are identified.(right): The indices of thoseK frames are added
to the lazy neighborhood graph. The indices of consecutive frames are connected by an edge (red) if their
offset is 1 or 2. The longer the sequence the higher the probability that the matching motion sequence
resembles the query motion.

show what kind of motion reconstruction accuracy is obtainable.

To compensate for low descriptive power of the featureva and to facilitate real-time motion recon-
struction speed, they employ two key components: an online motion retrieval data structure for
motion retrieval and a combined optimization scheme for motion synthesis.

Motion retrieval. One important difference of the approach by Tautgeset al. [2011], compared
to the techniques explained earlier in this chapter, is the search algorithm to identify a motion in
the database. Because of the requirements of a real-time algorithm, the approach mentioned in
Section 3.2.1 cannot be used since it is too slow when the database becomes larger. Furthermore,
the approach introduced in Section 3.2.1 requires that the complete query is known. This might
not be possible in on online reconstruction scenario, where the sensor readings that serve as query
are obtained continuously.

For these reasons, the authors employ a different approach, where ak-d tree is used to index the
featuresva for every frame in the database. Now every time a new sensor reading arrives, its fea-
ture representation is used to retrieve theK closest neighbors based on thek-d tree. Sinceva has
little expressiveness the retrieved frames might stem from various motions that are semantically
not similar to the motion to be reconstructed. Therefore, the authors use a so-calledlazy neighbor-
hood graphto filter out unwanted results. A similar approach has been presented in Krügeret al.
[2010]. Here, the central idea is that if the database contains continuousmotion segments, a con-
tinuous query stream should result in a stream of retrieved indices that stem from similar database
locations.

The lazy-neighborhood graph keeps track of a history of the retrievedindices from thek-d tree.
Depending on the offset between an index at framet and an index at timet − 1, the two indices
are connected with an edge. These possible offsets are similar to the step sizes as used in the
DTW-based retrieval strategy described in Section 3.2.1. A sequence ofconnected indices ending
at the current time defines a motion segment in the database. The authors nowassume that the
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longer the sequence the higher the probability that the motion represented bythis sequence is
semantically similar to the performed motion. The longest sequences serve thenas basis for the
motion synthesis. For further details on the lazy neighborhood graph we refer to Tautges [2012]
and Kr̈ugeret al. [2010].

Motion synthesis. As said before, the motion synthesis step presented in Tautgeset al. [2011]
employs an optimization scheme that incorporates three priors. The first prior ensures that the
synthesized motion results in a pose explainable by the motions obtained in the motionretrieval
step. Here, not only the spatial properties, such as the joint positions areof interest but also the
kinematic behavior represented by the velocities and accelerations of the joints. The second prior
forces that the accelerations implied by the synthesized motion explain the accelerations measured
by the four sensors placed at the extremities of the body. Since this prior implements direct control
of the synthesis by the sensors measurements, it is referred to as controlprior. Finally, the third
prior induces that the noise of the sensors does not result in an unstablesynthesized motion. To
this end, it limits the possible accelerations between two consecutive frames. For further details,
we refer to Tautges [2012].

Discussion. The presented approach by Tautgeset al. [2011] shows how the concepts of cross-
modal motion retrieval can be used to facilitate real-time motion reconstruction using sparse in-
ertial sensors as input. However, there is still room for improvement. One possible direction of
further research is to include a more stable and expressive mid-level representation as for example
vâ or vĝ instead ofva. Also the inclusion of the information obtained by other sensors such as
optical or depth sensors might be helpful. In Chapter 6, we will present amotion reconstruction
approach that fuses information obtained from inertial sensors with information from a monocular
depth sensor.

3.6 Conclusions

The analysis of human motions using various types of motion capture has become a major strand
of research in areas such as sports, medicine, human computer interactionand computer anima-
tion. In particular, because of low cost and easy set-up, inertial-basedmocap systems are be-
coming more and more popular, even though these sensors provide less expressive mocap data
compared to optical systems. In this chapter, we have presented a systematicanalysis of various
feature representations that can be derived from customary inertial sensors. As one main re-
sult, we showed that directional features relating the sensor to the directionof gravity outperform
purely acceleration-based features within various retrieval scenarios. In particular, it turns out that
rate-of-turn data is necessary to enhance the roll and pitch estimates in the case of dynamic, fast
changing motions. As further contribution, we introduced a general separation measure based on
a local variant of dynamic time warping, which allows for assessing the discriminative power of
different features representations. We demonstrated how our feature representations can be used
within a cross-modal retrieval scenario, where inertial-based query motions are used to retrieve
high-quality optical mocap data.

Because of the increasing relevance of motion sensors for monitoring andentertainment purposes,
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the fusion of various sensor modalities as well as cross-domain motion analysis and synthesis will
further gain in importance. We showed an example were the cross-modal comparison was used
in the context of motion reconstruction. In particular, sparse accelerometer readings where used
to identify high-quality 3D human motions in a database which was recorded using an optical
mocap system. Such a reconstruction of high-quality 3D human motions using database knowl-
edge has become a major principle used in computer animation and the gaming industry. Here,
our analysis results and methods constitute a suitable foundation for estimating the performance
of the various motion representations. We will also use and extend techniques presented in this
chapter in Chapter 6, where we use orientations obtained from inertial sensors to identify motions
in a database consisting of high-dimensional optical mocap data. These retrieved motions are then
used in a combined depth/inertial tracking framework to robustly estimate human pose even in
challenging scenarios such as when occlusions occur. Here, the specific advantages of different
sensors modalities are combined, to obtain better results compared to using onesensor modality
alone.
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Chapter 4

Classification of Trampoline Jumps
Using Inertial Sensors

In this chapter, we apply techniques from the previous chapters with the objective to automatically
classify trampoline motion sequences. This constitutes a challenging applicationscenario because
of the high complexity in terms of dynamics and recording volume. In trampolining,an athlete
performs a routine that consists of a sequences of trampoline jumps that belong to predefined
motion categories such as pike jump or a somersault. The classification problemthen consists in
automatically segmenting an unknown trampoline routine into its individual jumps andto classify
these jumps according to the given motion categories. Here, further challenges arise from the fact
that there is a wide spectrum on how a jump from a specific category may be actually performed
by an athlete.

As introduced in Chapter 2, there exist many ways for recording human motion sequences, includ-
ing optical, inertial and depth-based (mocap) systems. For recapitulation, optical motion capture
systems, which are widely used in movie and game productions, provide veryrich and easy to in-
terpret data. On the downside, such systems impose strong restrictions concerning the size of the
capture volume and lighting conditions. This makes them difficult to use in our trampolining sce-
nario. The main disadvantage of depth sensor is the limited recording volume ofa single sensor.
Using multiple depth sensors, however, would increase the setup effort and the simultaneous use of
depth sensors is not trivial, see Section 2.3.4. Avoiding such restriction, inertial-based sensors have
become a low-cost alternative, which is increasingly used in entertainment, monitoring and sports
applications Boissyet al. [2007]; Hardinget al. [2008]; Ohgiet al. [2002]; Sabatiniet al. [2005].
The drawback of such systems is that the provided data—accelerations and angular velocities—
are difficult to handle and prone to noise. Here, additional sensor information hasbeen used to
derive more robust global orientation data Kempet al. [1998].

Contributions. We introduce a motion classification pipeline for automatically classifying tram-
poline routines based on inertial sensor input, see Figure 4.1 for an overview. As one contribution,
we discuss how to transform the inertial raw data into meaningful and robust feature represen-
tations underlying our classification scheme. As for the predefined motion categories, we use
suitable training data to learn class representations that described the characteristics of a specific
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Figure 4.1. Classification pipeline used in this chapter.(bottom): Class representations are computed
for each of the motion categories in a preprocessing step.(top): An unknown trampoline routine is con-
verted into a feature sequences which is then segmented intosingle jump. Finally the segmented jumps are
compared to the class templates and labeled with the name of the most similar class.

trampoline jump. Here, as a further contribution, we extend the concept of boolean motion tem-
plates M̈uller and R̈oder [2006] to the real-valued case. In particular, we introduce the notionof
variance templates that allow for blending out performance variations to be left unconsidered in the
classification stage. In our classification pipeline, an athlete, being equipped with a small number
of inertial sensors, performs a trampolining routine. The resulting motion stream is first segmented
into individual jumps, which are then classified by comparing the segments with the previously
learned class representations using a suitable similarity measure. To prove the practicability of our
approach, we have recorded trampoline motions consisting of 750 individual jumps that comprise
13 different classes performed by four different athletes. We report on various experiments which
show that our procedure yields a high classification accuracy even in thepresence of significant
style variations across the different athletes. This chapter closely follows Heltenet al. [2011a],
where the concepts presented here have been published.

Organization. The remainder of this chapter is organized as follows. We start by discussing
some basics on trampolining (Section 4.1) as well as what kind of sensor datawe use (Section 4.2).
Then, we describe our segmentation procedure (Section 4.3), discuss various feature representa-
tions (Section 4.4), and introduce the class representations in form of real-valued motion templates
(Section 4.5). Subsequently, the actual classification procedure is described and evaluated demon-
strating the practicability of our approach (Section 4.6). Finally, we close thischapter with an
outlook on future work (Section 4.7).

4.1 Trampoline Motions

In this section, we describe some characteristics of trampoline motions, which can be exploited
for segmentation and classification tasks. Trampolining is closely related to gymnastics where
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Figure 4.2. Phases of a trampoline jump comprising a contact phase (C), alanding phase (L), a takeoff
phase (T), and flight phase (F).

athletes perform a sequence of acrobatic moves. During a trampoline performance there are two
alternating phases. Firstly, there is aflight phasein which the actual moves are performed and,
secondly, there is acontact phasein which the athlete gains momentum for her/his next move, see
Figure 4.2. Furthermore, a contact phase can be separated into two sub-phases, alanding phase
and atakeoff phase. In the following, a trampolinejump is defined to be the concatenation of one
takeoff phase at the beginning, one flight phase in the middle, and one landing phase at the end.

During these three phases, the athlete assumes and executes different poses and rotations, see
Figure 4.3. The first three subfigures (Figure 4.3(a)–(c)) show different body poses assumed during
the contact phase of a jump. Since these poses are determined during the landing phase of a jump,
they are referred to aslanding poses. During the flight phase the athlete assumes certain body
poses (Figure 4.3(d)–(f)) and/or executes rotations (Figure 4.3(g)–(i)) around the body’s lateral
and/or longitudinal axis. A given combination of a landing pose in the takeoff phase, poses and
rotations during the flight phase and a landing pose in the landing phase of ajump completely
characterize a given jump. In the following, all jumps which contain the same sequence of poses
and rotations are considered to belong to the samejump class. Table 4.1 shows thirteen jump
classes of low and intermediate difficulty along with a short description. For example, the class
“tuck jump” (TJP) starts with the pose “on feet” (Fe) during the takeoff phase, it continues with
the pose “tucked” (Tu), and finishes with the landing pose “on feet” (Fe). Another example is
the jump classBAR, also known as Barani, consisting of the landing pose “on feet” (Fe) in the
beginning, a 360 degree somersault forwards (F360) combined with a 180 degree twist (T180)
and ending on the feet (Fe). In trampolining, the most basic jump class is the straight jump (STR)
which only consists of the pose “on feet” at the beginning and at the end ofthe jump. During
competitions athletes have to perform so calledroutineswhich are a sequences of jumps. Here,
a routine starts with a number of straight jumps to gain momentum. After this preparation the
athlete has to perform a sequence of ten jumps from a set of predefined jump classes. Then, in
our classification scenario, the task is to segment the routine and to determine the classes of the
performed jumps.

In total, we recorded 109 routines with difficulty scores ranging from 0.4 to 3.1 comprising a
total of 750 jumps. Out of these 109 routines, we chose 13 routines to forma routine database
DR. From the remaining 96 routines, we manually assembled for each of the 13 jumpclasses
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(d) (e) (f)

(a) (b) (c)

(g) (h) (i)

Figure 4.3. (a)–(c): Landing poses during the contact phase: on feet (Fe), seated (Se) and on the front
(Fr). (d)–(f): Different body poses during the flight phase: piked (Pi), tucked (Tu) and straddled (St).
(g)–(i): Rotations around main body axes during flight phase: lateralforwards (F*), lateral backwards (B*)
and twists around longitudinal axis (T*).

16 instances—four instances for each of the four actors. The resultingdataset, containing 208
jumps, is denoted as cut databaseDC. We then partitionedDC into two databasesD′C andD′′C
each containing two jumps per actor from all 13 jump classes, amounting to 104 jumps.

4.2 Sensors

As stated before, there are many ways to record human motion data using,e. g.optical, inertial
or depth-based mocap systems. A general overview of current opticalmocap techniques can be
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ID Description Poses and rotations during phases
Takeoff Flight Landing

BAR Barani Fe T180, F360 Fe

FRF Front to feet Fr Fe

HTW Half twist Fe T180 Fe

HFR Half twist to front Fe T180, F90 Fr

PJP Pike jump Fe Pi Fe

SHA Seat half twist to feet Se T180 Fe

SST Seat to feet Se Fe

BWB Somersault backwards piked Fe Pi, B360 Fe

BWS Somersault backwards to seatFe Tu, B360 Se

BWC Somersault backwards tuckedFe Tu, B360 Fe

SJP Straddle jump Fe St Fe

STR Straight jump Fe Fe

TJP Tuck jump Fe Tu Fe

Table 4.1. Low and intermediate level jumps used for classification. The table shows how the jumps are
composed of the poses and rotations displayed in Figure 4.3.

found in Chapter 2.

The most widely used motion capture systems for analyzing sport motions are optical marker-
based systems as introduced in Section 2.1. Here, a set of calibrated cameras is used to record 2D
images of an actor wearing a suit with retro-reflective or active markers,see Figure 4.4 (a). The
advantage of such systems is clearly their precision. However, there arealso some drawbacks,
as illustrated by Figure 4.4 (a). For example, the lighting during the recordingmust be dim so
that the markers can be distinguished from the background. Furthermore, the setup of the systems
is cumbersome as many cameras need to be carefully placed, aligned, and calibrated in order to
cover the large capture volume as needed for trampoline motions, see Figure4.4 (b).

For these reasons, in many sports applications, human motion is often recorded using much
cheaper devices such as single high-speed cameras or even standardconsumer camcorders. Here,
the recorded video stream has to be manually annotated using specialized software tools, from
which various motion parameters such as joint positions or joint angles are derived. Obviously,
the quality of the used cameras highly influences the accuracy of the deduced motion data. For
example, if the camera has a low temporal resolution, motion blur as shown in Figure 4.4 (c) ren-
ders the correct positioning of annotations impossible. Furthermore, as themain drawback of such
video based methods, the manual annotation process makes large-scale experiments with a high
data throughput infeasible.

In this chapter, we use an inertial sensor-based mocap system consistingof seven Xsens MTx1 sen-
sor units denoted by s1, . . . , s7. The sensors are placed inside a suit (see Figure 4.4 (d)) together
with a wireless transmission system which sends the measured data directly to a computer. For this
reason, inertial sensors do not pose any restrictions on the lighting requirements and can be used in
many locations, even outdoor. Figure 4.4 (e) shows the placement of the seven sensors in our setup
fixed at the trunk, the forearms, the upper legs and the lower legs of the athlete. Furthermore, as
indicated by Figure 4.4 (f), the sensors are carefully attached in such a way that their localX-axes
are aligned parallel to the limbs while pointing away from the body’s center. In general, inertial

1http://www.xsens.com

http://www.xsens.com
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Figure 4.4. (a):Recordings using optical systems require controlled lighting conditions.(b): Cumbersome
setup of an optical mocap system.(c): Optical recordings suffer from motion blur in case of fast motion.
(d): Actor wearing a suit containing inertial sensors.(e): Locations of the seven motion sensors attached to
the human body as used in this paper.(f): Inertial sensors are attached in direction of the body’s limb and
can measure the limb’s orientation.

sensors only provide accelerationsa and angular velocitiesω which are rather unintuitive quan-
tities prone to noise. By combining inertial sensors with other sensor types Kempet al. [1998];
Luinge and Veltink [2005], as done in the Xsens MTx units, it is possible to calculate full 3 degree
of freedom global orientations denoted byq, see also Section 2.2.1. We now fix some further
notations used in the rest of the chapter.

A sensor data streamis modeled as a sequenceD = (S1,S2, . . . ,SK) of sensor readingsSk ∈ S

for k ∈ [1 : K] := {1,2, . . . ,K} (w.r.t. a fixed sampling rate, in our case 100 Hz). Here,S denotes
the space of sensor readings andK denotes the number of frames. Each sensor readingSk consists
of the orientations, accelerations and angular velocities measured by the seven sensors:

Sk :=
(

qk
s1
, . . . , qk

s7
, ak

s1
, . . . , ak

s7
,ωk

s1
, . . . ,ωk

s7

)

, k ∈ [1 : K], (4.1)

whereqk
s ∈ R

4, ak
s ∈ R

3, andωk
s ∈ R

3 for all s ∈ {s1, . . . , s7} and allk ∈ [1 : K].

4.3 Segmentation

The first step of our proposed classification pipeline is the segmentation of an unknown trampo-
line motion sequence into separate jumps. Here, we make use of the two phases, the contact phase
and the flight phase, which segment jumps in a natural way, see Figure 4.5 (a). While the actual
jump is performed during the flight phase, the athlete gains momentum during the contact phase,
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Figure 4.5. (a):Phases of a trampoline jump comprising a contact phase (C), alanding phase (L), a takeoff
phase (T), and flight phase (F).(b): Absolute acceleration measured by sensors1 (light gray), as well as
low pass filtered acceleration (black) and threshold (red) as used for the automatic segmentation described
in Section 4.3.

which is always related to a large acceleration of the whole body. This acceleration can be mea-
sured using the sensor s1 which is located at the athlete’s trunk. As one can see in Figure 4.5 (b),
the measurement of‖as1‖2 is rather noisy. For this reason, we apply a low pass filterL of width
corresponding to 0.1 seconds to the measured accelerations to obtaina := L(‖as1‖2). Then, we
label those framesk that satisfy the heuristicak > τ to be a contact phase frame, whereτ is a
suitably chosen threshold. In practice, the valueτ = 35 m/s2 turned out to be reasonable. We
conducted an experiment to get a quantitative impression how well this simple segmentation algo-
rithm works. To this end, we automatically segmented the 13 routines from the routine database
DR and compared the results with the manually generated ground-truth segmentations. Here, we
considered a jump to be segmented correctly when the computed interval endsonly differed from
the ground-truth interval ends by a maximum of 15 frames (0.15 s). The experiment showed that,
in total, 94% of the jumps were segmented correctly. Here, the wrongly segmented jumps were
exclusively at the very beginning or the end of the trampoline routines, where the athletes were
still in the preparatory phase and the accelerations were comparatively low. Actually, all of the
important jumps during the routine were segmented correctly.

4.4 Feature Representation

As for the classification step, the raw sensor input is much too noisy and inconsistent to yield
good motion representations. This is partly due to the noise introduced by the measurements
itself. Even more problematic is the fact that different performances of the same jump may reveal
significant spatial, dynamical, and temporal differences. In particular, there are many actor-specific



48 CHAPTER 4. TRAMPOLINE JUMP CLASSIFICATION

X

Y

φs5

(a)

X
Y

X Y

ψs6,s7

(b)

X

Y

X

Y

θs6 s2

(c)

ω̃s1

(d)

Figure 4.6. Illustration of examples for the various feature types.(a): Inclination of a limb. (b): En-
closed angle between two limbs belonging to different extremities.(c): Enclosed angle between two limbs
belonging to the same extremity.(d): Angular velocity along the vertical axis of the body.

ID Type Description
F1 φs1 Inclination of lower spine
F2 φs2 Inclination of left lower leg
F3 φs3 Inclination of right lower leg
F4 φs4 Inclination of left forearm
F5 φs5 Inclination of right forearm
F6 θs6,s2 Angle between left lower and upper leg
F7 θs7,s3 Angle between right lower and upper leg
F8 ψs6,s7 Angle between left upper and right upper leg
F9 ω̃s1 Absolute angular velocity around the body’s longitudinal axis

Table 4.2.Description of the used features with feature ID and type.

performance variations within a jump class. Therefore, instead of workingon the raw data itself,
we derive from the inertial data suitable feature representations that encode important and intuitive
properties of the athlete’s body configuration while being invariant underglobal variations such
as the actor’s facing direction. In Section 4.5, we describe how to deal withlocal performance
variations by introducing suitable class representations. We now introducethree differentfeature
types. The first feature typeφs measures the angle between theX-axis of a sensors and the
horizontal plane. If the sensor is aligned as shown in Figure 4.4 (f), this angle is the same as the
angle between the limb and the horizontal plane, see Figure 4.6 (a). In otherwords, the featureφs

measures the inclination of a limb with respect to the ground plane. The secondfeature typeθs,t/ψs,t

measures the enclosed angle between two limbs. Here, the only difference betweenθs,t andψs,t

is the way the feature is computed. The featureψs,t measures the angle between limbs belonging
to different extremities (Figure 4.6 (b)), while the featureθs,t measure the angle between limbs
belonging to the same extremity (Figure 4.6 (c)). Finally, the third type of feature ω̃s captures
the angular velocity of the sensorsX-axis. In other words, this feature type measures the velocity
a limb rotates around its longitudinal axis. The exact formulas used to compute the introduced
feature types are given in the appendix of this paper.

In the following, we will show how the featuresφs, θs,t, ψs,t and ω̃s can be computed. To this
end, we assume the sensor data stream is defined as shown in Section 4.2. The rotations inside the
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sensor data stream must be given in a suitable rotation representation, forinstance, unit quaternions
(see Shoemake [1985]). Furthermore, ifq is a rotation in a given representation, then letq[v] be
the 3-dimensional vectorv rotated byq. The featuresφs, θs,t, ψs,t andω̃s are now defined as

φs = 1−
2
π

arccos
〈

(0,0,1)T , qs

[

(1,0,0)T
]〉

, (4.2)

θs,t = 1−
2
π

arccos
〈

qs

[

(1,0,0)T
]

, qt

[

(1,0,0)T
]〉

, (4.3)

ψs,t = 1−
2
π

arccos
〈

qs

[

(−1,0,0)T
]

, qt

[

(1,0,0)T
]〉

,and (4.4)

ω̃s =
2
3π
|(ωs)x| . (4.5)

Here,〈·, ·〉 denotes the scalar product of two vectors, while (·)x is the x-component of a vector.
Please note that the features are normalized to vary roughly in the range of[−1,1]. This fact will
be important for the class representation introduced in Section 4.5.

Based on these three feature types, we define in total ninefeatures, as shown in Table 4.2. Math-
ematically, a feature is a functionF : S → R. By forming a vector off features for somef ≥ 1,
one obtains a combined featureF : S → R f referred to as afeature set. In this paper,F is equal
to one of the following feature sets

FI5A3W := (F1, F2, F3, F4, F5, F6, F7, F8, F9)T , (4.6)

FA3W := (F6, F7, F8, F9)T , (4.7)

FI5W := (F1, F2, F3, F4, F5, F9)T , or (4.8)

FI5A3 := (F1, F2, F3, F4, F5, F6, F7, F8)T , (4.9)

where the index (e. g.I5A3W) gives a hint on what features are included in the feature set. The part
I5 stands for the five inclination type featuresF1, F2, F3, F4, F5, A3 represents the three angular
type featuresF6, F7, F8, andW corresponds to the one angular velocity type featureF9. This
naming convention becomes important in Section 4.6, where we discuss the importance of the
different feature types for the proposed classification scenario. Figure 4.7 shows how a feature set
F = FI5A3W is applied to a sensor data streamD. The result is represented by afeature matrix
F(D) = (F(S1), . . . , F(SK)) with f rows andK columns, where in this casef = andK = 132.
Each row in such a feature matrix represents one feature, while each column represents the feature
valuesF(Sk) for a framek ∈ [1 :K].

4.5 Class Representation

Based on feature matrices, we now describe a representation that captures characteristic properties
of an entire motion class. To this end, we adapt the concept ofmotion templates(MTs), which was
previously introduced in M̈uller and R̈oder [2006]. Here, given a classC = {D1, . . . ,DN} consist-
ing of N example motionsDn, n ∈ [1 : N], one first converts all motions into features matrices
Xn. Then, the idea is to compute a kind of average matrix. However, note that theN motions
generally have a different length. Therefore, dynamic time warping is applied to temporally align
the motions and to warp all feature matrices to yield the same length. The averagematrix XC

over the warped feature matrices is then referred to as class motion template. In Müller and R̈oder
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Figure 4.7. Feature representation of a jump of classC = BAR using feature setFI5A3W.

[2006], this concept is applied to boolean-valued features matrices yielding boolean feature ma-
trices. As a consequence, regions in the class MT with the values zero/one indicate periods in
time (horizontal axis) where certain features (vertical axis) consistently assume the same values
zero/one in all training motions, respectively. By contrast, regions with values between zero and
one indicate inconsistencies mainly resulting from variations in the training motions(and partly
from inappropriate alignments). This property of MTs can then be used to automatically mask out
the variable aspects of a motion class when being compared with an unknown motion data stream.
This makes motion classification very robust even in the presence of significant performances
differences, see M̈uller and R̈oder [2006] for details.

We now apply the concept of motion templates to our trampoline classification scenario. Let
C = {BAR, . . . , TJP} be the set of all considered jump categories and letC ∈ C be one of the
motion classes. By using a feature setF, we convert all example motions contained inC into
feature matrices. Opposed to Müller and R̈oder [2006], however, our features are real-valued, so
that we need some modifications in the MT computation. To balance out the importance of the
various features contained inF, we first normalize all features to approximately have the same
range [−1,1]. As an example, Figure 4.8(a)–(c) shows the resulting feature matricesof three
example jumps from the classC = BAR. Then, as in M̈uller and R̈oder [2006], we temporally warp
the normalized feature matrices and compute an average matrixXC, see Figure 4.8 (d).

Now, starting with real-valued instead of boolean-valued feature matrices,the inconsistencies are
not revealed as described in Müller and R̈oder [2006]. Instead, we compute avariance template
VC, which encodes the entry-wise variance of theN warped feature matrices, see Figure 4.8 (e).
Here, the idea is that inconsistent regions in the real-valued feature matrices induce larger vari-
ances than consistent regions. Now the variance template can be used to mask out inconsistencies
in XC. In our setting, we mask out those regions ofXC, where the value inVC is larger than the
75% quantile of all values ofVC. In other words, the 25% most variant values are ignored, see
Figure 4.8 (f). Here, the percentage value of 25% has been determined experimentally, yielding
a good trade-off between preserving sufficient motion characteristics while suppressing unwanted
motion variations. The remaining 12 masked class templates are shown in Figure 4.9.

Mathematically, we model the masking as a separatemask matrix MC ∈ R
f×K , where a value of 0
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Figure 4.8. Template computation:(a)–(c): Feature matrices for three different jumps from the classBAR.
(d): Average of aligned feature matrices (average template).(e): Variances of aligned feature matrices
(variance template).(f): Template, where regions with 25% highest variances are masked out (masked
template).

means that the value is masked out. The entries ofMC can be computed in the following way:

MC(i, j) :=

{

1 : VC(i, j) ≤ Q75%(VC)
0 : else

(4.10)

for i ∈ [1 : f ] and j ∈ [1 : K]. Here,Q75%(VC) is the 75% quantile ofVC. Later in this paper, we
will introduce a scenario where we seek to amplify the influence of certain feature functions. This
can be modeled by allowing other values beside 0 and 1 inside the mask matrix.

4.6 Classification and Experiments

For the classification we locally compare an unknown jump with all class MTsXC for C ∈ C and
then label the jump according to the class MT having the smallest distance to the jump. In the
following, let Y ∈ R f×L be the feature matrix of an unknown jump to be classified, whereL is
the length of the jump andf is the number of features. We use as distance measure a variant of
dynamic time warping (DTW) as described in Müller and R̈oder [2006]. Especially, we adjust the
local cost measurec in order to be compatible with our masking. Letm(k) :=

∑ f
i=1 MC(i, k), then
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Figure 4.9. Depiction of the masked templates for twelve out of the thirteen jump classes. The template of
the missing classBAR is shown in Figure 4.8 (f).

we define the masked local cost measure
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for m(k) , 0 andc(k, l) = 0 for m(k) = 0, wherek ∈ [1 : K] andℓ ∈ [1 : L]. Now, thedistance∆C

between a classC with MT XC and maskMC and a feature matrixY is defined as

∆C(Y) :=
1
K

DTW (XC,Y) , (4.12)

where DTW denotes the DTW-distance between the sequences of columns defined byXC and
Y using the local cost measurec. Finally, the classification problem for an unknown jump with
feature matrixY can be solved by identifying the classC ∈ C which has the smallest distance
∆C(Y).
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Figure 4.10.Confusion matrices showing the influence of the different feature types. The learning database
isD′C while the evaluation database isD′′C. In all four cases the quantile mask introduced in Section 4.5 is
used.

4.6.1 Influence of Feature Types

We first report on an experiment for investigating how the quality of the classification depends on
the used feature types. To this end, we use confusion matrices, which give a qualitative impression
which jump classes are classified correctly, and which jump classes are confused among each
other. Such confusion matrices display the ratio of how many motions from a given class (abscissa)
were classified as a certain class (ordinate), where dark entries represent a high percentage of
motions. If the used feature types discriminate jump classes well, this would result in a dark
diagonal leading from the top left of the matrix to the bottom right. In this experiment, we use the
jumps from databaseD′C to learn the motion templates and useD′′C for evaluation.

Figure 4.10 shows the confusion matrices for the four different feature sets defined in Section 4.4,
where the feature setFI5A3W includes all feature types, while the feature setsFA3W, FI5W, andFI5A3
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Figure 4.11. Classification results for routine scenario (red: manual annotation, black: automatic classifi-
cation). The class representations where learned using databaseD′C, while the classified routines are taken
from databaseDR. (a): Classification result for an example routine when using quantile masks.(b): Clas-
sification result for the same routine when using weighted masks. (c): Classification accuracy for the 13
learned jump classes using different masking techniques.

lack one of the feature types. In Figure 4.10 (a) one can see that the feature setFA3W, which omits
the inclination aspect, performs worst. This is expressed by the many high-valued off-diagonal
entries which are an indication for massive miss-classifications. This showsthat the feature set
FA3W is too sparse for distinguishing different jump categories. Figure 4.10 (b) shows the results
for the feature setFI5W. Here, while most of the jumps were classified correctly, the jump classes
PJP, SJP, andTJP are mixed up among each other. This is due to the fact that these jump classes
only differ in the configuration of the legs during the flight phase. For example, in both jump
classesPJP andSJP the legs are straight to the front during flight. The only difference is that
in the jump classSJP the legs are additionally straddled. If the feature set contains inclination
and angle feature types, as shown in Figure 4.10 (c), the classification works better for the jump
classesPJP, SJP, andTJP, but now other jump classes asSTR andHTW get mixed up. Here, these
two jump classes only differ in a rotation around the bodies longitudinal axis. For this reason,
the feature that measures the angular velocity is needed to capture the difference between the two
jump classes. Finally, Figure 4.10 (d) shows, that the proposed feature set FI5A3W almost perfectly
separates all jump classes from each other.
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Figure 4.12. Overall classification accuracy for the 13 learned jump classes using different masking tech-
niques.

4.6.2 Routine Classification

As main experiment, we combine the automatic segmentation from Section 4.3 with the classifi-
cation introduced above. Here, our task is to evaluate how well the overallpipeline performs in a
realistic trampolining scenario. Furthermore, we discuss how the masking proposed in Section 4.5
affects the retrieval results. For this evaluation, we use the thirteen routines from the databaseDR

for evaluation, while the motion templates are again learned from the databasesD′C. Furthermore,
we use quantile masks as defined in Equation (4.10). Figure 4.11 (a) displays a classified rou-
tine, where the black regions represent the automatic classification result and the red rectangles
indicate the manual ground-truth annotations. It can be seen that for this example 14 out of 18
jumps were classified correctly. Here, for example, the misclassification of the jumpSHA (frames
2200–2350) with the classSST is due to the fact that the featureF9 is the only feature which
is actually able to capture the difference between this two classes. Similarly, on can explain the
confusion betweenSTR (frames 3050–3200) andHTW. In such cases, the influence of the feature
F9 on the local cost measurec is not large enough (its only one ninth compared to the features
F1, . . . , F8). In order to better separate the confused jump classes from each other, one can in-
crease the influence of the featureF9 by replacing all ones in the quantile mask matrices of the
class representations belonging to featureF9 with some value larger than one (five in our case).
The effect of such so calledweighted mask matricescan be seen in Figure 4.11 (c), where the
previously misclassified jumpsSHA andSTR are now classified correctly. The misclassifications
between the jumpTJP (frames 1950–2075) withSTR and the jumpPJP (frames 2380–2500) may
be explained as follows. First note that the performance variations between jumps that belong to
the same class are often significant—even within the jumps of the same athlete. Such variations
are actually masked out by our local cost measure. Now, the differences between two jump classes
such asTJP andSTR or PJP andSJP are often subtle and only refer to a single motion aspect. It
may happen that such aspects are actually masked out by our masking concept, which in turn leads
to unwanted confusion. These examples indicate the trade-off between robustness on the one hand
and discrimination capability on the other hand.

In addition to this qualitative analysis, we performed a quantitative analysis to measure the clas-
sification accuracy for each jump class. We say that an automatically segmented jump has been
classified correctly if its segment boundaries lie in the neighborhood of an annotated jump (using
a tolerance of 0.15 sec) and if the computed class label coincides with the annotated label. In
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our experiments, we consider three different masking strategies: binary masking (quantile mask),
weighted masking, and no masking at all. Figure 4.11 (c) reveals that the classification results
are very good for most classes regardless the masking strategy used. This again shows that our
proposed features are capable to capture relevant motion characteristics. When using the weighted
mask matrix the classification results are generally better than when using the binary mask. Espe-
cially the jump classesSHA andSTR, as in the previous paragraph, benefit from the use of weighted
masking. A good example how masking in general improves the classification results are the jump
classesFRF, FTW, andSTR. Here the variances, within the jump classes are very high among actors
and result in misclassified jumps, whenever the masking is not used. On the contrary the jump
classTJP does not benefit from masking out variant regions, since, in this case,these regions also
contain the only information that is able to discriminate this jump class from other jump classes.

4.7 Conclusions

In this chapter, we introduced a pipeline for the automatic segmentation and classification of tram-
poline routines based on inertial sensor input. Here, our motivation for using inertial sensors was
that such sensors deal with dynamic motions better and do not impose constraints as far as the
recording volume or lighting conditions are concerned. As our main contribution, we discussed
suitable feature representations that are invariant to spatial variations and robust to measurement
noise. Based on this feature representations, we introduced real-valued motion templates that
grasp the characteristics of an entire jump class. To handle significant performance variations, we
introduced a masking scheme based on variance templates. Furthermore, wepresented a weight-
ing strategy to enhance the influence of certain features. For future work we want to apply these
techniques in an online scenario, where we assess the performance of an athlete and directly give
feedback for performance improvement. A possible means of such feedback might be the sonifi-
cation of certain motion parameters with respect to a learned reference performances.



Chapter 5

Human Shape Estimation Using Depth
Sensors

Tracking 3D human motion data constitutes an important strand of research withmany appli-
cations to computer animation, medicine or human-computer-interaction. In recent years, the
introduction of inexpensive depth cameras like Time-of-Flight cameras or the Microsoft Kinect
has boosted the research on monocular tracking since they constitute comparably cheap to obtain
so-called 2.5 dimensional depth maps, see also Section 2.3. Tracking from such depth input is
especially appealing in home consumer scenarios, where a user controls an application only by
using his own body as an input device and where complex hardware setups are not feasible.

While depth data facilitates background subtraction compared to pure image based approaches,
tracking still remains challenging because of the high dimensionality of the posespace and noise
in the depth data. Currently, there exist three different strategies to harness depth data for tracking
human motions. Discriminative approaches detect body parts or joint-positions directly from the
depth images. Such approaches often neglect the underlying skeletal topology of the human which
may lead to improbable joint locations and jitter in the extracted motion. Generative approaches fit
a parametric model to the depth data using an optimization scheme. Here, the accuracy of the final
tracking result is dependent on the degree to which the body model matchesthe true body shape
of the person. In practice, such models are often obtained in a preprocessing step,e. g., using laser
scanners which are not available in home consumer scenarios. Finally, hybrid approach combine
the the advantages of discriminative and generative approaches and show good results for fast
motions in real-time scenarios.

Recently, first attempts have been made to obtain the shape of a person by fitting a parametric
model to a set of depth images of a strictly defined calibration pose. However, the runtime in the
orders of one hour as well as the requirement of a fixed calibration poselimit the applicability in
a practical scenario.

Contributions. We contribute with algorithmic solutions that improve the performance of model-
based depth trackers, by providing a personalized shape of the tracked person that is calculated
from only two sequentially taken depth images. In particular, we present a new shape estima-
tion method that makes model fitting an order of magnitude faster compared to previous ap-

57
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Figure 5.1. (From left to right): Actor standing in the front of a single Kinect camera. Color coded depth
data (red is near, blue is far) as obtained from the Kinect. Automatically estimated body shape of the actor.
Two complex poses reliably tracked with our algorithm (left: input depth, right: estimated pose).

proaches Weisset al. [2011] at no loss of quality. Secondly, we extend an existing tracking algo-
rithm by Baaket al.[2011] to obtain a personalized version that works with arbitrary body shapes.
As another contribution, we deployed an extensive dataset of 15 minutes of calibrated depth and
marker-based motion capture (mocap) data which was used to evaluate our proposed tracker and
which is publicly available to the research community. We also contribute with suitable error met-
rics to make different trackers comparable on our data set. The contributions presentedin this
chapter have been published in Heltenet al.[2013a]. This chapter closely follows that publication.
Additionally, the discussion of related work in Section 5.1, was presented in Heltenet al. [2013c].

Organization. The remainder of the chapter is organized as follows. After discussing related
work and introducing some of the challenges current approaches face(Section 5.1), we present our
novel shape estimation method in Section 5.2. Then, in Section 5.3, we describeour personalized
tracker and evaluate it with respect to previous approaches. Finally, weconclude in Section 5.4
with a discussion of limitations and an outlook to future work.

5.1 Full-body Depth-Trackers

Depth-based tracking of full-body human motion focuses on using inexpensive recording equip-
ment that is easy to setup and to use in home user applications. As a consequence, depth based
approaches have to deal with various challenges that marker-less tracking approaches do not face.
Commercial systems that make use of this kind of motion tracking can be founde. g. in the Mi-
crosoft Kinect for XBox1, the SoftKinetic IISU Middleware2 for pose and gesture recognition,
as well as the SilverFit3 system for rehabilitation support. So far, several depth-based tracking
methods have been published that can be classified into three basic types: Generative approaches,
discriminative approaches and hybrid approaches. Key parts of this section have been published
in and closely follow Heltenet al. [2013c].

1http://www.xbox.com/Kinect
2http://www.softkinetic.com
3http://www.silverfit.nl/en.html

http://www.xbox.com/Kinect
http://www.softkinetic.com
http://www.silverfit.nl/en.html
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5.1.1 Generative Approaches

Generative approaches use parametrized body models that are fit into thedepth data using op-
timization schemes. In particular, the optimization process maximizes a model-to-imageconsis-
tency measure. This measure is hard to optimize due to the inherent ambiguity in themodel-to-data
projection. In particular, when using monocular video cameras, this ambiguityprecludes efficient
and reliable inference of a usable range of 3D body poses. Depth data reduce this ambiguity prob-
lem but it is still one of the main algorithmic challenges to make generative methods succeed.

A first approach for obtaining pose and surface of articulated rigid objects from ToF depth images
was presented in Pekelny and Gotsman [2008]. Under the assumption that the movement of the
tracked object is smallw.r.t. the capture speed of the depth camera, the authors track individual
bones from a manually pre-labeled depth image using an iterative closest point (ICP) approach.
In each frame, previously unlabeled depth pixels are assigned to the bonethat best explains the
unlabeled depth pixel. However, this approach was not real-time capable,running at around 0.5
frames per second (FPS). Another approach Knoopet al. [2009] that is specialized on human mo-
tion, generates point correspondences for an ICP based optimization from both 3D and 2D input.
An example for 2D input could be a body part or feature detector workingon 2D color images.
All 3D points that could be projected onto the 2D feature point now define a ray in 3D space.
The closest point of this ray to the model is used to generate a traditional 3D point constraint. The
authors report a performance of 25 fps with this method, but the approach is limited to simple non-
occluded poses since otherwise the tracker would converge to an erroneous pose minimum from
which it cannot recover. Another early approach for real time capabledepth-based motion track-
ing from monocular views was presented in Bleiweisset al. [2009]. Here, the authors describe a
general pipeline for obtaining pose parameters of humans from a stream of depth images that are
then used to drive the motion of a virtual character ine. g.video games. To further increase the
performance of generative approaches Friborget al. [2010] proposed porting the computational
intense local optimization to the graphics processor. However, all these approaches tend to fail
irrecoverably when the optimization is stuck in a local minimum. This problem also exists in
other vision-based approaches and wase. g. discussed in Demirdjianet al. [2005]. In general,
these tracking errors occur due to the ambiguous model-to-data mapping in many poses, as well
as fast scene motion. While the latter problem can be remedied by increasing the frame rate, the
former was addressed by more elaborated formulations of the energy function. One option was
lately presented in Ganapathiet al.[2012], where the authors proposed a modified energy function
that incorporates empty space information, as well as inter-penetration constraints. A completely
different approach was shown in Yeet al. [2012]. Here, multiple depth cameras were used for
pose estimation which reduces the occlusion problem and enabled capturingthe motion of mul-
tiple person using high resolution body models. The approach is not real-timecapable, though.
With all these depth-based methods, real-time pose estimation is still a challenge, tracking may
drift, and with exception to Yeet al. [2012], the employed shape models are rather coarse which
impairs pose estimation accuracy.

5.1.2 Discriminative Approaches

Discriminative approaches focus on detecting certain features in the depthdata—such as joint
locations—and later combine these independent cues to form a body pose hypothesis. These fea-
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(a) (b) (c)

Figure 5.2. Typical intermediate results of discriminative depth tracking approaches.(a): Input depth
image. (b): Detected geodesic extrema positions as proposed by Plagemann et al. [2010]. (c): Detected
body parts as presented in Shottonet al. [2011].

ture are often learned for a pre-defined set of poses. For this reason, discriminative methods are
not dependent on a numerical optimization procedure, and can infer pose also without temporal
context and continuity. One algorithm for detecting human body parts in depthimages was pre-
sented in Plagemannet al. [2010]. Here, the authors use so-called geodesic extrema calculated
by iteratively using Dijkstra’s algorithm on a graph deduced by connectingall depth pixels in the
2.5D depth data into a map. The assumption here is that geodesic extrema generally align with
salient points of the human body, such as the head, the hands, or the feet,see also Figure 5.2 (b). To
label the retrieved geodesic extrema according to the corresponding body part, the authors employ
local shape descriptors on normalized depth image patches centered at thegeodesic extrema’s po-
sitions. Another body part detection approached is pursued in Zhuet al. [2010], where the authors
deduce landmark positions from the depth image and include regularizing information from pre-
vious frames. These positions are then used in a kinematic self retargeting framework to estimate
the pose parameters of the person. In contrast, the approach described in Shottonet al. [2011]
uses regression forest learned on simple pair-wise depth features to doa pixel-wise classification
of the input depth image into body parts, see also Figure 5.2 (c). To obtain a working regression
forest for joint classification that works under a large range of poses, though, the authors had to
train the classifier on approx. 500 000 synthetically generated and labeleddepth images. For each
body part, joint positions are then inferred by applying a mean shift-basedmode finding approach
on the pixels assigned to that body part. Using also regression forests for body part detection,
Girshicket al. [2011] determine the joint positions by letting each depth pixel vote for the joint
positions of several joints. After excluding votes from too distant depth pixels and applying a
density estimator on the remaining votes, even the probable positions of non-visible joints can be
estimated. Finally, Tayloret al. [2012] generate correspondences between body parts and a pose
and size parametrized human model, which they also achieve by using depth features and regres-
sion forests. The parameters of this model are then found using a one shot optimization scheme,
i. e. without iteratively recomputing the established correspondences. Discriminative approaches
show impressive tracking results, where some discriminative methods even succeed in detecting
joint information also in non-frontal occluded poses. However, since they often detect features in
every depth frame independently, discriminative approaches tend to yield temporally unstable pose
estimations results. Furthermore, for many learning-based methods, the effort to train classifiers
can be significant.
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Figure 5.3.Overview of the hybrid depth tracker presented by Baaket al. [2011]. This figure was taken by
courtesy of Andreas Baak from his thesis (Baak [2012]).

5.1.3 Hybrid Approaches

Combining the ideas of generative and discriminative approaches, hybridapproaches try to har-
ness the advantages from both tracker types. On the one hand, hybrid trackers inherit the stability
and temporal coherence of pose estimation results common to generative trackers. On the other
hand, they show the robustness of pose inference even in partly occluded poses that characterizes
discriminative approaches. A first method, in the domain of 3D surface reconstruction, was pre-
sented in Salzmann and Urtasun [2010]. Here, the discriminative tracker isused for initializing
the surface model, while the generative tracker enforces the observance of distance constraints.
The authors also sketched, how their approach can be applied to human pose reconstruction. At
the same time, the first method with specialization to human pose estimation was presented in
Ganapathiet al. [2010]. This work combines the geodesic extrema-based body part recognition
presented in Plagemannet al. [2010] with a generative pose optimization scheme based on ar-
ticulated ICP. Furthermore, the authors introduce a dataset comprising of calibrated ToF depth
images and ground-truth marker positions that serves as common benchmarkfor future work in
that field. The works by Baaket al.[2011] and by Yeet al.[2011] also use a discriminative tracker
to initialize a generative pose estimation algorithm. In detail, the approach presented in Yeet al.
[2011] uses a database consisting of 19 300 poses. For each of theseposes, four synthesized
depth images were rendered from different views. Using a principal axis based normalization, the
point clouds are indexed using their coefficients in a PCA subspace. Here, the normalization of
the point cloud in combination with the rendering from four different views is used to retrieve
poses from the database independent from the orientationw.r.t. the depth camera. Note that by
storing four different views in the database, the index size is increased to 77 200, while still only
19 300 poses are contained in the database. During tracking, the input point cloud is normalized
in the same way, its PCA-coefficients are calculated and used for retrieving a similar point cloud
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in the database. Finally, they refine the retrieved pose using the CoherentDrift Point algorithm
presented in Liaoet al. [2009]. This approach shows good pose estimation results on the bench-
mark dataset introduced in Ganapathiet al. [2010]. However, their approach does not run in real
time—inferring the pose in one frame takes between 60 s and 150 s.

In contrast, the approach showcased in Baaket al. [2011] uses a modified iterated version of Dijk-
stra’s algorithm to calculate geodesic extrema similar to the approach in Plagemann et al. [2010].
The stacked positions of the first five geodesic extrema, which often co-align with the head, hands
and feet, serve as index into a pose database consisting of 50 000 poses. The suitability of such
an approach has been previously discussed in Krügeret al. [2010], where the authors used the
stacked positions of the body’s extremities (head, hands, and feet) to index a database containing
high dimensional motion data. As index structure the authors employed ak-d tree facilitating fast
nearest neighbor searches. To be invariant to certain orientation variations of the person, Baak
et al. normalize the query and the database poses based on information deducedfrom the depth
point cloud. The incorporated generative tracker is a standard ICP approach that builds correspon-
dences between preselected points from the parametrized human model andpoints in the depth
point cloud. In each frame, they conduct two local optimizations, one initialized using the pose
from the previous frame and one using the retrieved pose from the pose database. Using a late
fusion step they decide based on a sparse Hausdorff-like distance function which pose obtained
from the two local optimizations best describes the observed depth image. This pose is then used
as final pose hypothesis, see Figure 5.3 for an overview of their approach. While not showing as
good results as the approach presented in Yeet al. [2011], their tracker runs much faster at around
50–60 frames per second, enabling very responsive tracking. Another real-time approach was re-
cently proposed by Weiet al. [2012]. Here, the authors use a discriminative body-part detector
similar to Shottonet al. [2011] to augment a generative tracker. In particular, they use the pose
obtained from the discriminative tracker only for initialization at the beginning of the tracking and
for reinitializing the generative tracker in cases of tracking errors. Fordetecting wrongly tracked
frames, they measure how well their body model with the current pose parameters explains the
observed point cloud. Hybrid approaches, harnessing the advantages of both tracking worlds, are
able to show superior performance compared too purely discriminative or generative approaches.
However, even the current state-of-the-art hybrid trackers still have limitations, which we will
elaborate on in the following.

5.1.4 Challenges

While providing good overall tracking results, hybrid approaches still suffer from the noisy char-
acter and the sparsity of the depth data and are prone to ambiguities originatingfrom occlusions.
In this section, we will focus on challenges that are related to the accuracyof the used body model.
For a discussion of other challenges such as occlusions, we refer to Chapter 6.

Most trackers use an underlying model of the human body. Such models vary drastically ranging
from simple representations as graphs (Pekelny and Gotsman [2008]; Zhu et al.[2010]; Shottonet al.
[2011]; Girshicket al.[2011]; Tayloret al.[2012]; Salzmann and Urtasun [2010]; Yeet al.[2011]),
over articulated rigid bodies (Knoopet al. [2009]; Friborget al. [2010]; Ganapathiet al. [2012];
Wei et al. [2012]) to complex triangle meshes driven by underlying skeletons using skinning ap-
proaches (Baaket al. [2011]; Yeet al. [2012]; Ganapathiet al. [2010]). Here, the complexity
of the model mainly depends on the intended application. While some approaches are only in-
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(a) (b) (c) (d) (e)

Figure 5.4. (a): Body shape of a person to be tracked.(b): Depth image of shape.(c): Graph model.(d):
Model based on articulated cylinders and spheres .(e): High resolution surface model.

terested in tracking specific feature points of the body such as the positionsof the extremities
(Plagemannet al. [2010]) or joint positions (Shottonet al. [2011]), other approaches try to cap-
ture pose parameters such as joint angles (Baaket al.[2011]; Ganapathiet al.[2012]; Tayloret al.
[2012]; Ganapathiet al. [2010]; Yeet al. [2011]; Weiet al. [2012]), or even the complete surface
of the person including cloth wrinkles and folds (Yeet al. [2012]). Another requirement for a de-
tailed surface model is the energy function used in generative or hybrid approaches. In particular,
ICP-based trackers benefit from an accurate surface model to build meaningful correspondences
between the model and the point cloud during optimization. In order to circumvent the problem of
obtaining an accurate model of each individual person, some approaches use a fixed body model
and scale the input data instead Baaket al. [2011]. However, this approach fails for persons with
very different body proportions.

In general, the model of the tracked person is often assumed to be createdin a preprocessing step
using manual modeling or special equipment as full-body laser scanners.However, this is time
consuming and involves expensive equipment, which renders it unfeasible in home application
scenarios. To this end, most algorithms applied in these scenarios, such asShottonet al. [2011],
use a different approach. In a preprocessing step the authors use a large number of body models
of different sizes and proportions to learn a decision-forest-based classifier that is able to label
depth pixels according to the body part they belong to. As a consequence, this classifier becomes
invariant to the size of the person and its proportions. During the actual tracking, the learned
classifier can be used without obtaining an actual body model of the tracked person. Based on the
labeled depth pixel the authors employ a heuristic to deduce the most probablejoint position. This
approach runs in real-time and works for many tracking applications.

However, for some augmented reality applications the reconstruction quality obtained from simple
graphical body models may not be sufficient enough. A popular example is virtual try-on, where
the person can wear a piece of virtual apparel that plausibly interacts withthe person’s body
motion. Here, an accurate reconstruction of the person’s body surface is beneficial in order to
ensure believable visual quality or to give good indication whether the cloth actually fits. Also,
model-based trackers that use high-detailed surface models benefit, if theshape of the model
closely resembles the shape of the tracked person. Here, one can see that the tracking results
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(a) (b) (c) (d)

Figure 5.5. Shape estimation.(a): Calibration poses.(b): Depth input of poses.(c): Initial shape.(d):
Estimated shape.

improve the better the body model matches. One possible approach would be toinfer a high
resolution body model from depth data in a preprocessing step and then use this model for tracking,
visualization or physical simulations of objects in the augmented scene. Recently, one approach
Weisset al. [2011] has addressed this issue. Here, the authors fit a pose and shape parametrized
model into the depth point clouds using an ICP-based approach. The point clouds were obtained
from four sequentially captured depth images showing the person from thefront, the back and
two sides. However, the fact that the person had to reproduce the same pose in all four images
and the optimization’s runtime of about one hour makes this approach not applicable in home user
scenarios.

5.2 Personalized Body Shape Estimation

In this section, we introduce a novel procedure for estimating the body shape from a single depth
camera using only two different calibration poses and within only a minute of fitting time, see Fig-
ure 5.5 for an overview. In addition, even if the user only roughly matchesthe required calibra-
tion poses, our shape estimation algorithm achieves accurate results. We propose two innova-
tions to achieve high speed and high accuracy. Firstly, our optimization scheme works purely in
the 3D domain and does not revert to 2D data representations as silhouettesor contours as used
in Weisset al. [2011]. However, note that the richer 3D contour is implicitly represented inthe
3D-domain. Using 3D cues instead of 2D cues typically results in fewer ambiguities and occlusion
problems such as an arm in front of the observed body, which would be invisible in the observed
contour. Secondly, in our optimization scheme we use a cost function that is not only based on
distances of corresponding points, but also considers normal-based distances between points and
planes. As a result, the optimization is less likely to get stuck in local minima and the speed of
convergence is increased significantly.

5.2.1 Shape Model

Mathematically, our shape model is given as a mesh consisting of vertices andtriangular faces.
Let P be the number of vertices and, as explained below, letϕ be a vector of shape parameters.
Henceforth, we assume that the mesh is rigged with a skeleton which is drivenby a pose parameter
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ϕ χ

(a) (b) (c)

M0,χ0
Mϕ,χ0

Mϕ,χ

Figure 5.6. (a): Average meshM0,χ0
in standard poseχ0. (b): Personalized meshMϕ,χ0

in standard pose
χ0 given a shape parameter vectorϕ. (c): Personalized meshMϕ,χ given in a poseχ.

vectorχ using linear blend skinning, see also Section 2.1.2. Hence, the 3D coordinates of the mesh
depend on bothϕ andχ and can be represented as the stacked vectorMϕ,χ ∈ R

3·P. Furthermore,
letMϕ,χ(p) denote the 3D coordinate of thepth vertex,p ∈ [1 : P] := {1,2, . . . ,P}. Finally, from
the triangulation one can derive a normal vectorNϕ,χ(p) ∈ R3 for each vertex.

Our body model is a statistical model of human pose and body shape similar to Jain et al. [2010].
The statistical model is a simplified SCAPE model (Anguelovet al. [2005]), where we omit the
terms responsible for modeling muscle bulging in order to speed up computations. Our model
is generated from scans ofS = 127 young male and female persons (Hasleret al. [2009]). This
certainly limits the expressiveness of the model to a certain extent. However,as our experiments
will show, even with a model generated from a relatively small number of scans we achieve better
accuracy than Weisset al. [2011] where 2 500 scans were used to construct the statistical model.

5.2.2 Model Construction

We follow the approach presented in Hasleret al. [2009]. Here, the authors register a template
mesh withP = 6 449 vertices into a point cloud using global and local mesh deformations. Given
theS laser-scans, letMs ∈ R

3P, s ∈ [1 : S] be the stacked vertex positions of the fitted meshes.
Now, theaverage meshis defined as

M0,χ0
=

1
S

S
∑

s=1

Ms, (5.1)

see also Figure 5.6 (a). Note that to this end, all meshesMs have to assume the same pose which
is called thestandard poseand is denoted by the indexχ0. Then, we compute the auto correlation
matrix

C =
1
S

S
∑

s=1

(Ms−M0,χ0
)(Ms−M0,χ0

)T . (5.2)

Let Φs, s ∈ [1 : S] be the eigenvectors ofC, sorted from most significant to least significant. A
suitable eigenvector-matrix is now defined as

Φ = [Φ1 · · ·ΦR] , (5.3)
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with R≤ S. The corresponding vectorϕ ∈ RR is called the shape parameter vector or shortshape
parameters.

UsingM0,χ0
, Φ, andϕ we obtain a family of different body shapes in the following way:

Mϕ,χ0
:=M0,χ0

+ Φ · ϕ (5.4)

In Hasleret al.[2009] it was shown that by using dimensionality reduction techniques, oneobtains
already a wide range of naturally looking shapes of different people for a low-dimensionalϕ. The
meshMϕ,χ0

is called thepersonalized mesh, see also Figure 5.6 (b). In our experiments, we use the
R= 13 most significant Eigenvectors. The shape space that is spanned by these vectors covers the
overall body size, gender specific differences, muscularity and other coarse features. It does not
cover fine details as facial features or wrinkles and fold or asymmetric body properties. However,
as the following experiments show, it still enables us to reconstruct the overall appearance of a
person with a better accuracy than previous approaches that use much complexer body models.

As for the underlying skeleton, we use a model containing 51 joints similar to Stollet al. [2011].
Not all joints possess a full degree of freedom (DoF). For example, thespine is represented by sev-
eral coupled joints that are parametrized by only 3 DoFs, which results in a smooth bending of the
whole spine. In our experiments, we represent the pose of a person with31 DoFs (3 translational
and 28 rotational) encoded by the pose parameter vectorχ. The skeleton was once manually fitted
to the average shape corresponding to the parameter vectorϕ = 0 in the poseχ0. To be able to
transfer the skeleton to other shapes, we represent the position of eachjoint as a linear combination
of its surrounding vertices. Note that, using this kind of formulation, our model has two indepen-
dent sets of parameters: Shape parametersϕ and pose parametersχ. As a consequence, identical
shape parameters always induce and identical shape and the same pose parameters always result
in the same pose. This property is important for the shape optimization processdescribed below.

5.2.3 Fitting Model to Data

Our shape estimation problem can be formalized as follows. First, we assume atarget point cloud
is given T consisting of pointsT(q) ∈ R3 for q ∈ [1 : Q], where Q denotes the number of
points. In our setting we assume thatT is a depth image as supplied by a Kinect camera, but point
clouds from other sources could also be used. The goal is to jointly optimize the shape and pose
parameters of our shape model to best explain the given target point cloud.

Firstly, the shape and pose parameter vectors are initialized byϕ = ϕinit andχ = χinit . In our
scenarios, we setϕinit = 0 andχinit to the standard pose parameterχ0 translated to the mean center
of the point cloudT. In order to make the shape model compatible with the target point cloudT,
we transform the shape model surface into a mesh point cloud. To this end,we basically consider
the 3D coordinatesM(p) :=Mϕ,χ(p), [1 : P], of the mesh vertices. Since in our setting the target
point cloudT comes from a depth image and hence only shows one side of the actor, we also
restrict the mesh point cloud to the points that are visible from the depth camera’s perspective
(the rough orientation of the body is assumed to be known in the calibration phase). To simplify
notation, we still index the restricted point cloud by the set [1 :P].

We establish correspondences between the target point cloud and the mesh point cloud based on
closest points. For each pointM(p), we define the corresponding pointT(qp) to be the point that
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minimizes the Euclidean distance betweenM(p) and the point cloudT. Similarly, for each point
T(q) the pointM(pq) is defined.

Based on these correspondences, we now introduce our optimization scheme. It is well known
from the literature that one obtains faster convergence rates in rigid shape registration based on
iterative closest points (ICP) when using point-plane constraints instead of point-point constraints,
see Chen and Medioni [1992] and references therein. Furthermore,such constraints are more
robust to noise from depth sensors leading to a more stable convergence. On the other hand, point-
to-plane constraints are problematic when correspondences are far apart. Therefore, we design an
energy functional that incorporates both point-point as well as point-plane constraints. First, for a
pair (p,q) ∈ [1 :P] × [1 :Q] let

dpoint(p,q) = ||M(p) − T(q)||2 (5.5)

denote the Euclidean distance between the pointsM(p) andT(q). Next, we use the normal infor-
mation supplied by the mesh to define a point-plane constraint. LetN(p) = Nϕ,χ(p), p ∈ [1 : P],
be the normal vector at thepth vertex. Then, the distance between the pointT(q) and the plane
defined by the normalN(p) that is anchored at the pointM(p) is given by

dnormal(p,q) = 〈M(p) − T(q),N(p)〉. (5.6)

Next, we fix a suitable thresholdτ (in our experimentsτ = 15 mm) to decide which of the distances
should be considered depending on how far the two corresponding points are apart and we define

dτ(p,q) :=

{

dpoint(p,q), if ‖M(p) − T(q)‖2 > τ,
dnormal(p,q), otherwise.

(5.7)

Finally, in the definition of the energy functionalE(ϕ,χ|T) we consider all correspondences from
the mesh point cloud to the target point cloud and vice versa:

E(ϕ,χ|T) :=
∑

p∈[1:P]

dτ(p,qp) +
∑

q∈[1:Q]

dτ(pq,q). (5.8)

To minimize Equation (5.8), we use a conditioned gradient descent solver asdescribed in Stollet al.
[2011]. To this end, we compute the analytic partial derivatives ofE(ϕ,χ|T) with respect to the
shape parametersϕ and the pose parametersχ.

LetΦχ0(p, i) ∈ R
3×1 be the sub-matrix ofΦ that influences thep-th vertex ofMϕ,χ and is multi-

plied with thei-th shape parameterϕi in ϕ. Now, we defineΘχ(p)[·] to be the linear blend skinning
transformation of vertexp, so that

Mϕ,χ(p) = Θχ(p)[Mϕ,χ0(p)], (5.9)

Nϕ,χ(p) = Θχ(p)[Nϕ,χ0(p)], and (5.10)

Φχ(p, i) = Θχ(p)[Φχ0(p, i)], (5.11)

with p ∈ [1 : P] and i ∈ [1 : |ϕ|]. Note thatΘχ(p)[·] does not apply a translational offset to
directional vectors such asNϕ,χ0(p) or displacement vectors such asΦχ0(p, i) but only to positional
vectors such asMϕ,χ0(p).
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The partial derivatives of the distance functionsdpoint anddnormal with respect to thei-th shape
parameterϕi are defined as

∂dpoint(p,q)

∂ϕi
= 2〈M(p) − T(q),Φχ(p, i)〉, and (5.12)

∂dnormal(p,q)
∂ϕi

= 2〈M(p) − T(q),N(p)〉 · 〈Φχ(p, i),N(p)〉.

Analogously, the partial derivative with respect toχ are

∂dpoint(p,q)

∂χ
= 2〈M(p) − T(q),M′ϕ,χ(p)〉, and (5.13)

∂dnormal(p,q)
∂χ

= 2〈M(p) − T(q),N(p)〉 · 〈M′ϕ,χ(p),N(p)〉, with

M′ϕ,χ(p) =











a j(p) ×Mϕ,χ0(p), j(p) is a revolute joint;
〈

a j(p),Mϕ,χ0(p)
〉

â j(p), else
and (5.14)

â j(p) =
a j(p)

‖a j(p)‖2
. (5.15)

Here,a j(p) is the axis of the jointj(p) that is influenced by the element in∂χ used for differenti-
ation. However, if that joint does not directly influenceMϕ,χ0, a j(p) is 0. For details, we refer to
Section 2.1.2.

Note that in contrast to numeric differentiation, analytic derivatives enable faster and more stable
convergence. We repeat the process in an ICP fashion, where between two iterations, the corre-
spondences are updated using the newly estimated parametersϕ andχ. We further speed up the
overall optimization procedure by using a multi-scale approach, where we start with only a small
number of correspondences and successively increase the number of correspondences until we use
one correspondence for every point inT and for every vertex inM.

Finally, we want to note that our optimization procedure can be easily extended to consider sev-
eral target point clouds to be jointly optimized against. More precisely, having K target point
cloudsT1, . . . ,TK , the objective is to estimateK pose parameter vectorsχ1, . . . ,χK , but one
joint shape parameter vectorϕ. In the optimization, the energy functional is defined as the sum
∑

k∈[1:K] E(ϕ,χk|Tk), see Equation (5.8). Our experiments show that using onlyK = 2 different
depth images (one from the front of the body and one from the back) arealready sufficient to ob-
tain an accurate shape estimate, see Figure 5.5. This easy extension to multiple target point clouds
is possible because our model has independent pose and shape parameters, see Section 5.2.1.

5.2.4 Evaluation

To evaluate the accuracy of our proposed method and to compare it with previous methods, we
conducted similar experiments as reported in Weisset al. [2011]. As for the test data, we con-
sidered the body shapes of six different persons of different size and gender (three males, three
females), see also Figure 5.7. For each person, we recorded two depthimages, one showing the
front and the other the back of the body, see Figure 5.5. Furthermore, using a full-body laser
scanner, we generated for each person a surface point cloud with a resolution of about 350 000
vertices. These scans serve as ground-truth (GT).
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M1 M2 M3 F1 F2 F3

Figure 5.7. Vertex-to-vertex distances given in millimeters for threemale (M1–M3) and three female (F1–
F3) subjects.(top): Shown from the front and(bottom): from the back.

Now, letϕ∗ be the optimized shape parameter vector obtained by our algorithm when usingthe
two depth images as target point clouds (the pose parameter vectorsχ1 andχ2 are not used in the
evaluation). Furthermore, to obtain a ground-truth shape, we use the samealgorithm as before,
however, this time using the laser scanner point cloud as target. Letϕ

GT denote the resulting
optimized shape parameter vector. To compare the shapes resulting fromϕ

∗ andϕGT, one needs
to generate the corresponding meshes. However, to this end, one also requires pose parameters,
and simply taking the standard pose parameter vectorχ0 is usually not the right choice, since the
different shape parameters may also have a substantial influence on the assumed pose. Therefore,
we compensate for this effect by taking the standard pose for the laser scan shape and by suitably
adjusting the pose parameters for the estimated shape. To this end, we again apply our optimization
algorithm usingMϕGT,χ0

as target point cloud and only optimize over the pose parameter vector
χ leavingϕ = ϕ∗ fixed. Letχ∗ denote the result. As for the final evaluation, we then compare
the meshMϕ∗,χ∗ (representing our shape estimation result) withMϕGT,χ0

(representing the ground
truth shape). Since vertex correspondences of these two meshes are trivial (based on the same
index set [1 :P]), one can directly compute the vertex-to-vertex Euclidean distances in thesame
way as Weisset al. [2011].

The vertex-to-vertex distances are indicated in Figure 5.7, which also shows the mean, variance
and maximum over these distances. For example, for the first male actorM1, the mean aver-
age is 5.1 mm and the maximal distance is 14.1 mm. Overall, the achieved accuracies (in average
10.1 mm) are good and comparable to (in average 10.17 mm) reported in Weisset al.[2011]. There
are various reasons for inaccuracies. In particular, using only 13 ofthe most significant Eigenvec-
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M1 M2 M3 F1 F2 F3 ∅

µ 5.1 18.7 9.1 6.8 11.4 9.2 10.1
σ 2.5 9.5 4.0 3.7 4.9 4.4 4.8
max 14.1 46.3 20.5 18.7 30.1 19.4 24.9

Table 5.1. Meanµ, standard deviationσ, and maximum max in millimeters over all vertices. The heads
where removed from the error calculation because of their bad representation in the shape model.

tors in Equation (5.4) does not allow us to capture all shape nuances whichmay lead to higher
errors, such as for the actorsM2 andF2. In these cases, either similar shapes might be not spanned
by the training data of the shape model or the 13-dimensional approximation ofshape variations
might be too coarse. Furthermore, note that the depth image resolution (whichis roughly 20 mm at
the used distance of 2.6 m) as well as the mesh resolution (where neighboring vertices often have
a distance of 20 mm) puts limits on the achievable accuracy. Nonetheless, overall good accuracy
is achieved with a compact model.

Besides its accuracy, our approach has two further main benefits: efficiency and robustness. It
only requires 50–60 seconds to estimate the shape parameter vector (and the two pose parameter
vectors) from two target depth point clouds. This is substantially faster than the 3 900 seconds
(65 minutes) reported by Weisset al. [2011]. The running times were measured using a C++ im-
plementation of our algorithm executed on an Intel Xeon CPU @ 3.10 GHz. Furthermore, jointly
optimizing for shape and pose introduces a high degree of robustness and allows us to use only
two different depth images to obtain accurate shape estimates. Actually, an additionalexperiment,
where we used four target point clouds (using two additional depth images) only slightly improved
the overall accuracies (from 10.1 mm when using two poses to 8.4 mm when using four poses).
Besides implementation issues, these substantial improvements in running time and robustness are
the result of using a relatively small number of optimization parameters, reverting to reliable 3D
correspondences, using a more effective parametrization of the body model, and combining point
and plane constraints.

5.3 Personalized Depth Tracker

As discussed in Section 5.1.3, the tracker presented in Baaket al. [2011] combines a generative
with a discriminative approach. The discriminative tracker finds closest poses in a database, but
that database is specific to an actor of a certain body shape. If the shapeof the tracked person
does not match the shape of the actor used to generate the database, the retrieved poses might not
match. Also, the generative tracker employed by Baaket al., uses a fixed body model that is not
adapted to the tracked person. If now a person with a different shape has to be tracked, the local
optimization might not find an optimal solution to fit the model into the point cloud of thedepth
image. In particular, this becomes evident if the the person is smaller than the model used by the
generative tracker. Here, the tracker tries to squeeze the large model into the small point cloud,
which results in strong pose errors.

To overcome some of these limitations, Baaket al.propose a scaling of the input point cloud along
the axes of the depth image. While this works for actors with similar body proportions, such an
approach fails if the proportions differ. Here, an example are the actorsF1 andF2, where the arms
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Figure 5.8. Average tracking error of sequences 0 to 27 of the dataset provided by Ganapathiet al. [2010].
The sequences were tracked using the tracker proposed by Ganapathiet al. [2010] (blue), by Baaket al.
[2011] (red), and our proposed tracker(yellow).

of F1 are longer than the ones ofF2 when compared to the overall body size.

In our approach we suggest a different strategy by recomputing the entire set of poses in the
database using the estimated personalized mesh. The database needs to be computed only once
for each actor, which takes around 12 minutes for 50 000 poses using unoptimized code. An
efficient GPU implementation would yield further speedups. Furthermore, we also replace the
model in the generative tracker. The resulting personalized depth tracker captures even fast and
complex body poses (jumping jack, sitting down) reliably and in real-time, see Figure 5.1 and also
the accompanying video of Heltenet al. [2013a] for some qualitative results. In the following, we
will give some quantitative results with comparison to other approaches.

5.3.1 Evaluation on the Standford Dataset

In a first experiment, we compare our personalized tracker to previous approaches based on the
dataset and error metrics described in Ganapathiet al. [2010]. The results of this evaluation are
depicted in Figure 5.8. One can see that our tracker gives at least comparable results to the previous
approaches presented by Ganapathiet al. [2010] and by Baaket al. [2011] and exceeds the results
of the previous approaches in many cases. Please note that for this evaluation marker positions of
markers attached to the actor’s body are predicted and compared to ground truth marker positions
obtained with an optical marker based mocap system. We think that this way of evaluating the
tracking accuracy is not well suited for the specific requirements in home consumer scenarios.
For example, in some reconstruction scenarios one is only interested in reconstructing the joint
positions of the user, as it is done for example in many Kinect applications. Onthe other hand,
when it comes to augmented reality scenarios, such as virtual try-on applications, one is rather
interested in tightly approximating the depth image of the user to get a well fitting overlay of
simulated objects such as cloths. In order to address these two evaluation aspects, we recorded a
dataset with ground truth tracking results.

5.3.2 Our Evaluation Dataset

For our evaluation, we recorded a dataset Heltenet al. [2013b] using both a Microsoft Kinect as
well as a Phasespace active marker-based mocap system simultaneously.It comprises various
kinds of motion performed by five actors (three male:M1, M2, andM3 and two female:F1 and
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(a) (b) (c) (d) (e)

Figure 5.9. (a): Modified calibration wand with a cardboard disc around one marker. (b): Illuminated
marker shown in an image from the RGB-camera of the Kinect.(c): Cardboard disk is clearly visible in the
Kinect’s depth image.(d): Reconstructed marker trajectories from Kinect(red) and optical mocap system
(black). (e): Estimation of the rotational offset between both trajectories after centering at their mean.

Difficulty Description

D1 Slow arm rotations, leg rotations, bending of upper body
D2 Simple arm and leg motions, and grabbing
D3 Punching, kicking, fast arm motion, and jumping
D4 Sitting on the floor, rotating on the spot, and walking in circles

Table 5.2. Description of the four difficultiesD1–D4 from the evaluation dataset.

F2). The body models for each actor were estimated with the method from Section 5.2. We
defined four groups of motions of different difficultiesD. They range from easy to track motion
sequences (D1), simple arm and leg motions (D2), fast movements such a kicking and jumping
(D3), to very hard to track motions such as sitting down, walking in circles, or rotating in place
(D4). An overview over the four difficulties is shown in Table 5.2. In total we recorded a set
of 40 sequences, 2 takes from every of the 4 difficulties performed by each of the 5 actors. We
used half of the recorded motions to build the pose database of the tracker,which contains a
total of 50 000 poses. The other half of the sequences is used for evaluation and is referred to as
evaluation dataset. We use the notation<actor><difficulty> to refer to a specific sequence from
the evaluation dataset,e. g. M2D4 refers to the sequence of difficulty D4 performed by actorM2.

Calibration. In order to make the tracking results from the depth trackers comparable to the
ground truth data we need to calibrate the Kinect with respect to the marker-based system. Since
the location of the Kinect camera is unknown a priori and the frame capturingof the Kinect
cannot be externally synchronized, such a calibration consists of two parts, a temporal calibration
and a spatial calibration. While the spatial calibration only needs to be done once, the temporal
calibration must be done for every captured sequence. We perform thetemporal calibration by
calculating a space invariant but time varying feature for two corresponding trajectories from both
the marker-based and the Kinect recording. The temporal offset is then determined by identifying
the lag that maximizes the cross correlation of both features. In our case, itturned out that the
absolute velocities of the trajectories are a robust feature for temporal calibration even under the
presence of tracking errors. A suitable trajectory could, for instance,be the position of a joint or
another well defined point over a period of time.
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For spatial calibration of both the Kinect and the marker-based system, we use a calibration wand
with a single active LED (see Figure 5.9 (a)). Here, the idea is to determine thetrajectory of
the marker using both recording devices, and to register the trajectories to each other. While the
marker-based system provides the marker’s trajectory in a straight forward way, we need some
additional processing to obtain the trajectory from the Kinect. The Kinect records depth and video
simultaneously, see Figure 5.9 (b) and (c), and both streams are calibratedrelative to each other.
We can thus get the LED trajectory from the Kinect by recording in a dark room, thresholding the
intensity image to identify the pixel position of the LED, and extracting corresponding depth infor-
mation from the depth channel. Using the intrinsic parameters of the Kinect, we calculate the 3D
position of the marker from the 2D position and depth value. Figure 5.9 (d) shows a reconstructed
marker trajectory (red) from Kinect footage. Now, we temporally align the trajectories with the
method described above. The resulting trajectories are then aligned spatiallyby determining a
rigid transform for point correspondences (Figure 5.9 (e)).

Joint Tracking Error. In a first experiment, we want to evaluate how accurate the various depth-
based trackers capture the joint positions of an actor. To this end, we used the marker data from
the phase space system to animate a kinematic skeleton using inverse kinematics.We consider the
resulting joints positions as ground truth data for the evaluation. In the following we assume that
the sequences of the trackers and the ground-truth data have been temporally and spatially aligned
using the procedure described above.

Since all trackers use a slightly different set of joints, we select for each tracker a subset of 20 joints
that are close to semantic positions in the body such as the lower back, the middleof the back,
the upper back, the head, the shoulders, the elbows, the wrists, the hands, the hips, the knees, the
ankles, and the feet. We now measure for every frame the distance between the tracked joints and
the ground truth joints. Since the corresponding joints from the different trackers do not lie at the
exact same positions,i. e. even in a reference pose, we need to normalize for an offset. Therefore,
we calculate the average local displacement of the joint relative to the corresponding ground-truth
joint, and subtract this offset from the position of the tracked joint. Here, local displacement means
that we consider the 3D displacement vector within the local coordinate frameof the ground-truth
joint.

The average errors—over all joints and frames of one sequence—forthe various actors and se-
quences are shown in Figure 5.10. One can see that the tracker of the Kinect SDK performs worst
with an average error of 95.8 millimeters over all sequences. The tracker presented by Baaket al.
[2011] shows an average error of 82.6 millimeters over all sequences, while our tracker performs
best with an error of 73.8 millimeters.

Surface Tracking Error. In a second experiment, we assess the quality of the tracker by quan-
tifying how well the tracked mesh at each frame approximates the point cloud recorded by the
Kinect, referred to assurface tracking error. To this end, we first calculate a so-calleddistance
mapfor every frame of a tracked sequence, by determining for every foreground point in the depth
image of the Kinect the distance to the closest point on the mesh. Now, the straightforward way to
compute a suitable surface tracking error would be to take the maximum distancefrom each dis-
tance map. Unfortunately, it turns out that the maximum is very unstable due to noise in the depth
image and inaccuracies of the background subtraction. Here, a quantile value is better suited since
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Figure 5.10.Average joint tracking error in millimeters for each sequence from the evaluation dataset that
were tracked by the tracker of the Kinect SDK(black), Baaket al. (red), and our tracker(yellow).

it filters out influences of noise. We tested several quantiles and it turnedout that a 97%-quantile
is a good compromise between robustness to outliers and responsivenessto tracking errors. Please
note that since the Kinect SDK does not provide a tracked mesh, we cannot calculate this error for
the tracker of the Kinect SDK.

Figure 5.11 (top) shows the surface tracking error over sequenceF1D1. The red curve represents
the error of the tracker by Baaket al.[2011] while the yellow curve is the result of our personalized
tracker. The black vertical line at 22.7 seconds indicates a point in time where the surface tracking
error of Baaket al. is significantly higher than that of our tracker. Figure 5.11(b)–(f) shows that
this corresponds to a notable tracking error. In the middle, Figure 5.11 (b)displays the depth
image recorded by the Kinect. In the distance map, cyan colors depict small distances around 0
millimeters while magenta colors represent high distance values of 25 millimeters andup. On the
right, Figure 5.11 (c) and (d) shows the distance map (left) and the trackedmesh of their tracker,
Figure 5.11 (e) and (f) depicts the distance map and the tracked mesh of ourtracker. Our tracker
tracks the right arm of actorF1 correctly while it was merged with the upper body by the tracker
of Baaket al. .

Table 5.3 lists the average surface tracking errors of the different sequences, actors and track-
ers. Our tracker performs significantly better than the tracker of Baaket al. [2011]. Especially
sequenceM2D4—which is one of the hardest sequences—is tracked considerably betterby our
tracker (average error of 110 mm) than by the tracker by Baaket al. (average error of 153 mm)
Of course our tracker also has limitations,e. g., when the actor does not face the camera (as in
sequences of difficulty D4) or when parts of the body are occluded or outside of the recording
volume of the Kinect—which occasionally happens during all sequences. While we cannot do
anything about the later source of errors, in Chapter 6, we will presentan approach to deal with
occlusions and the difficult to track non-frontal poses.

5.4 Conclusions

In this chapter, we presented a personalized real-time tracker of human body poses from single
depth images that is more accurate than related approaches from the literature. Key to its success
is personalization. We developed a new approach to estimate the personalized shape of an actor
based on a parametric body model, which is much faster and more accurate than previous methods.
We also presented a new real-time pose tracker that exploits this model and automatically adjusts
to every actor. In conjunction, these two contributions allow us to track both skeletal joint loca-
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D1 D2 D3 D4 ∅

M1 61 (66) 81 (84) 116 (139) 102 (138)90 (106)
M2 56 (54) 77 (84) 75 (71) 110 (153) 80 (91)
M3 56 (59) 76 (88) 89 (104) 93 (108) 79 (90)
F1 64 (74) 84 (102) 115 (172) 97 (129) 90 (119)
F2 46 (49) 62 (66) 80 (82) 105 (117) 73 (79)

Table 5.3.Averaged surface tracking errors in millimeters for each sequence of the evaluation dataset that
were tracked by our tracker. For comparison the error using the tracker proposed by Baaket al. is shown in
parenthesis.
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Figure 5.11. (a): Surface tracking error in millimeters for sequenceF1D1 tracked by of Baaket al. (red)
and our tracker(yellow). (b)–(f): Status at 22.7 seconds.(b): Depth image at (red front, blue back).(c):
Distance map of tracker of Baaket al.. (d): Tracked mesh for tracker of Baaket al.. (e): Distance map for
our tracker.(f): Tracked mesh for our tracker.

tions as well as the shape of the body more accurately than with previous methods. We confirm
this through extensive evaluations against ground truth on a comprehensive test dataset which is
publicly available.

While our proposed approach shows significant improvements, it still fails insome challenging
tracking situations such as when the person is not facing the camera or if parts of the body are oc-
cluded. These drawbacks are common for most depth-tracking approaches and are related to the
limited information that monocular depth data provides. To this end, we will includeadditional
sensor information that stabilizes the tracking. Here, inertial sensors become an interesting choice
because there are not prone to occlusions and provide with orientations complementary informa-
tion that only hardly can be obtained from depth images. In Chapter 6, we willfurther discuss this
topic and present one possible solution to this issue.
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Chapter 6

Real-time Motion Tracking by Fusing
Sensor Modalities

As showed in Chapter 5, the tracking of full-body human motion constitutes an important strand
of research in computer vision with many applications,e. g. in computer animation, sports, HCI
or rehabilitation. Most of the trackers introduced so far can be classifiedinto three families—
discriminative approaches, generative approaches, and approaches combining both strategies. While
discriminative trackers detect cues in the depth image and derive a pose hypothesis from them us-
ing a retrieval strategy, generative trackers optimize for the parameters of a human model to best
explain the observed depth image. Combining discriminative and generative approaches, hybrid
trackers have shown good results for fast motions in real-time scenarios,where tracked actors face
the camera more or less frontally. However, noise in the depth data, and the ambiguous repre-
sentation of human poses in depth images are still a challenge and often lead to tracking errors,
even if all body parts are actually exposed to the camera. In addition, if large parts of the body are
occluded from view, tracking of the full pose is not possible. Using multiple depth cameras can
partially remedy the problem (seee. g.Ye et al.[2012]), but does not eradicate occlusion problems,
and is not always practical in home user scenarios. Depth data alone may thus not be sufficient to
capture poses accurately in such challenging scenarios.

In this chapter, we show that fusing a depth tracker with an additional sensor modality, which
provides information complementary to the 2.5D depth video, can overcome these limitations. In
particular, we use the orientation data obtained from a sparse set of inexpensive inertial measure-
ment devices fixed to the arms, legs, the trunk, and the head of the tracked person. Inertial sensor
units can nowadays be mass produced at low cost and can be found in almost any mobile device.
We include this additional information as stabilizing evidence in a hybrid trackerthat combines
generative and discriminative pose computation. Our approach enables us to track fast and dy-
namic motions, including non-frontal poses and poses with significant self-occlusions, accurately
and in real-time.

Contributions. Our method is the first to adaptively fuse inertial and depth information in a
combined generative and discriminative monocular pose estimation framework. To enable this,
we contribute with a novel visibility model for determining which parts of the bodyare visible
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to the depth camera. This model tells what data modality is reliable and can be usedto infer the
pose, and enables us to more robustly infer global body orientation even inchallenging poses. Our
second contribution is a generative tracker that fuses depth and inertialcues depending on body
part visibility, and finds pose parameters via optimization. As a third contribution,we introduce
two separate retrieval schemes for handling depth and inertial cues for retrieving database poses
during discriminative tracking. The final pose is found in a late fusion step which uses the results
of both trackers mentioned above. We evaluate our proposed tracker onan extensive dataset in-
cluding calibrated depth images, inertial sensor data, as well as ground-truth data obtained with
a traditional marker-based mocap system. We also show qualitatively and quantitatively that it
accurately captures poses even under stark occlusion where other trackers fail. The contributions
discussed in this chapter have been published in Heltenet al. [2013d]. For this reason we closely
follow the explanation therein.

Organization. We start with discussing typical challenges that stem from the limited informa-
tion provided by monocular depth images in Section 6.1. Then, in Section 6.2, weintroduce the
visibility model which provides important information to the other parts of our tracking frame-
work. In Section 6.3, we describe our contributions to the generative tracker, while, in Section 6.4,
we elaborate on the changes made to the discriminative tracker. How the information of the differ-
ent components are fused into a final pose hypothesis is described in Section 6.5. The evaluation of
our tracker with respect to previous approaches is described in Section6.6. Finally, we conclude
and give an outlook in Section 6.7.

6.1 Expressiveness of Depth Data

In Chapter 5, we addressed one of the challenges for current depth tracking approaches that stem
from the level of accuracy of the underlying model that is used. We showed that accurate approx-
imations of the person to track can be achieved using only two depth images as input. Here, we
want to discuss two additional challenges to current depth tracking approaches that stem from lack
of expressiveness of depth data: rotational ambiguities and occlusions.For an introduction into
state-of-the-art depth tracking approaches we refer to Section 5.1.

6.1.1 Rotational Ambiguities

Depth data contains rich information about the relative location of objects which enables easy
background subtraction compared to vision based approaches on intensity images. However, depth
images reveal only little information about the surface structure and no colorinformation at all.
This makes it hard to determine the correct orientation of rotational symmetric objects, such as the
body extremities. Since most depth trackers only depend on very simplistic underlying body mod-
els with isotropic extremities (Knoopet al. [2009]; Friborget al. [2010]; Ganapathiet al. [2012];
Wei et al. [2012]) or even graphs (Pekelny and Gotsman [2008]; Salzmann and Urtasun [2010];
Zhuet al.[2010]; Girshicket al.[2011]; Shottonet al.[2011]; Yeet al.[2011]; Tayloret al.[2012])
that do not have any volume at all, they can simply ignore the aforementioned problem. However,
these trackers also do not provide any pose information about the twist ofthe arms or the legs. In
contrast, trackers that use complex triangle meshes for defining the surface of the body (Baaket al.
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(a) (c)(b)

Figure 6.1. Rotational ambiguities of depth data.(a): Input depth image.(b): One typical output from a
generative pose estimation procedure. Note that the axis ofthe elbow joint is vertical.(c): Another possible
output, the axis of the elbow joint is now horizontal.

[2011]; Yeet al. [2012]; Ganapathiet al. [2010]) should not ignore rotational ambiguities. In par-
ticular, for these approaches the used generative tracker might converge to different results de-
pending on its initialization.

An example can be seen in Figure 6.1. Here, the depth image shown in Figure 6.1 (a) reveals only
little information on how the arm is oriented. Two possible solutions of a generative tracker are
depicted in in Figure 6.1 (b) and (c). The difference between both solutions lies in the twist of the
arm. While in Figure 6.1 (b) the axis of the right elbow joint is oriented vertically,it is oriented
horizontally in Figure 6.1 (c). In this example, the latter would semantically be the correct pose
estimation result. At first glance this might not have huge impact on the overallperformance
of the tracker. However, a erroneously tracked pose might serve as initialization for the next
frame. Lets consider the scenario that the tracked person bends her arm with the forearm pointing
upwards. While this is a straight-forward task for the generative trackerinitialized with the pose
shown in Figure 6.1 (c), a local optimization starting with the pose shown in Figure 6.1 (b) is more
likely to get stuck in a local minimum. Unfortunately, none of the presented trackers employs
methods to prevent this. While pure generative trackers are likely to fail in such situations and
may not be able to proceed, discriminative trackers completely avoid this issueby tracking each
frame independently and not relying on local optimization. In contrast, hybrid approaches, such
as presented in Baaket al. [2011]; Weiet al. [2012], detect the failure of their generative tracker
and reinitialize it using pose estimations of their discriminative tracker.

Similar challenges are also faced in other tracking fields ase. g.marker-less motion capture. Here,
so called silhouette-based trackers that estimate the pose of the person from multiple, binary (fore-
ground vs. background) images, suffer from the same challenge being unable to determine the
correct orientation of the extremities of the person. One approach to tacklethis was presented in
Pons-Mollet al. [2010], where the authors included information from another sensor modality to
correctly detect the orientation of the extremities independent from ambiguous depth information.
In particular, their approach relies on orientation data obtained from five inertial sensors attached
to the lower legs, forearms and the trunk of the person. By including the measured orientations
into the energy function of their generative approach, tracking errors inrotationally symmetric
limbs could be avoided. These ideas could be directly integrated into the energy function of a
depth-based tracker. However, in case of tracking from monocular depth images another problem
related to the lack of expressiveness is even more challenging: occlusions.
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(a) (b) (c)

Figure 6.2. Three typical failure cases of a current real-time tracker combining generative and discrimina-
tive pose estimation (Baaket al. [2011]) (left: input depth image; middle: recovered pose ofbody model
with catastrophic pose errors; right: significantly betterresult using our approach):(a): Occluded body
parts,(b): non-frontal poses,(c): and both at the same time.

6.1.2 Occlusions

The third and by far greatest challenge for today’s depth trackers areocclusions. Occlusions stem
from the fundamental principle how depth images (and other optical data) are obtained. Light is re-
flected by some object and detected by some light sensitive sensor inside thecamera. If light from
an object,e. g.a body part, cannot reach the sensor of the camera because another object in be-
tween, the object is occluded. As a consequence, one cannot obtain any usable information about
the occluded object. Present depth trackers deal with occlusions in various ways. Some trackers
simply avoid this by requiring the tracked person to strike only poses where all body parts are
clearly visible to the depth camera Baaket al. [2011]; Ganapathiet al. [2010]; Weiet al. [2012].
Such trackers often show undefined behavior if the requirements are not met, see Figure 6.2 for
some representative failure cases. Some discriminative trackers allow fornon frontal poses but
do not give any pose hypothesis for non-visible parts (Zhuet al. [2010]; Shottonet al. [2011];
Tayloret al. [2012]; Weiet al. [2012]). In contrast, the approach presented in Girshicket al.
[2011] uses a regression forest-based approach to learn the relative joint positions for a depth
pixel based on depth values in its neighborhood. Calculating the density meanon a set of votes
yields a hypothesis even for occluded joints. As most learning based approaches, this approach
shows good results on poses close to the one used for learning and vice versa. In a pure genera-
tive setting, the approach proposed in Ganapathiet al. [2012] includes two additional constraints
into the energy function to produce plausible results for occluded body parts. The first constraint
prevents body parts from entering empty space,i. e.parts in the depth image where no foreground
pixels were detected. The second constraint prevents body parts frominter-penetrating. However,
without an actual measurement it is impossible to deduce the correct pose for occluded body parts.

We see two ways that could help tracking in difficult scenes. Firstly, occlusions could be reduced
by dynamically moving the cameras during the recording of the scene. Secondly, occlusions could
be handled by adding another input modality that does not depend on visual cues. As for the first
approach, the authors in Yeet al. [2012] make use of three Kinect depth cameras that are carried
by operators around a scene. At a given frame, the depth input of the three Kinects is then fused
into one point cloud representation of the whole scene. Using a generative tracking approach,
the poses of the persons are tracked by fitting a rigged surface mesh into the point cloud. While
this approach shows good results even for multiple persons in close contact, the runtime of the
approach is not real-time and the use of multiple Kinect cameras is not feasiblein home user
scenarios. Even when using multiple depth cameras, occlusions are difficult to prevent in many
tracking scenarios.
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Figure 6.3.Overview of the components of our proposed tracker. The arrows indicate the data-flow between
the components: inertial data(orange), depth data(blue), visibility data(black), and pose data(red).

As for the second approach, the fusion of different sensor modalities has become a successful
approach for dealing with challenging tasks. An approach combining two complementary sensor
types for full body human tracking in large areas was presented in Ziegleret al. [2011]. Here,
densely placed inertial sensors, one placed on every limb of the body, provide an occlusion inde-
pendent estimation of the persons body configuration using measured global orientations. Since
inertial sensors cannot measure their position, this information is provided by a depth sensing
laser system mounted to a robot accompanying the tracked person. Unfortunately, their approach
does not include the rich depth information for supporting the tracking of theperson’s body con-
figuration. Their approach rather solves two independent sub task, determining the local body
configuration and estimating the global position of the person.

At this point, we want to take a second look at the approach presented in Pons-Moll et al. [2010],
which we also discussed in Section 6.1.1. In this approach, the main intention ofusing inertial
sensors in a classical marker-less tracking framework was to prevent erroneous tracking that stems
from the ambiguous representation of body extremities in silhouette images. Another interesting
side-effect is that the inertial sensors provide information about the limb orientations even in sit-
uations when the limbs are not visible to the camera. While in the presented scenario this effect
was not important because multiple cameras enabled an almost occlusion freeobservation of the
tracked person, this effect might be very important in monocular tracking approaches. In partic-
ular, many current depth-based trackers would benefit from additional information that does not
depend on visual cues.

In the following, we take the state-of-the-art depth tracker proposed in Chapter 5, which is based on
the tracker presented in Baaket al. [2011] as example. This tracker uses discriminative features
detected in the depth data, so-calledgeodesic extrema EI, to query a database containing pre-
recorded full-body poses. These poses are then used to initialize a generative tracker that optimizes
skeletal pose parametersχ of a mesh-based human body modelMχ ⊆ R3 to best explain the
3D point cloudMI ⊆ R3 of the observed depth imageI. In a late fusion step, the tracker
decides between two pose hypotheses: one obtained using the database pose as initialization or
one obtained that used the previously tracked poses as initialization. This tracker makes two
assumptions: The person to be tracked is facing the depth camera and all body parts are visible
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to the depth camera, which means it fails in difficult poses mentioned earlier (see Figure 6.2 for
some examples). We overcome its limitations by modifying every step in the original algorithm
to benefit from depth and inertial data together. In particular, we introduce avisibility modelto
decide what data modality is best used in each pose estimation step, and develop a discriminative
tracker combining both data. We also empower generative tracking to use both data for reliable
pose inference, and develop a new late fusion step using both modalities. See Figure 6.3 for an
overview of our proposed tracker.

6.2 Visibility Model

Body Model Similar to Chapter 5, we use a body model comprising a surface meshMχ of 6 449
vertices, whose deformation is controlled by an embedded skeleton of 62 joints and 42 degrees of
freedom via surface skinning, see also Section 2.1.2. The model is adapted to the actor utilizing the
method described in Chapter 5 using a laser scan as target point cloud. However, also two depth
images could be used, which makes it applicable in case of a home user scenario. Furthermore, let
Ball := {larm, rarm, lleg, rleg,body} be a set ofbody partsrepresenting the left and right arm, left
and right leg and the rest of the body. Now, we define five disjoint subsetsMb

χ,b ∈ Ball containing
all vertices fromMχ belonging to body partb.

Sensors As depth camera we use a Microsoft Kinect running at 30 fps, but in Section 6.6 we
also show that our approach works with time-of-flight camera data. As additional sensors, we use
inertial measurement units(IMUs), which are able to determine their relative orientation with re-
spect to a global coordinate system, irrespective of visibility from a camera. IMUs are nowadays
manufactured cheaply and compactly, and integrated into many hand-held devices, such as smart
phones and game consoles. In this chapter, we use six Xsens MTx IMUs,attached to the trunk
(sroot), the forearms (slarm, srarm), the lower legs (slleg, srleg), and the head (shead), see Figure 6.6 (a).
The sensor sroot gives us information about the global body orientation, while the sensors on arms
and feet give cues about the configuration of the extremities. Finally, the head sensor is important
to resolve some of the ambiguities in sparse inertial features. For instance, ithelps us to dis-
criminate upright from crouched full body poses. The sensors’ orientations are described as the
transformations from the sensors’ local coordinate systems to a global coordinate system and are
denoted by qroot, qlarm, qrarm, qlleg, qrleg, and qhead. In our implementation, we use unit quaternions
for representing these transformations, as they best suit our processing steps. In this chapter, we
also use the virtual sensor concept introduced in Section 2.2.5. For clarity, we addχ or S to the
index,e. g.qS,root denotes the measured orientation of the real sensor attached to the trunk, while
qχ,root represents the readings of the virtual sensor for a given poseχ. Note, while the exact place-
ment of the sensors relative to the bones is not so important, it needs to be roughly the same for
corresponding real and virtual sensors. Furthermore, an orientationof a sensor at timet is denoted
as qroot(t). For further reading on the used sensors we refer to Chapter 2.

Our visibility model enables us to reliably detect global body pose and the visibility of body parts
in the depth camera. This information is then used to establish reliable correspondences between
the depth image and body model during generative tracking, even under occlusion. Furthermore,
it enables us to decide whether inertial or depth data are most reliable for pose retrieval.
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Figure 6.4. Relationship between the different IMU coordinate systems and orientations.

Global body position and orientation. In Baaket al. [2011], the authors use plane fitting to
a heuristically chosen subset of depth data to compute body orientation, andcompute translation
from the depth centroid. Their approach fails if the person is not roughlyfacing the camera or
body parts are occluding the torso. Inertial sensors are able to measuretheir orientation in space
independent of occlusions and lack of data in the depth channel. We thus use the orientation
of the sensor sroot to get a good estimate of the front directionf of the body within the global
coordinate system of the camera, even in difficult non-frontal poses, as shown in Figure 6.5 (b).
However, inertial sensors measure their orientation with respect to some global sensor coordinate
system that in general is not identical to the global coordinate system of thecamera, see also Fig-
ure 6.4. For that reason, we calculate the transformationqχ,root(t) in a similar fashion as described
in Pons-Mollet al. [2010] using relative transformations∆q(t) := qS,root(t0) ◦ qS,root(t) with re-
spect to an initial orientation at timet0. Here,q denotes the inverse transformation of q, while
q2 ◦ q1 expresses that transformation q2 is executed after transformation q1. The transformations
qS,root(t0) andqS,root(t) can be directly obtained from the measurement of the sensor. The desired
transformation from the coordinate system of the sensor to the global coordinate system of the
camera at timet is now qχ,root(t) = qχ,root(t0) ◦ ∆q(t). Note thatqχ,root(t0) cannot be measured.
Instead, we calculate it using virtual sensors and an initial poseχ(t0) at timet0. For this first frame,
we determine the front directionf (t0) as described in Baaket al. [2011] and then use our tracker
to computeχ(t0). In all other frames, the front facing direction is defined as

f (t) := qχ,root(t) ◦ qχ,root(t0)[ f (t0)]. (6.1)

Here, q[v] means that the transformation q is applied to the vectorv, Figure 6.5 (b).

Body part visibility. The second important information supplied by our visibility model is
which parts of the model are visible from the depth camera. To infer body part visibility, we
compute all verticesVχ ⊆ Mχ of the body mesh that the depth camera sees in poseχ. To this
end we resort to rendering of the model and fast OpenGL visibility testing. Now, thevisibility of
a body partb is defined as

Vb :=
|Mb
χ ∩Vχ|

|Mb
χ|

. (6.2)
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(a)
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(b)
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Figure 6.5. Tracking of frame at 5.0 s of sequence D6 from our evaluation dataset. The views are rotated
around the tracked person, where offsetw.r.t. the depth camera is depicted at the bottom of each subfigure.
(a): Input depth data.(b): Output of the visibility model. Note: the right arm is not visible. (c): Correspon-
dences used by the generative tracker. Note: no correspondences with right arm. The pose parametrized
mesh was moved to the left for better visibility.(d): Final fused pose.

The set ofvisible body partsis denoted asBvis := {b ∈ Ball : Vb > τ3}. Note, that the accuracy
of Bvis depends onMχ resembling the actual pose assumed by the person in the depth image as
closely as possible which is not known before pose estimation. For this reason, we choose the
poseχ = χDB, obtained by the discriminative tracker which yields better results than using the
poseχ(t − 1) from the previous step, (see Section 6.4). To account for its possibledeviation from
the “real” pose and to avoid false positives in the setBvis, we introduce the thresholdτ3 > 0. In
the tested scenarios, values ofτ3 up to 10% have shown a good trade-off between rejecting false
positives and not rejecting too many body parts, that are actually visible.

In the rendering process also avirtual depth imageIχ is created, from which we calculate the first
M = 50 geodesic extrema in the same way as for the real depth imageI, see Baaket al. [2011].
Finally, we denote the vertices that generated the depth points of the extrema withVM

χ .

6.3 Generative Pose Estimation

Similar to Baaket al. [2011], generative tracking optimizes skeletal pose parameters by minimiz-
ing the distance between corresponding points on the model and in the depth data. Baaket al.
fix Vχ manually, and never update it during tracking. For every point inVχ they find the closest
point in the depth point cloudMI, and minimize the sum of distances between model and data
points by local optimization in the joint angles. Obviously, this leads to wrong correspondences if
the person strikes a pose in which large parts of the body are occluded.

In our approach, we also use a local optimization scheme to find a poseχ that best aligns the
modelMχ to the point cloudMI. In contrast to prior work, it also considers which parts of
the body are visible and can actually contribute to explaining a good alignment on the depth
image. Furthermore, we define subsetsχb,b ∈ Ball of all pose parameters inχ that affect the
corresponding point setsMb

χ. We define the set ofactive pose parametersχact :=
⋃

b∈Bvis
χb.
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Finally, the energy function is given as

d(Mχ,MI) := dMχ→MI + dMI→Mχ (6.3)

dMχ→MI :=
1
M

∑

v∈VM
χ

min
p∈MI

‖p− v‖2 (6.4)

dMI→Mχ :=
1
N

∑

e∈EN
I

min
v∈Mχ

‖e− v‖2. (6.5)

Here,EN
I

represents the firstN = 50 geodesic extrema inI, whileVM
χ is a subset ofVχ containing

M = 50 visible vertices, see Section 6.2 for details. A visualization for the resultingcorrespon-
dences can be seen in Figure 6.5 (c). As opposed to Baaket al., we minimized(Mχ,MI) using
a gradient descent solver similar to the one used in Stollet al. [2011] and employ analytic deriva-
tives.

6.4 Discriminative Pose Estimation

In hybrid tracking, discriminative tracking complements generative trackingby continuous re-
initialization of pose optimization when generative tracking converges to an erroneous pose op-
timum (see also Section 6.5). We present a new discriminative pose estimation approach that
retrieves poses from a database with 50 000 poses obtained from motion sequences recorded using
a marker-based mocap system. It adaptively relies on depth features forpose look-up, and new in-
ertial features, depending on visibility and thus reliability of each sensor type. In combination, this
enables tracking of poses with strong occlusions, and it stabilizes pose estimation in front-facing
poses.

Depth-based database lookup. In order to retrieve a poseχDB
I

matching the one in the depth
image from the database, Baaket al. [2011] use geodesic extrema computed on the depth map as
index. In their original work, they expect that the first five geodesic extremaE5

I
from the depth

imageI are roughly co-located with the positions of the body extrema (head, handsand feet).
The geodesic extrema also need to be correctly labeled. Further on, the poses in their database are
normalizedw.r.t. to global body orientation which reduces the database size. As a consequence,
also queries into the database need to be pose normalized. We use Baaket al.’s geodesic extrema
for depth-based lookup, but use our more robust way for estimatingf (t) for normalization, see
Section 6.2. Our method thus fairs better even in poses where all geodesic extrema are found, but
the pose is lateral to the camera.

Inertial-based database lookup. In poses where not all body extrema are visible, or where they
are too close to the torso, the geodesic extrema become unreliable for database lookup. In such
cases, we revert to IMU data, in particular their orientations relative to the coordinate system of
the sensor sroot, see Figure 6.6 (a). Similar to the depth features based on geodesic extrema, these
normalized orientationŝqb(t) := qroot(t) ◦ qb(t), b ∈ B = {larm, rarm, lleg, rleg,head} are invariant
to the tracked global orientation of the person but capture the relative orientation of various parts
of the person’s body. However, using these normalized orientations directly as index has one
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Figure 6.6. (a):Placement of the sensors on the body and normalized orientation w.r.t. sroot. (b): Body part
directions used as inertial features for indexing the database.(c): Two poses that cannot be distinguished
using inertial features.(d): The same two poses look different when using optical features.

disadvantage. This is because many orientation representations need special similarity metrics that
are often incompatible to fast indexing structures, such ask-d trees. To this end, we use a vector
d̂ ∈ R3 that points in the direction of the bone of a body part, see Figure 6.6 (b). Inour setup, these
directions are co-aligned with the local X-axis of the sensor for all sensors except for the sensor
shead, where it is co-aligned with the local Y-axis. The normalized directionsd̂b(t) := q̂b(t)[db] are
then stacked to serve as inertial-based query to the database. The retrieved pose is denoted asχDB

S
.

Selecting depth-based or inertial-based lookup. At first sight, it may seem that inertial fea-
tures alone are sufficient to look up poses from the database, because they are independent from
visibility issues. However, with our sparse set of six IMUs, the inertial dataalone are often not
discriminative enough to exactly characterize body poses. Some very different poses may induce
the same inertial readings, and are thus ambiguous, see also Figure 6.6 (c). Of course, adding
more IMUs to the body would remedy the problem but would starkly impair usablityand is not
necessary as we show in the following. Geodesic extrema features are very accurate and discrimi-
native of a pose, given that they are reliably found, which is not the case for all extrema in difficult
non-frontal starkly occluded poses, see Figure 6.6 (d). Therefore, we introduce two reliability
measures to assess the useability of depth-based features for retrieval,and use the inertial features
only as fall-back modality for retrieval in case depth-based features cannot be trusted. We use
the distancesǫi(t) of the geodesic extremai ∈ [1 : 5] at framet w.r.t. the centroid of the point
cloud which roughly lies at the center of the torso. For each end effector that distance does not
change dramatically across poses in normal motion. When a geodesic extremum is not detected
correctly, the computed distanceǫi(t) therefore typically differs significantly fromǫ i . In practice,
the distances can be obtained after the first pass of the modified Dijkstra’s algorithm, presented
in Baaket al. [2011]. This yields our first reliability measure

ǫ(t) :=
5
∑

i=1

|ǫi(t) − ǫ i |, (6.6)

The values ofǫ i for a specific actor are computed once from a short sequence of depthimages in
which geodesic extrema were detected reliably.

A second reliability measure is the difference between the purely depth-based computation of
the global body pose similar to Baaket al. and the inertial sensors measured orientations. More
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Figure 6.7.Evaluation on the Stanford dataset presented in Ganapathiet al. [2010]. (red): Ganapathiet al.
[2010] (blue): Baaket al. [2011] (yellow): Our tracker.(cyan): Ye et al. [2011] (not real-time).(green):
Taylor et al. [2012].

precisely, we use the measure

∆(t) :=
∑

b∈B

δ(q̂
χ

DB
I
,b(t), q̂S,b(t)). (6.7)

δ = cos−1 |〈·, ·〉|measures the difference between rotations that we represent as quaternions, where
〈·, ·〉 is the dot product treating quaternions as 4D vectors. The final retrieved pose is computed as

χ
DB :=

{

χ
DB
I
, if ǫ(t) < τ1 ∧ ∆(t) < τ2

χ
DB
S
, otherwise

. (6.8)

We found experimentally thatτ1 = 1.15 andτ2 = 4.0 are good values for all motion sequences we
tested.

6.5 Final Pose Estimation

The final pose computed by our algorithm is found in a late fusion step. We are running two
local pose optimizations (Section 6.3), one using the database poseχ

DB as initialization for the
optimizer, and one using the pose from the last frameχlast as initialization. Here, we are only opti-
mizing for those parameters that are part ofχact. The resulting optimized poses are calledχDB

opt and

χ
last
opt. From those two, we select the best pose according to Equation (6.3). Those parameters that

are not part ofχact are taken over fromχDB
S

. This way, even if body parts were occluded or unreli-
ably captured by the camera, we obtain a final result that is based on actual sensor measurements,
and not only hypothesized from some form of prior.

6.6 Evaluation

The C++ implementation of our tracker runs at around 30 fps on a PC with a 2.4 GHz Intel Core
i7-2760 QM CPU. We qualitatively and quantitatively evaluate it and its components on several
data sets and compare to related methods from the literature.

We use a pose database with 50 000 poses. 44 000 were kindly provided by Baaket al.[2011]. We
include 6 000 additional poses that we recorded along with the evaluation data set (Section 6.6.2).
These poses show similar types of motion, but are not part of the evaluationset. The pose database
is recomputed for each actor once to match his skeleton dimension.
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6.6.1 Evaluation on Stanford Dataset

We evaluate our tracker on the 28 sequences of the Stanford data set from Ganapathiet al. [2010].
This data set was recorded with a SwissRanger SR4000 time-of-flight camera and provides ground-
truth marker positions from a Vicon motion capture system. However, the data neither contain a
pose parametrized model of the recorded person nor inertial sensor data. We therefore estimated
the size of the recorded person using a deformable shape model from a set of isolated depth frames
obtained from the dataset, see Weisset al. [2011] for details. Using the mesh of the fitted model,
we designed a suitable skeleton with the same topology as required by our pose parametrized
model. We tracked the whole dataset using an IK-tracker and the providedground-truth marker
positions as constraints. The obtained pose parameters were used to compute virtual sensor read-
ings. Note, that there are a lot of manual preprocessing steps involved tomake our tracker run on
this data set, and each step introduces errors that are not part of the other tested trackers’ evaluation
(we copied over their error bars from the respective papers). We now, tracked the dataset using
the provided depth frames as well as the virtual sensor readings with our tracker and computed the
error metric as described in Ganapathiet al. [2010], Figure 6.7.

Discussion We used the mean errors according to the error metric described by Ganapathiet al.
[2010] to compare our tracker to the ones of Ganapathiet al. [2010], Baaket al. [2011], Yeet al.
[2011] which is not a real-time tracker, and Tayloret al. [2012]. By mean error, our tracker per-
forms better than Ganapathiet al. [2010] and Baaket al. [2011] on most sequences, and is close
to the others on all data (see comments at end). However, our tracker shows its true advantage
on sequences with more challenging motion, 24–27, of which only 24 shows notable non-frontal
poses, and periods where parts of the body are completely invisible. Here, one can see that other
trackers fail, as the errors of most trackers roughly double with respect to the mean error on other
sequences. In contrast, our tracker shows an increase of only about 15%, as it continues to follow
the motion throughout the sequence. Please note the mean errors are not the best metric to asses
our tracker, but are the only values reported in all other papers. The absolute mean errors of our
tracker are likely biased by an overhead stemming from the preprocessingmentioned above, and
mask its significant improvement on occluded poses.

6.6.2 Evaluation Dataset

For more reliable testing of the performance of our tracker, we recordeda new dataset (Heltenet al.
[2013e]) containing a substantial fraction of challenging non-frontal poses and stark occlusions of
body parts. Table 6.1 gives an overview over the six sequences of ourevaluation dataset. While
sequenceD1 contains comparably simple motions such as arm and leg rotations, the other five
sequences are challenging for depth based trackers each in its own way. SequenceD2 introduces
considerable faster motions compared to SequenceD1, including punching and kicking motions.
However the motions are performed either by the arms or by the legs. In contrast, SequenceD3

contains full body motions including jumping jacks, skiing motions, and squats. Especially the lat-
ter ones are interesting, because they induce inertial features that are almost equal over all phases
of the motion. This stems from the fact that the arms and the lower legs do not change their ori-
entation with respect to the trunk. In SequenceD4 the arms touch the body at different locations
which especially challenges the geodesic extrema-based database lookupas used by Baaket al.
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Scene Description #Frames

D1 Arm rotations, leg rotations, bending of upper body, and grabbing 1366
D2 Punching, kicking, fast arm motion, and jumping 445
D3 Jumping jacks, skiing, and squats 527
D4 Arms at the hips, arms crossed, and hands behind head 930
D5 Straight walking sidewards, and skiing sidewards 930
D6 Circular walking, rotation on the spot, and moving arms behind the body 885

Table 6.1. Description of the six sequences from the evaluation dataset.

[2011]. In particular, this prevents correct geodesic extrema detectionby introducing loops to the
shape of the person. SequenceD5 first introduces non-frontal poses including walking sidewards
and skiing motions performed lateralw.r.t. the depth camera. Finally, SequenceD6 completes our
evaluation dataset by introducing walking in circles, rotating on the spot andselected occlusions
of the arms.

For recording we used one Microsoft Kinect, six Xsens MTx IMUs as well as a PhaseSpace
marker-based optical mocap system with 38 markers. The IMUs were strapped to the head, lower
legs, the trunk, and forearms and are co-aligned with the assumed virtual sensors, see also Sec-
tion 2.2.5. In the following, we assume that all data are temporally aligned and theKinect data
and the marker-based system are spatially aligned. We recorded 6 different sequences (D1, . . . ,D6)
with varying difficulties including punching, kicking, rotating on the spot, sidewards and circular
walking performed by one actor (See additional material for details). This totals in about 6 000
frames at 30 Hz. For all sequences we computed ground truth pose parameters and joint positions
using the recorded marker positions and the same kinematic skeleton that we use in our tracker.
For a qualitative evaluation of our tracker, also in comparison to previous approaches, we refer to
Figure 6.2 and the accompanying video.

Discussion With this data, we quantitatively compare our tracker (hDB) to the Kinect SDK,
as well as Baaket al. [2011]. We also quantitatively evaluate our tracker with only depth-based
retrieval (dDB), and only inertial retrieval (iDB). To make results of very different trackers compa-
rable, we introduce a new error measure based on joints. Since all trackers use a slightly different
set of joints, we select for each tracker a subset of 16 joints that are close to semantic positions in
the body such as the lower back, the middle of the back, the upper back, thehead, the shoulders,
the elbows, the wrists, the hips, the knees, and the ankles. Furthermore, as the corresponding
joints from the different trackers do not lie at the exact same positions we need to normalize for
this offset. We do this by calculating the average local displacement (i. e. local within the frame of
the ground truth joint) of the joint relative to the corresponding ground-truth joint, and subtracting
this offset from the position of the tracked joint, see also Section 5.3. The joint errors, for all
sequences are depicted in Figure 6.9.

Figure 6.8 shows the average joint error for all tested trackers and algorithm variants on all 6
sequences. On the first four sequences which are easier and show no non-frontal poses, our final
tracker (hDB) is among the best ones and, as expected, mostly comparableto Ganapathi’s and
Baak’s methods. Importantly, it is always better than iDB and dDB. However, hDB outperforms all
other approaches on the last two sequences,e. g.producing less than half the error (about 75 mm)
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Figure 6.8. Average joint tracking error in millimeters for sequences D1, . . . ,D6 from our evaluation
dataset, tracked with the joint tracker of the Kinect SDK(black), Baaket al. (blue), and our tracker with
only depth-based DB lookup (dDB)(light blue), only inertial-based DB lookup (iDB)(orange), and the
proposed combined DB lookup (hDB)(yellow).

of Baaket al. [2011] with about 180 mm. The temporal error evolution of some representative
joints in D5 and D6 are depicted in Figure 6.10 (a) for Kinect SDK, Baaket al., and our algorithm.
This clearly shows that our algorithm produces significantly lower errorsthan both others on
certain spans of poses, which is masked in average error values. Finally, Figure 6.10 (b) shows
the superiority of our tracker on selected time steps from that sequence, by visually comparing
each result to ground truth joint locations (see video for more results). Error plots for the other
joints and sequences can be found in the supplemental material. Here, we also included errors of
our tracker, where one of the database-lookup strategies—either the depth-based or the inertial-
based—was deactivated to show its impact on the overall performance. Our final tracker also
performs consistently better than iDB and dDB illustrating the benefit of our fusion strategy. This
is particularly evident in D3 and D4. Sequence D3 contains squats, on which inertial-based feature
lookup is ambiguous. D4 contains motions where the arms touch the body at different locations.
Here, the database lookup based on depth features fails.

6.7 Conclusions

In this chapter, we presented a hybrid method to track human full-body poses from a single depth
camera and additional inertial sensors. Our algorithm runs in real-time and,in contrast to previous
methods, captures the true body configuration even in difficult non-frontal poses and poses with
partial and substantial visual occlusions. The core of the algorithm are new solutions for depth
and inertial data fusion in a combined generative and discriminative tracker. In particular, we con-
tributed with a visibility model that includes depth and inertial information to provideknowledge
about what parts of the tracked person are visible in a given tracking situation. In particular, the
visibility model provides information about which parts of the body are visible tothe depth cam-
era. This information is then used in the generative part of our proposedtracker to decide which
information is more reliable for the motion reconstruction, the inertial data or the depth data.
Furthermore, the visibility information is used to decide whether inertial or depthinformation is
more reliable to look up a regularizing pose during discriminative tracking. Wehave demonstrated
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Figure 6.9. Joint Errors for all joints and all sequencesD1, . . . ,D6 from the evaluation dataset. The three
columns represent the three different trackers:(left): The Kinect SDK’s joint tracker,(middle): the ap-
proach presented by Baaket al. [2011], and(right): our approach.
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Figure 6.10. (a):Joint errors for selected joints over sequences D5 and D6 (time in seconds). Per joint there
are three error rows:(top) Kinect SDK’s tracker,(middle) Baaket al., and(bottom) our approach.(b):
Three challenging example poses from sequences D5 and D6. Input depth data, ground-thruth joint positions
(green dots)and tracked(skeleton)shown from the side. Our approach(right) clearly outperforms the
Kinect SDK’s tracker(left), and Baaket al.’s method(middle).

the performance of our tracker qualitatively and quantitatively on a large corpus of data that we
provide to the community, and showed its clear advantages over other state-of-the-art methods.

Current limitations of our proposed tracking approach are for example thenumber of inertial
sensors. While one sensor, used for estimating the global heading, improves the performance of
our supposed tracker significantly, its full potential is only revealed usingsix inertial sensors. Here,
the governing factor is the retrieval in our discriminative tracker. This is mainly because of the
fact that we use an index solely based on inertial data if we detect that depth data is not sufficient
for pose retrieval. One idea to reduce the number of sensors would be to introduce a hybrid
retrieval approach that uses sparse inertial data in combination with depth cues for retrieval. In
particular, using body part-based, detection algorithms such as proposed by Shottonet al. [2011]
could be helpful. Another limitation is that inertial data is not yet included into the optimization
scheme directly. Here, a prior similar as proposed by Pons-Mollet al. [2010] would improve
the performance of our trackers for parts visible to the depth camera and one could better tackle
tracking issues with rotational ambiguities of the extremities.



Chapter 7

Summary and Outlook

In this thesis, we have presented several techniques for processing and reconstructing human mo-
tion data that originates from different sensor modalities. A key aspect was that different sensor
modalities provide different kinds of motion data and have specific advantages and disadvantages.
For example, optical mocap systems provide motion data with the highest precision and descrip-
tiveness. On the downside, they are expensive, difficult to setup and maintain, and pose constraints
on the recording location and lighting conditions. Because of these properties, optical systems can
be afforded only by a small number of people and are mainly used in high-budget movie and game
productions. Inertial sensors, in contrast, are less expensive and pose considerably less constraints
on the recording location. In particular, such sensors are completely independent from optical
cues, which renders them immune to occlusion-based errors and lighting related problems. This
makes them interesting for applications in sports science or medical home rehabilitation scenarios,
which often take place in spacious and uncontrolled environments or even outside. Furthermore,
because of their small size, inertial sensors have been employed in modernconsumer electron-
ics, such as smartphones or game consoles, as an additional input modality.Unfortunately, the
data they provide is not as rich as the data obtained from optical systems. Inaddition, if used
for full body recording of motion data, many inertial sensors must be placed on the body which
renders them impracticable for home user applications such as full body control of video games
or augmented reality applications. With depth sensing devices such as the Microsoft Kinect, an
alternative sensor type has revolutionized the market. By providing real-time3D geometry in-
formation in an inexpensive and easy to use manner, full-body human motion tracking can now
be applied in home user environments. However, even state-of-the-art methods still suffer from
various challenges such as ambiguities implied by the low resolution and noisiness of the data or
missing information in the case of occluded body parts.

In this context, we have contributed in several aspects. As a first contribution, we systematically
analyzed the expressiveness of several mid-level representations for the comparison of motion
data originating from different sensor modalities. In a cross-modal scenario, we took a close
look on features that can be derived from both inertial sensors and optical sensors. We showed
that features based on orientation data that can be deduced from the measurements of inertial
sensors is outperforming other representations such as,e. g., local accelerations. We discussed the
application of these techniques in the context of real-time full-body motion reconstruction.

As a second main contribution, we showed a practical application of these techniques in the con-
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text of automatic classification of sports motions. We considered the scenarioof trampoline mo-
tions, where the athlete has to perform a sequence of predefined jumps. This scenario was espe-
cially well-suited for the utilization of inertial sensors because of the highly dynamic and spacious
character of trampoline motions that can hardly be captured using optical mocap devices such
as marker-based systems. We contributed with a set of discriminative features based on inertial
sensor data and an efficient DTW-based learning procedure based on motion templates. Also, we
showed how different masking techniques improve the classification accuracy by enhancing or
suppressing certain parts of the motion templates. In particular, the masking allows for controlling
the sensitivity of motion templates to variations within one class.

As a third main contribution, we developed techniques to improve the performance of real-time
depth-based human motion trackers as used in home consumer scenarios. We introduced a novel
algorithm for estimating the shape of a person from only two sequentially takendepth images. In
contrast to previous approaches, we used pure 3D-features and a combination of point and plane
constraints to obtain comparable shape reconstruction results. Opposed toprevious approaches
the running time could be reduced from about one hour to about one minute.The estimated shape
is important for many model-based depth tracker and is indispensable for augmented reality ap-
plications such as virtual try-on. To demonstrate this, we described how theestimated shape can
be included in existing model-based tracking approaches. In comparison toprevious tracking ap-
proaches, we could achieve an increased joint tracking accuracy as well as a better approximation
of the depth image.

Finally, we studied one important drawback of current state-of-the-artdepth tracking approaches
that stem from the limited information provided by monocular depth data. In particular, we took
a deeper look on how to deal with tracking errors that stem from the occlusion of body-parts. To
tackle this problem, we proposed the usage of an additional sensor modality toprovide comple-
mentary information that is not subject to occlusions. Inertial sensors have turned out to fulfill
these requirements and provide rich information that can be utilized in several components of
existing depth-based trackers to improve tracking results. As example we employed the tracker
presented by Baaket al. [2011], which is a hybrid tracking approach fusing discriminative and
generative tracking concepts. We showed that both concepts can be enriched by the data provided
by inertial sensors to increase tracking performance. Especially, in tracking situations with non-
frontal poses and/or occluded body-parts, we could achieve substantial improvements compared
to other state-of-the-art depth trackers.

Outlook. We see several directions for further research. In general, dealingwith different sensor
modalities is an important direction of research not only in computer animation androbotics but
also in the domains of medical rehabilitation and sport sciences. For example,in sport sciences,
most experimental setups consist of various types of sensors such as optical marker-based systems,
inertial sensors, force plates, high-speed cameras and EMG-sensors that measure muscle activity.
However, in most cases these sensor modalities are considered independently without fusing them
in an unified model. One first step, would be to combine modalities that provide similar data. An
example are optical marker-based systems and high-speed cameras. Whilethe frame rate of the
former is restricted to about 120 Hz, the later achieves frame rates of more than 1 000 Hz. Even
if high-speed cameras are only used in sparse numbers, they can increase the overall temporal
resolution of the traditional marker-based system. Another example would bethe usage of inertial
sensors in combination with force plates or EMG-sensors to obtain a better impression which
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forces act on a specific part of the body. In this context, elaborate body models, such as the
OpenSim1 show already promising results. On the downside, their main input modality are marker
positions obtained by marker-based systems.

In most situations, optical systems are chosen because of their superior precision compared to
other systems, but their specific requirements constrain their applicability to labenvironments.
Another drawback is that the placement of markers possibly restricts an athlete in the way he
or she can perform the motion to be recorded. The application described inChapter 4 was one
example, where optical systems could not be used because of the high dynamics and required
volume of trampoline motions. We showed that inertial sensors were much bettersuited in this
context. However, one single sensor modality might in some scenarios not besufficient to solve
the task. One example would be if one not only wants to classify trampoline jumps but also wants
to exactly reconstruct the motion for further analysis. In this context, the data provided by the
inertial sensors alone is not sufficient. In particular, the global position of the athlete could not be
reconstructed. Here, a small number of visual cues obtained from intensity or depth cameras may
suffice to reconstruct the motion.

In the context of personalized tracking, a further direction of research is the real-time estimation
of both shape and pose at the same time. This would render the pre-processing step for obtain-
ing a personalized model not necessary anymore. Furthermore, it wouldenable other interesting
applications such as real-time acquisition of appearance features of a person for identification pur-
poses. To this end, a more robust finding of correspondences between model and depth data would
be necessary, as for example used by Tayloret al. [2012]. Also, after approximating the pose and
overall shape of a person, one could derive further interesting geometric information such as high
detailed reconstruction of the body surface or identification of time variant surface features such as
cloth folds. Finally, an exact approximation of the surface would enable theestimation of material
or lighting parameters similar as in performance capture approaches.

A current limitation of our proposed combined depth/inertial tracking approach concerns the num-
ber of inertial sensors required. While already one additional inertial sensor, used for estimating
the global heading, significantly improves the performance of our tracker, its full potential is only
developed using six inertial sensors. One idea to reduce the number of sensors is to introduce a
hybrid retrieval approach that uses sparse inertial data in combination withdepth cues. In partic-
ular, using detection algorithms for body part detection such as proposedby Shottonet al. [2011]
could be helpful. Another limitation is that inertial data is not yet included into the optimization
scheme directly. A prior similar to the one proposed by Pons-Mollet al. [2010] may improve the
performance of our tracker for parts that are visible to the depth camera and one could better tackle
tracking issues with rotational ambiguities of the extremities.

1http://opensim.stanford.edu
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